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ESIPUHE

Suomen Mekaniikkapiivit jirjestettiin kuluvana vuonna 2009 jo juhlallisen kymmenennen kerran.
Mekaniikkapdiville kokoonnutaan joka kolmas vuosi tarkastelemaan mekaniikan tilannetta Suomes-
sa ja kuuntelemaan mielenkiintoisia, usein nuorten tutkijoiden pitimid, esitelmis uusista tuloksista
mekaniikan, sithen liittyvin matematiikan, tieteelliseen laskennan ja optimoinnin saralla.

Ensimmaéiset mekaniikkap#ivit jirjestettiin Oulussa vuonna 1982. Siitd lghtien pdivét on jérjestetty
Tampereella 1985, Otaniemessid 1988, Lappeenrannassa 1991, Jyviskyldssd 1994, Oulussa 1997,
Tampereella 2000, Otaniemessd 2003 ja Lappeenrannassa 2006. Tédnd vuonna mekaniikkapdivien
kiytinnén jérjestelyvastuu oli Jyviiskyldn yliopistolla. Tapahtuma pidettiin 3.—4.12.2009 Mattilan-
niemen kampuksella Agora-rakennuksessa.

Mekaniikkapdivien kanssa jérjestettiin rinnakkainen tapahtuma: “Integrated Multiphysics Simula-
tion & Design Optimization: Database Workshop for Multiphysics Optimization Software Valida-
tion”. Kutsutut esitelmit olivat yhteisii molemmille tapahtumille. Kutsuttuina esitelméijind oli-
vat professorit: Tadeusz Burczynski, Cracow University of Technology and Silesian University of
Technology, Jean-Antoine Désidéri, INRIA Sophia-Antipolis, Axel Klawonn, Universitit Duisburg-
Essen, Mohamed Masmoudi, University of Toulouse ja Kaisa Miettinen, Jyviskyldn yliopisto.
T#min lisdksi péivilld pidettiin muita esitelmi yhteensé 53 kappaletta. Esitelmiin liittyvit artikkelit
on koottu tihiin konferenssijulkaisuun.

Haluamme limpimdsti kiittdd kaikkia niitd, jotka ovat myotivaikuttaneet pdivien onnistumiseen,
osallistujia, artikkelien kirjoittajia ja esitelmoitsij6itd, tieteellistd neuvostoa ja ennen muuta kaikkia
niitd henkildité, jotka ovat osallistuneet jirjestelytyohon paikan padlla.

Raino Mikinen
Pekka Neittaanmiki
Tero Tuovinen

Kati Valpe



FOREWORD

The 10% Finnish Mechanics Days were held in Jyviskyld at the University of Jyviskyld Decem-
ber 3—4, 2009. The aim of the Finnish Mechanics Days is to bring together researchers, industrial
specialists and doctoral students whose interest lies in mechanics, mathematics associated with it,
scientific computing, and optimization.

The first Mechanics Days were held in OQulu 1982. Since then the days have taken place in Tampere
1985, Otaniemi 1988, Lappeenranta 1991, Jyviskyld 1994, Oulu 1997, Tampere 2000, Otaniemi
2003, and Lappeenranta 2006.

The 10* Mechanics Days was parallel event with “Integrated Multiphysics Simulation & Design
Optimization: Database Workshop for Multiphysics Optimization Software Validation”. Both events
shared the invited speakers. Invited presentations were given by professors Tadeusz Burczynski,
Cracow University of Technology and Silesian University of Technology, Jean-Antoine Désideri,
INRIA Sophia-Antipolis, Axel Klawonn, Universitit Duisburg-Essen, Mohamed Masmoudi, Uni-
versity of Toulouse, and Kaisa Miettinen, University of Jyviskyld. In addition, 53 other presenta-
tions were given. The papers are included in these conference proceedings.

We express our warm gratitude to all of them who played roles in the success of the event, partici-
pants, speakers and authors, the scientific committee, and, first of all, the local organizers.
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IMMUNE OPTIMIZATION

T. BURCZYNSKI"?, W. KUS", A. POTERALSKI"” AND M. SZCZEPANIK"

U Department for Strength of Materials and Computational Mechanics
Silesian University of Technology, POLAND

? Institute of Computer Modelling
Cracow University of Technology, POLAND

ABSTRACT

Nature inspired computing has proved to be useful in various application areas. Evolutionary
methods, neural networks, swarm intelligence and many other approaches have been applied to
many technical and engineering problems, such as optimization, learning, data analysis,
knowledge engineering and many others. Some of these methods perform better in the given
application areas and some work better in others. However, it can hardly be assumed that there
exists a problem domain in which nature inspired techniques are not employed, at least as a part of
the proposed solution. After decades of development, biologically inspired methods are well
established and appreciated tools. On the other hand, many novel approaches arise to solve
problems in innovative ways, hopefully more effectively. One of such novel areas is the field of
Artificial Immune Systems (AIS). The question arises as to what AIS can offer as problem solving
techniques and whether the paradigms proposed by AIS researchers are in fact novel. The aim of
this paper is to provide a set of carefully selected problems connected with the current research
directions of fmmune Computing.

Immune system, especially this of vertebrates, is a very complicated system of interacting cells,
organs and mechanisms, whose purpose is to protect the host body against any danger, either
exterior or internal. To achieve that goal the immune system has to decide not only about what is
not part of the host but also what can cause a damage. This is a very difficult task, as not all that
comes from outside is dangerous. On the other hand, autoimmune diseases are examples of
internal threats. To protect the host against all such dangers is not an easy task, especially in a
changing environment. It is obvious that the immune system has to develop some sense of self,
i.e., the sense of what is part of the host. How the immune system achieves this is hard to explain,
as the host body changes its functioning and structure over time. Nonetheless, the immune system
is able to perform its task effectively. To deal with such difficult task the immune system needs the
ability to learn new threats, to remember previous experiences and to develop specialized
responses to different pathogens. Taking a closer look at all these features one can state that the
immune system can be considered as a cognitive system. For that reason the immune system
gained an interest of computational sciences.

Given all the complexity of functioning of the immune system, it is necessary to extract higher
level paradigms which could serve as the basis of constructing computational models and



algorithmic solutions. The most important paradigms in the filed of Artificial Immune Systems are
Clonal Selection (CS), Immune Network Theory (IMT), Negative Selection (NS) and recently
emerged Danger Theory (DT).

The question is whether AIS can offer anything really new and/or useful. Clonal Selection can
seem to be another exemplification of evolutionary approach to problem solving. The fact of
existing of immune networks in biological immune systems is questioned by biologists. Negative
Selection appears to be truly novel approach, but one could ask whether it is enough to invest time
and resources to develop AIS. In the first examinations of the immune ideas, the researchers
developed several algorithmic solutions based on immune paradigms, often separately. Clonal
Selection and Immune Network Theory have been applied to optimization, data analysis or
clustering. Negative Selection has been applied to computer security, anomaly or fault detection.
Many of the proposed algorithms have successfully dealt with the tasks appointed to them.
However, their usefulness according to their robustness and scalability has been under dispute
when compared to other well established computational methods.

The paper is devoted to applications of artificial immune systems to shape and topology
optimizatiom of 2-D and 3-D structures. Grid-based artificial immune systems in optimization of
mechanical systems are also presented. The paper contains detailed description of both serial and
parallel versions of immune algorithms. Several numerical examples and engineering applications
are presented.



NUMERICAL SIMULATION OF ARTERIAL WALL MODELS

AXEL KLAWONN

Faculty of Mathematics
University of Duisburg-Essen
Universitétsstr. 3
D-45117 Essen, GERMANY

Email: axel. klawonn@uni-duisburg-essen.de

ABSTRACT

The mechanical behavior of arterial walls in the physiological range can be described by
anisotropic, hyperelastic elasticity models. Different models can be considered. Each of them is
represented by a polyconvex strain energy function in order to guarantee the existence of
minimizers. Discretization of these three dimensional models by the finite element method usually
results in a large number of equations. Dual-primal FETT methods are among the most severely
tested domain decomposition methods for the solution of partial differential equations on parallel
computers. A computational framework using a Newton-Krylov-FETI approach for the solution of
the discretized models will be discussed and applied to different material wall models and
geometries.

This presentation is based on joint work with Oliver Rheinbach, Faculty of Mathematics,
University of Duisburg-Essen, Dominik Brands and Jorg Schroder, Institute of Mechanics,
Division of Civil Engineering, Faculty of Engineering, University of Duisburg-Essen and Dirk
Bose and Raimund Erbel, West-German Heart Center and University Hospital, University of
Duisburg-Essen.



EXTENDED ADJOINT APPROACH IN CFD

MOHAMED MASMOUDI
Institute of Mathematics of Toulouse (IMT)
University of Toulouse, FRANCE

Email: mohamed.masmoudi@math.univ-toulouse.fr

ABSTRACT

First and second order derivatives are classical tools for uncertainty quantification. It is well
known that the adjoint approach is a powerful tool for first order sensitivity computation. But the
efficient calculation of second order sensitivity is still an open problem.

We discovered that the second order variation of the solution could be split into smooth and
oscillating parts. The regular behavior is taken into account by the adjoint approach and we don’t
need to calculate it. The high frequency part is very easy to compute using very local calculation.

For example, if we are dealing with shape parameters, we have just to modify the shape and to
update the solution locally around the shape. The proposed solution is non invasive.

We obtained spectacular results in CFD, electromagnetism, and structural analysis.
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calculations versus displacement controlled calculations

K. TABRI
Department of Applied Mechanics, Marine Technology
Teknillinen korkeakoulu
P.0.Box5300,
02015TKK, Finland
kristjan.tabri@tkk.fi

J. BROEKHUIJSEN
Damen Schelde Naval Shipbuilding
Glacisstraat 165, 4381 SE Vlissingen
The Netherlands
joep.broekhuijsen@damennaval.com

R. VILLAVICENCIO
Instituto Superior Técnico
Avenida Rovisco Pais

1049-001 Lisboa, Portugal
rvillavicencio@mar.ist.utl.pt

ABSTRACT

The paper presents two methods for numerical simulations of ship collisions: a displacement
controlled approach at constant velocity and a dynamic approach using actual velocities in colli-
sion. In the displacement controlled method, the struck ship is kept motionless and the striking
ship penetrates it along the direction of its initial velocity. In the dynamic approach the ships are
allowed to move and the collision process considers the actual motions of the ships and thus, the
collision is described more accurately. The paper discusses the advantages and disadvantages of
both methods, such as the possibility of time scaling, duration and preciseness of simulations, etc.
As a case study six collision scenarios of two river tankers are calculated with both methods and
the deformation energy required to breach the inner hull of the struck ship is compared.

1. INTRODUCTION

Numerical simulations are often used to assess the crashworthiness of ship structures and to
evaluate the outcomes of ship collisions. Such analysis is a demanding task and significant simpli-
fications are required to achieve the outcomes in reasonable time. It is a common approach to de-
couple the analysis of structural deformations from the analysis of ship motions. There, the struc-
tural response is evaluated in so-called displacement controlled analysis — the struck ship is kept
fixed and the striking ship collides with it at a constant velocity along a prescribed path, see for
example Kitamura (2002). The analysis provides the contact force as a function of this prescribed
penetration path. The actual extent of the penetration is obtained by comparing the area under the



force-penetration curve to the deformation energy evaluated with some calculation model that
gives the deformation energy based on the conservation of momentum in collision (Pedersen and
Zhang, 1998).

The accuracy of displacement controlled method depends on the level of precision on predict-
ing the penetration path. This can be done rather precisely for symmetric collision, where the strik-
ing ship collides under a right angle at the amidships of the struck ship and only few motion com-
ponents are excited. Statistical studies (Liitzen, 2001; Tuovinen, 2005) have, however, indicated
that the majority of collisions are non-symmetric in one way or another. Often the collision angle
deviates from 90 deg or the contact point is not at the amidships. As in non-symmetric ship colli-
sions more motion components are excited, the penetration path cannot be predefined with reason-
able precision, but it should be evaluated in parallel with the ship motions. Pill and Tabri, 2009
presented a coupled numerical simulation procedure, where the ship motions and the structural de-
formations are evaluated in the same calculation run. This allows to evaluate the contact force and
deformation energy based on the actual penetration and not based on the predictions made before-
hand.

The paper gives a brief overview of both methods and discusses their advantages and disadvan-
tages. Six non-symmetric collision scenarios are calculated with both approaches using explicit fi-
nite element (FE) code LS-Dyna. The deformation energy required to breach the inner hull of the
struck ship is compared for both approaches. The paper does not present an extensive overview on
the FE modelling techniques, which are elaborately presented elsewhere (see for example Ehlers et
al, 2008), but concentrates fully on the dynamics and coupling aspects.

2. DISPLACEMENT CONTROLLED COLLISION SIMULATIONS

In displacement controlled simulations the striking ship collides with a struck ship, whose
boundary nod¢s are constrained to prevent the ship from displacing from her initial position. Finite
element model consists of partially modelled striking and struck ship as depicted in Figure 1. Itisa
recommended practise that the structures are modelled to extent where there are no plastic defor-
mations at the boundaries. The striking ship is often modelled as a rigid body as the stiffness of the
bow area is often superior to that of the side structure. The striking ship moves at constant velocity
along the prescribed path and the contact between the ships does neither influence the speed nor
the direction of the striking ship. Therefore, the rigid body motions of the colliding ships are ex-
cluded from the analysis and the emphasis is on the modelling of the structural response. Dis-
placement controlled simulations are widely used in collision analyses due to their rather simple
manner and fast simulation runs, see for example Kitamura (2002) or Ehlers et al (2008).

The method has several advantages and disadvantages. As the motion dynamics are not part of
the simulation, some numerical manipulations can be made to shorten the duration of the simula-
tion run. The main advantage is that the time step size can be increased using so-called mass-
scaling in a certain range without significant loss of accuracy. In LS-Dyna the time step size is
evaluated on the basis ot the Courant stability criteria, which uses element dimensions, stitthess
and density as input (Hallquist, 2007). The mass-scaling concept increases the density of the ele-
ments in which the Courant criterion is not met under the prescribed time step size minima. With
reasonable selection of the step size the increase in mass and the ensuing dynamic effects remain
insignificant and the mass scaling can be used. Furthermore, the speed of the striking ship often
exceeds the typical speeds in collision. This, and the fact that the striking ship is not decelerating
under the action of the contact force, significantly shortens the duration of the collision process
and the simulation time required. Again, as the dynamics are of secondary importance, the error
resulting from sometimes even unrealistically high collision speed is usually in acceptable range.



houndary conditions restricting
the displacement of the struck ship

prescribed displacement
v=const.

Figure 1. Displacement controlled calculations

The disadvantages of the displacement controlled method stem from the same aspects as its
advantages — neglected collision dynamics. As the striking ship is moving at constant speed and
the struck ship remains still throughout the collision, the dynamics of the collision, such as accel-
erations and velocities, are not physically correct. This means that some dynamic effects, such as
strain rate effects in deforming structures, can not be properly included. Furthermore, under the
prescribed displacement the collision process does not describe any actual collision scenario, but
gives an assessment on the crashworthiness of the side structure.

3. DYNAMIC COLLISION SIMULATIONS

To properly simulate an actual collision scenario the analysis of structural response can not be
decoupled from the ship motions. Mass, inertia and hydrodynamic properties of the ships have to
be included in the FE model as the motion dynamics are part of the simulation. Pill and Tabri
(2009) proposed a simplified method, which allows dynamics collision simulations. The ship mo-
tions were limited to the plane of water surface and thus the restoring forces were not included.
Before proceeding to the overview of the simulation procedure, the forces acting on the colliding
ships are discussed in brief.

3.1 Forces acting on colliding ships

When two ships collide, the contact force arises as a result of the penetration of structures, de-
fined as a relative position between the striking and the struck ship. The contact force causes the
ships to become displaced from their current position. At any time instant the force has to be in
balance with the inertial and hydromechanical forces associated with this movement.

An accelerating or decelerating ship encounters a hydrodynamic radiation force induced by
the relative acceleration between the hull and the water. The acceleration component F,, of this
force is based on the constant added mass at an infinite frequency of motion multiplied by the
ship’s acceleration. In the presence of a free surface an additional force component — hydrody-
namic damping Fy — arises. This is evaluated with the help of the convolution of the velocity and
retardation function, which accounts for the memory effect of water (Cummins, 1962; Ogilvie,
1964). This approach requires the evaluation of the frequency-dependent added mass and the
damping coefficients, which are calculated with the help of the strip theory (Journée, 1992). In
time domain the hydrodynamic radiation force is evaluated as (Cummins, 1962)
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where ¢ denotes time, 7 is a dummy variable, [aw] is the matrix of added masses a(w=) at
infinite frequency, and [K,(7)] is a matrix of retardation functions, which account for the memory
effects of water:

[K, (0] =% I[b(a))]cos(wr) do (2)
0

where [b (a))] is a matrix comprising of added damping terms b(@). The retardation functions
K, (7) are evaluated by Fast Fourier Transformation (Matusiak, 2001).

A ship moving in water also encounters frictional and residual resistance. Residual resistance
is usually not included in the collision analyses because it is considered to be small compared to
other phenomena. The friction force is proportional to the wetted surface and to the square of ships
velocity.

1.2 , . ;
! j
w | :
»08 = e e |
2 striking ship A
c 1 ‘_, X
o 0.6 g ' !
2 ' struck ship
T:; 0.4+ 7 :/'./_ :
0.2 ,,/// r - deformation - - - - |
A energy |
% 0.05 01 015
time [s]

Figure 2. Division of relative energy components in collision

The importance of different forces and the corresponding energy components is presented
based on the model-scale experiments conducted in Helsinki University of Technology (Tabri et
al, 2008; Tabri et al, 2009). In Figure 2 the available energy in a model-scale collision experiment
is divided into energy associated with the striking ship, energy associated with the struck ship and
their difference, i.e. the deformation energy. Obviously, exact division depends on the collision pa-
rameters such as the masses of the participating ships, collision angle, location of the contact point
etc, but for a general overview an analysis based on a single experiment serves it purpose. It
should also be noticed, that when talking about the energy associated with a ship we exclude the
deformation energy. We do so to separate the deformation process from other processes, which are
mainly involved with the motion of a ship alone. What we refer to as energy associated with a ship
consists of energies to overcome hydromechanic forces and the kinetic energy of moving ship
structures.



Figure 3 presents a distribution of relative energy components other that the deformation en-
ergy. It can be seen that the kinetic energy involved with the motions of the ship structures and
their added masses is clearly higher compared to the energy absorbed to overcome the friction and
hydrodynamic damping.
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Figure 3. Division of relative energy components other than the contact force

3.2 Dynamic collision simulations

Previous chapter revealed that, in addition to the contact force, the inertial forces and the corre-
sponding energies are the main components in collision. Linear effects associated with inertial
forces can conveniently be included in FE simulations as they are proportional to the acceleration.
The frictional force is proportional to the square of ships velocity and the hydrodynamic damping
force requires the evaluation of convolution integral in the form of Eq. (1). Their inclusion in the
simulations is not straight forward and as their share in the energy balance is relatively low, less
than 10% of the total available energy in Figure 3, they are not yet included in the FE analysis.

The main challenge to include the inertia effects is to provide a proper description of the ship
masses, inertias and added masses. These properties should be modelled with as few elements as
possible in order to add little to the simulation time. Mass m and inertia about the vertical axis I,
are the main properties of the ship when evaluating the planar motions under the external forces.

In a FE model, the masses and inertias of the colliding ships are modelled by using a small
number of mass points. The principle of the modelling is presented in Figure 4. The striking ship
consists of a modelled bow region and three mass points m;. Correspondingly, the struck ship con-
sists also of three mass points and a part of the side structure. If the mass of the modelled structure
is mgrg, the total mass of the ship is obtained as

3
m = ij + Mgpp 3)
=1
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If one of the mass points is located at the COG of the ships, the distance £, of the other two
mass points from COG is evaluated from

s )2 2
L, + pes = Z i (kzz]) + Migpy - Ky )
3=1,3

where 4 is the yaw added mass, k; ;1s the radius of gyration of the Jj-th mass element, which
also takes into account the yaw added mass; and sy is the radius of gyration of the modelled
structure about the centre of gravity (COG) of the ship. Therefore, the yaw added mass g4 is in-
cluded by calculating the suitable value for k*z7;. Using three mass points enables to model the
mass and inertia of the ship with respect to the vertical axis and to control the initial location of the
COG. The mass points are constrained to move together with the boundary nodes of the modelled
parts of the ship.

planar joint plane

boundary nodes connected

Vor velocity given as to the mass points

an initial condition

Figure 4. Calculation setup for dynamic collision simulations

As yaw is the only rotational motion component, its added mass is conveniently included by
proper positioning of the mass points in the longitudinal direction of the ship. The added mass
components associated with translational motions should be included in a certain directions only.
The surge added masses of the striking and struck ships are marked as 241 and z4;” in Figure 4.
These added masses are positioned in the centres of gravity of the ships. The approach causes the
surge added mass of to be included also in the sway direction. In the case of the striking ship the
sway added mass is not properly modelled as her motions are predominantly in surge direction.
Neglecting the sway added mass of the striking ship results in only minor error in the simulation
results.

In the case of the struck ship the sway added mass can not be neglected and it is modelled as a
single block of additional mass that is located on the side opposite to the side that is hit, see Figure
4. The mass of the sway added mass block is calculated by subtracting the surge added mass, al-
ready added to the node at the COG, from the sway added mass. The sway added mass of the
struck ship is connected to a rigid support plate on the ship using a planar joint, which restricts
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relative movement in one direction and allows the joined entities to move in the other directions
with respect to each other. Therefore it is possible to take added masses into account in one direc-
tion only. In the case of surge motions, the sway added mass block remains in its initial position
and is not included in the mass of the struck ship.

The side structure included in the FE model is connected through its boundary nodes to the
mass points. Thus, any motion of the structure is transmitted to the mass nodes and the whole ship
mass is included. Desired collision angle £ and eccentricity are achieved by rotating the striking
ship to the required angle and moving it to the proper location. The striking ship is given the initial
velocity v.

The advantage of the dynamic simulations is that they simulate an actual collision event and no
prescriptions other than initial conditions are required. The drawback is that the mass-scaling
would lead to larger errors compared to displacement controlled simulations and is therefore not
suggested. As both ships are moving, the whole contact process lasts longer as it takes longer time
for the striking ship to penetrate deep enough into the struck ship to cause breaching of the inner
hull. Therefore, the dynamic simulations require significantly longer computational time.

4. A CASE STUDY: COLLISIONS BETWEEN TWO RIVER TANKERS

4.1 Ship models and collision scenarios

As a case study six collisions between two river tankers are simulated. Both ships have the
same mass of 2771 tons and the length of the ships is 110 m. The striking ship has a rather rectan-
gular bow shape as seen from Figures 1 and 4. The struck ship has longitudinally stiffened double-
hull with web-frame spacing of 1.65 m and the spacing of the corrugated bulkheads is 8.26 m, see
Figures 5 and 6. The main dimensions are the same for both the striking and the struck ship and
these are presented in Table 1.

Figure 5. Side structure of a river tanker

The FE models of the striking bow and the side structure are the same for displacement con-
trolled and dynamic simulations. While the bow structure is modelled as a rigid body, the side
structure is allowed to undergo large deformations. Ships are assumed to be made of shipbuilding
steel with yield strength of 284 MPa. Strain-rate sensitivity of the steel material is not considered.
Length of the modelled side structure is 24.75 m, which is sufficient for the plastic deformations
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not to occur at the boundaries. The fracturing of the structures is described by thru thickness fail-
ure criteria, which background and implementation is explained in Zhang et al (2004), Scharrer et
al (2002) and Ehlers et al (2008). The thru thickness strain criterion in LS-DYNA erases an ele-
ment if the through thickness strain reaches its critical limit. This approach requires rather fine
mesh and therefore, in the contact area the prevailing element dimension is 30 x 30 mm. The inner
hull is considered to be breached when at least four ¢lements of the inner plating are erased.

Table 1. Main dimensions of the ships

Length, L 110 [m]
Beam, B 114 [m]
Draft, T 2.4 [m]
Displacement, A 2771 [ton]
:incearlti;ngtzzrespw over 2.1-10° [ton'm?”]
Surge added mass, 138.5 [ton]
Sway added mass, 1, 593 [ton]
Yaw added mass, ugs 0.49-10° [ton'm?]

Collisions to three different longitudinal locations along the side of the struck ship as depicted
in Figure 6 are studied. Location 1 has eccentricity L of 4.5 m, location 2 has 8.6 m and location 3
has 28.9 m towards the aft of the midship section of the struck ship. In location 1 the contact point
is exactly at the bulkhead while in other two locations it is between the bulkheads at web frame.
The striking ship is at /=135 deg angle with respect to the struck ship. The collision velocity is ei-
ther 3.5 or 5 m/s, except for location 1 where only 5 m/s is studied. In the displacement controlled
simulations the striking ship is travelling at constant velocity of 5 m/s. The collision scenarios are

summarized in Table 2, where also the initial kinetic energy E'aq of the striking ship is presented.

AN T - ' iy

Vi SN SN AN\
O s ey $cl'\
§ / \$ &/ S >

X = Q’a— —"E'__

Wb /.' 5
b AN \
N ——

Figure 6. General arrangement of the struck ship and the collision locations.
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Table 2. Collision scenarios

v¢=3.5 m/s, /=135 deg V=5 m/s, /=135 deg
Location 4 5
Le E{ i+ Le Ef M1
L1 - - -4.5 34.6
L2 -8.6 17.0 -8.6 34.6
L3 -28.9 17.0 -28.9 34.6

* an - initial kinetic energy of the striking ship without considering its added mass

4.2 Comparison between dynamic and displacement controlled simulations

Two approaches are compared by looking at the deformation energy at the time instant when
the inner hull of the struck ship is breached. We refer to this energy as critical breaching energy.
The time-histories of the deformation energies evaluated with the different approaches are pre-
sented in Figures 7 and 8. The energies are plotted until the critical breaching energy, which are
also presented in Table 3 for different collision scenarios. 'The increase or decrease of critical
breaching energy in the dynamic simulations with respect to that in displacement controlled simu-
lations is presented in percentages.

Table 3. Critical breaching energy and its difference with respect to displacement con-
trolled simulations as a function of collision position and velocity.

v=const=5 m/s* ve=3.5 m/s Vo=5 m/s

Loc.\Vel. energy /diff. energy /diff. energy /diff.
[MIJ[%] [MI)/[%] [MI}/[%]
L1 2.88/- - 3.16/9.9
L2 4.27/- 4.10/-4.0 4.70/9.9
L3 4.27/- 4.00** 4.75/11.1

*- displacement controlled calculation
**_ inner hull not breached, but the penctration between the ships is already decreasing

The collisions with v=5 m/s are obviously more critical because of large initial kinetic energy
of the striking ship. The inner hull of the struck ship is breached in all three scenarios. In dynamic
simulations the critical breaching energy is about 10% higher compared to the displacement con-
trolled simulations as revealed in Figure 7. The differences in the energy arise as the penetrations
path of the striking ship becomes different due to the coupling of the ship motions and the contact
force. Mainly due to the yawing of the ships the actual penetration path is different from the direc-
tion of the initial velocity as assumed the in displacement controlled simulations. Thus, the defor-
mation is distributed to larger region and the energy absorption becomes higher.

Contrary, in the collisions with vy=3.5 m/s the critical breaching energy in location 2 becomes
4% smaller in dynamic simulations, see Figure 8a. Even though the striking ship follows a slightly
longer penetration path compared to the displacement controlled simulations, it heavily com-
presses the web frame causing it to fail faster compared to any other simulations.

In location 3 the inner hull of the struck ship is not breached. The striking ship penetrated until
the inner hull, after which the velocity of the struck ship became roughly equal to that of the strik-
ing ship and the penetration in transverse direction with respect to the struck ship ceased to in-
crease. The deformation energy still keeps on increasing to some extent as the side structure is still
deformed during the separation of the ships. Even though the side structure has already absorbed
more than 90% of the critical breaching energy obtained with the displacement controlled simula-
tion, the inner hull is still far from being breached.
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Figure 7. Energy absorption in the case of vy=5 m/s

Energy plots also reveal that in dynamic simulations it takes longer time to reach the same en-
ergy level and to breach the inner hull. It is expected as the penetration and thus also the deforma-

tion energy increases less in the case of the decelerating striking ship and accelerating struck ship.
In turn, this results in longer simulation runs.
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Figure 8. Energy absorption in the case of v4=3.5 m/s
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5. CONCLUSIONS

The paper compared two different approaches for ship collision simulations with FE method.
In the displacement controlled method, the struck ship is kept motionless and the striking ship
penetrates it along the direction of its initial velocity. The dynamic simulations consider the actual
ship motions in collision and thus, the collision is described more accurately. The energy required
to breach the inner hull of the struck ship was evaluated with both methods and compared.

In all the dynamic simulations the yaw motion of both ships were excited and the penetration
paths became different from those of displacement controlled simulations. Thus, different portion
of the side structure of the struck ship was engaged in energy absorption and the deformation en-
ergy became different. The difference in energy between the two approaches ranged from -4% to
11%. The exact difference to displacement controlled simulations depends on many aspects such
as the masses of the ships, collision velocity, location, angle etc. In some cases, as in the collision
at 3.5 m/s to location 2 for example, the structures can be deformed in an unfavourable way and
the energy could become smaller despite the longer penetration path.

The dynamic simulations allow more precise analysis of collisions. The collision process itself
last for a longer time because of physically correct collision dynamics. Also the increase of calcu-
lation time step based on mass scaling is not suggested as it would add artificial inertia to the sys-
tem. Therefore, the dynamic simulations take significantly longer time, depending on the actual
collision scenario the difference in simulation time could be 5-10 times.

It is expected that the structures with higher collision resistance and larger differences in ship
masses could lead to a bigger scatter between the predictions of these two approaches. The same
applies for the scenarios where the collision angle, structural solution and the shape of the bow re-
gion of the striking ship favours the sliding between the ships. The study on these aspects is left
for future work.
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TIIVISTELMA

Brinkmanin tehtivd on parametririippuvainen tehtivé, jossa yhdistyvit sekd Darcyn etti Stokesin
tehtédvit. Brinkmanin mallilla kuvataan viskoosin nesteen liikettd huokoisessa aineessa, tyypillise-
ni esimerkkind maaperdssd olevan 6ljyn mallintaminen. Esittelemme yhtildille Darcyn tehtiville
kehitettyihin erikoiselementtejhin perustuvan elementtimenetelmin, jota voidaan soveltaa kaikil-
la viskositeettiparametrin arvoilla. Oleellisena osana menetelmdd on paineen jélkikisittely, jonka
avulla tehtiville voidaan johtaa hyvin kéyttiytyvé a posteriori -virhearvio.

1. JOHDANTO

Brinkmanin yht#l6lld kuvataan nesteen virtausta huokoisessa aineessa, jonka porositeetti on suuri.
Tilloin myos nesteen viskositeetilla on vaikutusta virtaukseen. Tyypillisii mallinnettavia aineita
ovat esimerkiksi hiekka, erittdin huokoiset kivet sek# ldmpoputkissa kdytettidvit metallihilat. Usein
Brinkmanin mallia kiiytetdsin my&s rajakerroksena huokoisen virtauksen ja vapaan nestevirtauksen
vililla.

Artikkelissa tarkastellaan H (div)-konformisten elementtimenetelmien sovellusta Brinkmanin on-
gelmaan, joka johtaa epikonformiseen elementtiapproksimaatioon. Konformisia menetelmii Brin-
kamanin tehtédville on késitelty viitteessid [4]. Stabiilisuuden saavuttamiseksi kiytimme Nitschen
menetelméd [7, 3], jolloin bilineaarimuodosta tulee verkkoriippuva. H (div)-konformiset elemen-
tit ovat hyvin yleisid teollisuussovelluksissa ratkaistaessa Darcyn yhtilo4, silld niilld saavutetaan
lokaali massan s#ilyvyys. Tavoittecna artikkelissa on laajentaa nédiden elementtien kiyttdaluctta
Brinkmanin tehtiviin.

2. BRINKMANIN MALLI

Merkitsemme w:1la nesteen nopeuskenttid, p:114 huokoispainetta ja tarkastelemme aluetta 2 C R™,
missd n = 2, 3. Merkitsemilld nesteen efektiivistd viskositeettia parametrilla ¢ > 0 Brinkmanin
yhtilot voidaan kirjoittaa muotoon [1, 5]
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—t?Au+u—Vp=f, §:ssa, (1)
divu =g, €:ssa. 2)

Kun ¢ > 0, yhtélot ovat rakenteeltaan samankaltaiset Stokesin ongelman kanssa ja vastaavat ratkai-
suavaruudet ovat (u,p) € V x Q = [H1(Q)]™ x L?(2). Parametrin arvolla t = 0 tehtéivi palautuu
Darcyn tehtiviksi, jolle ratkaisuavaruus on V' x @ = H(div, ) x L%(Q).

Maidrittelemme seuraavat bilineaarimuodot

a(u,v) = t3(Vu, Vo) + (u,v), 3)
b(v,p) = (div v, p) 4

ja
B(u,p;v,q) = a(u,v) + b(v,p) + b(u, q). &)

Brinkmanin ongelman heikko muoto voidaan titen kirjoittaa: Etsi (u, p) € V' x @ jotka toteuttavat

B(u,p;v,q) = (f,v) +(9,9), Y(v,q) €V xQ. (6)

3. DISKRETAATIO ELEMENTTIMENETELMALLA
Verkkoriippuvat normit

Kiytimme ongelman analysointiin seuraavia verkkoriippuvia normeja, jotka riippuvat myos para-
metristd ¢. Merkitsemme XCj,:1la alueen 2 kvasisddnnéllistd kolmiointia, ja £,:11a kaikkien reunojen
joukkoa. Funktion f hyppy kahden elementin K, ja K reunalla E on [f] = flk, — flk,, missé
E = 8K 0K,. Keskiarvo elementin reunalla on {f} = 1(f|x, + f|k,). Nopeuskentin normi
on

lel?p = lluall® + 2 ( > IVullgx+ D —IIIIU alllk E> )

KeKy, EEEh
ja painekentén
pllEn = D 2||VP”0K+ > 2 = 1 [P113, - ®)
KG’Chh +t Eeshh il

Sekaelementtimenetelmé

Diskretaatioon kiytetién joko Raviart-Thomas (RT) tai Brezzi-Douglas-Marini (BDM) elementtia-
varuuksia. Stabiilisuustulosten todistamiseksi riittdé tutkia ainoastaan RT tapausta, silld VhRT C
V,BDM and QEPM = QRT. Approksimaatioavaruudet astetta k ovat [2]

T = {v € H(div, Q) | v|k € [Po_1(K)|" ® &Py_1(K) VK € K1}, )

V,PPM — (v € H(div, Q) | v|x € [Po(K)]* VK € K1}, (10)
Qn ={q€ L*(9) | dlx € Pe—1(K) VK € K1}, an
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missi Pk_l(K ) ovat asteen k — 1 homogeenipolynomit. Avaruudet on valittu siten, ettd seuraava

tasapainotulos pitee:
div V), C Qp- (12)

Jotta menetelmiisti saataisiin stabiili, tdytyy vapausasteet liimata kiinni tangentin suunnassa, silld
avaruus on luonnollisesti jatkuva ainoastaan normaalisuunnassa elementtien rajapinnoilla. Téhén
kiiytetdin Nitschen menetelmii, jossa o on sopivasti valittu stabilointiparametri [9, 7]. Miéritte-
lemme seuraavan verkkoriippuvan bilineaarimuodon

Bh(u’p; v, q) . ah(ua ’U) + b(’U,p) + b(u7 Q), (13)

missi

an(u,v) = (u,v) +#* Z (Vu, Vo)

KeKy,
+ 3 Gl s — (50 ) ol — (ks |- (14
Ecg&y,

Ongelman diskreetti formulaatio on téiten: Etsi up, € V3 ja pp € Qp, siten, ettd

Bh(uh’ph;an) = (.fav) + (gaQ)a v(”)Q) € Vh X Qh- (15)

Voidaan todistaa seuraava lause joka niyttid menctelmén konsistentiksi:

Lause 1. Tarkalle ratkaisulle (u,p) € V' x Q piitee

Bh(u,p;'v,Q) = (f,'U) i (97Q)7 V(’U,q) € Vh X Qh- (16)

Seuraavaksi osoitamme, etti bilineaarimuoto ap(-,-) on stabiili verkkoriippuvassa normissa (7).
Stabiiliustulos pitee ainoastaan diskreetissi avaruudessa Vj, silld todistuksessa tarvitaan kédntei-
sepiyhtdldd. Estimoimalla allaolevan lausekkeen negatiivista termid kiyttden Youngin epdyhtdlod,
saamme tuloksen
_ 2, 42 2 2 @
an(v,0) = [l + ¢ 3 (Vo541 D (|

KeKy Ecéy,

[olli3.5 — 250 [o]) )

C I €
> min{l — —, o — =}|v||Z,. A7
> min{1 - S, - SHolE (17)
(7 on ki#inteisepéyhtilon vakio, ja € seki o ovat vapaita positiivisia parametreja. Valitsemalla € >
C1/2 ja o > €/2 saadaan tulos
ap(v,v) > ||v||f,h, Yv € V. (18)
Menetelmi lisiksi toteuttaa diskreetin Brezzi-Babuska stabiilisuusehdon [2]. Todistus on perusra-
kenteeltaan samankaltainen kuin Darcyn tehtiiville esitetty vastaava tulos viitteessi [6].

Lemma 2. Jollekin positiiviselle vakiolle C piitee

b(v,q)
veVi [[0]le,n
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Yhdistimillg ylldolevat stabiiliustulokset ap, (-, - ):lle ja b(-, - ):lle saadaan seuraava stabiiliustulos
koko tehtiville:

Lemma 3. Jollekin positiiviselle vakiolle C piitee

By (r, s; v,
sup oA > C(Irllen + slllen),  Y(r,8) € Vi X Qp. (20)
(0,a)eVx@n |1Plle,n + [l le,n

Lisiksi tarvitsemme erityisti interpolaatio-operaattoria Ry, : H(div, Q) — V} [8, 2], joka toteuttaa
(div (v — Ryv),q) =0, Vg€ Q. (21
Olkoon Py, : L?(Q) — Qy, standardi L2-projektio. Tasapaino-ominaisuudesta (12) seuraa
(divv,qg— Prg) =0, Vv eV, (22)
Lisiksi interpolantti toteuttaa seuraavan kommutaatiodiagrammin:

div Rh = Phdiv. (23)

Niiden tyokalujen avulla voimme todistaa seuraavan konvergenssituloksen.

Lause 4. Ldytyy positiivinen vakio C jolle pitee

lw — wnlle,p + || Prp — Pollle,n < Cllu — Ryugp. (24)

Todistus. Lemman 3 perusteella 16ytyy funktiot (v,q) € V3, x Qp joille ||[v]len + ||lgllle,n < C

siten, ettd

llun — Buutllep + ||lon — Paplllen < Ba(un — Rau, py, — Pap;v,q)
= ap(up — Rpu, v) + (div v, pp, — Ppp) + (div (up, — Rpu),q)  (25)

Kiyttamilld interpolantin ominaisuuksia (21) ja (22) sekéd Lauseen 1 konsistenssitulosta, pitee
lur — Rpulflen + [llpn — Paplllen < an(u — Rpw, v) < Cllu — Rpuljyn (26)

Lauseen tulos seuraa soveltamalla kolmioepayhtilod. O

Samoin kuin Darcyn tehtiviille, saadaan paineen virheelle |||pn, — Prp|||¢,» superkonvergenssitulos,
jolloin paineratkaisua voidaan parantaa jilkikisittelylld. Mikéli oletetaan riittéiva sileys tehtéville,
pitee

C(h* + th*=1)||ullk, for RT,

27
C(RF+! + th¥)||ullxt1, for BDM. @7

lw — wnlle,n + || Pap — prllle,n < {

4. JALKIKASITTELY PAINEELLE

Painekentiin superkonvergenssituloksesta sekd virtauskentén hyvistd approksimaatio-ominaisuuksista
johtuen voimme suorittaa paineelle jilkikisittelyn elementeittdin mukaillen viitteessi [6] esitettyd
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tekniikkaa Darcyn tehtdville. Paineen approksimaatioavaruudeksi valitaan jélkikdsittelyssi Q5 D
Q4 joka midritelldin seuraavasti.

Qr = {q € L*(Q) | q|x € Pe(K) VK € K1}, RT elementeille, 28)
"7 {g € L2(Q) | ¢k € Poy1(K) VK €Ky}, BDM clementeille.
Jilkikasittely mééritellddn seuraavien ehtojen avulla: Etsi pj € QF joka toteuttaa
Prpy, = pa 29)
(Voh, V) = (—t*Aup +un — £,V9)x, Vg€ (I - P)Qi k. (30)

Jilkikdsitielymenettely voidaan upottaa osaksi koko tehtévén ratkaisua teoreettista tarkastelua var-
ten. Méirittelemélld modifioitu bilineaarimuoto

S, i h%
Bu(wp"0,4") = Bu(w "0, ) + ) g (VP Fu = 7Au, V(I - Pg)x G
KeKs

jélkikésittelyn siséltivi tehtéivi voidaan kirjoittaa muotoon: Etsi (us,p}) € Vi X QF siten, ettd
jokaiselle (v, ¢*) € V}, x Q7 pétee

Bh(un, 1} v,4") = Lo(f, Prg; v, ¢"), (32)
missi 42
l‘ *
La(f,9i0,0) = (£,0) +(9:0) + D 4o m (5 V(I = Pu)d)x (33)
KeKy, Yk

Voimme todistaa seuraavan lauseen, joka kytkee alkuperiisen ja jélkikisitellyn tehtiivin toisiinsa.

Lause 5. Olkoon (un,p;) € Vi, x Q}, jilkikdsitellyn tehtivin (32) ratkaisu. Asettamalla p, =
Pyp}, on (un, pr) € Vi xQn alkuperdisen tehtivdn (15) ratkaisu. Toisaalta jos (up, pr) € Vi xQp
on alkuperdisen ongelman (15) ratkaisu ja p;, on mddritelty kuten ylld, on (un,p}) € Vi X QF,
ratkaisu tehtdvddn (32).

Jalkikdsittelyn sis#ltdva bilineaarimuoto on liséksi stabiili verkkoriippuvissa normeissa.

Lause 6. Jollekin positiiviselle vakiolla C > 0 pdtee kaikilla (u,p*) € Vi, X Q5

B (u,p*;v,q")
sup

= C([lullen + [lp*e,n)- (34)
@, )evax@; [1Vllen + [lg*|lfe,n

T#dmaé antaa seuraavan a priori -tuloksen:

Lause 7. Jdlkikdisitellylle ratkaisulle piitee

lw —wnllen + [P — palllen < 04325,.{““ — Rpulle,n + [lp — ¢*[le,n
h

h2
HOY il -~V + Bau = AR - £IR10)Y) G9)
KeK,,
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Todistus. Olkoon ¢* € Q7. Lauseen 6 perusteella 1oytyy funktiot (v,7*) € V3, x Q. joille ||v||¢n+
lr*(llen < Cja

llwn, — Ruuelle,n + 19% — ¢ lle,n < CBr(un — Rpw, v, — ¢%;0,7%)
Kiyttamailla jalkikidsittelyn médritelmid sekd Lauseen 1 konsistenssiominaisuutta, saadaan tulos
|un — Ruullen + (|55 — a*llen < CBh(u — Rau,p — ¢*5v,7*) — (g — Prg, ")
= ap(u — Rhu v) + (divv,p — ¢") + (div (u — Rpu),r") — (9 — Prhg, ™)

> hz K5 (=V(p - ¢") + (u— Ruw) + —*A(u— Ryw), V(I — Pr)x
KeKy

Toisen rivin viimeiset termit kumoavat toisensa kommutaatiominaisuuden (23) perusteella. Sijoit-
tamalla f viimeiseen lausekkeeseen kiyttden alkuperdisen tehtivén médritelmid saadaan

lun, — Ruullsn + [ll9f, —
h2
+(> e IVg* — Ryu + t*ARpu + £1I5 1) ?/[Ir*|l|s,b-
Kex,

O

Lause 7 osoittaa, ettd jilkikisitelty paine suppenee kohti tarkkaa ratkaisua optimaalisella nopeu-
della. Téten epiakonformisella formulaatiolla saavutetaan hyvé tasapaino ratkaisun tarkkuuden ja
ratkaistavan systeemin koon vililla. Jalkikisittely suoritetaan elementeittéin, ja on titen laskennal-
lisesti edullista, vaikka vapausasteiden miiri epéjatkuvalle paineapproksimaatiolle on varsin suuri.

5. YHTEENVETO

Niytimme, etti H (div)-konformisia elementtejd voidaan kiyttdd Brinkmanin tehtéivin ratkaisuun
soveltamalla Nitschen menetelmid. Menetelmi on lisiksi stabiili kaikille viskositeettiparametrin
arvoille t > 0. Lis#ksi nidytettiin, ettd Darcyn tehtiiville kehitetty jélkikisittelymenettely voidaan
laajentaa my6s Brinkmanin tehtidvién. Téten my0s paineelle saadaan optimaalinen konvergenssino-
peus. Jilkikisittely on my0s ensiarvoisen térkedid luotettavan residuaalipohjaisen a posteriori indi-
kaattorin 16ytimiseksi.

Kiitimme tutkimuksen tukemisesta KYT2010-tutkimusohjelmaa, sekéd ensimmaéinen kirjoittajan
osalta Suomen kulttuurirahastoa.
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ABSTRACT

We present and compare the main results of a posteriori error analysis for two finite element meth-
ods for the Kirchhoff-Love plate bending model. The first method is the classical nonconform-
ing Morley element which gives a discontinuous approximation for the deflection by second order
piecewise polynomial basis functions. The second method is a family of stabilized finite elements
which uses C%-continuous approximations for both the deflection and the rotation, i.e., the same
approach as typically used for the Reissner—Mindlin plate elements. For both methods, we present
an a posteriori error estimator for adaptive mesh refinements. First, we recall the main results of
the theoretical error analysis showing that the esimators are both reliable and efficient. Second, by
benchmark computations, we illustrate and compare the robustness of the a posteriori error estima-
tors in various types of problems with different kinds of boundary conditions.

INTRODUCTION

Thin structures can be regarded as the main building blocks in modern structural design. Beside
the classical fields as civil engineering, the variety of applications for thin structures have strongly
increased in many other fields as well: shells, plates, membranes and beams combined with new
functional materials can be used in engineering design of smart electro-mechanical systems. These
systems can be applied in different fields of science and technology: aeronautics, biomechanics,
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surgical medicine and microelectronics, for instance. Accordingly, there is a need for advanced
computer-aided design methodologies and for efficient and reliable computational methods for thin
structures.

In this contribution, the focus will be in controlling the discretization error of finite element meth-
ods for Kirchhoff-Love plates, which is a key issue in both the theoretical analysis and appli-
cations. More precisely, we consider a posteriori error analysis and adaptive solution methods
providing a cost efficient automated way to achieve a desired accuracy for approximate solutions.
For Kirchhoff-Love plate elements, the variety of a posteriori error analysis is still quite limited
[5, 11, 2, 1, 3, 4, 7]. Here we present and compare the main results of a posteriori error analysis
for two finite element methods for the Kirchhoff-Love plate model: the classical nonconforming
Morley element analyzed in [2, 4] and the stabilized Co-family of [1, 3].

In the next sections, we first recall the Kirchhoff-Love plate bending model and then present the
finite element formulations and a priori error estimates of the methods as well as the a posteriori
error indicators and the corresponding reliability and efficiency results. In the final section, we
confirm the theoretical results and the robustness of the estimators by benchmark computations.

KIRCHHOFF-LOVE PLATE BENDING PROBLEM

We consider the bending problem of an isotropic linearly elastic plate under the transverse loading
g. The midsurface of the undeformed plate is described by a polygonal domain  C R2. The
plate is considered to be clamped on the part I'¢ of its boundary 0f2, simply supported on the part
I's C 99 and free on I'r C 9. With V we indicate the collection of all the corner points in I'y
corresponding to an angle of the free boundary.

Physical quantities and equilibrium equations

The material constants for the model, the bending stiffness and the shear modulus, respectively, are
denoted by
Es? E

and G= —— )

D= a0 21 +v)’

with the Young modulus E and the Poisson ratio v. The thickness of the plate is denoted by ¢. In
what follows, we need the following differential operators: The strain tensor € is defined as the
symmetric tensor gradient

R Vv ] @

The vector gradient V and the vector divergence div are defined as usual, while the tensor diver-
gence is defined as

©)

dive — <80m [0z + 00y / 8y> ‘

00yz /O + O yy /Oy

With this notation, the stress resultants of the problem, the bending moment and shear force, re-
spectively, are defined as

M (Vw) = D((1 — v)e(Vw) + vdivVwl), )

Q(Vw) = —div M (Vw), 5
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where w denotes the deflection of the plate midsurface. The shear force satisfies the force equilib-
rium equation

—divQ =g. ©)
Biharmonic and mixed formulations

Assuming that the loading ¢ is sufficiently regular, the Kirchhoff-Love plate bending problem can
be written as the well known biharmonic problem:

DA%2w =g in Q, @)

with the boundary conditions
w=0,Vw-n=0 onlq, ®)
w=0, Mn-n=20 onTlyg, C))
Mn-n:0,%(M’n@)—l—(divM)-n:O onlp, (10)
(Mmny - 81)(c) = (Mng - 33)(c) VeeV, (11)

where n and s, respectively, denote the unit outward normal and the unit counterclockwise tangent
to the boundary. By the indices 1 and 2 we denote the sides of the boundary angle at a corner point
c.

In order to interpret the Kirchhoff-L.ove model as the limit of the Reissner—Mindlin formulation,
it is assumed, as usual, that the loading is scaled as g = Gt3f with f fixed. Then the problem (7)
becomes independent of the plate thickness:

1 9 .
_— = in Q.
61 = V)A w=f in (12)
Then the corresponding scaled moment and shear force are defined, respectively, as
M(Vw) Q(Vw)
m(Vw) = B and q(Vw) = SE (13)

In the corresponding mixed formulation, the rotation and the scaled shear force, respectively, are
taken as new unknowns:

B=Vw and q=-divm=-Lg3, (14)

where we have introduced a partial differential operator L by the scaled moment m. Now the scaled
mixed problem reads:

divg=f inQ, (15)
LB+q=0 inQ, (16)
Vw—B=0 inQ. (17)

with the boundary conditions
w=0,08=0 onl'c, (18)
w=0,B8-8=0, m(B)n-n=0 onl's, (19)
(Vw—ﬂ)-SZO,m(,B)n-n:O,gg(m(ﬂ)n-s)—q-nzo onl'r, (20

(m(B)n. - 81)(c) = (m(B)nz - 82)(c) VeeV. (2
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FINITE ELEMENT FORMULATIONS AND A PRIORI ERROR ESTIMATES

In what follows, let a a regular family of triangulations 7, on 2 be given. We will indicate with hg
the diameter of each element K € 7}, while h will indicate the maximum size of all of the elements
in the mesh. Furthermore, E denotes a general edge of the triangulation and hg is the length of E.
Next, let &, represent the collection of all the edges of the triangulation, let Z), denote the collection
of all the internal edges and let Cy, Sy, and Fp, represent the collections of all the boundary edges in
I'g, I's and T'p, respectively,

Morley element

Let [-] denote the jump operator which is assumed to be equal to the function value on boundary
edges. The discrete Morley space [10] is introduced as

Wh:{’UGMQ,h | /[[VU-TLE]]ZO VEGIhUCh}, (22)
E

where M, j, denotes the space of second order piecewise polynomial functions on Tr, which are
continuous at the vertices of all the internal triangles and zero at all the vertices of I'c U T's. Then
the finite element approximation of the Kirchhoff-Love problem with the Morley element reads [2]:

Method 1 Find wy, € Wy, such that
an(wp,v) = (f,v) Yve Wy, (23)
where the bilinear form ay, is defined as

ap(u,v) = Z (m(Vu),e(Vv))g Yu,v e Ws. 24)
KeT,

Introducing the discrete norm
_ _ Ov
olls = > Whx+ Y b5 RE s+ D hs'l 1511130 (25)
KeTy, Ecé&p Ecé& B

the following a priori error estimate holds for the method [9]:

Proposition 1 Let w € H3(2) and f € L*(2). Then there exists a positive constant C such that

llw — whllln < Ch (jwls + Al f]o) - (26)

Stabilized formulation

With integer values k > 1, we next define the discrete spaces for the stabilized CP-element as

Wh ={v e H(Q) | vrours = 0,vjx € Pey1(K) VK € Tn}, @7
Vi={ne[H' Q)P | nr, =0.n sps = 0mx € [P(K))* VK €T}, (28)
for the approximations of the deflection and the rotation, respectively. Here Py (K) denotes the
space of polynomials of degree k£ on K. In addition, let the positive stability constants o and y be

assigned. Now the stabilized C°-continuous finite element method for the Kirchhoff-Love problem
reads [1]:
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Method 2 Find (wy,, 8;,) € Wy, x V', such that

Ah(whu@h;v)n) = (fa 'U) V(Uan) € Wy X Vh, (29)
where the bilinear form Ay, is defined with a(¢,m) = (m(p), e(n)) as
Ah(z1 ¢;U"”) = Bh(Z,Gb;U,TI) +Dh(z7¢;v,7l), (30
Bu(z, ¢3v,m) = a(d,m) — Y ahi(Lé,Ln)k (31)
KeT,
+ Z (Vz ¢ — ahi Lo, Vv —n — ah% L)k
KE’Th
Du(z,d50,m) = > ((mas(9), (Vo =) - 8) (32)
Ec€Fn

(V2= 8) - 8, mus(m)5 + 7-((V2 = ) 5, (Vo —1) - 5)x)
forall (z,), (v,n) € Wy x Vi, withmp, = mn - 8.

We next introduce the discrete norm for the deflection and the rotation as

NwmIE =Y whx+Ivii+ D hEllH[an 13,2 (33)
KeT, EeT;,
+ Z hf—(2||vv—7l||o,K+||77||%,
KeTy,

In addition, for the shear force, we introduce the following notation:

V*:{ne[Hl(Q)]2|n:00nI‘c,n-s:OonFFUI‘s}, (34

I —— ) (35)
ne . Al ’

dnk = W(th — By — ahi LB))k - (36)
K

Then the following a priori error estimate holds [1]:

Proposition 2 Let 0 < o < C1/4, v > 2/C4, and w € H*23(Q), with 1 < s < k. Then there
exists a positive constant C such that

(w —wn, B = Bp)llln + g — gull-14 < OB [wlls12. (37

Finally, we note that the stabilized CY-element, with 12 degrees of freedom for the lowest order
element with k = 1, for instance, provides additional rotation degrees of freedom and exactly
satisfied essential boundary conditions. The Morley element, instead, is a simple discontinuous
method with 6 degrees of freedom. In addition, the essential boundary conditions are not satisfied
exactly, which has direct implications to the a posteriori error estimator and analysis as well.
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A POSTERIORI ERROR INDICATORS AND ERROR ESTIMATES

For a posteriori error indicators and estimates below, we indicate the Morley element by (M) and
the stabilized C°-method by (S).

The interior error indicators are defined for each element K € T}, as
(M) g = hllFI5 x (38)
(S) ik = hic|f +divanl§ & +hx’IIVwn — Bull6 x » (39)
and for internal edges F € T}, as

ow h (40)

(M) g =h5 | [wal I3, + hz 1||[[
(S) ng=h%|lan-nllsx+ hel [[m(ﬂh)"]]“o B 41)

Next, for the edges E € Cp, on the clamped boundary, the boundary indicator for the Morley element

is defined as
ow h

(M) ko= hg [ Twal 5,5 + b5 Il I3~ ]]||0E 42)

For the stabilized C°-element, the essential boundary conditions are satisfied on the clamped bound-
aries by (27) and (28), and hence no contribution for the estimator follows.

For the edges E € Sy, on the simply supported boundary, the boundary indicators are defined, with
My = MN - N, a8

(M) ngg=rhg | [wallIf e (43)
(S) ks =hplmun By s (44)

For the edges E € F}, on the free boundary, the boundary indicator is defined for the stabilized
CP-element as

(S) nhr = hullman (B85 5 + b3 || mns(ﬁh) an o5 (45)
For the Morley element, no contribution is present for free boundaries, cf. [4].
Finally, the local and global error indicators are defined as

/
MK = (ﬁ?ﬂrl Z e+ Y mpet Y, MEst Y m%,F)l g (46)

EeC) BEES, EEF,
Beak BCok BCHK ECHK

= (X )" @)

KeT,

We then have the following reliability and efficiency results [2, 1, 4]:

Theorem 1 There exist positive constants C such that

(M) |l|w = wal|[n < Cn, (48)
(8) |ll(w —wn,B—Bullln+llg — @nll-1,« < Cn. (49)
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Theorem 2 There exist positive constants C such that

(M) nk < C(|llw — wallln,g + Bkl f — fallox) (50)
(8) nx < C(|I|(w — wh, B — Bu)llhwie + RIS — Fallows (51)
+ ”q - qh“—l,*,wK) B

for each element K € T, with some approximation fy, of the load f. Here the domain wx denotes
the set of all the triangles sharing an edge with K.

NUMERICAL RESULTS

In this section, we present some results on benchmark computations for a comparison of the numeri-
cal and theoretical results of the two methods proposed above. Regarding the stabilized C°-element,
we consider the lowest order element with & = 1 only. Hence, the rotation components are linear,
while the deflection is quadratic, as the deflection of the Morley element.

Constants and adaptive solution strategy

In all of the test cases, we have used for the material and stability constants the following values:
E=1,v=0.3,a=0.1andy = 100. We have implemented the methods in the open-source finite
element software Elmer [6] which utilizes local error indicators, and provides complete remeshing
with Delaunay triangulations and error balancing strategy for adaptive refinements [3, 6].

Effectivity index — convex domains

In Fig. 1, the effectivity index for the adaptive error estimator, i.e., the ratio between the estimated
and true error, is reported for three test problems with convex rectangular domains, cf. [3, 4]: In
the first case, all the boundaries are clamped, while in the second case the boundaries are simply
supported. In the third case, two opposite sides of the rectangle are simply supported, while the other
two sides are free. The exact solution of each problem can be written as a trigonometric-hyperbolic
series which we have used as a reference solution [3].

For the coarse meshes in Fig. 1, there is a decrease in the effectivity index, while for the finer meshes
the effectivity index remains on a certain almost constant level uniformly in the mesh size for both
methods. More precisely, for the Morley element the effectivity index finally remains in the range
0.4 ... 0.8, while for the stabilized method the index stays between 2 and 3. Hence, together with
the theoretical results presented above, this gives a clear indication that the error estimators can be
used as reliable and efficient error measures.

Robustness — non-convex domains

For a comparison of adaptive and uniform refinements, we consider a uniformly loaded non-convex
domain with simply supported boundaries, as depicted in Figs. 3 and 4 for the example meshes of
adaptive steps with error distributions for the estimator of the Morley element.

The convergence of the corresponding error estimator for uniformly (circles) and adaptively (trian-
gles) refined meshes are shown in Fig. 2. The two upper graphs (solid lines) represent the global
error estimator, while the lower ones (dashed lines) indicate the maximum local indicator. The con-
vergence rates O(h'/®) and O(h) corresponding to the rates with and without the corner singularity
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in the solution, respectively, have been plotted with solid and dashed straight lines without markers.
Now, due to the singularity in the re-entrant V-corner, w € H''/5($) [8], which implies the rate
O(h'/®) for uniform refinements.

In Fig. 2, it can be seen that the convergence rate of the error estimator for the uniform refinements
(circles) turns to follow the asymptotical convergence order (’)(hl/ 5). On the contrary, for the
adaptive refinements (triangles), the method shows its robustness in finding the corner singularity
of the solution and finally focuses the refinements locally near the V-corner. The accuracy reached
with uniform refinements by more than 20000 elements is now achieved by circa 1800 elements.

For the stabilized C?-element, the convergence results are very similar to the ones above for the
Mortley element, cf. [3]. However, for the stabilized element the refinements concentrate more
clearly in the singular comer only, not along the other boundaries, since the essential boundary
conditions are satisfied a priori by the finite element solution, as noted in the previous section.
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Figure 1: Uniformly loaded rectangular Kirchhoff-Love plates: Effectivity index for adaptive re-
finements; simply supported (circles), simply supported and free (triangles), clamped (squares)
boundaries; Morley element (solid lines), stabilized C°-element (dashed lines).
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Figure 2: Uniformly loaded and simply supported non-convex Kirchhoff-Love plate: Convergence
of the global estimator (solid lines) and the maximum local estimator (dashed lines); Circles for
uniform refinements, triangles for adaptive refinements.
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Figure 3: Uniformly loaded and simply supported non-convex Kirchhoff-Love plate with the Mor-
ley element: Distribution of the error estimator and the mesh for the step 3 of an adaptive process.
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Figure 4: Uniformly loaded and simply supported non-convex Kirchhoff-Love plate with the Mor-
ley element: Distribution of the error estimator and the mesh for the step 8 of an adaptive process.
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THVISTELMA

Tyossd tutkittiin aikatason aalto-ongelmien (akustinen ja elastinen aaltoyhtild) ratkaisuja kolmes-
sa dimensiossa. Aaltoyhtiloiden paikkaderivaatat laskettiin kdyttéden epéjatkuvaa Galerkinin (DG
eng. discontinuous Galerkin) menetelmii ja aikaderivaatat laskettiin low-storage Runge-Kutta ai-
kaintegrointimenetelmalld. Kiytetyssi ratkaisijassa polynomikannan asteluku valittiin erikseen jo-
kaiselle laskentahilan elementille.

Tyossé tarkasteltiin kahta erityyppistd esimerkkis, joista ensimméinen on kirjallisuudessa paljon
tutkittu elastisten aaltojen kulkua kuvaava mallinnusesimerkki. Toiseksi esimerkiksi valittiin mal-
linnuskohde, jossa tutkittiin suihkuturbiinin tuottaman &%nen etenemistd virtaavassa viliaineessa.
Jalkimméisessd esimerkissd virtausmallinnusohjelmistolla mallinnettiin ensin virtausnopeuskentti,
jota kdytettiin nesteen virtauskenttdnd varsinaisessa akustisen partikkelinopeuden laskennassa. Yh-
teenvetona lasketuista ratkaisuista voidaan todeta, ettd DG-menetelmé yhdistettynd tehokkaaseen
aika-askellusmenetelméin, on sovellettavissa hyvin aaltoilmitiden tarkkaan mallintamiseen. Lisak-
si approksimaatiomenetelmiin epdjatkuvuus elementtirajapintojen yli mahdollistaa polynomikannan
optimaalisen valinnan elementeittiin.

1. JOHDANTO

Useilla fysiikan ja tekniikan osa-aluecilla on tdrkeds simuloida virdhtelypulssien etenemisté elasti-
sessa tai akustisessa viliaineessa. Niitd tutkimuskohteita ovat esimerkiksi mekaaniset rakennevi-
rihtelyt tai ultraddnelld tehtdvi rakennetutkimus. Viime vuosikymmenten aikana useita numeerisia
menetelmid on esitetty edelld mainittujen ongelmien ratkaisemiseksi. Esimerkkeind kéytetyistd me-
netelmistd mainittakoon differenssi-, dérellisten elementtien- ja sidemenetelmat. Kuitenkin valitet-
tavan usein, varsinkin korkeilla taajuuksilla ja monimutkaisissa geometrioissa, perinteiset 1dhesty-
mistavat tuottavat lilan epétarkkoja tai laskennallisesti liian raskaita ratkaisuja tutkittaville ongel-
mille.

Yksi lupaava ldhestymistapa aaltoilmididen simulointiin elastisessa viliaineessa on epéjatkuva Ga-
lerkinin menetelmd. Menetelmin etuina ovat geometrinen joustavuus ja tehokas rinnakkaistuminen
moniprosessoritietokoneille. Tdssé tutkimuksessa DG-menetelmii sovelletaan aaltopulssien simu-
lointiin clastisessa viliaineessa sekd virtaavassa nesteessd. Kaytetyssd mallissa polynomikannan
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asteluku valitaan erikseen jokaiselle laskentahilan elementille. Kantafunktioiden asteluvun valinta-
kriteerin tavoitteena on tuottaa ratkaisulle vakiosuuruinen virhetaso riippumatta kiytetysti hilasta,
ja toisaalta, minimoida kunkin simulointitehtévin vaatima laskentakapasiteetti.

2. KYTKETTY ONGELMA

Tissd paperissa kytketylld ongella tarkoitetaan tilannetta, jossa tutkitaan d4nen etenemistd geomet-
rioissa, jotka sisiltdvit kiintedn ja toisaalta myds liikkuvan nesteen (tai kaasun) komponentin. Y lei-
sesti kirjallisuudessa puhutaan fluid-solid-ongelmista. Tydssé tutkitut kytketyt ongelmat isotrooppi-
selle kiinteille ja liikkuvalle neste-tyyppiselle viliaineelle voidaan kirjoittaa lineaarisena hyperbo-
lisena systeemind [1, 2, 3]

0F o~ . OF
el A— =
ot + 22:; eaxe 0, (1)

- T . : -
missd T = (711, T22, T33, T12, T23, T13, U1, u2, u3) (T tarkoittaa transpoosia). Systeemissé () ton
aika, z, paikka, 711, 722 ja 733 ovat jinnityksen normaalikomponentit, 712, T23 ja T13 ovat jannityk-
sen pinnansuuntaiset komponentit ja u, u2 ja uz nopeuskomponentit.

Hyperbolisessa systeemissi (1) matriisit Az, £ = 1, 2, 3 ovat kooltaan 9 x 9. Matriisit A, £ = 1,2,3
poikkeavat lghteissd [1, 2, 3] tarkastelluista, koska tissd paperissa tarkastellaan tilannetta, jossa
neste voi liikkua. Liikkuvan nesteen nopeuskomponentit méédritelldén v = (v1,v2,v3). Esimerkkind
tarkastellaan matriisia A;, joka voidaan kirjoittaa muodossa

fvi 0 0 0 0 0 —(A+2s) 0 0
0 », 0 0 0 O Y 0 0
0 0 » 0 0 0 Y 0 0
0 0 0 v 0 0 0 0 0

A = 0 0 0 0 v O 0 0 o0 |,

0 0 0 0 0 un 0 0 0
-1 0 0 0 0 o v1 0 0
0 0 0 —% 0 0 0 v 0

\ 0 0 0 0o o -2 0 0 v/

©

missé v; on nesteen nopeuden x-suuntainen komponentti, A ja 4 ovat Lamén vakioita ja p on vi-
liaineen tiheys. Matriiseissa A, ja A3 on samat nollasta poikkeavat arvot —\, — (X + 2u) ja —1/p,
mutta eri paikoissa [1, 3]. Liséiksi matriiseissa A, ja A3 on diagonaalilla eri nopeuskomponentit
liikkuvalle nesteelle (vastaten suuntia 3 ja z3) [4]. Edelleen P- ja S- aaltojen nopeudet voidaan
esittiis Lamén vakioiden ja viliaineen tiheyden avulla seuraavasti

[A+2
RS _;“ ja Cs:\/g’ 2

Elastiselle aaltoyhtilslle voidaan kirjoittaa laaja miré erilaisia reunaehtoja ja edelleen reunaeh-
doille on lukuisia tulkintoja. Kattavampi yleiskatsaus aaltoilmidistd elastisessa viliaineessa ja nii-
den ilmididen fysikaalisista ominaisuuksista on esitetty viitteessd [1]. Akustisen viliaineen yleisesti
tunnettuja reunaehtoja ovat nk. Neumann- ja Dirichlet-tyyppiset reunachdot seké rajoittamattomien
ongelmien katkaisuun kiytetyt absorboivat reunachdot. Akustisen viliaineen ilmibité ja edelld mai-
nittujen reunachtojen (Neumann, Dirichlet ja absorptio) fysikaalisia ominaisuuksia on tarkasteltu
viitteessé [5].
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Mallinnusongelmissa, joisssa tutkittava ongelma sisdltdid sekd akustisen ettd elastisen alueen, tulee
niiden alueiden vilille kirjoittaa jatkuvuusehdot. Kiytettiessi epéjatkuvaa Galerkinin menetelmii,
tulee jatkuvuusehto eri alueiden vilille "automaattisesti” silld menetelmin heikko muoto kirjoite-
taan erikseen jokaiselle laskentahilan elementille ja kommunikointi elementtien vélilld toteutetaan
numeerisella vuolla (eng. numerical flux). Téss# ty6ssd kiytetty numeerinen vuo on esitelty tarkem-
min viitteessi [4].

3. EPAJATKUVA GALERKININ MENETELMA

Vuonna 1973 tutkijat Reed ja Hill julkaisivat epdjatkuvan Galerkinin menetelmén approksimoimaan
neutronien kulkeutumista kuvaavaa yht#lod [6]. Témin jélkeen menetelmén matemaattista analyy-
sid ovat kehittineet mm. LeSaint ja Raviart [7], Johnson ja Pitkdranta [8] ja Richter [9]. Viime
vuosina DG-menetelmén kdytté on yleistynyt huomattavasti ja ndin ollen sen kiyt6sti on olemassa
useita satoja tieteellisid julkaisuja. Nykyisin DG-ldhestymistapaa on sovellettu useille fysiikan osa-
alueille, joista esimerkkeind mainittakoon s&hkomagnetiikka [10, 11, 12], virtauslaskenta [13, 14],
aaltoyht#lot (elastinen ja akustinen) [3, 15] ja kytketyt ongelmat (akustinen ja elastinen aaltoyhtils)

[4].

DG-menetelmén kiyttoon liittyy merkittdvid etuja perinteisiin laskentamalleihin verrattuna. Esi-
merkkeind mainittakoon erityinen matriisirakenne, jonka johdosta muistin tarvetta aikatason mal-
linnuksessa on pystytty ratkaisevasti vihentdméén. Toisaalta menetelmé on helppo rinnakkaistaa,
joka on edellytys suurten ongelmien tehokkaassa mallinnuksessa. Hyvé ldhdeteos DG-menetelmén
analyysiin ja toisaalta myos sovelluspohjaiseen kdytto6n on Hesthavenin ja Warburtonin vuonna
2007 kirjoittama kirja [16], joka on ollut merkittivéssé roolissa myds tissé ty6ssi kéytettyjen koo-
dien kehityksen taustalla.

4. NUMEERISET ESIMERKIT

Seuraavissa kappaleissa tarkastellaan kytkettyjen ongelmien (akustinen ja elastinen aaltoyhtils) nu-
meerisia ratkaisuja 3D ongelmissa. Tutkittavat esimerkit on valittu siten, ettd ensimmaéinen on kir-
jallisuudessa paljon kaytetty ja tutkittu ongelma. Toisessa esimerkissi tarkastellaan haastavampaa
mallinnusgeometriaa, joka siséltdd lentokoneen siiven ja siithen kiinnitetyn turbiinin, Esimerkkien
tavoitteena on havainnollistaa kiytetyn DG-menetelmin etuja matemaattisessa mallinnuksessa.

Tyossé tarkastellaan ajansuhteen riippuvia ratkaisuja. Aika-askeleen pituus on kiinnitetty kdyttien
Courant-Friedrichs-Lewy (CFL) -lukua [17]. CFL-luku voidaan kirjoittaa yhtilémuodossa seuraa-
vasti: 5

CFL = Lcmax, (3)

hmin

missd é; on aika-askeleen pituus, cmax On suurin esimerkissd kéytetty aallonnopeus ja Api, on
pienin etdisyys kahden solmun vilill laskentahilassa. Suurimalla aallonnopeudella tarkoitetaan P-
aallon nopeutta (huomioiden nesteen virtauksen) ¢, + ||v||.

Kaikissa tutkittavissa ongelmissa CFL-luku asetetaan arvoon 0.02, jonka tavoitteena on minimoida
aikaintegroinnista syntyvé virhe. Tdssd ty0ssd systeemissé (1) esitetyt aikaderivaatat ratkaistaan
kéyttden eksplisiittistd low-storage Runge-Kutta (LSRK) -menetelmés [18].

Laskennassa k#ytetty DG-ratkaisija on kirjoitettu C++-ohjelmointikielelld ja rinnakkaistettu kayt-
tden MPI ympiristdd. Laskennan molemmat esimerkit on laskettu kiyttéen perinteistd laskentaklus-
teria. Kéytetty klusteri siséltds yhteensd 24 solmua (2.6 GHz Pentium 4) ja jokainen solmu yhteensd
4 GB keskusmuistia (RAM).
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4.1 Palkin viirihtely

Esimerkissd tarkastellaan virdhtelyn etenemistd epdhomogeenisessa viéliaineessa. Kyseessi olevaa
mallinnusongelmaa on tarkasteltu viitteessd [3]. Esimerkin geometria €2 koostuu kahdesta osasta
(ks. kuva 1), jotka on méritelty seuraavasti:

Q1 = {ZeR||z1| <05, |z2| + 23] < 0.1},
Q = {ZeR3||z1| <10, |2| + 23] <05} \ Q.
Elastisessa tapauksessa ongelman reunachdot asetetaan siten, ettd pinta 1 = —1.0 sisélti4 epiho-

mogeenisen vapaatuentareunachdon, pinnalle £; = 1.0 asetetaan absorboiva reunaehto ja kaikille
muille geometrian ulkoreunoilla homogeeninen vapaatuentareunachto. Vastaavasti kytketyssd on-
gelmassa, jossa alue 2; on elastinen materiaali ja 2, akustinen, asetetaan pinta z; = —1.0 epé-
homogeeniseksi virdhteleviksi pinnaksi. Lisdksi pinnalle ; = 1.0 asetetaan absorboiva ehto ja
muille homogeeninen Neumann-nollachto (akustisesti kova pinta).

Léhdefunktiona epdhomogeeniselle pinnalle seki elastisessa ettd kytketyssd ongelmassa kiytetisin

5(t) = { sin (wt), joste [0,Z], @

0, muulloin,

missd kulmataajuus w = 407, Elastisessa esimerkissd systeemin (1) fysikaaliset parametrit on ase-
tettu seuraavasti: S-aallon nopeus (cs,,¢s,) = (10,1), P-aallon nopeus (cp,,cp,) = (20,2) ja
tiheys (p1,p2) = (1,1). Edelleen kytketyssd ongelmassa k#ytetéifin muuten samoja parametriva-
lintoja paitsi alueessa €2; S-aallon nopeuskomponentti on nolla, joka tarkoittaa kidytinnosss, et-
td Lamén vakio p = 0. Tutkittavassa esimerkissid oletetaan, etté neste ei ole liikkeessd, jolloin
(’Ul, 1}2,’1)3) = (0,0, 0)

Kuvassa 1 on esitetty laskennassa kiytetty tetraedriverkko. Kuvan virisivyjakauma niyttis kanta-
funktion asteluvun jokaiselle elementille. Hila siséltds 302358 elernenttid, 55175 solmua, Ay, =
0.0162 ja hmax = 0.0712. Kantafunktioiden asteluku on valittu kiinnittien virheen arvoon 1.0%.
Kantafunktioiden asteluvun valintakriteerid on tarkasteltu tarkemmin viitteessé [19] 3D-ongelmiin
ja vastaavasti 2D-ongelmiin viitteessé [15].

2(}62[]1

5 69026
18735
4 g
2 I I
0*

Kuva 1: Laskennassa kéytetty tetraedriverkko (vasen) ja elementtien lukuméiri polynomikannan
asteluvun funktiona (oikea).
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Kuva 2: Partikkelinopeuskomponentti |u;| kahdella ajanhetkelld ¢, = 0.25 (vasen) ja to = 0.35
(oikea). Y114 elastisen ja alla kytketyn ongelman ratkaisu.

Kuvassa 2 on esitetty nopeuskomponentti [u; | kahdella ajanhetkelld ¢, = 0.25 ja t5 = 0.35. Kuvas-
sa on esitetty seki elastisen (yll4) ettd kytketyn ongelman ratkaisu (alla). Ajanhetkistd ensimméinen
t1 = 0.25 havainnollistaa tilannetta, jossa reunalta z; = —1.0 tuotettu 1hde on edennyt virihte-
levin palkin reunalle. Edelleen ajanhetki £, = 0.35 on valittu siten, ettd se havainnollistaa palkissa
syntyviéd virdhtelyja.

4.2 Turbiini

Esimerkissi tarkastellaan turbiinissa tuotetun d4nen etenemistd homogeenisessa virtaavassa viliai-
neessa. Laskenta-alue on médritelty esimerkisséd seuraavasti:

Q = {ZeR®| —2<z; <8, |z2| + |ws| <25} \ €, Q)

missi €); tarkoittaa lentokoneen siiven ja sithen kiinnitetyn turbiinin geometriaa (ks. kuva 3).

Ongelman reunaehdot asetetaan siten, ettd alueen ulkoreuna siséltdd absorboivan reunachdon. Tur-
biinin sisilld oleva pinta sisiltdd epdhomogeenisen Neumann-reunachdon. Kaikki muut lentoko-
neen siiven ja siihen liitetyn turbiinin reunaehdot asetetaan homogeeniseksi Neumann-nollachdoksi
(akustisesti kovia pintoja).

Mallinnusongelmassa lihdefunktioksi epahomogeeniselle reunachdolle médritelldsn
3(t) = exp (—a (t— t0)2) sin (2nf (¢ —to)) V¢, 6)

missi o = 1.5 - 10%, £ = 2 ms ja f = 1000 Hz. Ongelman muut fysikaaliset parametrit valitaan
siten, ettd u = 0, joten tarkastelemme vain akustista viliainetta. T#ssd tapauksessa véliaineeksi
valitaan ilma, joten ¢, = 343 m/s ja tiheys p = 1.21 kg/m3. Lis#ksi esimerkissa lasketaan liikkuvan
nesteen nopeus. Virtauslaskenta on selitetty myShemmin téissé kappaleessa.
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Kuva 3: Laskennassa kiytetyn lentokoneen siiven ja siihen kiinnitetyn turbiinin geometria €};. Ku-
van musta rengas kuvaa aluetta, josta akustinen kenttd on tuotettu (epdhomogeeninen Neumann-
reunachto).
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Kuva 4: Vasen: Laskennassa kiytetty hila. Oikea: Tetraedriclementtien lukumé#éréd polynomikanta-
funktioiden asteluvun funktiona.
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Kuvassa 3 on esitetty laskennassa kiytetyn turbiinin geometria ja osa siiped. Laskennassa kaytetty
geometria on osa Gambit-ohjelmiston mukana tullutta testigeometriaa. Lisdksi turbiiniin on lisétty
siséiosa, joka ei ollut mukana alkuperidisessd mallissa.

Kuvassa 4 on esitetty laskennassa kdytetty hila ja laskentaan kéytetyt polynomikantojen asteluvut.
Laskentahila sis#ltid yhteenss 314617 tetraedriclementtisi, 63009 solmupistettd, lyhin et3isyys kah-
den solmun vililld on Ay, = 0.0103 m ja vastaavasti pisin etdisyys Amax = 0.3926 m. Polyno-
mikantafunktioiden asteluvut kiinnitettiin kiyttden artikkelissa [19] esitettyjd tuloksia. Kyseisessd
mallinnusesimerkissé virhetasoksi valittiin 1.0%. Kuvan jakaumasta kannattaa huomioida, etti ele-
mentin kantafunktion asteluvun valitaan vaikuttaa myds elementissi oleva virtausnopeus. Kuvasta
voidaan havaita, ettd turbiinin takana on tummempi alue, joka ulottuu pinnalle z; = 8 m asti ja joka
sisdltiad korkeammat asteluvut kuin sitd ympéroivé alue. T4maé on suora seuraus siité, ettd turbiinin
takana oleva alue sisdltid suuremman nesteen virtausnopeuden (kts. kuva 5).

Kuvassa 5 on esitetty virtauskenttd kahdessa tasossa. Ilmavirtaus turbiinissa ja sen ympéristossi
mallinnettiin kaupallisella virtauslaskentaohjelmalla, Ansys CFX:n versiolla 11.0. Laskenta toteu-
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Kuva 5: CFX-ohjelmasta saatu virtauskenttd kahdessa eri tasossa kuvattuna. Virisdvyjakauma ker-
too virtausnopeuden |[v|| arvon yksikdissd m/s.

tettiin ajasta riippumattomana kiyttden Reynoldsin jannitysmallia turbulenssin mallinnukseen. Va-
linta tehtiin, koska standardilla k-epsilon mallilla ei saavutettu riittivéd konvergenssia ja mallin on
todettu antavan virheellisid tuloksia joissain tapauksissa. Tihentdmélld verkkoa olisi saatu parempi
konvergenssi, mutta kéytettdvissd olleen laskenta-ajan puitteissa valitulla verkolla saatiin sovelluk-
sen kannalta riittdvan hyvit tulokset. Ilman virtaus turbiinista on voimakkaasti turbulenttia, joten
tilanteen mallinnus laminaarina ei olisi ollut mielekésti, koska téll6in olisi jouduttu muuttamaan
aineen kuljetusominaisuuksia konvergenssin saavuttamiseksi, jolloin tilanne ei enéé olisi ollut to-
dellisuutta vastaava.

Varsinainen virtauskenttd laskettiin isommassa geometriassa kuin kappaleen alussa médritelty (ks.
kaava (5)). Virtauskentin laskennassa kiytettiin tilavautta [—2, 18] x [—3, 3] x [—3, 3] m3, jo-
ka sisilsi yhteensd 4801928 elementtid, 991357 solmua, Amin = 0.0021 m ja hpax = 0.4028 m.
Lopuksi virtauslaskennasta saatu virtauskentts interpoloitiin jokaisen akustisen kentén laskennas-
sa kiytetyn hilan (kts. kuva 4) elementin keskipisteeseen. Tilld tavoin jokainen elementti siséltdd
liikkuvalle nesteelle annetun nopeuden komponentit (v, v, vs). Kuvassa 5 on esitetty interpoloi-
tu nopeuskentti ||v|| kahdessa eri tasossa. Kuvan vérisévyjakaumasta havaitaan, ettd virtausnopeus
jakautuu vilille ~ [0, 155] my/s.

Kuvassa 6 on esitetty partikkelinopeus kahdella eri ajanhetkelld kahdessa eri tasossa. Tarkastelta-
vat ajanhetket ovat t; = 0.82 (ms) ja t; = 1.12 (ms). Ajanhetkistd ensimméinen ¢; havainnollis-
taa tilannetta, jossa aaltopulssi on edennyt turbiinin kapeimpaan kohtaan. T4ssé kohdassa nesteen
virtausnopeus on voimakkain (kts. kuva 5). Toinen ajanhetki to kuvaa tilannetta, jossa pulssi on
edennyt turbiiniin taakse.

5. POHDINTA

Ty6ssé tutkittiin elastisen aaltoyhtélon ja kytkettyjen ongelmien ratkaisuja 3D-ongelmissa seki
akustisen aaltopulssin mallintamista virtaavassa viliaineessa. Ensimméiisessé ongelmassa ratkaistiin
elastinen aaltoyht#lo epdhomogeenisessa viliaineessa. Testiongelma on haasteellinen, silld kahden
osa-alueen viliset materiaaliparametrierot ovat huomattavat. T#ssé paperissa kyseinen mallinnuson-
gelma ratkaistiin myds kytkettyné ongelmana.

Toisessa mallinnusesimerkissi tutkittiin lentokoneen turbiinilla tuotetun #inen etenemisti. Esimer-
kissi ratkaistiin aluksi virtauskentts kéyttden kaupallista Ansys-CFX-ohjelmistoa, josta saatiin nes-
teen virtausnopeus akustisiin simulaatioihin. Tdmén mallin osalta sek# virtaus ettd akustinen mal-
li siséltdvit huomattavan voimakkaita oletuksia (mm. virtauksen turbulenttisuudesta tai akustisista



t1=0.82 (ms) t1=0.82 (ms)

—

2 4 - 2 4
@y (m) ri (m)
to=1.12 (ms) tr=1.12 (ms)

a3 (m)
2 (m)

N
(=]
o
=]
5]
o
[+:]
o

23 (m)

2 0 2 4 [¢]
€ (m)

o

Kuva 6: Laskennasta saadun partikkelinopeuden |u;| arvot kahdessa tasossa kahdella eri ajanhet-
kelld. Tutkittava ajanhetki on esitetty kuvien otsikoissa.

reunachdoista). Mallin tarkoituksena oli selvittid DG-menetelméin soveltuvuutta monimutkaisten
virtausakustisten ongelmien simulointiin. Johtopé#toksend voidaan todeta, ettd kyseisessé tapauk-
sessa jo taustavirtauksen tarkkaa mallintamista voidaan pitas haasteellisena tehtdvind. Tilldin myds
akustisen aallon kulkeutumismallia tulevat rajoittamaan virtausmallin epétarkkuudet.
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ABSTRACT

Simultaneous mesh and material property generation of a cellular texture in 2D domain is
discussed. The description is based on a structural unit, a texture mapping, and an iteration giving
a sheet of material. Solution domain and boundary condition colouring are obtained by clipping
from the sheet. Implementation of the method makes use of a mesh tree data structure and simple
insertion and deletion operations on the mesh tree. As an example, generation of a specimen for a
numerical experiment on strength of heterogeneous material is discussed.

1. INTRODUCTION

Material and geometric modelling of the cell and growth ring structures [1] have significant roles
in micromechanical simulations on wood. To mimic the heterogeneity of wood, a model may
incorporate a statistical representation of geometrical and material parameters. As a consequence,
simulation by the model gives answers to questions concerning the behaviour of population in
statistical sense. As an example, the outcome can be a quantitative relationship between statistics
of strength and that of the geometric features of the material.

A statistical study about material behaviour of wood, based purely on physical experiments, needs
large sample sizes for reliable results. The experimental effort can be reduced, however, if
simulations by a micromechanical model are first used to obtain a qualitative understanding of
phenomena involved. This makes it possible to design clever experiments for verifying (or
falsifying) hypotheses obtained from the predictions by the model. A virtual experiment on
strength has design like a physical one: in order to study population characteristics —such as
strength of a heterogencous material—, experiment is repeated on a random sample from the
population, and the population characteristics are estimated by using the results for the sample.
The reliability of the estimate depends on the population characteristics and size of the sample.
Control over the independent and dependent variables, loading, size and shape of the measuring
domain etc. gives also additional freedom in design.

The aim of this work is to discuss generation of a material sample of virtual strength experiment.
To be more specific, simultaneous mesh and material property generation of a wood-like material
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having a hexagonal cell structure. Texture description of the material is adopted ~with some
modifications— from that of the regular and near-regular textures [2]. Without going into the
details, a regular texture is something having a wallpaper-like, congruent appearance so that it can
be generated by mapping from a single structural unit or a set of them. A near-regular texture has
a similar appearance but with some statistical deviations in colour, shape, and size. If the variation
of a physical property, like Young’s modulus, is mapped to colour, the ideas of generating and
analysing regular or near-regular textures find direct use in generating a honeycomb structure with
a varying Young’s modulus, say.

2, TEXTURE DESCRIPTION

The structural unit A of a planar texture description is here a triangle having attributes like colour,
shape and size. Symbol A is used to indicate that the object contains, besides a geometrical
information like vertex points defining shape and size, also non-geometrical information like
colouring. The attributes are constants in a regular texture and follow some statistics in a near-
regular texture. Subscript notation A, will be used for an instance of triangle in the texture.

C3 C3

b] C2 Cy b1 b] Cy

Figure 1: Examples of texture mappings: Refinement mapping Py for preserving the texture and
honeycomb mapping Py for generating a hexagonal texture. A missing colour attribute is
interpreted as transparency in graphical representations.

We discuss first mapping of the triangle colour a, the colours b,b,,b; of the three edges, and
colours ¢j,cy,cy of the vertex points (Fig.1). The vertex points of A are denoted by py, py, p3,

edges of A by (p,p2),(p2,p3).(p3,py) and the triangle of A by (py,p;,p3). In the
simultaneous texture and mesh generation for a finite element method, texture mapping (n=4)

P:A—{A,..., A} ey

is considered as a rule for generating the texture out of a single structural unit or a set of them by
iteration: the first application of (1) gives a set 4 triangles, the second a set of 42 triangles, and so
on, when applied to all the elements of the already generated set. Some examples of mappings,
called honeycomb mapping Py and refine mapping Pg, are illustrated in Fig.1. The former is
used to generate hexagonal texture and the latter just to divide the triangles into smaller ones
without affecting the texture itself. The mappings of Fig.1 are deterministic but one may as well
use a stochastic mapping to produce neat-regularity in colour. In what follows, a subscript is used
to make difference between mappings of different properties.
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The description above does not use any information about coordinates p =(x,y) eR? of the
vertex points py, py, p3 . A separate coordinate mapping

X:p* > pb 2

defines the coordinates of the points (Fig.1) and thereby geometrical attributes like size and shape.
In the regular coordinate mapping R(1/2), the positions of points p;, p,, p3 are not changed,
and points py, ps, pe are placed at the midpoints of edges (py, p2), (p2,p3),and (p3, py),
respectively. Hence shape is preserved but size is halved on application of R(1/2). If the
structural unit is triangle with the same length of all the edges, the outcome is a regular texture
inside the initial triangle. The coordinate mapping is indicated by the second subscript of P .
Hence, Py p(1/2) denotes a honeycomb mapping with a regular position of the points.

P3 D3 P3
R(a) U(a) ¢
i —i
Ps >
.“.:.
D1 D4 D2 Plv P2 P D2

Figure 2: Examples of one-parameter coordinate mappings: R(a) « €[0,1] interpolates the
position between the end-points, U() « €[0,1] produces a random offset from the regular
positions.

Regular mapping R(1/2) is a particular case of the one parameter mapping R(a) « <[0,1]
R(@)=(p1> P2, P3>» app+(—a)py, apy+(1-a)ps, aps3+(A-a)p)). (3)

Although the mapping above gives a quite complicated texture whenevera #1/2, it is
deterministic and application of the recipe in the texture generation gives always the same result.
When the information about the texture is statistical, the mapping may use random sampling from
some distribution. Repeated application of the recipe gives then near-regular textures which
coincide in statistics. An example of a one-parameter mapping U(a) « €[0,1] of stochastic type
is

P+ p P2+ D P3+D
U(x)=(p1> P2, P3> -%+a1721, 2—2;+05P32’ %

+apz), @
in which p;; denotes a random offset from the uniform distribution on a circular domain of radius
| pj - p;|. By a carefully chosen structural unit and mapping for colour, shape, and size— it is
possible to generate textures showing close resemblance to those seen in wood cell structure.

A material region obtained by a restricted number of iterations on (1) is called as a material sheet.
The sheet recipe consists of description of the initial sheet A or {A;,...,A,}and a sequence of
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mappings used in generation of the texture. This makes it possible to specify the recipe of a sheet
in a compact manner. Some sheets are shown in Fig.3 (only textural information). The highly
regular texture Pj;A is obtained by five iterations on the honeycomb mapping. The recipe
Piy re2s5yA gives a deterministic texture with variations in size and shape. Texture PePiA s
regular in shape and size, but colouring of triangles follows the uniform distribution on the gray-
scale. Finally, texture Fe /10)"’3,0{1 /0y is near-regular with respect to shape, size and colour.
In all the cases, the structural unit A is a white triangle having one black and two white edges of
the same length and transparent points.

g g
5 \
PoPpA ' " o™

Figure 3: Examples of material sheets.

; _
PepannyPruand wll

After the generation of texture, additional iterations on the refine mapping P, produce smaller
triangles without effect on the texture itself. Therefore, the mesh can be adopted to match e.g. a
triangle size criterion. This is important in adaptive solution methods striving, say to more or less
uniform distribution of error indicator of the numerical solution by the triangle size adaptation.
Also generation of a solution domain may require the triangle size adaptation.

3. SOLUTION DOMAIN CLIPPING

Texture with it’s attributes, interpreted as colours in a graphical representation, can be taken as a
material description. Description of a boundary value problem means also specification of the
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solution domain Q and assignment of a problem dependent colouring to the parts 0C; having
different boundary conditions (discussion of equations of the micromechanical model is outside
the scope of this work). In what follows, the domains occupied by the material sheet and triangle
A, are denoted by Q° and Q,, respectively.

The solution domain Q < Q° is obtained by removing all triangles outside the domain from the
sheet. To be specific, triangle A, is removed if Q, c Q°—Q (set subtraction). In practice, the
domain outside the solution domain is represented in the form

Q°-0=0,UQ,...uQ, (5)

and triangle A, is removed whenever Q, — Q; . On removal, the colour of edges of the adjacent
triangles (nearby triangles later) is changed to indicate a boundary condition associated with €3, .

As a sheet may contain triangles partly inside and partly outside the solution domain, iteration on
refine mapping Py, followed by the removal of descendants, is applied until wanted geometrical
precision. Fig.4 shows a solution domain with boundary condition colouring generated in this
manner. The clipping of the hole of radius R at (x,,y,) is performed with

2 2
Q= {(x,)): (=% +(y-y.)* <R} ©)
in equation (5). The red colour on € indicates some, say zero-traction, boundary condition.

Additional insertion with refine mapping P, at the hole in Fig.4 (right) does not affect the texture,
but generates smaller triangles and improves the geometrical precision.

Figure 4: Solution domain with the boundary condition colouring. Clipping from a honeycomb
sheet with (right) and without refinement (left).

4. MESH TREE STRUCTURE
An ordered tree is used for representing the texture and mesh structures [3]: The tree consists of

triangles A, and structuring information in the form of links. The triangles generated by PA, are
called (directs) descendants S, ={A f,...,Ag} of A,. The first triangle of the mesh tree is called
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the root and the triangles, having no descendants, leave triangles of the tree. The root does not
have an ancestor. If the property of triangle A, called level, is given by /, the level of its direct
descendant is [+1. A tree traversal is an operation on all triangles of the tree in some order called
the visiting order. The algorithm for generating the material sheet and clipping of the solution
domain is based on insertion and deletion tree traversal operations. The operations visit first root,
then it’s descendants following their ordering, and continue in the same manner.

Node insertion operation [ is a tree traversal with the following main effects (the empty set will be
denoted by {} and subscripts e, f,g refer to generic triangles of the tree)

I, Agy = {IA,... DA}, Q)
S,#{}: IA,=1IS,, ®)
S,={}: S,=PA,. ©)

If the starting point is root, texture mapping P is applied to all the leaves of the tree. The starting
point of insertion can also be a set of triangles. Deletion operation D is also a tree traversal, with
the following main effects

D{A,...A.} ={DA,...DA.}, (10)
S,#{}: DA,=DS,, (11)
Se={: S;=5;-4,, (12)

in which A, is the (direct) ancestor of A,. Omitting the details, deletion is the reverse to
insertion. Deleting a triangle means that it cannot be accessed by a tree traversal i.e. it is not part of
the tree. Therefore, if a triangle having no descendants is deleted, branching of the tree in that
direction is no more possible. However, deletion of a triangle having descendants can be reverted
by insertion. This feature is understandable through the tree metaphor. From the geometrical
viewpoint, insertion at leave A, means dividing the region Q, occupied by the triangle into four
smaller regions in a regular manner. Deletion operates in the opposite direction and groups four
small triangles into a single triangle.

4.1 Details of the algorithm

The set of nearby triangles {A;,A;,A,,} of A, are those of the mesh tree having the minimum
positive level distance to A, and some edge or part of it in common (Fig.5). The point and nearby
triangle update algorithm — needed on insertion — assumes a tree with the point and nearby triangle
information prior to insertion, but does not require any information about coordinates of the points.
As the mesh tree is the outcome of iteration on insertion operation, the point and nearby triangle
information is generated during the build of the tree from the (trivial) information given at the
root.

On insertion, the vertex points of A, are inherited and the remaining points, if they exist, are
chosen to coincide with those of the nearby triangles. In the example of Fig.5, nearby triangle A,
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has no descendants and therefore point p on edge (p,, p3) does not belong to any other triangle.
Triangle A; has descendants, and point p, onedge (p;,p;) is known to belong to some triangle
already. The algorithm for finding the point is based on the edges of descendants of A . This set
contains only one pair of type {(p(,p). (p;,p)}. Therefore, point p, on edge (p;,p,) is p.
Descendants of A, inherit first the nearby triangles as shown in Fig.5. As triangle A; has no
descendants, the nearby element of the descendant of A, at edge (p,,ps) is A;. As A, has
descendants, the positive level distance to descendants of A, are not minimized by Aj. The
algorithm for finding the right descendant of A is based on the identical point representations of
the edges of nearby triangles having the same levels.

Figure 5: Nearby triangle update on insertion at A, .

On deletion, leaves of the tree are not actually deleted but rather made invisible for a tree traversal
operation. Insertion on the same node, assuming that the node is not a leave, makes then branch
again visible. The mechanism allows fast adaptation of the mesh to match the needs of a numerical
solution method.

5. EXAMPLE; MATERIAL ELEMENT OF STRENGTH EXPERIMENT

As the length to thickness ratio of wood-cells is large, the effect of heterogeneity on strength can
be studied by using a 2D model. In a simple micromechanical model [4], the walls of the cells are
taken as beams with some statistics on thickness, Young’s modulus, length, and strength. In the
texture representation, heterogeneity of the material produces near-regularity in colour, shape and
size.

A two specimen sample of strength experiment is shown in Fig.6. The underlying population is
characterized by constant values of material parameters and uniform distribution of the hexagonal
cell shapes. The blue colour near the specimen edges indicates infinite strength. Otherwise the
material properties of the blue and black beams are the same. This is quite essential as the constant
loading acting on the edges tend to cause artefacts in stress distribution near the edges and thereby
failure initiation whose location is not evenly distributed in the measuring domain. Zero traction
condition seems not to be an exception in the rule. The computational mesh, consisting of
triangles, is refined near the left and right edges without affecting the texture itself.
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Figure 6: Examples of specimen chosen randomly from a population having uniform distribution
in the shape of hexagons.

6. CONCLUDING REMARKS

In the texture and mesh generation of a honeycomb in plane, the structural unit was chosen to be
triangle. The algorithm works also with lines, quadrilaterals, and tetrahedrons with minor
modifications.

This work is part of the Virtual Wood task of E-wood — Energy Efficient Wood Processing and

Machining — project. To aim of the task is to predict the strength statistics of wood by virtual
experiments on a micromechanical model.
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ABSTRACT

This paper presents a 2D combined finite-discrete element method to model the multi-fracture of
beams and an application of the method to an ice-structure interaction problem. In the method,
elastic beams and their fracture are modelled according to finite clement method by using non-
linear Timoshenko beam elements and cohesive crack model. Additionally, the beam elements
are used to tie the discrete elements together. The contact forces between the colliding beams are
calculated by using the discrete element method. The resulting equations are solved with explicit
time integration. The presented method is applied to model the failure process of a floating ice beam
against an inclined structure.

INTRODUCTION

A wide range of problems of mechanics involve multi-fracture phenomena. Such problems are char-
acterized by transition from a continuous to a discontinuous media; a small number of continuous
regions divide into a myriad of smaller regions through fracture processes to form a combination
of continuous and discontinuous media. To be able to simulate such a process, both the continuous
and the discontinuous phenomena must be modelled in addition to modelling of fracture. Examples
of problems involving multi-fracture phenomena are concrete structural failure, rock blasting and
ice-structure interaction.

Number of different methods are used for numerical modelling of continuous and discontinuous me-
dia. One way of modelling problems involving discontinuous media is the discrete element method
(DEM). It is a technique for modelling the nonlinear dynamics of systems consisting of granular and
particulate materials [1]. For modelling the continuous media, the finite element method (FEM) has
proven to be advantageous. Thus, for modelling multi-fracturing solids it is beneficial to combine
the finite and discrete element approaches as is previously done in [2, 3, 4], for instance.

This paper presents a 2D combined finite-discrete element method to model multi-fracture of beams
and an application of the method to an ice-structure interaction problem. In the method, elas-
tic beams and their fracture are modelled according to finite element method by using non-linear
Timoshenko beam elements (see e.g. [5]) and cohesive crack model [6]. Additionally, the beam ele-
ments are used to tie the discrete elements together. The contact forces between the colliding beams
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Figure 1: A beam element, a discrete element and their degrees of freedom. Combining two discrete
elements with a beam element.

are calculated by using the discrete element method [1]. The resulting equations are solved with
explicit time integration scheme. The method is applied to model the ice pile-up process against an
inclined plate.

COMBINED FINITE-DISCRETE ELEMENT METHOD

The presented method can be divided into three main parts: i) continuum, ii) failure and iii) contact
model. The forces obtained from these three parts are used in Newtons equations of motion, which
are solved with explicit time integration scheme.

Here the three main parts are briefly presented. A more comprehensive presentation of the method
can be found in [7].

Continuum and failure models

The continuum is modelled according to finite element method by using non-linear Timoshenko
beam elements. A two dimensional beam element can be used to combine two adjacent discrete
elements together as presented in Figure 1. A beam element node and the centroid of a discrete
element have the same degrees of freedom, two displacements and a rotation. Furthermore, a beam
element unite with a line connecting the centroids of two combined discrete elements. The internal
forces of a beam element can therefore be superposed to the discrete element forces.

The basic kinematic assumption of the Timoshenko beam state that the cross sections remain plane
but not necessarily normal to the mid surface during deformation. In addition, small strain assump-
tion, large displacements and a viscous damping model are utilized in the model.

From the kinematic relations of the beam it follows that the only nonzero strains of the beam are the
axial strain ex x and the shear strain exy + €y x = 2¢xy. These are combined to a strain vector

€1 €XX e—Yk
e = — —t , (1)
€2 2exy v
where Y gives the distance form the neutral axis of the beam and the three strain quantities h =
[5 ¥ n] characterize axial strains, shear strains and curvatures, respectively.
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Figure 2: a) Linear softening function, ¢ = ¢(4) and the crack opening, unloading and reloading
situations. b) Cohesive constitutive model with elastic £¢ and inelastic ¢/ strains. In a) and b), the
points A, B and C indicate the same phase in the fracturing process.

The material of the beam is assumed to be homogeneous and isotropic. Before fracture, the material
behaves as linear elastic and the linear constitutive equation

ozl _|E O] |er] _
= [7]-[5 el = @
is used for defining the stresses. In Equation (2), F is the Young’s modulus, G is the shear modulus

and o, and 7 are the normal and shear stresses. After fracture criterion /' = 0 is met the above
constitutive equation changes and the stresses are defined according to the cohesive crack model.

The main assumption of the cohesive crack model is that the stress transferred through the cohesive
crack is a function of the crack opening displacement §, i.e. ¢ = ¢(8). This softening function is
considered as a material property. In the method presented, linear softening function, as shown in
Figure 2a, is used. This function defines the stresses after the fracture initiation.

The use of the Timoshenko beam model enables an introduction of such a fracture criterion F' that
takes into account both normal and shear stresses. Adapting from Schreyer et al. [8], the fracture
criterion is chosen to be

F(0,0maz) =0 — 0er(1 — 6_;_,:.) =0. 3)
I

where ¢ is the effective stress defined by

o
g=0x+ %TQ ) (4)
TC’I"
dmaz is an increasing variable which keeps record of the maximum crack opening displacement
reached, d is the critical crack opening displacement, o, is the critical normal stress and 7, is the
critical shear stress. It should be noted that no compressive failure is included in the criterion.

The fracture criterion F < 0 indicates an admissible stress state. If F' < 0, the material is intact
or the crack is not propagating. The state F' = 0 indicates the onset of fracture or unloading. The
stress state in which F' > 0 is not admissible. The fracture surface F(c, yqe) = 0 is plotted with
two different values of 6,4, in Figure 3.
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Figure 3: a) Fracture surface evolution when the crack is opening. Fracture criterion with different
values of 8,45 and a return mapping from point (o1, 71) to fracture surface F (0, dppqp 7# 0) = 0.

To determine weather the stress state is admissible or not, a trial stress state is computed. If the trial
stress state is such that ' > 0, a crack is propagating and a return mapping to the fracture surface
F = 0 has to be made. This is illustrated in Figure 3. From a point {01, 71) a return mapping is
made to the new fracture surface F'(0, dmee 7 0) = 0 to a point (o7, 71). The return mapping
is done in such a way that the relation between the normal and shear stresses stays constant, i.e.

‘;—i = :—i A similar return-mapping procedure is presented in [9] for problems with plasticity.
1

To define the new fracture surface F' = 0, the values for ¢ and 6,4, has to be determined. To
determine these values, the cohesive crack model is used. The crack is opening when moving
between points A and C on the stress—strain curve of Figure 2b. Then the cohesive stress is defined

by the softening function
)

_ g )
In the crack opening situation, the maximum reached crack opening displacement is equal to crack

opening displacement i.e. §,,4, = d. Thus, in this situation the fracture criterion F in Equation (3)
needs to be updated.

o =0(d) =0oc(1 (%)

If a crack has formed and the stress state is such that F* < 0 and o, > 0, the unloading or reloading
case is active. This is shown in Figure 2b with a dashed line BO. In this case, the cohesive stress is

defined by

0(6) = 0er (o~ +) ©®

o 5mam ‘sf ‘

In this case d,,4, has a constant value defined in the crack opening phase. In the case of crack
closure, i.e. F' < 0 and o, < 0, the stress o is evaluated as if the material would be intact and
the crack opening displacement is equal to zero, § = 0. Again, the §,,4, has a constant value as
in the cases of unloading and reloading. In summary, the value for §,,,, changes only in the crack
opening phase and it is an increasing function to make the failure process irreversible.
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In process of defining the new fracture surface F' = 0 as presented above, the stresses o, and 7
are determined in the case of fracture. From stresses o, and T, either defined by linear constitutive
Equation (2) or by cohesive crack model, the stress resultants N, ) and M are obtained. They
represent axial force, shear force and bending moment, respectively. The viscous forces Ny, Qg
and M, that present axial damping, shear damping and damping moment are related to strain rates
€, ¥ and k. The forces mentioned above are collected to the stress resultant vector

pI=[N+N; Q+Qq M+ My (N

Variation of the strain energy, using the strain-displacement relation 6h = B du and the stress
resultant vector, leads to the internal forces f;,; for a beam element

e = / BTpdX ®
Lo

where Ly is the initial length of the beam element and B is the kinematic matrix. This expression
for the internal forces is then used in the equations of motion.

Contact model and time stepping

Failure of beams results in creation of smaller beams which at later stages of the simulation can
collide with other beams in the model. These interactions between discrete beams are simulated by
using the discrete element method.

In addition to finite elements, interacting beams are also composed of one or more discrete elements.
The contact detection and the calculation of the contact forces are handled by using these discrete
elements. The contact detection is based on the algorithm presented by Munjiza and Andrews
[10] and the forces between contacting discrete clements are calculated with an elastic-viscous-
plastic normal force model and incremental Mohr-Coulomb tangential force model as described
by Hopkins [11].

The elastic contact forces are based on the overlap area and the rate of change of the overlap area
of contacting elements. Inelasticity is modelled by using a plastic limit for the material. The total
normal force of the contact is determined by equation

f, = min{f,. + f,,,} , ¢

where f,,. is the elastic force, £, is the viscous force and f;, is the plastic limit force of the contact.
The tangential force f; is obtained from equation

f; = min {fie, uf,} , (10)

where f;. is the incremental elastic tangential force of the contact and p is the friction coefficient
between the contacting elements. The upper limit for f; is thus achieved by using Mohr-Coulomb
model. The moment acting on each of the contacting elements is

m=r X fi , (11D

where r is the vector pointing from the centroid of an element to the centroid of the overlap area
and f;,; is the sum of tangential and normal forces of the contact. These forces and the moment are
then used in the equations of motion.
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For presenting the equations of motion, a vector notation x is introduced. It contains the positions
T, y; and rotations #; of all the N discrete elements in the system, ordered in the following manner
T
x:[:cl v1 01 ... TN YN HN] . (12)
With the previous notation the equations of motion for the system can be presented in the form

Mx = fint + fcol + femt, (13)

where M is the diagonal mass matrix containing masses and moments of inertia of the discrete
elements, f;,; is defined by Equation (8), f..; is a vector containing forces and moments from the
collisions and f..; is a vector of external forces. The x denotes the second time derivative of x.

In the proposed method, the equations of motion (13) are solved with explicit Newmark time-
integration scheme with parameters § = O and v = % With these choices, the scheme is also
known as the central difference method:

At?
Xp1 = Xi + Aty + — Xk (14)
. . At ..
Xp1 = Xk + ?(Xk + Xpy1)- (15)

NUMERICAL EXAMPLE

The failure process of a floating ice sheet against an inclined structure was modelled. The process
of ice sheet failure is described qualitatively based on snapshots of the simulation and quantitatively
based on the force exerted on the structure by the ice sheet. In addition, comparison to laboratory
scale experimental data and to an analytical model was done.

In the simulation, an ice beam was pushed at its left end with a constant velocity of 0.02 m/s against
an infinitely rigid structure, as shown in Figure 4. Both ends of the structure were supported and
the inclination angle was 50°. For the parameters used in the simulation see Table 1.

Figure 4 shows snapshots of the simulation and Figure 5 gives the horizontal force acting on the
inclined structure as a function of the length of pushed ice L. Figure 5 shows also the force obtained
in the laboratory experiments conducted by Saarinen [12]. For comparison of the forces and the
stage of simulation, the subfigures of Figure 4 are pointed out in the F'(L) graph in Figure 5 with
arrows.

Snapshots of the Figure 4 show the ice ridging process in short. Initially, the ice sheet failed against
the inclined structure by bending (Figure 4a) and started to form a pile (Figure 4b) which grew both
vertically and horizontally. After a pile was formed, the ice sheet either slided on top of the pile to
the inclined structure and rode-up along the plate (Figure 4¢) or failed against the pile (Figure 4¢).
Figures 4¢ and 4d illustrate a collapse of the pile. A collapse is a process where the pile fails under
the load from the ice sheet ride-up or pile-up in front of the structure. Collapse resulted a movement
of the pile down and left and a decrease of the horizontal force.

The cycle, growth of the pile against the plate and collapse of the pile, occurred several times during
the simulation. In the simulation these collapses of the rubble pile caused the force to drop to zero
as the contact between the sheet and the structure was lost. This is evident from the F'(L) graph.
Another phenomenon observed in the simulations was a clockwise rotational motion of the rubble
pile. Close the end of simulation, Figure 4f, the number of discrete elements was 683.

These qualitative results agree well with the results obtained in the laboratory tests conducted by
Timco [13] and Saarinen [12]. Especially, Timco [13] has described the ridging process in his paper
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Table 1: Parameters used in the simulation and parameters measured during the laboratory experi-
ments [12].

Parameter Simulation ~ Experiments
Discrete elements  thickness [m], & 0.045 0.045 —0.052
width [m] 0.045 -
Intact ice Young’s modulus [MPa], F; 70.0 14 -90
Poisson ratio, v; 0.3 -
density [kg m™3], p; 930 930
tensional strength [kPa], o 50.0 30-56
shear strength [kPa], 7., 50.0 -
critical crack opening disp. [mm], & 0.725 -
internal damping [kPa s], ¢; int 23.0 -
ice sheet velocity [mm/s], v; 20.0 10.9
DEM contact normal stiffness [MPa)], kn. = E; 70.0 14-90
tangential stiftness [MPa], k¢ 27.0 B
viscous damping [kPa s], kn. 23.0 -
plastic limit [kPa], op 50.0 15-40
ice—ice friction coefficient, u; 0.5 0.32-0.36
ice—ice friction coefficient (under water), p4;5 0.5 -
ice-wall friction coeflicient, t;w 0.07 0.07, 0.35
ice—wall friction coefficient (under water), usws  0.07 -
Water density [kg m™3], po 1000 1000
Wall inclination angle [°], & 50 50, 65, 80
width [m] - 4.6
Simulation time step [s], At 20-1075% -

as: "On several occasions, the ice would fail in a bending or flexural-type failure. The advancing
ice sheet would usually ride up over the ice rubble and fail as it pushed against the sail of the rubble
close to the structure.” Further he writes: "Large-scale buckling was a frequent mode, especially in
the early part of the test when there was little rubble in front of the structure. Ice crushing was also
observed to occur, especially in small local crushing events." Timco also observed the rotational
motion of the rubble pile during his experiments.

From the F(L) graphs of Figure 5 it is noticed that the simulation is able to capture the force
response of the pile-up and collapse cycle reasonably well. However, the simulated force drops to
zero due to the loss of contact between the pile and the inclined structure after the collapse. This
is assumed to be caused by the 2D nature of the simulations and is thus not observed during the
experiments. Also the force peaks of the simulation are a bit higher. Nevertheless, the average forces
of 310 and 370 N/m obtained from the F'(L) graphs of simulation and experiment, respectively, are
in fair agreement.

The ice force obtained from the simulation can further be compared with results from analytical
methods. A solution to the horizontal ice force Fj, on a sloping-sided structure given by [14] divides
the force into a bending failure force F} and an ice ride-up F;. force

5\ 1/4 . o
Fo=F+F, = o (M) (0_68 sin @+ paw L(lJSL::)
E COS (¥ — [y SIN

sin @ + fjw cos@  Coso
L ) (16)

+ zhp;q (sin @ + u;w cos & : i
ng( Hiw ) (C(JSO’ — JLiw sina SN oy

where 2 is the height of ride-up and the other symbols are as explained in Table 1. At the simulation
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Figure 4: Snapshots of the ice-structure interaction simulation. Ice (white), water (gray) and struc-
ture (black).
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Figure 5: Horizontal force F acting on the structure as a function of the length of the pushed ice L
as obtained from the simulation and experiment. The letters refer to Figure 4.
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event shown in Figure 4¢, z = 1.0 m and the simulated force was about 970 N/m. By using the
values given in Table 1 and 2z = 1.0 m, a force F}, = 843 N/m is obtained by Equation (16).

CONCLUSIONS

A 2D combined finite-discrete element method for modelling the multi-fracture of beams was pre-
sented. In the method, elastic beams and their fracture was modelled according to finite element
method by using non-linear Timoshenko beam elements and cohesive crack model. Furthermore,
the beam elements tied discrete elements together. The contact forces between colliding beams were
calculated with discrete elements using an elastic-viscous-plastic normal and incremental Mohr-
Coulomb tangential force models. The resulting equations of motion were solved with central
difference method.

The presented method was applied to model ice pile-up process. The process of ice sheet failure
was described qualitatively based on the snapshot of the simulation and quantitatively as a force
exerted on the structure from the ice. Based on the qualitative comparison of the experiments
[13] and the simulation, a good agreement between the results was observed. Furthermore, the
simulated force on the structure was shown to correlate well with force measured from the structure
in the laboratory scale experiment done by Saarinen [12] as well as to the forces from the analytical
model of Croasdale et al. [14].
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ABSTRACT

Design of thin-walled cylindrical shells fabricated from composite materials leads to the require-
ment of validated procedures for the buckling simulation of realistic, geometrically imperfect shells.
This work deals with the buckling simulation of imperfect cylindrical composite shells under axial
compression. The buckling simulation is performed with a geometrically nonlinear analysis using
Reissner-Mindlin-Von Ké4rmén type shell facet model. A diamond shaped geometric imperfection
pattern is applied in the computational model. Based on the simulation, limits of buckling loads
are estimated for the imperfect cylindrical CFRP shells and compared to the test results from the
literature.

1. INTRODUCTION

Many structural members made of composites have the form of thin-walled cylindrical shells. These
kinds of members are the most common load-carrying systems in aeronautical, mechanical and civil
engineering applications where high strength and stiffness, and low weight are of primary impor-
tance. Therefore, the accurate simulation of the stability behavior is of fundamental importance in
the design of thin-walled cylindrical shell structures [1, 2, 4,6,7,9,11, 13, 14, 20].

Designing with the undisturbed shell geometry does not lead to the optimum with realistic, geomet-
rically imperfect shells [6, 7, 9]. Particularly in buckling load maximization of cylindrical carbon
fibre reinforced plastic (CFRP) shells, initial imperfection on the shell geometry should be taken
into account to get realistic results in structural optimization. Besides the layer orientations used in
the laminate, the laminate stacking sequence influence remarkably the buckling loads of the cylin-
drical shells. Bringing the initial imperfection on the shell geometry changes the order of buckling
loads and thus the criticality of different stacking sequences.

Hiihne et al. introduced a new deterministic approach for determining limits of buckling loads of
thin-walled cylindrical composite shells [6, 7]. According to this approach, a single pre-buckle is
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induced by a radial perturbation load before the axial loading starts. By varying amplitude and
position of this perturbation a large amount of tests was realized and the new lower limit of buck-
ling loads as well as the upper limit of buckling loads corresponding to the buckling load of an
undisturbed shell geometry were derived.

The buckling simulation is performed with a geometrically nonlinear analysis using Reissner-
Mindlin-Von Kérman type shell facet model. Typical postbuckling deformation pattern observed
for the experimental test shells is used for modeling the geometric imperfection shape and ampli-
tude [1, 2]. The shell facet model has been implemented in a grid computing platform [22] using
the Elmer open-source computational tool {21] for multi-physics problems. Numerical results are
compared to the experimental limits of buckling loads achieved for the geomeitrically imperfect
cylindrical CFRP shells.

2. EXPERIMENTAL LIMITS OF CYLINDRICAL CFRP SHELL BUCKLING LOADS

buckling load N (kN)

T

perturbation load P (N)

Figure 1: The relation of perturbation load and buckling load [6, 7].

A new deterministic approach for determining the lower bound of the buckling load of thin-walled
cylindrical composite shells was introduced by Hiihne et al. [6, 7]. According to this approach, a
single pre-buckle is induced by a radial perturbation load before the axial loading starts. By varying
amplitude and position of this perturbation a huge amount of tests was realized by using one test
shell. The mechanical behaviour was investigated by employing a high-speed optical full-field
measurement system.

The relation of perturbation load and buckling load are shown in Figure 1, whereas the run of the
curve is idealized by three lines. For perturbation loads larger than P; the reduction of the buckling
load is quite small. This means that the perturbation load P has to be increased very strongly in
order to reduce the buckling load any further. For perturbation loads P > P; single buckles are
clearly visible, can be detected by inspection and are therefore assumed to be unrealistic. Therefore
the buckling load V; is defined as the new lower limit of buckling loads.
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3. REISSNER-MINDLIN-VON KARMAN TYPE SHELL FACET MODEL

The plate bending problem is formulated for a thin or moderately thick laminated composite plate
which in its undeformed configuration occupies the region Q x (—t/2,t/2), where @ C R? is
the midsurface and ¢ > 0 is the laminate thickness. The kinematical unknowns in the model are
transverse deflection w, in-plane displacement u = (uy, uy), rotation of the middle surface 8 =
(Bz, By), and drilling rotation w. The plate is subjected to the in-plane load f = (f, fy) and the
transverse pressure g.

We will use standard notation of tensor calculus. Dyadic and index notation with summation con-
vention over repeated indices are used in parallel. Latin indices take their values in the set {1, 2, 3}
and Greek indices in the set {1,2}.

3.1 Constitutive relation for a single layer

Let us denote by e; and e; the cartesian basis vectors for the so called 123-coordinate system of a
single ply, and for the zyz-system of material coordinates common to all plies, respectively. In the
material coordinate system, i.e., the laminate coordinate system, the layer system has been rotated
by a positive counter clockwise angle f about the z-axis. Hence, we define the transformation
matrix between the two coordinate systems as T' = T5; = ¢; - €, or

cosf sin8 O
T=| —sinf cosf 0 (1)
0 0 1

For linear orthotropic materials in plane stress state the constitutive relation for each ply has the
form

c=Q:€ . 2)

where 0 = 0;; = 0y; is the second order stress tensor, € = €;; = €;; is the strain tensor, and
Q = Qijrt = Qjint = Qijik = Qrisj is the fourth order tensor of elastic stiffness coefficients. In
the laminate coordinate system the constitutive equation is written as

T=Q:¢ 3
where G;; = T;pTjq0pq is the laminate stress, &; = TjpTjq€pq is the laminate strain, and Qjjx; =
TipTjqThrTisQpqrs is the tensor of stiffness coefficients in the laminate coordinate system.

The six independent non-zero components of () are computed using the orthotropic material engi-
neering constants Ey, By, vi0,V91 = I/12E2/E1, G12,Gog, and G31 [8] as

Qui11 = E1/(1 — vigvar), Qa2 = E2/(1 — vigvar),
Q1122 = vi2Eo /(1 — v12v21), 4)
Q1212 = G2, Q2323 = Ga3, Q3131 = Ga1

3.2 Kinematic relations for a laminate

The kinematic relations for a laminate are considered in the zyz-coordinate system. For notational
simplicity, laminate stresses and strains in the xyz-coordinate system are in the following denoted
without bar symbol.
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Using the classical kinematic assumptions of Reissner, Mindlin, and Von Kdrman the laminate strain
is obtained from

e =¢&(u) + p(w) — ze(P) )

and
€30 = Ya(w,B), €33=0 6)

where 2z := x3, € is the linear strain tensor, ¢ is the nonlinear membrane strain tensor, and  the
transverse shear strain vector, viz.

c(u) = %(Vu + vuT) Q)
o(u, w) = %(Vu:,c ® Vug + Vu, ® Vuy, + Vw ® Vw) )
Y(w,B) =Vw—p )

3.3 Constitutive relations for a laminate

In plane-stress state, the laminate membrane stress resultants /N (forces per unit length) and bending
moment resultants A/ (moments per unit length) are obtained by integration of the stress resultants

of all layers zx_; < z < 2k, k = 1,...,n, over the thickness of the laminate as
t/2 Zk
N :/ odz = Z/ odz (10)
—t/2 k Zp_ |

t/2 2k
M :/ ozdz = Z/ ozdz (11)
k Zk—1

—t/2

Furthermore, the resultant transvere shear forces S are obtained from

t/2 Zk
S = / 030,42 = Z/ O30d2 (12)
k Zk—1

—t/2

Using the constitutive equation and the kinematic relations of Reissner, Mindlin, and Von Karmén
we get the following constitutive relations for the laminate

N(u,w, 8) = A: [e(u) + p(w)] + B : (B) (13)
M (u,w,8) = B : [e(u) + p(w)] + D : &(6) (14)
S(w,B) = A" - v(w, B) 15)

The tensors A, B, D, and A*, are defined according to the Classical Lamination Theory (CLT) [8]

as
A= Z/ Qdz=> (2 — z-1)QW (16)
ko1 k
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Zk _ 1 _
B=Y [ Qed=3 Y (E-40Q% a7)
kY Zk—1 k
Zk _ 1 _
D=% [ @Pdz= 33 (R - 0Q¥ (18)
PREE P
E -
A=) Qi dz =Y (2 — Zk—l)ngz)J,j 19)
Zk—1 k

k

where Q%) defines the constitutive relation for linear orthotropic materials in plane stress state for
layer k in the laminate coordinate system.

3.4 The shell facet model

The functions u, w, 3, w are determined from the condition that they minimize the potential energy
of the plate. The energy is defined as

I(w,w, B,w) = %/ﬂN(u,w,,@) s le(w) + p(w)] dQ
+%/{2M(u,w,ﬁ) 1 e(B) dY + %/Q.S’(w,ﬁ) y(w, 8) dQ (20)
+C’/[w—rot(u)]2d9—/ f-udQ—/gwdQ

Q Q Q

where C' > 0 is a penalty parameter for imposing the condition w = rot(u) (see [5]), and

_Bux_%

rot(u) = By Ep 21
Substituting the constitutive equations in Eq. 20, we get
M(u,w, B,w) = %/ e(u) : A:e(u) dQ +/ e(u) : B:e(f) dQ2
Q Q
1 1
45 [0 Die(@) a0+ [ ow,)- 4" 1w, B) do )

—I—C/Q[w — rot(u)]? dQ + % /Q o(u,w) : A p(u,w) d

—}—/Qa(u):A:(p(u,w)dﬂ—l—/ns(ﬁ):B:@(u,w)dﬂ—/nf-udﬂ—/ﬂgwdﬂ

4. FE-IMPLEMENTATION

In the FE-implementation bilinear stabilized MITC plate elements [3, 16] are used. The shear
energy term is modified as

t2

1
2P 1al? /Q%(“”ﬁ) A%y, B) dS2 @3)
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where o > 0 is a numerical stabilization parameter, » is the mesh parameter, i.e., the largest side
length, and -, is the reduced shear strain [3, 16]. For the bilinear quadrilateral element used in the
simulation, the reduced shear is defined locally such that

w B = | 7 o | 9

for every element K. The parameters ax, by, ck, and dx are determined from the condition

/Mm@—%WﬁWT@=U 25)

for every edge e of K. Here 7 is the tangent to the edge. for every element K. The parameters a,
bk, ¢k, and di are determined from the condition

/Mw@—w@ﬁﬁ¢“=0 26)

for every edge e of K. Here 7 is the tangent to the edge. In the computation, the in-plane forces
N and the bending moments M are obtained consistently from the constitutive equations. Shear
forces are computed from

£2

= 2 T+ ah? A - ’Yh(U)?ﬂ) (27)

S(w, )
To obtain the load-displacement curve and to sudy the stability behaviour, the nonlinear equations
are solved iteratively by Riks’ method with Crisfield’s elliptical constraint for arc length [15, 17, 18,
19]. The differential equilibrium equations of the minimization problem are obtained using standard
variational calculus and integration by parts. The linearized equations are then discretized by the
finite element method. In the post-buckling region the algorithm follows the principal equilibrium
path with the minimal stiffness.

In laminate failure prediction, a numerical method independent of the failure criterion internal for-
mulation to obtain failure margins can be employed [10, 12].

5. MODELING THE IMPERFECT CYLINDRICAL CFRP SHELL

The FE-model used in the buckling simulation is based on specimens that were used in experimental
tests by Hithne et al. [6, 7]. The specimens were characterised by an internal diameter and an overall
length equipped with end plates to assure circular cross sections. The specimens were fabricated
from CFRP unidirectional tape materials, for which the nominal ply properties are given in Table
1. Detailed description of the test specimens, equipment, and procedure is given by Hithne et al.
[6, 71.

The model considers a complete cylinder with ply properties represented in Table 1 and geometric
dimensions same of those of the real specimens used. The length of the FE-model is 510 mm, equal
to the length of the specimen central part excluding the end plates at the top and bottom surfaces
to assure circular cross sections. The top and bottom surfaces of the FE-model are constrained to
remain plane 