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ESIPUHE

Suomen mekaniikkapédivit on jérjestetty vuodesta 1982 lihtien joka kolmas vuosi. Nyt vuorossa
oli Otaniemi, jossa kahdeksannet pdivit pidettiin 12.-13.6.2003. Kéytinnon jarjestelyisti
vastasivat tieteen tietotekniikan keskus CSC seki Teknillinen korkeakoulu.

Kutsuttuina esitelmditsijoind olivat professorit Ben Leimkiihler, University of Leicester, Arthur
Rizzi, Kungliga Tekniska hogskolan, ja Juhani Koski, Tampereen Teknillinen Yliopisto, seki
toimitusjohtaja Mauno Paavola, Teollisuuden Voima Oy. P#iosa pdivien ohjelmasta koostui
tarjotuista esitelmistd, joita hyviksyttiin yhteensd 63. Esitelmiin liittyvit artikkelit on koottu tihin
niteeseen.

Edellisten mekaniikkapéivien jilkeen ovat kaksi alamme johtohahmoa, professorit
Martti Mikkola ja Eero-Matti Salonen

saaneet lisatittelin “Emeritus ”. Suomen mekaniikan tutkijat ja opettajat haluavat seki kiittsi etti
kunnioittaa Marttia ja Eero-Mattia omistamalla téman kirjan heille,

Lopuksi esitimme lampimit kiitoksemme kaikille niille, jotka ovat my®&tévaikuttaneet paivien
onnistumiseen; osallistujille, artikkelien kirjoittajille, tieteelliselle neuvostolle sekd ennen kaikkea
niille henkilGille, jotka ovat osallistuneet jarjestelytychén.

Peter Raback
Kari Santaoja
Rolf Stenberg






ENGLISH SUMMARY

These two volumes contain the Proceedings of the VIII Finnish Mechanics Days, held in Otanemi,
Espoo, June 12-13, 2003. The conference was organized by CSC, the Finnish IT center for science
and Helsinki University of Technology.

The invited speakers were professors Ben Leimkiihier, University of Leicester, Arthur Rizzi, Royal
Instute of Technology, Juhani Koski, Tampere University of Technology, and Mauno Paavola,
President and CEO of the electricity generation company Teollisuuden Voima Oy.

The volumes are dedicated to professors Martti Mikkola and Eero-Matti Salonen, who both
recently retired from Helsinki University of Technology.
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THINGS THAT GO "BUMP"

BEN LEIMKUHLER
Centre for Mathematical Modelling
University of Leicester
Leicester LE1 7RH
UK

From ghoulies and ghosties

And long-leggedy beasties

And things that go bump in the night,
Good Lord, deliver us!

-- Traditional Scottish Prayer

ABSTRACT

The author discusses ongoing work on a simple class of methods for simulating the dynamics of
rigid bodies subject to hard impacts. These methods have primarily been developed and tested in
the setting of hard sphere molecular dynamics simulation, but they are much more general and
powerful than this. This article describes generalizations of the basic scheme to treat constraints,
thermostatic control and structured nonlinear dissipation, which should allow the methods to be

used much more widely.

1. INTRODUCTION

By collisional rigid body dynamics, we mean the simulation of a system of rigid bodies
interacting under the forces of nature and subject to purely elastic impacts. We assume that the
dynamics between impacts satisfy Newton's laws of motion,

1) Mq'=Fq q'1),
possibly augmented by constraints (g. R—R* positions or configurations, ¢’ the velocity vector,

g’ acceleration, Me R*¢ a mass matrix, and F: R**'—R’ the vector of forces). Impacts are
defined by nonempty solutions of a contact condition

@ W(g)=0.

It is assumed that, at impact, available physical laws (energy and momentum) allow
determination of a unique continuation of the solution and that the motion of the system is well-
defined by these principles for all forward time beginning with any suitable initial data ¢° = g(1),
VW = q'(t,). We may assume that, at the point of impact, the position remains unchanged while the
velocity v undergoes a reflection determined by the exact nature of the impulse, thus

v = R(g)v.



We distinguish between the conservative cases for which the motion, between collisions, can be
given a Hamiltonian formulation and for which energy is conserved everywhere along solutions,
and nonconservative cases (for which energy may dissipate or increase during simulation). This
framework is not completely general, but it is adequate to describe a wide range of important
applications problems, including systems arising in:

e  Multibody Mechanical Simulation

¢ Biodynamics

e Computer Gaming and Virtual Reality
e Powder and Granular flows

e Die-Filling/Injection Moulding

e Paint Spraying, Particle-Laden Flows
e  Polymer Modelling

e  Molecular Dynamics Simulation

n molecular dynamics, the hard sphere model was the first to be studied in computer simulation
[1]. The hard sphere model remains important because it allows for exact determination of the
equilibrium statistical mechanics of the system. Hard sphere models represent important reference
points for studying properties of systems and for analyzing theories and methods. An example of
such system is the restricted primitive model [2], which also typically incorporates long-ranged
Coulombic forces. In polymer models, constraint chains or spring-linked bead models are very
commonly treated with a variety of bead-bead interactions: hard sphere, soft sphere, or lump. A
very popular recently proposed scheme is the dissipative particle dynamics method [3] which may
also include hard bodies [4]. The models typically include nonlinear structured momentum-
preserving dissipation forces and stochastic perturbations as well as conservative forces.
According to [4], "The use of hard spheres with the DPD algorithm is complicated by the
mixture of continuous and impulsive forces...and the need to unravel the correlated motions of the
rigid bodies."

While our focus in this discussion is on fine-scale models of molecular and polymer chemistry,
we believe that many of the ideas discussed here will eventually carry over to other simulations,
such as granular flows. The goal in this work is to develop methods which are at once very
efficient in terms of force computations (since force computations are typically the standard
measure of work) and stable (so that largest possible timesteps can be used). One of the exciting
recent developments in numerical simulation of conservative systems has been the concept of
geometric integration.  Unfortunately, geometric integration for collisional systems is still in its
infancy, despite our own work in this area and that of a few other authors [5,6]. The key obstacle
here is the development of a useful backward error analysis extending the approach used for
smooth systems [7,8,9]. The presence of dissipative forces only complicates the situation still
further, as the structural issues are currently poorly understood even for smooth dissipative
systems. This article does not purport to examine the full range of GI issues associated to
collisional dynamics, but the methods proposed here have some important GI elements.

The seed of the approach described here was put forward for standard form N-body systems as
the Collisional Verlet method of Houndonougbo, Laird and Leimkuhler [10], a second-order
scheme which uses a symplectic (and therefore volume preserving) and angular momentum
conserving map between collisions. There are some important basic challenges to the rational
treatment of more general classes of collisional models by numerical simulation. The systems
typically incorporate constraints of one form or another. While nonholonomic constraints (such
as slipping) might be interesting in larger scale regimes, the emphasis in fine-scale models is on



holonomic constraints which can be thought of as constraints on the positions of the bodies. The
treatment of holonomic constraints in geometric integration [11,12,13] is by now at a fairly well-
developed position, including rigid body systems [14,15,16] and these schemes are important in
molecular simulation [17,18]. We will briefly explain here how these constraint-preserving
schemes can be combined with the Collisional Verlet method.

Another important challenge at the molecular/polymer level is the incorporation of a temperature
control in simulation. Dynamic thermostatting is an important subject in itself, and we only touch
on this here in order to explain its treatment in the context of collisional dynamics. We exhibit a
simple technique for this based on the recently proposed separated approach to Nosé dynamics
[19].

Finally, as we are interested in the extension of these approaches for polymer modelling, we wish
to explore the treatment of nonconservative forcing, particularly damping. Some work has been
undertaken on developing geometric formulations and numerical treatments for damping, but
either (i) they are very qualitative in nature or (it) they are focussed on linear models of
dissipation. Here we explain how the dissipative forces arising in DPD can be treated so that the
underlying systems rate of dissipation is matched by the numerical method. We show how this
type of dissipation handling can be mated with collisional dynamics techniques, although the
additional complexity that it introduces probably limits the practical order of the method to one.

2. SPLITTING METHODS AND GEOMETRIC INTEGRATION

A broad family of one-step methods can be developed for integrating differential equation initial
value problems of the form dz/dt=f{z), z(0)=z° based on the concept of splitting. Given f=f"’ + f
2 the idea is to solve the system in two steps: first £” for time h, then f? for the same interval.
The result is an approximation of the evolution of the original system on [0,k]. For this to be
useful, the two vector fields /7 and % should be individually integrable, or, at least they should
be much easier to solve by some other methods (e.g. further splitting). More generally, if f = Z; f
@, then the evolution of dz/dt = f{z) can be approximated by solving successively dz/dr = fi(z),
i=1,2,... To illustrate, consider a smooth vector field f: RY — R" with components f;, fo.....fr. A
splitting method is obtained by setting

SO =fuf? =fo " = fi

since, e.g. dz/dt = f/(z) gives
dz)/dt = fi(z1, 22 - 2v)
dz;/dt =0, i=2..N

Clearly components 2..N of the solution are constants of motion of the vector field f”, whereas z;
can in principle be recovered by quadrature. A similar situation exists for each of the other terms.
This suggests the following algorithm:

Zy=2z4

fori=l.N
solve dl/dt = f(C), L(0)= Z.,; on [O,k]
set Z; = {(h)

end

=2y

The algorithm computes z™' = ®(z"; h), which can be shown to be a first order accurate numerical
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method. By iterating this map, we can approximate to O(h) accuracy the solution of the original
differential equation on any desired finite time interval. The flow-map of a given system can be
denoted by exp(hL,), where L is the Lie-derivative along the vector field f. It is convenient to
shorten this to exp(f), in which case the splitting method above can be denoted by 7 =07 h)
= IT; exp(hf”) 7. Splitting methods are also referred to as "composition methods” as they replace
the flow map by an approximation based on the composition of the flow maps of each of the
terms of the splitting.

Splitting methods prove most useful when we need to conserve some symmetry or invariant
structure of the flow of the system. For example, if f and the terms of a given splitting all preserve
a first integral, then the corresponding composition method is automatically integral-preserving.
If fis a Hamiltonian vector field, f=JVH, J=-J, the flow-map on fis symplectic. A splitting of the
Hamiltonian H=H, + Hinduces a vector field splitting

f=fi+fa fi=JVH, f= JVH,
and the composition exp(hJV Hz)exp(hJVH,) defines a first order "symplectic integrator”.
For example, if H=T(p) +V(q), we can integrate first T, then V or, alternatively first V then T,
defining a pair of 1% order symplectic methods. Since the differential equations on T and V are

T: dg/dt = V,T; dp/dt = 0

V: dg/dt =0; dp/dt = -V,V

we see that these systems are individually integrable. We can also solve first V for half a step,
then T, then V for another half-step, resulting, after some simplification, in the following method:

pn+ln ___pn _ (h/2) Vv(qn)
qn+l - qn +h VPT(an/Z);
pn+l = pn+10 _ (h/z) Vv(qn+l)

This method is symplectic, second order accurate, angular momentum conserving, and time-
reversible, and it requires just a single force evaluation at each timestep. It is referred to as the
leapfrog or Stoermer-Verlet method and is by far the most popular scheme for standard molecular
dynamics.

The repertoire of composition methods for ODEs has been developed extensively over the past
several years, and now includes high-order schemes, and schemes specially adapted for quantum
dynamics, molecular dynamics, celestial mechanics, and various types of partial differential
equations. A forthcoming book by the author together with S. Reich (Imperial College) will
present a general approach to geometric integration, including splitting, and many application
examples in detail.

3. COLLISIONAL VERLET

We next describe the basic collisional Verlet method as proposed in [10]. The idea of this method
is based on the Verlet method applied to N-body systems with energy function (expressed in
terms of velocity and position):

3) E(g,q) = q"Mq72 + V(q)
and equations of motion
qg'=v; Mv'=-VV(g)

The leapfrog/Verlet method computes a step from time , to #us = f, + h taking (¢, V') to (g,
vn+l)= b U((qn' V"), h)



@ VIR = V- (12) MYV V()

®) q* =g+ hv

©) Vit = 2 (2) MYV VG™)

It is easily seen that

M g =q" + " - (B2) M'VV(q")

hence g"*! = ¢"*!(h) is a quadratic polynomial of the stepsize. It is natural to use this as the basis
for a collisional dynamics technique:

1. Set he = min (h>0 | W( ¢" + bv" - (B2) M VV(q") ) =0 )]
2.Set h = min { he, max }

3.(q", y) = @Y ((q", V) h)

4.9 = R( g) ™!

4. twr=ta+ h

Here h,... represents a suitable stepsize for the system in the absence of collisions. The timestep
is simply chosen so that collision points are associated to collisions in the quadratic
approximations. If we think of hard spheres with centres g; and ¢; and radii R; and R;, then the
collisions correspond to points s where

llg:-g;1l =Ri+R;
or
I gi-4;1F = (Ri+ R}

which is a quartic polynomial in /4, so in this case
the collisions can be resolved exactly. If there
are many bodies, we must determine the times of
collision for all pairs (or we must eliminate some
pairs from consideration by some device) and
then we choose the smallest of these to compare
against An.. Of course it is not essential that these
equations are exactly solvable. If they are not, we
need to compute the solutions by Newton's
method or some other appropriate numerical 0
scheme, being careful not to miss any collisions
(e.g. by use of continuation methods). There is
undeniable benefit to working with the exactly
solvable case.

4. SOFT FORCE SPLITTING

In many molecular systems, the frequency of collision will be very great indeed. It was pointed
out in [10] that collisional systems do not allow the use of potential splitting techniques in
general. In potential splitting, we simply divide the potential energy of the system into two terms,
V = Vo + Viea, say, and we propagate the system by first applying an impulse v = v" - k VVieu
(¢") then integrate the system with energy Eo(q,q') = ¢"Mq/2 + V/(q) for the same time interval h.
This can also be done in a symmetric way, a la leapfrog/Verlet, by first applying an impulse
scaled by half the stepsize, next propagating the system, then applying another half-impulse,
yielding a method which is reversible and giving second order accuracy. In practice, we actually
evolve the system with energy E, using a small timestep, say h/M. This can be a very useful tool

1
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for systems subject to weakly perturbing forces, since the weak forces are evaluated relatively
rarely compared to the strong one.

However, if we attempt to combine this idea of potential splitting with our hard sphere algorithm,
so that we first apply a weak impulse, then apply some sequence of collisional steps, then apply
another weak impulse, we find that what was a second order method in the noncollisional setting
becomes first order (and it is virtually impossible to recover the 2" order accuracy). This is just
one of many ways that our intuition from understanding of smooth systems (which is justified
only by the previously mentioned "backward error analysis” of numerical integrators) can lead us
astray when dealing with nonsmooth systems.

A fix for this problem was explained in [10]. It was shown that potential splitting methods will
retain their order provided the weak force vanishes at impacts, i.e. on the contact set. Of course
we cannot expect this to hold in general, but if it is not the case, we can induce it. Specifically,
consider a system of spheres of constant radius R, and suppose the potential energies are sums of
pair potentials between bodies, thus Vi, Vi..x are associated with pair potentials of the form ¢o(r),

Oweat (1), Tespectively, where

Vo(q) = Zicj 0o (llg:=gil); Vi (q) = Dij buest (11 1)
Then the necessary condition can be induced by introducing an artificial additive splitting of Queat

Ovear= 0V + 0@
where ¢ @ is short-ranged (gradient has zero support outside a compact interval near zero) and
(d/dr) & @ (2R) = 0.

Finally we lump ¢, + ¢’ and use this to describe a modified V5 (¢), while ¢ @ is used in place of
Oueat to define the new weak potential Vieu .

The method that results from this device is a relatively efficient scheme for molecular dynamics
with hard sphere, and has been used in several recent simulations in the physical literature.

What can we say about the properties of the collisional Verlet method? Because it is based on
Verlet, the Impulsive Verlet method inherits some of its appealing properties. For example it is
second order. It generates a symplectic map between collisions and is therefore volume
preserving. However, like all currently available schemes, including the "variational methods”
described in [5], the method exhibits secular energy drift with a stochastic character. (We do not
exclude the possibility that the scheme of [10] is "variational" in the sense of [5].) An advantage
of the collisional Verlet method as compared to the schemes in [5] is that it only requires one
force evaluation per collisional step. This will be a major difference between the schemes in the
setting of models such as the restricted primitive model which involve long-range Coulombic
forces.

5. TREATMENT OF CONSTRAINTS

The extension of the collisional dynamics method to constrained systems is work currently in
progress with S. Bond (UCSD). Here we outline the basic ideas, leaving the thomy
implementation issues aside. For a holonomic system, we introduce a vector of m constraints g
(g)=0 and Lagrange multiplier vector A€ R"and write the Euler-Lagrange equations:

8) dg/dt = v; dv/dt = -M'VV-M"g'(q)"A; glq)=0
The natural extension of Stormer-Verlet is RATTLE (after SHAKE [RCB97)):
(9) qn+l - qn + h Vn+l/2



10 VR = (W2) MIVV() - (W2) MY g'(q" )N

a1 8g™')=0
(12) vn+1 = Vn+l/2 _ (h/2) M—lvv(qrnl) - (h/Z) M"g’(q"”)Té n+l
(13) g'(qn+1)vn+l =0

These equations are solved as follows: equations (9)-(11) can be reduced to
(14) glg¥ )+ G'w=0

where G=- M'g'(q" ), and L = h M2, g (h)="*" = q" + h V" - (h/2) M'VV(q") 1epresents the
unconstrained leapfrog step with the given potential field. This is a system of m equation in m
unkowns (the scaled Lagrange multipler vector) and can be solved by Newton iteration in general.
In some cases the equations are exactly solvable. After Although implicit, this scheme still only
requires a single applied force (VV )evaluation per timestep, so it has a characteristic of an
explicit method. This is very important in the setting of molecular systems, and it is for this
reason that the SHAKE discretization is the standard in biomolecular simulation. The SHAKE
discretization (with its RATTLE [13] variant) was studied in [11] and shown to be symplectic.

The trajectories are now seen to be quadratics projected obliquely onto the constraint manifold.
If we are willing to search in this geometry for collisions, then we can define a numerical method
analogous to Collisional Verlet for the constrained case. Specifically, we propose to solve the

combined system in A, 1
(15) 8@ (h+ G W=0; W(g¥ () +Gn)=0

The first of these solutions (i.e. the solution with smallest positive /) then is taken as the point of
first collision. We illustrate this approach with a couple of examples:

Example 1: N spherical bodies on the surface of a sphere

The constraint manifold is defined by {|¢{|* = 1, i=1..N. We assume unit masses and uniform radii R for
the bodies. The contact conditions are taken to be ||g; — gj{|*= (2R)*. For each i, write ¢/ (h) = q{" + h v/
- (W12} ai(q") where each of the coefficients is a vector in R’. The projection in (15) takes the form

g™ (n)+qr w > =1
or
g “ MW + 21, g0 g (h) +p? g7 |1 =1

This is a quadratic equation for p,. The equations can be simplified by using the fact that the previous step
can be assumed to lie on the constraint manifold. Once the multipliers for each body are determined as
functions of k, the equations of contact must be solved for each pair of bodies (e.g. by Newton's method). A
similar approach could be used for billiards problems on any smooth algebraically defined surface,
although generally not allowing all the simplifications seen here for the case of a sphere.

Example 2: A Rigid Body

Consider a single rigid body moving in a potential field. The equations of motion can be written in the form

(16) dQ/dt = PJ' ; dP/dt = -VoV(Q.q)- QA QT Q=1
amn dg/dt = M'p ; dp/dt = -V, V(Q,q);

Q is a 3x3 orthogonal matrix which defines the orientation of the rigid body in space, and ge R’ its centre of
mass. P,p are the associated canonical momenta. J is a (typically diagonal) matrix related to the inertial
tensor. M is the mass of the body, and A is a symmetric matrix of Lagrange multipliers which must be
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determined to maintain the constraint of orthogonality.

A very useful concept in discussing implementation of algorithms for rough-shaped rigid bodies is that of a
bounding sphere. The idea is to define a sphere whose centre is located at the body centre of mass, and such
that the entire body is contained within. As an illustration of how this can be useful, consider a single odd-
shaped rigid body experiencing collisions with a plane. Discretizing (16)-(17) for the motion using
RATTLE leads to a decoupled system, in effect equivalent to applying RATTLE to (16) and leapfrog/Verlet
to (17). Thus the motion of the centre mass under discretization follows a quadratic arc in the stepsize.
Collisions are very near to collisions of the corresponding bounding spheres. We know that these collisions
can be determined by solving a quadratic equation. (In the case of two colliding rigid bodies, their bounding
sphere impacts are determined by solving a quartic polynomial.) We can thus use the bounding spheres to
determine initial conditions for continuation in order to find the exact time of impact taking into account the

precise body geometry.

quadratic
CM path

6. COMBINATION WITH CONSTANT TEMPERATURE MOLECULAR
DYNAMICS

Important in molecular dynamics is the simulation of systems in the canonical (constant
temperature) ensemble. While there are several means of computing sampling trajectories with

the density exp(-H/kT), the most popular is undeniably the Nose formulation which replaces the
system Hamiltonian H(g,p) by an extended Hamiltonian augmented by certain thermostatting

variables, :
H*(q,p, s,ps)= H(q,p/s) + p21 + gkT In s

It can be shown that averages of a given function with respect to constant Nose energy
(“microcanonical” averages) can be reduced to canonical averages with respect to the original

energy, i.e.
{1 fiq,p) 8[H"" -E] dqdpds dp. = Il fig,p) exp(-H/KT) dqdp

Assuming that the Nose system is sufficiently strongly mixing so that the microcanonical average
on the left can be replaced by the temporal average of f{g(t),p()), along constant Nose energy
trajectories, we can recover canonical averages by computing molecular dynamics trajectories.

More recently, a broader class of thermostats was introduced in [20] termed generalized Nose:
H%(q,p, 5,ps, 8, ®)= H(q,p/s) + a(8) p/21 + gkT In s + G(6, )

Here G is an essentially arbitrary auxiliary "bath" whose properties can be tuned to enhance
ensemble convergence. A "real-time" formulation can also be given based on use of a Poincare

transformation of the form H%"— sf[H®"-E] [21].

These techniques can be combined with the concepts of the collisional verlet method, but their
implementation becomes substantially more challenging. In particular we know longer obtain



quadratic paths. An approach to constant temperature hard sphere dynamics based on Nose-
Poincare methods [21] was given in [22].

If we consider just the standard Nose method, however, there is an alternative which is very
attractive and retains the simplicity of collisional Verlet method. Note that for a simple
mechanical form Hamiltonian

H(q,p) = p'™M"p/2 + V(g)
we have
HY*(q,p, s,p;)= p"M’'p2s* + p22u + V(q) + gkT In s
substituting, as in [19] the canonical coordinate change
s = exp(x) Dx = exp(-x) ps
the Nose Hamiltonian is mapped to
H*(q,p, x,ps)= exp(-2x) (p"M"p/2 + p/21 )+ V(q) + gkT x
hence a Poincare transformation of the form H*— exp(2x)[H'-E] reduces the system to simple
mechanical form:
H**(q,p, x,ps)= p"M’p/2 + pi/2p + exp(2x) (V(q) + gkT x -E)

This transformation is useful for understanding the nature of Nose's method, but it is also very
handy for developing numerical methods. In particular if we use this formulation and discretize
with Verlet, the trajectories are again quadratic paths in the stepsize, and identification of
collisions is simplified. Because the separated formulation is not a real time formulation, an
interpolation of the data, or alternatively a reweighting in the computation averages, will be
needed, see [19].

7. STRUCTURED NONLINEAR DISSIPATION

Linear and nonlinear dissipation have been discussed by several authors in the context of
geometric integration. However, an important type of "radial” dissipation seems to have been
overlooked in the existing literature. This is the topic of current work by the author and T.
Arponen (HUT/Leicester).

When introducing geometric integration ideas for dissipative models, it is natural to treat first the
case of weak damping in an otherwise conservative model. But a rod is sometimes modelled by a
strongly damped stiff spring with rest length. For example the equations of motion for a simple
pendulum with spring constant k, damping coefficient d, and natural length L are:

dg/dt =p/m

dp/ds = -k(1-L/\ql)q — d(qq'/ql’) p
=F(g) + D(q)p
If k,d>>1, it is difficult to introduce vibrational energy. At the same time any vibrations that are
introduced are rapidly damped out. As a perfectly rigid rod introduces a holonomic constraint, it

is natural in this setting to view the strongly damped system as "close" in some sense to
Hamiltonian.

The pendulum model has interesting geometric features. In particular, the flow conserves angular
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momentum. This raises a first GI problem for structured dissipative systems: construction of
momentum-conserving integrators. But the system has another layer of geometric structure:
observe that the divergence of the vector field is tr/D(q)] = -d, hence the phase space volume
dissipates uniformly. A second natural GI question is therefore raised. Can we find Uniformly
Dissipative Integrators (UDIs)?

Somewhat surprisingly, the generalized leapfrog method (Lobatto IIA/B) and implicit midpoint
method, both of which are uniformly dissipative for systems with linear dissipative forces, are not
uniformly dissipative when applied to the pendulum model. Yet is easy to get a momentum
conserving uniformly dissipative integrator for the pendulum, or for the closely related model of a
pair of particles linked by a damped spring.

Since D = -d R where R is a projector, we have D? = (-d)*R* = &R, D’=-d'’R, ...and
exp(hD) = exp(-hdR) = I -hdR +h* & R/2 — K’d’R/6 +... = I +(exp(-hd)-1)R
The splitting of the pendulum equations into

dg/dt = p/m dp/dt = F(q)
and

dg/dt =0 dp/dt = D(q)p

defines a method which is uniformly dissipative and explicit, and conserves angular momentum.
(Some method such as leapfrog/Verlet would have to be used to integrate the conservative part, in
general.). Of course the pendulum is of limited interest so we must look to apply these ideas in
more general settings.

Can we get UDIs for more general classes of problems? In particular we would wish to treat N-
body models arising in dissipative particle dynamics, smoothed particle hydrodynamics, and
elsewhere which have pairwise conservative and dissipative forces:

dqgi/dt = p/m
dp/dt = Fi(q) + ZDi(qi-q))(pi-p;)

Here F is assumed to be a conservative force field based on pairwise (distance dependent)
interactions. If Dy(u) = d; u u”/ |ul?, then the flow of this system is angular/linear momentum
conserving and uniformly dissipative. In this case, it is possible to build 2 momentum-preserving
UDI by splitting the dissipative term into pairwise components and integrating each in succession.

In realistic cases, we will usually have short-ranged potentials and short-ranged damping between
bodies

Di(u) = d(|grq;l) uuul*

where e.g. d(r) ~ 1/r ®, a.21 . In this more complicated case, dissipation is no longer uniform but
we can design momentum conserving integrators based on splitting. At the same time we can
develop schemes that preserve the essential character of the dissipation.

Collisional integrators can be designed to incorporate these techniques for handling structured
dissipation. In a first order splitting, the positions still move along quadratic trajectories defined
by the leapfrog (or symplectic Euler) splitting of the conservative part, with the damping only



applied at impact points. For methods with order 2, however, we now must include in the
trajectory determination the complicated formulas coming from integrating the damping term
based on splitting. For this reason the currently available higher-order dissipative collisional
methods are probably impractical for most realistic applications.
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UNSTEADY CFD SIMULATIONS OF VORTEX
INTERACTIONS OVER DELTA WINGS

ARTHUR RIZZI, STEFAN GORTZ and YANN LE MOIGNE
Royal Institute of Technology (KTH)
100 44 Stockholm, Sweden

INTRODUCTION

Modern high-performance fighter aircraft like Saab’s JAS39 “Gripen”(Fig.1) make use of highly
swept, slender, sharp-leading-edge delta wings. The high-angle-of-attack aerodynamics of such delta-
wing configurations is dominated by the lift-enhancing effects of the vortices generated by the roll up
of the shear layer emanating from the wing’s leading edge.

The current research on delta-wing aircraft is focused on the unsteady nature of the complicated flow
field at very high angle of attack and dynamic flight conditions where the generally very stable and lift
enhancing leading-edge vortices may lag in motion and/or burst (Fig2) producing in either case
dynamic effects in the aerodynamic loading. It is important to predict these dynamic effects because
they dramatically change the flight characteristics of the aircraft and are often difficult to measure in
wind tunnel tests.

Figure 1: Saab Aerospace/B Ae system Gripen Figure2: Smoke visualization of vortex
breakdown above NASA F18-HARV

The first part of the presentation presents the state of the art of time-accurate Navier-Stokes simulations
of three-dimensional vortex breakdown above a full-span, stationary delta wing using the Navier-
Stokes Multi Block (NSMB) code. Analysis of this complex problem remains challenging and
computationally expensive, mainly because of very small time steps and large number of grid points

19



required to resolve the physical time and length scales of the inherent flow unsteadiness time
accurately.

The second part of the presentation treats a half-span delta wing in sinusoidal pitch oscillation and
captures the dynamic formation and burst of the leading-edge vortices over the wing causing dynamic
lift overshoot and hysteresis loops in the load history. A moving grid is used to reproduce the motion
of the wing and the time-dependent flow equations are integrated with the dual timestepping method.
The main testcase is a 70°-swept delta wing oscillating around a mean angle of attack of 22 degrees
with a semi-amplitude of 18 degrees at a Mach number of 0.2. The hysteresis behaviour is reproduced
and good agreement with experimental data is obtained. Flow visualizations show the expected
formation, burst and disappearance of the vortices.

N

20.617(523.5)

Figure 3: Wing geometry Figure 4: Top view of the wing surface mesh
for the full span wing

1. NUMERICAL PROCEDURE

The Navier-Stokes Multi Block (NSMB) code is used throughout this numerical study. It is being
developed in a joint research project between universities and industry, among them KTH, EPFL,
CERFACS, Saab Aerospace and Aérospatiale-Matra Airbus, The cell-centered finite volume method
using block-structured grids is employed to discretize the full unsteady, three-dimensional Navier-
Stokes equations. The equations are solved using the dual time-stepping technique presented by

Jameson.

In the present study, a second order implicit backward scheme is used for the outer timestepping, and a
very efficient matrix version of the semi-implicit LU-SGS scheme is employed for the inner loop. Multi
grid is used to accelerate the convergence to “steady state” in the inner loop. A fourth-order
skewsymmetric central scheme with fourth-order artificial dissipation is used for the spatial
discretization. The newly available patched grid capability of the flow solver is made use of to refine

20



the vortical flow field in regions of interest in an effort to reach grid resolution for this complex
problem.

2. MODEL GEOMETRY AND GRID

Initially only stand-alone delta-wing planforms are investigated. The delta-wing model treated here is a
flat plate delta wing of 70° leading-edge sweep with a bevel on the bottom surface (Fig.3). Both half
span and full span wings have computed. The sharp leading edge fixes the primary separation line of
the primary vortex and makes it Reynolds number independent

An H-H-C type grid was generated for this model to ensure maximum consistency with model
geometry. Three blocks were placed above the wing in an effort to avoid a singular line at the wing’s
apex (Fig.4). Several other grid topologies have also been tried but were less successful.

Figure 5: Assymetric vortex breakdown over full-span delta wing (Euler simulations (left) and water
tunnel visualization (right))

3. SELECTED RESULTS STATIONARY DELTA

The full-span model time-accurate Euler simulations capture vortex interactions - the numerical
solutions exhibit asymmetry as well as streamwise fluctuations in the port and starboard vortex
breakdown locations, despite symmetric boundary conditions and a symmetric computational grid.
Flow visualization reveals that spiral-type breakdown is predicted over both sides of the wing for the
predominant part of the simulations. The rotation of the port and starboard post-breakdown helical
structures is shown to be out of phase at certain times (compare Fig.5). Intermittent bubble-type
breakdown is also observed to occur periodically over one side or the other of the wing and related to
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the occurrence of asymmetry in the vortex breakdown location. For Detached-Eddy Simulation (DES),
a time step study and a grid sensitivity study are conducted on semi-span grids to verify time accuracy
and grid resolution. The full-span DES results are compared to detailed LDV and pressure
measurements for the same geometry. The breakdown location is shown to be grid sensitive.
Agreement between the measured and computed breakdown locations is shown to be good on the
refined grid. The surface pressure distribution is underestimated, even on the refined grid, maybe due
to excessive wind-tunnel blockage effects.

4. SELECTED RESULTS PITCHING DELTA

Fig.6 shows the different shape of the vortex at an angle of attack of 22° with and without vortex
breakdown in the pitching case. The difference is due to the history of the motion of the wing before
reaching this angle of attack i.e. if the angle of attack is increasing, decreasing or is maintained

constant.

(s

o

Alpha =22 dog
Alpha = 22,00 deg | T500e04 Static 7300404 Alpha =22.00 deg 7300404
730004 6.750404 . . 6750104

(a): Pitching up (b): Static (constant o) (c): Pitching down

Figure 6: Vortex visualization (Euler) above a semispan delta wing at 0=22°,

5. HISTORICAL PERSPECTIVE ON HPC PERFORMANCE

CFD simulations of the flow around delta wings have been undertaken during the past 20 years or
more, and hence it is a good subject matter to gauge the progress made in high performance computing
during this period. The presentation will survey the advances made in processor speed, in memory size
and in CFD methods together with software implementation and visualization techniques that have
materialized during this time frame. This then provides us with some perspective of where we have
come from, and where we are today, and gives some idea of where we may be in the near future.
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ABSTRACT

The purpose of this article is to present different sensitivity analyses used in structural optimiza-
tion. First, the sensitivities of the objective and the constraint functions with respect to design
variables are considered. Next the sensitivity of an optimal design with respect to any fixed pa-
rameter is presented. Finally, the global sensitivity analysis of the chosen criteria, which is needed
in the decision-making process, is briefly discussed in the context of multicriterion optimization.

1. INTRODUCTION

Structural optimization problem is usually formulated by choosing convenient design variables x;,
i=1,2,...,n, imposing required equality and inequality constraints, and forming an objective func-
tion which a designer wants to minimize or maximize. The following finite dimensional standard
formulation in the design space is obtained by using nondimensional variables and functions. Be-
cause every maximization problem can be converted into a minimization problem, the latter is

applied here. By using notation x € R" for the design vector, which includes all the design vari-
ables as components, notation g,.:R" — R for inequality constraint functions, notation
h j:R" — R for equality constraint functions and notation f:R" — R for the scalar objective
function or criterion, a standard nonlinear optimization (NLP) problem has the form

min f(x) (1
g(x)<0 , I=12,...r (2)
hj(x)=0 , J=1,2,....8. 3)

This is called briefly problem P in the continuation to separate it from multicriterion problem 7,

discussed later in the text. In structural design usually most of the functions are nonlinear, but
particularly in limit load problems of plasticity they all may be linear. The above formulation in-
cludes the linear programming (LP) problem as a special case, but in this article nonlinear optimi-
zation problems associated with linear structural analysis are considered.

Typical objective functions in structural design are the material volume and the cost, including
material and manufacturing as well as the running costs. Other frequently used criteria are quanti-
ties associated with strength, stiffness, stability, vibration, reliability and fatigue life, just to men-
tion a few. In the case of several conflicting criteria the multicriterion approach is applied.
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Using compact vector notations g(x) = [g1(x) 2,(x) g, (x)]T and h(x) = [h1(x) hy(x)...h (x)]T
for the constraint functions a feasible set

Q= {x eR"|g(x) <0, h(x)= 0} “4)

is obtained. The most seen constraints in structural design are stress, displacement, natural fre-
quency and stability constraints, but any restrictions given by standards or manufacturing process
as well as all other wanted requirements can be added to the constraint set. Those inequality con-
straints, which are fulfilled as equalities at the current design point, are called active.

Different sensitivity considerations are an essential part of the design process. Their purpose is to
determine how some chosen design quantities change when certain parameters are varied. Accord-
ing to this definition, the sensitivity analysis is a broad concept including several tasks even in the
context of one design problem. Assuming that functions are sufficiently differentiable, some basic
types of the most used sensitivity analyses in structural optimization are briefly described in the
sequel.

2. SENSITIVITY WITH RESPECT TO DESIGN VARIABLES

2.1 Analytical approach

Most optimization algorithms use a gradient information at each iteration step during the line
search or in order to find a feasible direction in which the objective function improves. Also opti-
mality conditions include the gradients of the objective and constraint functions. Karush-Kuhn-
Tucker conditions

Vf (x*) + AT Vg(x¥) + 4 Vh(x*) = 0 (5)
A:g,(x*) =0 L =12 )
A; 20 , i= 12, %)

1]

represent the necessary conditions for vector x* € Q to be a local optimum of problem P, pro-

vided that certain constraint qualifications are met. These conditions should be checked for any
optimum candidate before accepting it to the design process. Furthermore, some algorithms like
optimality criteria methods in structural design are based on an iterative solution of these equa-
tions. Here the gradients include the partial derivatives with respect to design variables, whereas
A and u represent the vectors of Lagrange multipliers.

In structural optimization typical design variables are cross-sectional properties for beams, plate or
shell thicknesses, nodal coordinates of a truss or frame, locations of control nodes in shape optimi-
zation, topology parameters, and fiber orientations together with layer thicknesses in laminated
composite design. In the case of a linear static analysis the derivates of the objective function and
the response functions like stresses and displacements should be computed at certain design points
several times during the iteration by keeping the finite element equilibrium equation



K(®)u = p(x) (8)

satisfied. In order to simplify the notation it assumed here that instead of x only one design vari-
able x exists. By differentiating eq. (8) with respect to x sensitivity equation

K—=—-—u €)

is obtained. This is called a “direct method” for determining the derivatives of nodal displacements
du/ dx , from which the stress derivatives can be computed by applying kinematic and constitutive
equations. Using the chain rule the constraint function g(u(x),x) can be differentiated to give

g _0g , ru : (10)
dx Ox dx
where
T
z{@ﬁ...a_g} a
8141 8u2 8uN

represents the vector of partial derivatives with respect to all nodal displacements. Another alterna-
tive is to apply a so called “adjoint method” where the displacement derivatives need not be com-
puted. Here an adjoint equation

Ky=1z, (12)

which is similar to eq. (8), must be solved to get vector y needed in the constraint derivative ex-
pression

d_g=$+yr(‘_ﬁl_§u) , (13)
& o\ @

Vector z can be interpreted as another loading condition, so called ”dummy load”, in addition to
the real loading p. Thus the numerical solution of eq. (12) is far cheaper than the solution of eq.
(8), which is needed at each design point for both the direct and adjoint method. It can be noticed
that the direct method requires the solution of eq. (9) once for each design variable, whereas the
adjoint method requires the solution of (12) once for each constraint. Consequently, in the case
where the number of design variables is smaller than the number of constraints for which gradients
are needed, the direct method is more efficient. Correspondingly, the adjoint method is cheaper
when the number of constraints to be differentiated is smaller than the number of design variables.

Sometimes the Hessian matrix is needed at a certain design point, as may be the case in some
numerical algorithms or in more general sensitivity calculations (see chapter 3). For simplicity, it
is assumed here that g does not depend explicitly from x or y. Then egs. (9) and (10) can further be
differentiated with respect to another design variable y to yield equation

d'w _ d'p &K dK du_dK du (1)
dedy dedy dedy dx dy dy dx
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for the second derivatives of the displacements and equation

2 2 T
dg:sz“+(@—)U@ (15)
dx dy dx dy dx dy

for the constraint function derivative. These equations, where matrix U includes the second partial
derivates of function g with respect to the nodal displacements, represent the direct method. It is
possible to derive the adjoint method equations for the second derivatives as well, but they are not
shown here.

For linear eigenvalue problems, associated with the undamped free vibration and the linear buck-
ling analysis, the governing equations

(K—a)zM)u=0 ; (16)

can be differentiated to give the derivative of a certain natural frequency with respect to design
variable x as follows

H(dK _ ,dm
do? " ¢ & M
_ (17)

dx u’Mu

Here the natural frequency and the corresponding eigenvector are first computed from eq. (16). If
the derivatives of the eigenvectors are needed, they can be obtained by differentiating the normali-

zation condition (for example u’ Mu = 1) and combining the result with eq. (17).

If repeated eigenvalues appear, as may happen for example in maximizing the fundamental fre-
quency, they are no more differentiable. Several approaches for this nonsmooth situation have
been developed in the literature, but they are not considered here. Similar sensitivity formulae,
which were shown here for a linear static analysis, can be derived for different finite element based
problems like for example linear damped vibration, transient response and nonlinear static analy-
sis. -

2.2 Difference and semi-analytical methods

Perhaps the simpliest way to calculate gradients for criteria and constraint functions is to use finite
difference approximations. If commercial finite element packages are used, the code is usually
hidden from the user, and it is necessary to perform the sensitivity analysis outside the program.
Then for example the forward difference approximation

dg _8x+4Ax)-g(x) (18)
dx Ax

can be used to calculate constraint gradients. In order to obtain the required gradients at the current
design point n+1 finite element analyses are needed. If instead of eq. (18) the central difference is
applied the number of analyses becomes 2n+1 and the higher order approximations still increase



the computational effort. In addition to the high cost serious accuracy problems may arise in the
finite difference approach due to both truncation and condition errors.

Sometimes it is advantageous to use the finite difference approximation to calculate the derivatives
of the stiffness matrix and the load vector. The forward difference formula

dK  K(x+A0)-K(x)
d Ax

(19)

is useful for example in shape optimization, where it may be difficult to calculate the derivatives
with respect to shape design variables which control the geometry of elements. The approach that
uses analytic formulae given in egs. (9) ... (13), but compute some derivatives using finite differ-
ences, is called a semianalytical method.

2.3 Shape optimization

In optimizing the shape of a two dimensional structural component B-splines or Bezier-curves are
often used to describe the boundary of the body. Instead of using nodal coordinates as design vari-
ables the locations of the control nodes of the parametric curves (or surfaces in three dimensional
problems) are usually applied. In this way it is possible to avoid accuracy problems which may
result in a very disturbed and unpractical saw edge boundary. The sensitivity analysis becomes
more complicated because both kinematic matrix B and Jacobian determinant |J| in the master
element expression

K, ='[JBTDB 13| dédn (20)

3

where D is a material property matrix and ¢ is a thickness of the element, depend on design vari-
ables. Before solving du/dx from eq. (9) it is necessary to calculate the derivatives of the load
vector and the stiffness matrix. The derivation of the analytic expressions is a lengthy process and
it is not shown here. Different approximations may become necessary in the calculations and often
the shape sensitivity analysis is based on the semi-analytical or even on the difference method.
After the displacement derivatives have been determined, the corresponding element stress deriva-
tives can be computed from equation

ddox =D(del; +%BueJ, 1)

where matrix D associated with Hooke’s law is assumed constant.

A more sophisticated approach for the shape sensitivity analysis may be the application of so-
called material derivative

T 8x¢
op

) (22)

ng = %ﬁ*‘ Vg(x¢(x,p)7p)
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where V denotes the gradient in the two or three dimensional space and term 0x4/0p is called

the velocity field, because parameter p here is similar to the time variable. The material derivative
is popular in shape optimization applications, but also new approaches to generate the sensitivity
information are constantly developed.

Variational methods in sensitivity analysis differentiate the governing structural equations before
they are discretized. The sensitivity equations obtained in this way can be solved by using FEM-

analysis or a corresponding program. This rigorous approach is especially suitable in situations
where the finite element package is used and the code is not available.

3. SENSITIVITY WITH RESPECT TO FIXED PROBLEM PARAMETERS
In structural optimization many design parameters, like allowed stresses or displacements and
member lengths or other dimensions, are fixed during optimization. Still it may be interesting to

see, how the optimal solution changes when these fixed parameters are varied. It is assumed here
that only inequality constraints are present and that vector g represents those constraints which

are active at the optimal point x * . Optimization problem is now formulated as
min £ (X, &) (23)
g(x,e)<0  i=12,..r (24)

where both the objective function and all the constraint functions may depend on certain parameter
&, which was fixed in the original problem (1).

The differentiation of KKT-conditions (5) and the equalities
g(x)=0 i=12,..,7, (25)
of the active inequality constraints yields a system of simultaneous equations in the form

*

oG , . dA d

0 X

— (VA +— A+ G— + (H+A =0 26
63( /) o€ de ( )da (26)
o *

08 _ordx* _ o 27)
o de

Here G is the matrix including gradients Vg; as columns, H is the Hessian of the objective func-
tion and matrix A is defined componentwise by

o'z
Ay=D —14;. (28)
j

From egs. (26) and (27) the derivatives of the design variables and of the Lagrange multipliers can
be computed.



In the case where only the derivative of the objective function f i (&) is needed, equation

aft _of roE (29)

de oe oe

can be derived by using the chain rule and eq. (27) together with KK T-condition (5). For example
if in the case of a stress constraint the sensitivity of the optimal objective function with respect to

the allowable stress & is wanted, nice result
Af' = -1;AF (30)

is obtained. It should be stressed, however, that these sensitivity equations based on derivatives are
valid only if the set of active constraints remains the same in the perturbated optimal solution.
Thus only small changes in the fixed parameters are allowed and if larger variations are needed,
the original optimization problem with new fixed parameter values must be solved.

4. MULTICRITERION OPTIMIZATION

Most design problems include several conflicting and noncommensurable criteria which should be
optimized simultaneously in the feasible set. If each criterion f;(x), i = 1,2,...,m, is optimized

separately in Q usually m different optimal solutions appear. It is evident that if one compromise
solution is wanted, some decisions concerning the mutual importance of different criteria must be
made. If the criteria are combined into one scalar objective function by using suitable weights,
standard problem P given in (1) ... (3) is obtained. Instead of choosing the weights beforehand it is
advantageous to use a multicriterion approach, where the decisions concerning the importance of
each criterion are postponed after the optimization problem has been solved.

Multicriterion (multicriteria, multiobjective, vector) optimization problem P2, differs from scalar

problem P only in the objective function which is vector valued, i.e. f:R" — R™ . It includes the
conflicting criteria as components and is denoted by

£(x) = [/A® £,...£,®]" . (31)

Using the minimization form and the notations given in chapter 1 multicriterion problem P, can
be stated as

minf(x) . (32)
) 219

The solution of this optimization problem is a Pareto optimum (nondominated, noninferior or
efficient point). Vector x*e Q 1is called Pareto optimal for problem P, if no criterion can be

improved without worsening at least one other criterion. This definition implies that a Pareto op-
timal set rather than one optimal point is typical for the multicriterion problem. The corresponding

optimal solution z* = f(x*) is called a minimal solution. It belongs to criterion space R™ and is
an element of attainable set
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A={zeR"|z=1(x), xeg} . (33)

This is the image of the feasible set and in continuous problems minimal points locate on its
boundary.

In multicriterion decision-making the criterion space becomes important after the Pareto optimal
set, which represents the collection of the best solutions in a mathematical sense, has been gener-
ated. The minimal curve in a bicriterion case or the minimal hypersurface in the m-dimensional
case, both given in the criterion space, represent global sensitivity results for the optimal design
criteria. As a matter of fact, multicriterion optimization may be viewed as a systematic sensitivity
analysis with respect to the most important value judgements.

5. CONCLUSION

The sensitivity analysis in structural optimization has been discussed here in a broad sense by
introducing three different categories: local sensitivity with respect to design variables and fixed
parameters as well as global sensitivity of several conflicting criteria. Also a Iocal sensitivity
analysis, called trade-off calculation, appears in multicriterion optimization. The important topic of
nonsmooth optimization, where subgradients or generalized gradients are applied to the sensitivity
analysis, was not discussed here. Furthermore, sensitivity studies of discrete or mixed variable
problems were not considered in this article. These both problem types, discrete and continuous
but nonsmooth, often appear in optimizing load carrying structures.
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ABSTRACT

Using multicriterion optimization methods for weight minimization of failure strength controlled
composite structures is described. A composite lay-up design problem for minimizing the number of
layers under strength constraints with respect to multiple loading conditions is formulated. The
constrained problem is transferred into a sequence of unconstrained problems and solved with an
interactive descent method. A typical design cycle that comprises the finite element mesh generator
and solver as well as the laminate analysis and optimization modules is illustrated with a numerical
example.

1. INTRODUCTION

When loads vary with the point position or different loading conditions occur at different times
under in-service conditions, the decision-maker needs to consider laminate minimum weight designs
that are capable of carrying various conflicting loading conditions. A natural formulation for a problem
with several competing criteria is the multi-criteria optimization formulation, where the conflicting
design objectives are introduced as a vector objective function and so-called Pareto optima [12, 13] are
sought.

In this paper, using an interactive descent method [1] for weight minimization of failure strength
controlled composite laminates made from orthotropic fiber-reinforced layers is represented. The
laminate is subjected to multiple loading conditions that may be due to the different in-service
conditions at particular point of the finite element model of the structure or they may be the loads at
the representative points of the critical areas of the structure. In both cases the different loading
conditions are finally represented in terms of layer stress resultants integrated through the thickness of
a laminate [2]. Conventions for these so-called in-plane force and moment resultants for an N-layered
laminate are shown in Figure la.

Each loading condition may involve simultaneously applied external mechanical loads and
internal loads caused by the temperature difference between the stress-free temperature and the
operating temperature and by moisture absorption or desorption. The temperature and moisture content
differences are assumed to vary linearly through the thickness of the laminate (Figure 1b). In the
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laminate failure analysis, the hygrothermal loads are assumed to stay fixed in the constant load part
while the external mechanical loads are varied in the variable load part.

In failure analyses of composite structures, failure margin measuring the criticality of the effective
load (the nominal load multiplied by the factor of safety FoS) with respect to the failure load is often
indicated in terms of a reserve factor RFeR, RF > 0, failure being defined by an appropriate failure
criterion. According to the constant and variable load approach [3, 4], the laminate initial failure (First
Ply Failure, FPF) occurs with the failure load defined as

N FPF N < N v
= FoS* + RF™ FoS" (1)
M M M
x¥ Rg x

where the constant (superscript ¢) and variable (superscript v) load vectors may be due to combined
loading of external load expressed as resultant forces and moments and internal load expressed as
equivalent thermal and moisture forces and moments determined as in [5].

a)
M,y
ﬁé M, x
b)
AT’
1 top
2
i i g
}V bottom
AT? z

Figure 1. a) Laminate resultant in-plane forces N,, and moments M, on a flat laminate. b) The
temperature difference between the operating temperature and the constant stress-free temperature of a
laminate. The moisture distribution can be defined analogously.

The minimum of the layer reserve factors on the top (superscript f) and bottom (superscript b)
surfaces of the layer defines margin to laminate initial failure with respect to the applied loads as



RF™ =minRF)", k=12,...,N @)

2. THE STRUCTURAL OPTIMIZATION PROBLEM

Let the symmetric and balanced laminate structure be defined so that the laminate thickness can
only be multiples of the layer thickness. Let a set of initial allowable angles for layer orientations of a
symmetric laminate 8(l), I=1,2,...,N/2, be defined as @(s)=(0, 90, +6,—8) degrees, s=1,2,3,4,
where 6 [0, 90] degrees. Alternative symmetric and balanced laminate lay-up configurations (Figure
2) are represented as

X = (0 Xg0een X, )2, €00,1, ) x, =1, (x,, = x,)=0 3)
s 1

1 X11, X12, X13, X14
2 X215 X22, X23, X24

l X1ty X2, X3, Xig

N/2 bottom

Figure 2. Discrete design variables for laminate lay-up definition.

The structural weight minimization problem can be stated in discrete form such that the laminate
total number of layers N is minimized over the feasible lay-up configurations.

Q={x|argmin N(x)} @)

Q={x|g X =1-RE™(x)<0,i=12,...,m} G)

The solution for weight minimization problem is not unique, i.e., there might be several feasible
laminate lay-up configurations with the minimum number of layers. Since we want to find the lay-up
configurations that maximize the failure margins with respect to the applied loading conditions, it is
meaningful to introduce failure margins as criteria so that the alternative laminates can be partially
ordered. The objective is to find such symmetric and balanced laminate lay-up configurations with
constant ply properties and given allowable angles for layer orientations that the laminate margins to
initial failure with respect of the given loading conditions are maximized with the minimum feasible
number of layers. Formally, the structural optimization problem is stated as follows.
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RE™ (x)

RF™ (x) &

maﬁx f(x) f(x)=
RF ™ (x)

In problem Eq. 6 f is a vector objective function where the components f; Q- R, i=12,....m

are called criteria and they represent the design objectives by which the performance of the laminate is

measured.
The image of the feasible set in the criterion space, that is, the attainable set, is defined as

A={zeZ|z=f(x),xe§} @)

Definition 1. A solution x_ is Pareto optimal for problem Eq. 6 if and only if there exists no x eQ
such that f,.(x)zf,.(x') forall i=1,2,...,m and Jﬂ(x)>ﬁ(x') for at least one i=1, 2,..., m. The

points z '=f(x") € A in the criterion space are called the maximal points.

Definition 2. A solution x_ is weakly Pareto optimal for problem Eg. 6 if there does not exist another
solution xeQ such that f,(x)> f,(x") for all i=1, 2,..., m. The corresponding points in the
criterion space are called the weakly maximal points.

3. ACHIEVEMENT FUNCTION APPROACH

Let zeR" be arbitrary reference objectives characterizing aspiration levels for the given
criterion vector and let s, : A —> R be a continuous achievement function. The achievement problem

to be solved is

min s, (z) (8)

Definition 3. A function s, is strictly decreasing if for z9,29*" e R" z{” <z forall i=1,....m

imply s, (z)>s, (z"").

Definition 4. A continuous achievement function s, : A — R is order-representing if it is strictly
decreasing as a function of ze A for any ZeR" and if {zeR"|s,(z)<0}=Z +intR" for all

Z e R". For a continuous order-representing achievement function s, : A — R we have 5,(z)=0.

Based on the results represented by Wierzbicki [14, 15, 16], Miettinen (1999) [11] has given the
following conditions concerning the solutions of an achievement function to be Pareto optimal. The
proof for a vector minimization problem can be found in Miettinen (1999) [11], for instance.



Sufficient condition for a solution of an achievement function to be weakly Pareto optimal. If the
achievement function s, : A = R is order-representing, then, for any zZ € R", the solution of problem
Eq. 8 is weakly Pareto optimal.

Necessary condition for a solution of an achievement function to be weakly Pareto optimal. If the
achievement function s, : A — R is order-representing and z" € A is weakly Pareto optimal or Pareto

optimal, then it is a solution of problem Eq. 8 with Z =2 and the value of the achievement function is
Zero.

4. THE REDUCED PROBLEM FORMULATION

The problem to be solved is

zeZ  i=l,

min max { w, (z, = z,)} ®

where some of the criteria might be combined linearly as

z, = f.(x) foronei=1,2,...,m

zzzzj"f'(x) forr=12,....m-1,r#i (10)

Here the subscript r is the index of the combined criteriaand 4, € A, 4, >0, Z A =1,

The normalizing coefficients w, € w, w, >0 are used to make the criteria commensurable.

Reducing the original multiple criteria problem into a bicriteria problem has been suggested by
Koski and Silvennoinen (1982, 1987) [17, 18], for instance. By fixing the parameters used to reduce
the number of the criteria, it is possible to control the evolution of the sequence generated by the
optimization procedure towards some subset of Pareto optima. Pareto optimal solutions found with
particular parameter values in the reduced criterion space are also Pareto optimal solutions in the
original criterion space. Koski and Silvennoinen (1987) [18] have shown that by using the reduced
problem formulation, the decision-maker always operates on the maximal set of the original problem.
The reverse relation is not generally true, but in any case, at least a subset of Pareto optima of the
original problem is obtained with the reduced problem formulation.

We employ an optimization procedure where the problem is solved iteratively by transferring the
constrained problem into a sequence of unconstrained problems. The state of a sequence x
corresponds to the selected lay-up configuration at that cycle of the iterative procedure. Convergence
of the algorithm is measured with an achievement function called the descent function

s,(x")y=max {z, - £,(x")}, i=12,...,m an
Termination condition for the algorithm is defined as

max {0,s,(x”)}<é 12)
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where 6> 0 is a small predefined scalar.

5. NUMERICAL EXAMPLE
To illustrate the design optimization technique, we consider the weight minimization problem of a
clamped Z-profile elastic beam shown in Figure 3. The beam is composed of layers having the

mechanical properties of in plane 23 transversely isotropic Carbon/epoxy ply listed in Table 1.

Table 1. Mechanical properties of the ply.

Carbon/epoxy, ¢ = 0.2 mm, p= 1550 kg/m’

Ei=155GPa | vp=0.23 X, = 1950 MPa | ¥, = 48 MPa
E;=85GPa | vy=028 X. = 1480 MPa | Y, =200 MPa
G;=55GPa | G,,=3.32GPa | S12=79 MPa

The length of the beam is 1 m, the height of the web and the width of the flanges are 0.1 m. The
beam is subjected to its own weight and to two external forces Fy, = 7000 N at the mid length of the
beam and F,= —5000 N at the free end of the beam as shown in Figure 3. The objective is to find a
minimum weight solution for the beam without failure, failure being predicted according to the Tsai-
Hill failure criterion [2]. The web and flanges should have identical laminate lay-up configuration.

x
Figure 3. The clamped Z-profile elastic beam.

The beam is analyzed with the initial [0/+45/90]SE (SE denotes symmetric even laminate
structure) lay-up employing the ELMER [9] software. ELMER is a software package for solving
Partial Differential Equations (PDEs). It has been developed at CSC — Scientific Computing Ltd. in
collaboration with Finnish universities, research laboratories, and industry. ELMER includes physical
models of fluid dynamics, structural mechanics, electromagnetics, vibroacoustics, and heat transfer, for
instance. These are described by PDEs which ELMER solves by FEM. Recently the software
capabilities have been extended to cover orthotropic laminated structures as well.



The beam is analyzed using the shell model based on a facet approximation of the midsurface,
standard plane stress equations (discretized by the standard FEM), and the plate model of Reissner and
Mindlin (discretization by the stabilized MITC-technique [6, 7, 8]). As a result, there are six degrees of
freedom per node. The FE model used for the ELMER solver is shown in Figure 4.

Based on the laminate level stress-strain state at nodes of the FE model, the laminate FPF analysis
is performed with the composite analysis and design software ESAComp [10, 19]. In the laminate
failure analysis, the Tsai-Hill failure criterion and FoS"=1.0 have been used. The two critical points in
the FE model, LC;: (N, M)=(-1565000, 46158, 81086, -147.52,-18.79,-12.49) N/m, Nm/m and

LCy: (N, M)=(694300, 499450, -563490, -30.33, 1.53,0.97) N/m, Nm/m producing RF™ =0.486
and RF,™ =0.485, respectively, have been selected interactively as the representative points for the

optimization phase.

® ELMER POST GRAPHICS

Figure 4. The FE model of the beam.

The bicriteria optimization problem is formulated as

max (RF‘FPF (X)J (13)
xeQ) ]z}:'2 (x)
Q={x]| argrzleiQnN(x)} 14
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Q={x|g,x)=1-RF™(x)<0, i=1,2 (15)
The constrained problem is transferred into a sequence of unconstrained problems

min max {1 - ,(x)} (16)

xex) i=l,

where 7,(x) = RF™ (x)/ max RF,™ (x) .
xex')
At the initial step all permutations of the symmetric and balanced lay-ups with N=8 and initial
allowble layer orientations are created. A set of new design points is defined at each cycle on the basis
of the preceding point x*” as

(x(j) , 0, 0)’ (0, x()') s 0), (O, 0, x(j) ),

*x,0,90), (0,x,90), (0,90,x”),

X(i+l) X(j) (x(j)’90’0)7 (90! x(i),O)’ (9090,XU))9 (17)
e =< ) X o
(x',90,90), (90,x,90), (90,90,x""),

(x(j) »+ 07_ 0)’ (x(j) s 03+ 0)5
L(+0’ . 61 x(j) )9 (_07 + 97 x(j) )

where for each new design point in X @, the layer orientations of additional layers in a half
laminate are for clarity denoted in degrees. Hence, for instance the (x“’,0,0) design point
corresponds to the [ x*” /0/0]SE laminate lay-up where x” is half of the selected symmetric laminate
at the jth cycle. To avoid the generation of undesirable thick (+8) or (@) sublaminates, the
(+8, x,~6) and (-8, x, +8) permutations are neglected in the set.

Convergence of the algorithm is measured with the descent function

s,(x”)=max {1~ RF™(x")}, i=12 (18)

Termination condition is defined as in Eq. 12.
The solution for problem Eq. 13 is found with the initial allowable layer orientations

©=(0,90,+8,-6), 6={42,49} degrees. Improvement of the descent function value for the
[(0)3/+8/-6/(90)2/-6/+61SE stacking sequence with 6=42 degrees is represented in Figure 5.

Pareto optimal [(0)3/+68/-0/(90)2/—8/+0]SE and [(0)4/+68/-8/90/—8/+6]SE stacking sequences
with N=18 have been found as a solution of the problem. The () layers are varied with
6={1,2,...,90} degrees and the maximal points are identified. Maximal points in the criterion space
are shown in Figure 6.
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Figure 5. Improvement of the descent function value for the [(0)3/+8/-6/(90)2/-6/+0]SE stacking
sequence with =42 degrees.
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Figure 6. Maximal points in the criterion space for problem Eq. 13 with the Tsai-Hill failure criterion.
Circle corresponds to the [(0)3/+8/-8/(90)2/—-60/+8]SE stacking sequence with
6={44,43,...,39} degrees and square to the [(0)4/+8/-6/90/-8/+0]SE stacking sequence
with 8={50, 49,...,43} degrees.
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The [(0)3/+44/-44/(90)2/-44/+44]SE lay-up with N=18 is selected as the minimum weight
solution and returmed into the ELMER software for conducting a reanalysis of the structure. The
failure analysis gives now the positive failure margin RF ™" =1.35 for the beam with the Tsai-Hill
failure criterion. As a result, thus, for the optimized beam we have 35 % margin of safety with respect
to the first layer failure. First failure is expected to occur at the uppermost O degree layer at the free
end of the beam. An example of the beam analysis results with ELMER is shown in Figure 7.

Figure 7. A contour plot of the longitudinal deflection for a clamped Z-profile elastic beam.

6. CONCLUSIONS

The design optimization approach considered in this work can be effectively used in the minimum
weight design of failure strength controlled laminated structural elements. The optimization procedure
is independent of the failure criterion internal formulation used to predict the failure of a laminate. The
laminate level stress or strain state at preselected or interactively selected nodes of the FE model are
taken 4s input to the laminate analysis and optimization modules for performing the laminate failure
analysis and optimization.

Since the set of Pareto optima may be large, it is beneficial to formulate the multi-criteria problem
computationally as economically as possible. Instead of computing all Pareto optima, it is usually
sufficient to determine only a relevant subset of Pareto optima. The more appropriately the subset of
Pareto optima is determined, the easier it is for the decision-maker to deal with the results. For that
reason, a reduced problem where parameters are introduced to combine linearly some criteria has been
formulated. The decision-maker can interact in computation by setting the parameters on the basis of
his preferences and the information available on the past computations.
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Optimointialgoritmien kiiytto epilineaarisen tasapainopolun
mairityksessi

MIKKO KAUTTO, SAMI PAJUNEN'

Tampereen teknillinen yliopisto
Teknillisen mekaniikan ja optimoinnin laitos
PL 589 33101 TAMPERE

TIIVISTELMA

Kaarenpituusmenetelmén eri versiot ovat kolmen viimeisen vuosikymmenen aikana vakiintuneet
standardityokaluiksi epilineaaristen statiikan tehtdvien numeerisessa ratkaisemisessa. Laajan
kehitystyon tuloksena kaarenpituusmenetelmit ovat muokkautuneet nykyiseen asuunsa ja lahes
kaikki uusi tutkimus kohdistuukin menetelmien yhi parempaan luotettavuuteen ja tehokkuuteen.
Tistd poiketen téssd tutkimuksessa on kajottu kaarenpituusmenetelmén yhteen keskeiseen osaan ja
tutkittu mitd etuja voitaisiin saavuttaa jos perinteinen Newton-Raphson iterointiin perustuva
tasapainopolulle palautus muotoiltaisiinkin rajoitetuksi minimointitehtdvéksi ja ratkaistaisiin se
tehokkaalla SQP-optimointialgoritmilla.

1. JOHDANTO

Elementtimenetelmailld diskretoitujen rakenteiden epilineaarisen statiikan tehtivien ratkaisemiseen
on kehitetty erilaisia polunseurantamenetelmid. Niistd kdytetyin on kaarenpituusmenetelmad, joka
perustuu tasapainopolun kaarenpituuden rajoitusyhtilolld laajennetun tasapainoyhtdléryhmén
inkrementaaliseen ja iteratiiviseen ratkaisemiseen. Toisin sanoen kaarenpituusmenetelmélld
saadaan midritettyd rakenteen tasapainopolku kasvattamalla  kontrolliparametrin el
tasapainopolkua pitkin kulkevan koordinaatin arvoa askeleittain ja iteroimalla rakenne
tasapainotilaan kunkin askeleen lopussa. Jokainen polunseuranta-askel koostuu tasapainopolun
tangentin suuntaan otetusta ennustaja-askeleesta sekd lukuisista Kkorjaaja-askeleista, joiden
suunnan ja suuruuden miirad kdytossi oleva kaarenpituuden rajoitusyhtild sekd kaytetty Newton-
Raphson iteroinnin versio.

Kaarenpituusmenetelmilld voidaan madrittdd epilineaarisia yksikdsitteisid tasapainopolkuja joissa
voi esiintyd kuvan 1 mukaisia rajapisteité, eli pisteitd joissa kuormakertoimella A4 on &iriarvo.
Kuvan 1 mukainen tasapainopolku syntyy esimerkiksi lipilyontitilanteessa.

Tissd tyossd tarkastellaan polunseurantamenetelmdd, jossa korjaaja-askeleiden médrittimiseen
sovelletaan totutusta Newton-Raphson iteroinnista poiketen optimointialgoritmia. Ratkaisu
saatetaan ennustaja-askeleen jilkeen tasapainopolulle muodostamalla rajoitettu minimointitehtivé

* Yhteyshenkilo, nykyinen s-posti: sami.pajunen@patria.fi
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siten, ettd kohdefunktiona on epitasapainovektorin normi. Rajoitusyht4lé muodostetaan siten, ettd
etsittdvd tasapainopolun piste on edelliseen tasapainopolun pisteeseen piirretyn tietyn siteisen
pallon pinnalla. Niin saadaan menetelmidn askelpituus médrattyd kaarenpituusmenetelmii
vastaavaksi. Syntyneeseen rajoitettuun minimointitehtivain sovelletaan SQP-
minimointialgoritmia (Sequential Quadratic Programming). Samantyylistd ldhestymistapaa on
kaytetty tasapainopolkujen etsimiseen my&s moninkertaisen haarantumispisteen ymparistossi [5].

M

Kuva 1 Esimerkki lipilyontitehtivin epélineaarisesta tasapainopolusta.

Tyossi esitellddn yksi laskentaesimerkki, jossa vertaillaan SQP-menetelmin toimivuutta nykyisin
monissa ohjelmistoissa kdytettyihin Riksin normaalitasomenetelmdian [1] ja Crisfieldin
pallorajoitusmenetelmién [2].

2. POLUNSEURANTA MINIMOINTILAHESTYMISTAVALLA

Lihdetdan litkkeelle laajennetusta tasapainoyhtiloryhmasta

G:R™ —»R™ (1)

Gai)= {r(q) =P s } 0

c(q,4)

jossa q on solmusiirtymivektori, A on kuormitusparametri, r on sisdisten voimien
solmuvoimavektori, p.s on ulkoinen referenssikuormitusvektori ja ¢=0 on kaarenpituuden
rajoitusyhtdlo. Yhtaloryhmai (1) ratkaistaan kahdessa vaiheessa. Annetaan ensin ohjausparametrille
eli kaarenpituuskoordinaatille s madritty inkrementti As ja lasketaan siti vastaavat siirtymi- ja
kuormakerroininkrementit. Sen jilkeen minimoidaan SQP-menetelmillid epitasapainovektorin
r(qQ)-Ap.s euklidista normia rajoitusyhtdlslld c(q,A)=0 jotta ratkaisu saadaan palautettua
tasapainopolulle. Ratkaisun yksityiskohtaisempi kulku on esitetty seuraavassa.
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Kuva 2 Tasapainopolun tangentin suuntaan otettu ennustaja-askel.

Saavutettussa tasapainopisteessd (qi, Ay) otetaan tasapainopolun tangentin suuntaan ennustaja-
askel t; (kuva 2), jonka pituus on (ainakin likimain) ohjausparametrin inkrementin As suuruinen.
Ennustaja-askel voidaan jakaa komponentteihin

Aqk n+l
t, = t,eR 2
K LAJ k (2)

jossa skalaari A4, on kuormakertoimen A inkrementaalinen lisdys pisteessd (qx, A ja vektori Aq,
sisdltdd vastaavan inkrementaalisen siirtymin. Ndmi inkrementaaliset lisiykset voidaan laskea

esimerkiksi kaavoilla

K1, AQ, =Prs 3
Ag =7 A )
! 2y o
ARt ©)
[oa, ]

Jolloin on vield madrittavi suurin sallittu kuormakertoimen inkrementti ja tarkistettava, etti se ei
ylity. Ennustaja-askeleella on ndin siirrytty pisteeseen (qu+Aqy, A+Ady). Ratkaisun
palauttamiseksi tasapainopolulle muodostetaan minimointitehtivi, jossa rajoitusehto madrad
ratkaisun pysyvin pisteeseen (qx, 4 piirretyn As-siteisen pallon pinnalla. Rajoitusehto on siis
sama kuin Crisfieldin menetelmissi. Yhtélorajoitettu minimointitehtdvi yleisessd muodossa on [3]

min  f(x) (6)
h(x)=0

Tarkasteltavassa tehtivissi minimointiongelma kirjoitetaan muodossa

N

min “ r(qi() - /l"kp,ef

(8., ) Ad, + (0% Py 7P Tpres —A5% =0 ®)
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jossa suunnittelumuuttujat AqL sekd A/l}( sisdltdvat siirtymid- ja kuormakerroininkrementit

askeleella k ja iteraatiokierroksella i, qik ja /l‘k ovat siirtymivektorin ja kuormakertoimen

vastaavat kokonaisarvot. Parametrilld y saadaan termien dimensiot tdsmidédmaén sekd saadaan
painotettua kuormakerrointa halutulla tavalla. Valitaan nyt parametrin arvo siten, etti

1
w?= = ©)
Pret Prer

SQP-menetelmdd varten generoidaan tehtdvd kvadraattiseen muotoon. Otetaan kiyttéon
Lagrangen funktio

L(g, A ) = f(q,A) + pth(q, A) (10)

joka tarkasteltavassa tapauksessa on

L(G A0 1) = |1 = Fabes | + ﬂ((AqL J i + (A4 pee o - Asz) an

jossa x on Lagrangen kerroin. Tilloin tehtivina on ratkaista yhtdls VL(q,A,x) =0. Kun tihin
sovelletaan Newton-Raphson menetelmai tehtivi saadaan muotoon

H,d + Vh(x )" = Vi(x}) 1)
Vh(xi)Td}, = —h(x})

Saatu yhtidloéryhma edustaa kvadraattisen probleeman
min  VFxi)Tdl + %di idi (13)
h(xL) + VhA(x)Tdl =

Kuhn-Tucker ehtoja. Vektori

i
X} =[q!<} (14)
)\'l
k
on ennustaja-askeleella saavutettu SQP-menetelmén aloituspiste. Kvadraattisen probleeman
ratkaisuna saadaan SQP-menetelmilld hakusuunta d}( ja Lagrangen kerroin ,u]"(“. Menetelméin
seuraava iteraatiopiste saadaan kaavasta xi' =xi +r'dl, jossa 7 on laskettu optimaalinen
askelpituus. Minimointia jatketaan kunnes kohdefunktion arvo alittaa annetun toleranssin.
Tehokkuuden takia Hessen matriisia H, péivitetian BFGS-menetelmalld [4].

SQP-menetelmad varten midritetasin kohdefunktion ja rajoitusyhtélon analyyttiset gradientit



r:qT (r _ﬂ’pref)

= p] 2Aq
Vf(q,A) = e = 2p.es Vh(q, A) =[ (15)
f 1 _prefT(r—ﬂ'pref) 2szpreprref

v~ 2p et |

Gradientteja voidaan approksimoida myds numeerisesti esimerkiksi differenssimenetelmalla.
Esimerkiksi Matlab (optimazation toolbox) kayttdd differenssimenetelmidd mikdli analyyttisid
gradientteja ei anneta syotteend.

3. NUMEERINEN ESIMERKKI

Tarkastellaan kuvan 3 mukaista yhden vapausasteen tapausta. Kuvan 3 rakenteessa stabiilisuuden
menetys tapahtuu lapilyontind kuormituksen P vaikutuksesta, ja rakenteen tasapainopolku on
kuvan 1 mukainen.

Kuva 3 Yhden vapausasteen sauvarakenne.

Kyseinen tapaus voidaan ratkaista analyyttisestikin kayttien apuna sisdisten voimien vektorin
tarkkaa lauseketta

L
Ja* +(h-g)*

Sovelletaan kuitenkin edelld esitettyd polunseurantamenetelmid ja annetaan alkuarvoiksi
E =200N/m®, A=1m?, L=5m, a=Lw/§/2, h=L/2. Valitaan ensimmdisen ennustaja-

askeleen As pituudeksi 2 ja aloitetaan laskenta pisteestd (q,4) = (0,0). Laskennan tuloksena
saadaan kuvan 4 mukainen tasapainopolku, jossa kaarenpituusmenetelmilld lasketut pisteet on
esitetty tahtimerkinnill4.

r(g) = EAh—;q(—l+ (16)

Residuaalivektorin normin minimipistettd haettaessa iteraatio lopetetaan, kun kohdefunktion arvo
on pienempi kuin 0.005. Tutkitaan iteraatioiden lukuméirdd eri pisteissi ja tarkastellaan
ensimmdiiseksi pistettd (Ag, AA) = (0.19,1.99) , joka on origosta As = 2 pituisella ennustaja-
askeleella saatu piste. Taulukossa 1 on esitetty kohdefunktion arvon muuttuminen liikuttaessa
kohti minimia.
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Tasapainopolku
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Kuva 4 Polunseurantamenetelmailld saatu tasapainopolku.

Taulukko 1 Kohdefunktion farvo ensimmiisen askeleen eri korjaaja-askelilla.

Iteraatio

1

2

3

4

5

6

f

0.1792

0.0821

0.0450

0.0194

0.0126

0.0034

Kuudella iteraatiokierroksella saatu minimipiste on (g, A) = (0.22,1.98). Mikili ollaan kidyrin
osalla, jossa tasapainopolun tangentin suunta muuttuu nopeasti, on ennustaja askeleen pituutta
lyhennettivi, jotta menetelmi suppenisi. Tutkitaan pistettd (Ag, A4) = (1.06,5.59), joka on saatu
ottamalla As = 0.25 pituinen ennustaja-askel edellisestd tasapainopisteestd. Taulukossa 2 on saadut
kohdefunktion arvot.

Taulukko 2 Kohdefunktion f arvo kuudennella askeleella eri korjaaja-askelilla.

Iteraatio 1 2 3 4 5
f 0.0798 0.0068 0.0251 0.0136 0.0009

Viidelld iteraatiolla saadaan minimipiste (g, A) = (1.13,5.52). Jos ennustaja-askel on liian pitkd
paikassa, jossa tasapainopolku muuttuu nopeasti, niin haluttua kohdefunktion minimiarvoa ei
vilttamattd 16ydeta.

Lasketaan vertailutuloksia kidyttien Riksin ja Crisfieldin menetelmia, joissa paluu tasapainopolulle
tehddin  modifioidulla Newton-Raphson iteraatiolla. Modifioidussa  Newton-Raphson
menetelmassi ei pdivitetid tangenttijiykkyysmatriisia jokaisella iteraatiokierroksella vaan kiytetidan
samaa tangenttijiykkyysmatriisia jokaisessa korjaaja-askeleen iteraatiossa. Modifioitua Newton-
Raphson menetelmid kidytetddn vertailuna, koska tdssd tapauksessa SQP-menetelmdn Hessen
matriisin paivitys ei tapahdu jokaisella iteraatiokierroksella. Kéyteti4n iteraation aloituspisteeni
pistettd (Ag, AA) = (0.39,3.98), joka on saatu ottamalla As = 4 pituinen ennustaja-askel pisteestid
(0,0). Kuvassa 5 ja taulukoissa 3-6 on esitetty kuinka vertailtavat menetelmét suppenevat kohti
tasapainopolkua.
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Kuva 5 Riksin, Crisfieldin ja minimointimenetelméin suppeneminen kohti tasapainopolkua. SQP-opt.(1)
kayttad analyyttisia derivaattoja ja SQP-opt.(2) differenssimenetemin antamia derivaattoja.

Taulukko 3 Riksin menetelmi (modifioidulla Newton-Raphson iteroinnilla).

Iteraatio 1 2 3 4 5 6 [
q 0.470 0.499 0.511 0.517 0.519 0.521 0.522
A 3.980 3.981 3.981 3.981 3.981 3.981 3.981
Seitseminnells iteraatiokierroksella kohdefunktion farvo on 0.0014.
Taulukko 4 Crisfieldin menetelm3 (modifioidulla Newton-Raphson iteroinnilla).
Iteraatio 1 2 3 4 5 6 7
q 0.469 0.497 0.509 0.514 0.517 0.58 0.519
A 3.972 3.970 3.968 3.968 3.987 3.967 3.967

Seitseminnells iteraatiokierroksella kohdefunktion farvo on 0.0029.

49



50

Taulukko 5 SQP-menetelmi (SQP-opt.(2)), jossa kohdefunktion ja rajoitusehdon gradientit on laskettu
kiyttden differenssimenetelmad.

Iteraatio 1 2 3 4 5 6
q 0.593 0.514 0.559 0.537 0.521 0.519
A 3.960 3.967 3.961 3.964 3.966 3.966

Kuudennella iteraatiokierroksella kohdefunktion f arvo on 0.00069.

Taulukko 6 SQP-menetelmi (SQP-opt.(1)), jossa kohdefunktion ja rajoitusehdon gradientit on laskettu

analyyttisesti.
Iteraatio 1 2 3 4 5
q 0.529 0471 0.501 0.536 0.519
A 3.967 3973 3.967 3.964 3.966

Viidennelld iteraatiokierroksella kohdefunktion f arvo on 0.0029.

Kuvasta 5 ja taulukoista 5 ja 6 nihdddn, ettdi SQP-menetelmidlld minimoitu tehtdvin
epitasapainovektorin normi suppenee kohti tasapainopolkua kuudella iteraatiokierroksella, kun
gradientit on laskettu differenssimenetelmilli. Viiteen iteraatiokierrokseen pddstddn kun gradientit
on laskettu analyyttisesti. Taulukoista 3 ja 4 nahdiin, ettd Riksin ja Crisfieldin menetelmit
saavuttavat tasapainopolun seitsemalld iteraatiokierroksella.

4. YHTEENVETO

Kisitellyn numeerisen esimerkin perusteella nidhddén, etti menetelmilld pystytdin méadrittiméaan
kuvan 3 yksinkertaisen mallin tasapainopolku varsin tehokkaasti. Menetelmédn vaatimien
iteraatiokierrosten lukuméaird vaihtelee viiden ja kuuden kierroksen vililli ennustaja-askeleen
pituudesta riippuen. Ennustaja-askeleen pituus tuli merkittdviksi ldhestyttdessd tasapainopolun
rajapisteitd, joissa tasapainopolun tangentin kulmakerroin muuttuu nopeasti. Esimerkkitehtivissid
jouduttiin lyhentdméén ennustaja-askelta alkuarvosta As = 4 arvoon As = 0.25 kyseiselld
tasapainopolun osalla, jotta ratkaisu olisi supennut tasapainopolulle. Esimerkissd on kaytetty
huomattavan suuria ennustaja-askeleen arvoja verrattuna kidytdnnon tehtdviin, joissa ennustaja-
askeleen pituus ei nouse kuitenkaan ongelmaksi.

Esimerkissi tehtiin myds vertailua eri menetelmien vililla, joissa vertailtiin korjaaja-askeleiden
iteraatiokierroksia.  Vertailussa kiytetyt Riksin normaalitasomenetelmd ja  Crisfieldin
pallorajoitusmenetelma kayttivit molemmat seitsemin iteraatiokierrosta tasapainopolulle padsyyn,
kun iterointiin kdytettiin modifioitua Newton-Raphsonia. SQP-menetelma kiytti viisi tai kuusi
iteraatiokierrosta riippuen siitd oliko kohdefunktion ja rajoitusehdon gradientit laskettu
differenssimenetelmailld vai analyyttisesti. Kuvasta 5 ndhdéin, ettd SQP-menetelméd ottaa suuria
askelia ensimmdisilld iteraatiokierroksilla. Iteraatioiden kayttdytymistd kuvaa hyvin se, ettd
ensimmiiselld askeleella menniidn tasapainopolun yli ja seuraavalla palataan taas takaisin.
Yhteensi tasapainopolun ylityksid esimerkkilaskun tapauksessa tulee kolme kappaletta. Lahelld
minimipistettd SQP-menetelmi ottaa taas hyvin lyhyitd askeleita, jotka lisddvdt iteraatioiden
miidrdd optimipisteen ympéristossd. Titd voidaan kontrolloida halutulla pysédytyskriteerilla.
Esimerkin tapauksessa iteraatio pysiytettiin mikili kohdefunktion arvo oli pienempi kuin 0.005.
Riksin ja Crisfieldin menetelmilld lasketut iteraatiot taas lihestyvat tasapainopolkua siltid puolelta,



johon ennustaja-askel on otettu. Eli ndilld menetelmills ei tasapainopolun ylitystd tapahdu. SQP-
menetelma otti alussa suuria askeleita ja se suppeni nopeasti kohti optimia. Suppeneminen oli
hieman nopeampaa kuin Riksin ja Crisfieldin menetelmiss.

Tyossd esitetylld numeerisella esimerkilld on pyritty selvittimién ja havainnollistamaan kuinka
epilineaarisen tehtivin polunseurannassa voidaan kiyttdd perinteisten kaarenpituusmenetelmien
sijaan minimointilahestymistapaan perustuvaa menetelm#i. Esimerkin valossa menetelmd néyttid
lupaavalta, mutta menetelmin toimivuutta ja jalostamista suuremmille tehtiville ei ole tutkittu.
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ABSTRACT

A Genetic Algorithm (GA) is applied to optimize the dimensions of cold-formed X-shape purlin
continuously over two spans under gravity loads. The objective is to maximize the load efficiency.
Purlins are designed in accordance with Eurocode 3, Part 1.3 and the modified Eurocode 3
method, in which the numerical elastic buckling stresses calculated using Finite Strip Method
(FSM) are integrated into the calculation of the effective section properties. Via this integration, it
is shown that such numerical method as the finite strip method may also be integrated into the
genetic algorithm optimization process.

1. INTRODUCTION

An important advantage of cold-formed steel is the great flexibility of cross-sectional shapes and
sizes available to the structural steel designer. However, the lack of standard optimized shapes
makes the selection of the most economical shape very difficult. This task is further complicated
by the complex and highly nonlinear nature of the rules that govern their designs. In this paper, a
GA is used to optimize the dimensions of the Z-shaped purlins over two spans under gravity load.

GA is a general-purpose, derivative-free, stochastic search algorithm [1, 2] and starts with
randomly choosing an initial population that consist of candidate solutions to the problem at hand.
Each individual in the population is characterized by a fixed length binary bit string, which is
called chromosome. These chromosomes are evaluated by means of a fitness function. Combining
the fittest individuals from the previous population, a new generation of chromosomes is created.
Evolutionary operators such as selection, crossover, and mutation are used to create this new
population. Besides, Elitism, which is a method that copies the best chromosome or a few better
chromosomes to the new population, may be incorporated into the algorithm to avoid losing the
best individual. This process continues until the specified level of fitness is reached.

Purlins are designed in accordance with Eurocode 3, Part 1.3 [3]. In addition, the modified
Eurocode 3 method, in which the elastic local buckling stress and distortional buckling stress are
calculated using FSM, is used to determine the effective section properties. The results calculated
using these two design methods are compared.
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2. GA-BASED DESIGN

The cross-section of the Z-shaped purlin continuously over two spans under gravity loads is shown
in Figure 1. In the figure, b is width of the flange; ¢ is the depth of the lip; 4 is the height of the
cross-section; h; and hs are the distances of the web stiffener to the top and bottom flange,
respectively; h, and hy are the depths of the stiffener along the web in the direction of the web
height; d, is the depth of the stiffener along the web perpendicular the web height, and 4; is the
distance between the stiffeners along the web.
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Figure 1 Dimensions of Z-shape purlin continuously over two spans under gravity loads

In Eurocode 3, Part 1.3, the free flange is considered as a beam on an elastic foundation. When the
purlin is continuous over two spans, the resistance of the cross-section of the restrained flange
should satisfy:

Mysa/Wesy S Sy[Vm (1)
and that of the free flange should satisfy:

Mysa/Wery +Mpsa[We S Sy [Yu (2)
The stability of the free flange at the internal support should be checked by:

x Mysi[Wory+Mpsa /W< Sy [ Vo2 (3)

where M, s, is the in-plane bending moment; W, is the effective section modulus of the cross-
section for bending about y-y axis; My, is the bending moment in the free flange due to the lateral
load; Wy, is the gross elastic section modulus of the free flange plus 1/6 of the web height, for
bending about the z-z axis; ¥, is the reduction factor for flexural buckling of the free flange and 7,

% are the partial safety factors.

Since the bending moments in the above formulas are functions of distributed load g, the objective
of the optimization is to obtain the maximum distributed load per cross section area, A,, when the
material reaches its yield strength, £, i.e.



g/A; — max (4)

subjected to the following constraints according to Eurocode 3, Part 1.3:
h/t <500, bjt<60 (5)

Besides, from the manufacture point of view, the sum of flanges, lips and the web, Ls;;,, should be
in the range of the given length of the strip and the height of the web part above the web stiffener
is not less than 35 mm, i.e.

200<L =2-b+2-c+2-d+2-h,+2~h3+2-,/h22+d325625, h; 235 (6)

'strip
In addition, due to the shape requirements, the following constraint should be satisfied

d. <b (7)
Since the GA is directly used for solving an unconstrained optimization problem, the constrained
problem mentioned above should be transformed into an unconstrained problem by including a
penalty function [4]. In this analysis, a quadratic penalty function is used, and the corresponding
unconstrained optimization problem becomes:

A,—-KK n-CC I} A, >KK -n-CC
Maximize F = q/ d f q/ & (8)
otherwise
where CC = 2t; is the sum of constraint violations, ¢;, which is given by:
0 if o; <0
=1 , o (9)
a; otherwise

where ¢; are the normalized constraints provided by:

_hit/ _ _bit/) __c/V _ _q,_c/b
oy = 400 L ay=" g1 =" 1 =1 42’ (10)

0ls = Loy, [625 -1, ag =1Ly, /200

In equation (8), n is the coefficient that makes the values of g/A, and CC at the same order so as to
avoid one value dominating over the other. In this analysis, the value of » is defined as 105k

to keep the order of CC one degree lower than that of g/A,, in which L, and L. are the orders of
¢/A; and CC, respectively. Moreover, KK > 0 is a coefficient and the solution of the penalty
problem can be made arbitrarily close to the solution of the original problem by choosing KX
sufficiently large [5]. In GA terminology, equation (8) is called fitness function that is used in the
reproduction phase in order to guide the genetic search.

According to Eurocode 3 Part 1.3, the ratio of ¢ to b should satisfy 0.2 < c¢/b < 0.6. Assuming
o=c/b, thus, o can be selected as one of design variables instead of ¢. Moreover, the ratio of the
value of &, to the length of the flange is chosen as the design variable instead of the value of 4.
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The height of the web, A, the thickness of cross section, ¢, and the length of the single span, L, are
given values. The design variables and their possible values are listed in Table 1.

Table 1 Values for the design and given variables

Design variables Possible values

Length of the flange b from 40 to 100 with step I mm
Ratioofcto b 0.2 to 0.6 with step 0.01

Ratio of 2, to b 0.45 to 1 with step 0.01

Values of h, from 5 to 40 mm with step 1 mm
Values of d, from 5 to 40 mm with step 1 mm

Figure 2 shows how the purlin design is integrated into the GA optimization process. GA-based
design starts from randomly generating an initial population that is composed of candidate
solutions to the current problem. Each individual in the population is a bit string of fixed length.
After decoding, these individuals that represent the dimensions of the purlins are sent to the purlin
design program. The constraints are checked and if the constraints are violated, the penalty is
applied and the fitness function is calculated. After the evaluation of the fitness for each
individual, a new generation is created using such operators as selection, crossover and mutation.
In order to keep the best individuals in each generation, the elitism may also be used. This process
is continued until the specified stopping criteria are satisfied.

Radomly

Initialization of generating
parameters inital population
y

Purlin design program: 4
Calculating effective section modulus Decode
Checking stability of free flange

4
Calculating strength of restrained flange

v

’
Apply No | checkine i . ;
sesaly Checking if constraints are sausﬁed_|

Yes
y
————pl Fiiness evaluaﬁnnl

'

Yes | Checking if the max.
generation is reached

No
v v

I Output msults| Applying GA operators:
selection, crossover and mutation

Figure 2 Integrating purlin design into GA optimization




3. OPTIMIZATION RESULTS BASED ON EUROCODE 3 METHOD

The GA, which is based on bit representation, two-point crossover, bit-flip mutation, and
tournament selection with elitism, is used to optimize the X-shape purlin with a height of 350 mm,
a thickness of 2.0 mm and a span of 6 m. Such parameters as the population size, the crossover
rate and the mutation rate in genetic algorithms are set to 50, 0.8 and 0.001, respectively.

The optimization resuits are presented in Table 2. Besides the value of g/A,, Table 2 also lists the
value of M,/A,, in which M, is the minimum moment that causes the yielding of the material and is
defined as M,=W,g,,/%. Table 2 shows that the optimized dimension for the cross-section is
b=83 mm, c=33.20 mm, i.e. c/b=0.4, h; = 68.06 mm, h,=28 mm and d;=30 mm.

Table 2 Optimization results of 10 runs

No. | b c | | m | 4 4/ A, M,/A, A,
(mm) | (mm) | (mm) | (mm) | (mm) | (NNmm/mm®) | (N-mm/mm?) (mm?)
1 83 36.52 | 66.40 18 29 0.004216 26379.73 1199.033
2 83 34.03 | 68.06 30 31 0.004200 26511.13 1178.393
3 83 36.52 | 66.40 18 29 0.004216 26379.73 1199.033
4 83 33.20 | 68.06 28 30 0.004241 26451.04 1174.677
5 83 33.20 | 68.06 28 30 0.004241 26451.04 1174.677
6 83 33.20 | 68.06 28 30 0.004241 26451.04 1174.677
7 83 34.03 | 68.06 30 31 0.004200 26511.13 1178.393
8 83 36.52 | 66.40 18 29 0.004216 26379.73 1199.033
9 84 35.28 | 72.24 31 32 0.004213 26414.51 1188.838
10 82 30.34 | 63.96 21 27 0.004160 26202.89 1159.877

4. INTEGRATING THE MODIFIED EUROCODE 3 METHOD INTO OPTIMIZATION

The modified Eurocode 3 method integrates elastic local and distortional buckling stresses
calculated using the FSM analysis into the design procedure. In this process, the reduction factor,
p, is calculated according to the elastic local buckling stress from the FSM analysis. The effective
width of the lip, flange and web are all calculated based on this value. Similarly, the reduction
factor, %, for reduced thickness due to the partially effective of edge or intermediate stiffener is
calculated using the distortional buckling stress from the FSM analysis. By doing so, the
interaction among the lip, the flange and the web are integrated due to the treatment of the section
as a whole.

In this paper, the elastic local and distortional buckling stresses and modes are calculated using the
computer program CUFSM, which is developed by Schafer [6]. The buckling modes can be
classified into four types. The first type is the local buckling of the flange, the lip and the element
above the web stiffener (Figure 3 (a)). In this mode, the buckling may be initiated by any one of
the above-mentioned elements. The second type is the local buckling of the compression part
under the web stiffener (Figure 3 (b)). The third type is the web distortional buckling mode (Figure
3 (c)), in which the web stiffener is moved with other elements along the web. The last type is the
distortional buckling mode (Figure 3 (d)).
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Figure 3 Typical buckling modes (a) Local buckling of flange, lip and element above the
web stiffener; (b) Local buckling of the element under the web stiffener; (c)
Web distortional buckling mode; (d) Conventional distortional buckling mode

When calculating elastic buckling stresses, there might exist an indistinct buckling mode for some
cross-sections, i.e. there is no obvious minimum in the buckling curve for the local buckling mode
or the distortional buckling mode. Thus, in either of these cases the design procedure is based on
Eurocode 3.

A demonstration example is used to show how the modified Eurocode 3 method can be integrated
into the GA optimization process for X-shape purlins. The objective of the optimization is to
maximize the value of g/A, for a cross-section with A4=350 mm, t=2.0 mm and L=6000 mm. Table
3 lists the comparisons of optimization results designed based on the Eurocode 3 method (EC3) to
those based on the modified Eurocode 3 method (MEC3). Table 3 indicates that for this specific
cross-section, the optimal dimensions based on ‘MEC3’ are the same as those based on ‘EC3’; and
the values of g/A, and M,/A, calculated using ‘MEC3’ are about 0.12 % and 0.13 % lower than
those calculated using ‘EC3’, respectively.

Table 3 Comparisons of optimization results based on the Modified Eurocode 3 method
(MEC3) with those based on the Eurocode 3 method (EC3)

Methods b c hy h, d, /A, MyJ/A,
(mm) | (mm) | (mm) | (mm) | (mm) | (Nfmm/mm®) | (N-mm/mm®)
EC3 83 33.20 | 68.06 | 28 30 0.004241 26451.04
MEC3 83 33.20 | 68.06 | 28 30 0.004236 26421.06

5. CONCLUSIONS

As demonstrated in this paper, GA can be used as an optimization tool to obtain the optimum
dimensions of the Z-shape purlins under gravity load. This GA-based design method can also be
applied to the optimization of other shapes of cold-formed steel purlins and other cold-formed
steel members. In addition, the comparison of the modified Eurocode 3 method to the Eurocode 3
method for the specific case indicates that the optimum dimensions are the same using these two
methods. For other cross-sections, further analyses need to be carried out.
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ABSTRACT

The goal of this paper is to present results of analysing the functionality of a power transmission
system. In the present case study the power is input from a motor to a hydrodynamic torque
converter. It actuates a machinery consisting of a variator, a compound gear train, a planetary
gear train, clutch alternatives and a load machine. The purpose of the converter is to obtain high
startup torque. The aim of the variator is to obtain stepless speed transmission. Various clutch
alternatives are considered and possibilities of an optimal synthesis to obtain optimal
transmission of power and speed. Electro-rheological fluid power and clutch components are
studied for obtaining optimal torque transmission. The design variables of the ER-clutch are
number of activated plates, disk spacing and the shear stress of the fluid. The torque capacity of
the ER-clutch depends on the ER-shear stress of the fluid which depends on the electric field and
temperature. Dry and wet friction clutches are considered and also a viscoelastic clutch. One
conclusion is that this model is useful for starting a conceptual concurrent design to obtain an
optimal power transmission with a novel hybrid clutch.

1. INTRODUCTION

There is a constant need for better mechanical and electrical power transmissions and optimal
control. Conventionally they are designed sequentally as separate groups. Modern trend is to
strive for integration already at the concept design stage as discussed by Cochin & al [1]. Power
transmission can be effected using a large combination of components. Rules of combining and
designing are needed. Basic component choices are conventional shafts, gear trains and
variators. Also rigid and flexible clutches, dry and wet friction clutches are available. New
choices are emerging. Viscolelastic clutches are discussed by Peschke [2]. More complex electro-
theological clutches are discussed by Papadopoulos [3]). An established group are hydraulic
clutches and hydrodynamic torque converters as discussed by Juvinall et al [4] and produced by
Voith [5]. One example of this trend is stepless drive system for new Mini [6] The aim in this
study is to consider design ideas and design rules, basic theory and methodology in combining
these to a case study. Further aim is to create innovative combinations using these modules.
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2. THE POWER TRANSMISSION SYSTEM STUDIED

The general overview of the system is shown in Figure 1.

. ¢——— compound
Variator .
. | geartran =
. €

—— | geartrain

Pm
Load
Motor,
m, motor 1 2 b s, sun c, carrier  ||clutch options
Po= Tt | |P1=Thoy ||Po=Toon ||Py=Teon ||Pe=T.ws ||P.=T.w. ||[-ER-clutch
Ta T, T, Ty T, T, -viscous clutch
O N @n 109 @y @ ~frictional clutch
a)
y 5 D T
P loss
P m P 1
P. 2 Ps b L
b)

Figure 1. Overview of the system studied. Power is input from the motor m to a hydrodynamic
torque converter (HTC) which is used to get high initial startup torque when the loaded system is
not yet moving, A belt variator is used and a compound gear train with a constant ratio gear ratio.
Planetary gear train is connected to load via clutch and feed back to variator.

b) Power flows are illustrated in principle.

2.1 Transmission ratios

The transmission ratios are the following,
A= L Ky is transmission ratio of speed of load L to speed on shaft b at variator

@yp
=2 _ Ky, IS transmission ratio of speed of wheel bto to speed on wheel bb at variator
Dpp
j=%4_p . is transmission ratio of speed pf wheel d to speed of wheel e at reduction gear
a)c
y=22_g istransmission ratio of pump impeller speed to turbine shaft speed at HTC

@0

The relative transmission ratio between annulus and sun gears is obtained as

Pa_4
wa_wc=wc =Kac_1=Ra/ =_Z_s (1)
D~ ED_S__I I<st:_1 ) Z,

D



Loops a-c and s-c are traced and the transmission ratio x of the inner machinery is solved

K=1_ o _ KaeKeaKapKonp KoK 1

Keo-1 7 KapKp Kc —1 @
lol_olololol-—l l_l—l l'—x l‘—Ra/s B
Ry, =1 lV x =V11x b = x=X et Oy S
teLlel-1 L 1-x 1-Rys @y
x x

Some details of the system are shown in Figure 2.The motivation of choosing this combination is
that with HTC high startup torque is obtained and with a variator and gear trains even reversed

output rotations are obtained. ear wheel d

annulus

Variator bb adalectie . : W, =0,z =60
aria e ..

wheel w
L, =
Dy =7”)b b

planet

@p,>2p>Jp

carrier
W, =0,,J
HTC
Moror 1 2
g L |Lead
5  Grs 2
I hydro- e
torque
converter '
Variator b '
oy = o
Jp :

Figure 2. The system.

2.2 Planetary gear train

The kinematic operational principle of the planetary gear train is illustrated in Figure 3.

Figure 3. The kinematic operational principle of a planetary gear train.
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Some details of a planetary gear train are shown in Figure 4.
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Figure 4. Details of a planetary gear tra1n a) Cross sectional view showing the main components,
s is the sun wheel, p is the planet wheel, a is the annulus wheel and c is the carrier conveying the
planets .b) Side view showing the interconnections. ¢) Freebody model showing the applied

torques and assumed rotations.

The torque and power balances for the planetary gear train can be formulated by assuming that

the rotations and torques all act in the same positive direction

ST=T,+T,+1,=0 ,
= = ,=
SP=T,w, +Tw; +T.w,
tw, > Fo;> F0.=
P=F+F+PF =0

The componentwise powers can be expressed relative to the carrier velocity
R’«: = +I;wa = +Tawc +Ta(wa _wc)
F =+TLo; =+To, +I:s(ws _wc)
P =+Tw, =+T.0,
IP=0=2T -0, +T,(0, - o)+ T(0; —@.)=0

From this one obtains a internal torque ratio between the sun and the annulus wheels

Dy —0 Ts Zg
———=——=R = ——
as

+T, (0, —0)+T(ws-0,)=0 — P T :

3

C)

©))



2.3 Clutch alternatives

Several alternatives are considered and their possible combinations, too. They are ER clutch,
frictional clutches, dry or wet clutches and a viscoelastic clutch. Possibility of an innovative
synthesis of these is discussed shortly. In creating a synthesis one may synergically combine the
advantages of each clutch and hopefully leave out some undesirable features.

2.3.1 A typical electro-rheological clutch

Torque model
Torque model for this clutch is obtained using the models shown in Fig.5.

Figure 5. a) Schematic model of a multi-disk ER clutch.b) Freebody model of a fluid element

In calculations the following values are used: outer diameter D, = 0.19m = 2 R,. A
recommended radius ratio range by Juvinall [4] for inner radius is 0.45R, < R; < 0.8 R, . Using
this the value R; = 0.5 R, is chosen as reasonable. Typical values give a mean radius as ry = (2/3)
R,.

Now the Bingham model for the fluid is applicable according to most researchers [3]

du
T=Tg+ pt )
dy
Using through the fluid film thickness integrated values for the velocity gradient gives
v=Aawr |, h=J.dh 3 r=1'0+/1-Ahﬂ , Q)

Here »n is the number of active clutch plate surfaces, # is their separation, Aw is the angular
velocity difference between the plates. A freebody model for the fluid element gives

dl' = nr(‘r- rd¢rdr) =gdgp , dT = nr(z’ -27zrdr) = joz i gd¢
®

darl = 2rmr2(ro + yATwr)dr
Integration within the radial range of the fluid surface gives
R, Aar 2 1 1
T=2m- °2( )d== == 3_R3)+— 2(r*-R*
m J.RIr To+ M i r=T 37mro(Ro R, )+27znyAa)h(R0 R, ) ©

T=T,+T,
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Principle of the behaviour of the ER clutch

Experimental test data by Papadopoulos [3] showing the behaviour of a typical electro-rheological
fluid clutch is shown in Figure 6. Two models for describing shear stress are formulated:

A An empirical shear stress model and B. Bingham viscosity based shear stress model.

1

temperature f
shear stress, T logu
. -1

E electric field 2 £ frequency, H.z

1 y,=1.68-3
W -

3 fi=fa=40
=053
: ¥, 3
il 0 Electric field E [MV/m] 2
= t, =
1=37.6 tm:perature =110 E=E=0 E=E:=2

a) b)

Figure 6. Principle of the behaviour of a typical electro-rheological fluid. a) Shear stress increases
with electric field and changes nonlinearly with temperature .b) Viscosity depends on the electric
field and decreases with frequency of operation due to heating,

A. An empirical shear stress model
Temperature vs frequency model is linear within the studied range [3].

t=t+(f - fl)}2 f—30°C+(f 2H)110 32° fi=2, 1,=30°C, f,=40, =110 (10)

Now using the frequency of operation ,_ Ao [#z]= 100-50 _ o gives t=46C .
2z 2%

The viscosity depends on the temperature via frequency of rotation in the specified system.
According to Papadopoulos [3] the shear stress depends on the electric field £ and on the
temperature ¢ . A simple model is roughly

r=1,f(g(E) , r= rl[l+ b1 - tl')e_c('_t‘)]-[1+ a(E- )| [Pd] (11)
Here a = 10, E,;=0, E=1MV/m,b= 0.05,c=0.0163,t,’=37.6C, 7;=45Pa. These give 7= 156Pa

B.Bingham viscosity based shear stress model
A model can be fitted to experimental data by [3]. Three parameters for three points are used

logu=y=W(E)-F(t) , YE.f)=n(l+eE-E))1+u(t-1,)) 12
yi=W(E)-F(t;) , i=12..
Here y, = 1.68-3, e=0.8-10"%, u = 0.011, ;= 30C, t =46C, E;=0 MV/m. The viscosity model is

p=mS =™ K=(1+bE-E))1+df - /) (13)
Substituting input values here gives u = 0.03"'= 0.022 Pas. The calculations give shear stress
=g+ u 2P — 45100222297 _114pa
h 0.001
Average value of the shear stress at these conditions can be calculated as
G ain ~148Pa 14)

nd-n 0067m-0021m* -10



2.3.2 Viscoelastic clutch

The viscolelastic clutch model has been studied by Peschke [2] The following model is obtained

4
1 | R
R*-R, )——ﬂn Ao~ 1—(—) (15)
h( - R)= S A0 R, [ 3
Using typical input values A = 100-50=50 rad/s , 44 = 0.1 m %/s, distance between plates 4 =
0.00025m, number of active plates # = 10 in this model gives for the torque capacity

T, =-7r-10-[OJiISOﬂ]———[O.O95m]4 1—(0'0047) =120Nm  (16)
2 s 17 5 1[0.00025m] 0.095

The heat dissipation capacity is however a constraint which limits this torque capacity.

T, = myVAa)

2.3.3 Friction clutch with constant pressure

The operation of the friction clutches requires external normal force N to generate pressure on the

clutch friction plates.The interfacial shear stress transmitting the torque is generated by dry

friction which is roughly independent of the sliding velocity
N

N - an
p=—= s T = frp
AR )
The torque transmission capacity is
2 3 p3 2R}
T,=§7mrr(Ro -R, )=n-f,N-rk , K= 3R2 22 ex)

Dry clutches of cast iron,steel plate pairs give dynamic friction coefficient f; = 0.15...0.25, ppax =
0.69..1.72MPa, max bulk temperature 260C [4]. Wet clutches operate in oil. With cast iron- hard
steel pairs f; = 0.03-0.06 [4]. Choosing reasonable values f; = 0.03 and p = 0.1MPa gives an
estimate for torque 7, = 40Nm.

2.4 Hydrodynamic torque converter
Principles and sketches of the hydrodynamic torque converter are shown in Figure 8.

T R, Teactor
ﬁ'ame

Motor
T,
a): ::—_-l—b S T 2
turbme
pump

4, torque ratio

[—l. on
n=vu 1 Input shaft R W/ O 2\4—
‘ efficiency to impeller n + ,/ —>T2
. Reactor ZOIItputshaﬁa)l
0 v 1 to turbine

transmission ratio

Figure 8.Principles of the hydrodynamic torque converter.
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According to the models by Voith [5] at small output speeds the torque is high at start-ups. The
power from the motor is inputted to the HTC [5]. Here A is a structural parameter.

T =Ai-pD’w? =tho> , oy=wn , D~2R, , Tyoy,=To (19)
Torque balance gives [5]
ST=T-Tg-T, =0 20)
Power balance. Input power equals the output power plus the losses

zP=Pl'-pZ_Ploss=0
T @ P Lo 2
u==2 | y=22  p-2_-2202_ @)
L a R T, o,

P1=P2+P1055=7’P1+Ploss H Hoss=(1_ﬂ)Pl

The efficiency can be approximated as a parabolic curve by assuming simply 7(/2) = 1.

nz4v(l—v)=>qs,uv —>v=&

@, 22)
T2=7"1'4(1‘&)=FT1 ,/1=4( —-9-2—)
4] @

Some advantages and disadvantages of using HTC

1. High start up torque is often needed using the torque multiplication of the HTC
2. After startup the equality of torques is obtained at a certain speed transmission ratio

T2=T1-4[l—ﬁ)—>2’1 ,K21=22_=ﬂa_=2 (23)
@ 0, o, 4

3. Then the transmission ratio is changed by using the variator variable
@

One disadvantage is power loss.
2.5 Torques within the machine and dimensioning principles

Information of the torques within the machine are needed for dimensioning of the machine
elements.Power and torque balance of the shaft HT'C -variator wheel b, and sun s are

oy + (K)o, +(-L)os =0 , w,=0,=0,~> L-T,-T,=0 ©5)
Power flow from output of HTC arrives at the load L

P=R , Tho,=Tio, , Tyw,+To,=TLor (26)



The wheels 2 ,b and s are on the same shaft so that their angular velocities are equal
op_op_ 1 @7
oy, @, Ky

Using this in the power balance equation gives

602=60b=ws—)x=

L+ 2 =F%L - T,=T,+T,=Tx 28)
@y @y
Here the torque ratios are known
T,=t,-T, , T,=1T, 29)

The power flows form gear wheel e tod and gives

Tea)e =wad '—)Te =Td2£=Kder =de, Td =1.Tbb
e (0)

0]
Ty =Tooy 2> Ty = Ty w—b =Ky, Tp = VT
bb
The input torque from HTC at output point 2 results in the output torque as follows

Ts=tsa'i'Tbb=tsa.i.V'Tb N T2=Tb(l+tsa-i-V)=TLx (31)
The power balance for the PL can be used to calculate internal torques

T, +Tw,+T.w,=0 , w,=0y, T,=Ty, T,=T 1 32
These results on torques and velocities are needed for dimensioning of the machinery.

3. RESULTS AND CONCLUSIONS

The following results are obtained:

The functionality of a multi component power transmission machinery can rather well be

estimated using basic theory. The problems in this approach are lack of reasonable models and

reliable data on strength and constraints especially at fast dynamic and loadings and at long term

loadings. The machinery generally needs a clutch functioning at the output part before the load.

Several clutch types are considered. For comparison purposes the main dimensions , plate

numbers and load conditions were set the same. The torque of a conventional wet clutch is about

40 Nm. The viscous clutch could give about 120 Nm but the temperature dissipation is a limiting

constraint. The ER clutch can transmit only 2Nm before slipping. It is tentatively suggested that a

synergic combination of various clutch types could result in a novel innovation. One conceivable

option is a wet clutch with electro-rheological fluid . With plates pressed together it operates as a

normal wet clutch. Then with increasing separation it can be operated as a viscous clutch. By

applying electric field a fine tuning control could be obtained.

The following conclusions can be drawn

1. The motivation of choosing this combination is that with HTC high startup torque is obtained
and with the variator and gear trains even reversed of rotations are obtained.

2. The shear models and viscosity models gave a complex but controllable dependence on
temperature and electric field but these effects can be modelled using simple design rules.

3. Many power transmission combinations can be realized using conventional and new
transmission components
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4. Hybrid combination can be obtained by synergic use best characteristics of various clutches
based on various physical principles of transmitting torque, like dry and wet friction, viscous
and electro-rheological transmission principles.

5. Technical development and optimization design is needed when the optimal concept has been
found.
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Abstract

Fiber suspensions are present at many dry contents in the fiber line in the paper making process.
Proper fiber handling is of vital importance to maintain the quality of the individual fibers and to
optimise each unit process of the fiber line. In order to optimise the process, thorough knowledge
of the suspension flow is necessary, both on the level of suspension, fiber networks and individual
fibers. Knowledge of the fiber suspension flow behaviour combined with commercial CFD
(Computational Fluid Dynamics) provides an efficient design tool for unit processes of the pulp
and paper industry.

In this paper the general validity of a pulp flow model presented in a previous paper is
demonstrated. The simulation method has been developed in pipe flow, but the method allows the
flow of fiber suspensions to be simulated in any industry geometry. The model is presented with
one set of measured head loss data for a pipe flow for which the fluid specific parameters are
fitted. Numerical solution using the model is compared to experimental head loss data from the
literature. The most significant result presented in this paper is that pulp suspension can be
modelled using flow models for homogenous fluids, despite what has been argumented in the
literature.

1. Introduction

The head losses in pipe flow of pulp suspensions has been measured for many decades. The study
of fiber suspension flow must be done in fully controlled environments, such as, pipe flow. Pipe
flow of pulp fiber suspensions do not follow the head loss curve of neither the laminar nor the
fully turbulent flow curve, but usually show a very characteristic "S"-shaped curve for the head
loss plotted against the flow rate. The head loss measurements presented in the literature are based
on many different pipe diameters and using many different pulp types. Different pipe diameters
can be taken into account when developing flow models for pulp flow, but different pulp types
cannot be combined due to the significant differences in behaviour. Several old measurement
series have used too short calming lengths for the pulp flow, but a good source is the thesis of
Méller [1], from which the reference data presented in this paper is taken.

Earlier only the first, laminar, part of the flow could be properly modelled. Shear thinning
viscosity models have been used for slow velocities, but they fail as the velocity increases
resulting eventually in decreasing head losses. Myréen [2] demonstrated the use of the power-law
viscosity model for pulp flow modeling for the laminar plug-flow region. Duffy [3], on the other
hand, arguments that the flow of fiber suspensions cannot be modeled using non-Newtonian
laminar flow models. Several important flow features are neglected when using homogenous flow
models, for instance, the tendency to form fiber netwoks and agglomerates, flocs.
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The region where the head losses decrease with increasing flow rate has been attributed to the
formation of a water annulus at the pipe walls. The thickness of this slip layer has been
analytically calculated by Soszynski [4] and Hamildinen [5]. Both authors showed that the water
annulus thickness is negligible compared to the other dimensions of the flow. A mathematical
model presented by Hammarstrém et al [6] is capable of describing both flow regimes, that is,
increasing and decreasing head losses as a function of increasing velocity. The model is an
effective wall slip model, which does not model the slip phenomenon, but only the effects on the
flow.

The current results show that the wall slip phenomenon is independent of pipe diameter and that
the laminar flow models can be used for simulating complex pulp flows, based on relatively
simple head loss measurements in pipe flows.

2. Suspension Rheology
The fiber suspension is modelled as a homogeneous shear-thinning fluid. The power-law viscosity
model, equation {1} is used, where T is the shear stress, p is the viscosity, K is the consistency

coefficient and n is the fluid behaviour index and ¥ is the strain rate.

t=py=K@)"y (1

There are also other generalized Newtonian models, for example, Wikstrom and Rasmusson [7]
used the Bingham model (a yield-stress model) for an industrial screening application. The
viscosity model is not a key issue of this paper, the power-law model was chosen in order to
demonstrate a new method, with which the same model can be used to describe both the plug-flow
regime and the wall-slip regime.

3. Wall slip model
The model derived for the plug-flow regime is assumed valid for the suspension, and that the head

loss reduction is due to slip on the wall. This is illustrated in Picture 1. The pulp plug is assumed
intact, and the slip velocity is setting the correct flow rate.

By introducing a slip term, the shear stress at the wall is given by {2}

:u7+ Fuslip =0 {2}

where the first term is the shear stress near the wall, and the second term is a constant multiplied
by the wall slip velocity, ug;p. At the pipe wall, the velocity is always zero, but as the current
model is not modelling the flow down to the wall, the velocity at the boundary between the pulp
core plug and the water layer is used.
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Picture 1. The lower and upper limits of the validity of the wall slip assumption is given by the
dashed lines. The region at lower flow rates than the wall slip region is referred to as the
plug flow region.

By inserting expression {2} into the axially symmetric two-dimensional Navier-Stokes equation,
and solving for the velocity profile in the pipe, the mean flow rate in the pipe is obtained. The first
term on the right hand side in equation {3} is the normal solution for the mean velocity in pipe
flow of a fluid of which the viscosity is given by power-law model, equation {1}. The second term
is the slip velocity required in order to get the correct flow rate, which is illustrated by picture 1.

1
Ap n n ntl
u =|—- R"™ +u, 3
average (Ale 3n+1 slip { }

The slip term in equation {2} is modified in order to model the head loss curves correctly. The
wall shear stress is described by an exponential and a linear term of the wall slip velocity, of which
the exponential term is known as the generalized Navier's law [8]. The simplest wall slip model
that is able to describe the head loss curve is given by {4}

ﬂy+(fiu;7; +f2)uslip =0 {4}

4. Calculations

The measured data of the flow of Hudson Birch pulp was taken from Moller [1]. The measurement
series contained three different pipe diameters, and the measurements had been carried out at many
dry contents of the pulp. Four of the consistencies were selected, based on the number of
measurement points in the flow rate regions of interest.
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Table 1 The model parameters fitted for the measured head loss data of Hudson birch pulp.

k n f, e f,
1.51% 2.1995 0.2250 5.3701 -0.0019 -1.9576
1.97% 3.8691 0.2530 11.9443 -0.0188 -4.0994
2.65% 7.2163 0.2657 26.5436 -0.0108 -4.4447
3.51% 9.0215 0.2670 35.4059 -0.0306 -2.5706

The viscosity parameters, k and n, of each consistency were determined in the plug flow region,
see picture 1. The parameters of each consistency have been determined in the 4 inch pipe, the
same parameter have been used for the simulation for all pipes in pictures 2-4. In a similar way,
the parameters for the wall friction were determined in the wall slip region according to equation
{2}. The parameters of both regions are presented in table 1. The wall slip function was
implemented in the commercial CFD code FLUENT, version 6.0.20. As the wall slip function is
implemented directly as a wall boundary condition, there is no need to specify in which region the
flow is, the solver determines this based on the mass and force balances.

The simulations have been carried out in three pipes with inner diameters 2.09, 3.01 and 3.93
inches. The pipes were modelled in 2D with axial symmetry. The computational grids contained
3600-5500 cells. The cell height was reduced towards the pipe wall. The head loss curve of each
pipe and consistency was simulated by incrementing the inlet boundary condition with 0.1m/s for
each simulated point. The suitability of the numerical scheme and cell size and convergence
criteria has been controlled.

5. Results
The simulation results of the pulps are presented in pictures 2-4. The results are presented in the

same way as the measurement results, one picture per pipe diameter. As is clearly visible, the
agreement between the simulations and the measurements is quite good. There are a few small
differences between the data, this is caused by the difficulty of determining the mean head loss
curve for the pipe in which the parameters are fitted. The important thing to notice is that it is not
important for which pipe diameter the viscosity and slip paremeters have been fitted, but that the
same parameters have been used for all pipes. For a more accurate determination of the pulp
parameters more measurement points would be required, the current number is a bare minimum.
But still, the results show an excellent agreement for all three pipe diameters.
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Picture 2-3 Measured and simulated head losses in 2 and 3 inch pipes.
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The influence of the wall slip model is shown by picture 5. In this picture the resulting velocity
profile of four cases are shown. Two velocities, 0.3 and 1.4m/s, from the 3inch pipe at 2.65%
consistency were chosen. The velocities were chosen to represent both flow rate region. The lower
velocity is in the plug flow region, and the higher is in the wall slip region. For comparison,
identical simulation results but without the slip model at the pipe wall have been included in the
picture.
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Picture 5 The velocity profile in the pipe. The legends refer to the boundary conditions

used at the pipe wall and mean velocity.

In the low velocity cases, both the simulation with the wall slip and the normal no-slip wall
boundary condition return identical velocity profiles, which shows that the method can be used for
low flow rates as well. In the higher velocity cases, there is a significant slip velocity at the pipe
walls. The normal no-slip simulation returns a zero velocity at the pipe wall, the wall slip model
returns roughly 1my/s.

This difference is of fundamental importance. If, for instance, the velocity profile in this kind of
pipe flow is determined with any kind of instrument, the instrument will need to have a very high
resolution near the pipe wall. Otherwise, the instrument will just see one large plug. That the
instrument will observe just one large plug has been observed by many authors, for instance, Head
and Durst [9] commented that the velocity profile is rectangular. If the viscosity parameters are
determined at the higher flow rate case in picture 5 neglecting the wall slip, then the resulting pulp
parameters will be incorrect.
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5. Discussion

The wall slip has been shown to be a useful and valid method for describing the head loss in
laminar pipe flow of fiber suspensions. The method has been shown to be able to correctly
describe the flow of several consistencies over a large range of flow rates in three pipe diameters.
This quite clearly shows that pulp suspensions can be modelled using laminar flow models for
homogenous fluids. The upper limit for the validity of the currently presented wall slip model has
been set to the local minimum on the head loss curve. At this point the flow becomes turbulent.
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ABSTRACT

A 2D unstructured, collocated, pressure correction method is extended for free surface flows.
Two free surface solution approaches based on either the kinematic or the dynamic boundary con-
dition, with partial coupling to the pressure correction method, are studied. Two different velocity
boundary conditions have been tested in the kinematic approach. Grid updating is implemented
with a well known linear spring model. Developed methods have been tested with a flow over a
bump and around a submerged hydrofoil. The comparison of the convergence properties of the
approaches shows superior stability for the kinematic approach. Computed results for both cases
agree well with experimental and numerical reference data.

1 INTRODUCTION

Flow simulations with a free surface are special due the presence of a material interface free
to deform following the flow underneath it. The final location of the free surface is not known in
advance and has to be solved together with the bulk flow.

Within the field of ship research, viscous free surface flows have commonly been solved using
surface tracking methods based on structured boundary fitted grids. Due to the use of structured
grids, these methods are, however, not very well suited for cases involving complex geometries and
large deformations of the free surface. Unstructured methods, having the capability to cope also
with geometrical complexities, are therefore a more suitable choice for these kind of cases. An
equally important feature of unstructured grids is adaptivity, i.e. the possibility to regenerate the
grid locally during the solution process without affecting the rest of the grid.

The purpose of the on-going research at Helsinki University of Technology Shiplaboratory is
the development of an unstructured, finite volume flow solver for free surface flows with surface
tracking, adaptive grid reconstruction. The first part of the work was the development of a basic
laminar 2D solver without free surface for triangles based on the pressure correction method.[11]
In this paper the solver is extended for free surface flows with emphasis on the coupling of free
surface solution and pressure correction method. Two approaches for the solution of the free sur-
face deformation, with partial coupling to the bulk flow solution, are presented. As the interest is
on the free surface solution approach, only Eulerian flow is considered. The surface tracking is
implemented with a well known spring analogy model.
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2 GOVERNING EQUATIONS
2.1 Field equations

The flow is assumed to be incompressible, inviscid and isothermal in 2D. The governing equa-
tions for the flow are the incompressible 2D continuity and momentum balance equations. In con-
servation form these are

/ pvnidS =0 and 1)
1)

p%dV+/ pUvn;dS = —/ pn;dS (2)
Q a0 a0

respectively. Here p is the density, v; are the velocity components and n; are the components of the
outer normal for domain ) respectively. The piezometric pressure p includes the effect of gravity
and is given by

p=7"+ pgz:, 3

where p®® is the static pressure and gravity points in the negative z,-direction.

2.2 Free surface boundary conditions

The bulk flow and free surface are connected through boundary conditions, which have to be
satisfied on the deforming surface. As a material interface, the free surface introduces two types of
conditions on the flow quantities.

The first one of these is the kinematic boundary condition stating that there is no flow through
the interface. This requires that

(vi—vF)n;=0 , where v’= 502 4
is the velocity of the surface parallel to the z3-axis. Wave height h is measured from some reference
level parallel to the x1-axis. Writing out Eq. (4) gives the kinematic boundary condition

6h N
= = b T 5
5 = 2 + v ~ %)
The second condition to be satisfied on the free surface is the dynamic boundary condition.
This states, that stresses have to be continous across the free surface. In this work, the inviscid
approximation of this without surface tension effects is used. For the normal stress, this gives

pst — patm . (6)

Assuming zero atmospheric pressure and taking into account Eq. (3) leads to the dynamic boundary

condition
p = pgh Q)

for the piezometric pressure on the free surface.

3 NUMERICAL METHOD

The numerical method used in this work is based on the unstructured finite volume method and
the flow equations are solved using a SIMPLE-type [3], collocated pressure correction method.[11]
Boundary conditions are taken into account by setting appropriate values for the variables in ghost
cells on the boundaries. Velocities and pressures are defined at the centres of the control volumes
and wave heights at the centres of the free surface faces.



3.1 Unstructured finite volume method

The finite volume method is based on the fact, that the Navier-Stokes equations in conservation
form (1) are valid for any arbitrary domain § within the flow field. The computational domain is
divided into nonoverlapping subdomains — in this work triangles — creating a computational grid
and the equations are applied for each element of the grid separately.

The continuity and momentum balance equations for triangle [ of the grid can be written as sums
over the sides Im connecting neighbouring triangles ! and m leading to

> ym =0 and ®)
Ov;
Vi = ; Fiim ©)
respectively. Here
Mm = PO(Im)S(im) (10)

is the mass flux through face Im and 7, is the convection velocity normai to the face. The fluxes
in the momentum balance equations (9) are given by

Fiim = (004,31m) Om) + P(im) M (tm) ) S(im) - (11)

3.2 Pressure correction method

The solution process is based on a velocity-pressure decoupling, in which the velocities and
pressures are solved separately in an iterative manner. In each iteration, the velocity field is first
updated from momentum balance (9) using the current pressure field and corrected after this by
altering the pressure according to the mass balance error on the left hand side of the continuity
equation (8). This process is repeated until a steady state is reached. Each global iteration can be
divided into three parts: the velocity update, calculation of the mass balance error and the pressure
correction stage.

3.2.1 Momentum balance

Momentum equations (9) are integrated in time by the implicit Euler scheme. Linearization of
the fluxes gives

ApiAv; g + Z anAvi gy, = Ry, (12)
nF#l
where v SF.
Apy = % +aewa  Gn = Z 8—”—@ Riy=- ZFi,lm ‘ 13)
m Ui,n m

The convected velocity components v; i, are upwinded using the extrapolation presented by Frink [7]
modified for 2D or by
Ov;
Vigm = Vil + ’Y-,)—z’i (2§ 1 — i) (14)
ox;
where the flow is assumed to be from [ to m. Above x5, are the coordinates of the centre of the
face and 7, with a value between 0 and 1, a parameter controlling the amount of upwinding.
The convection velocity 7y, and the pressure p, in Eq. (11) are taken as averages of the values
at auxiliary points I’ and m'. These are projected from points / and m respectively on a line normal
to face Im and going through the centre point of this face. The gradient components for velocities
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and pressure, required for the extrapolations, are calculated using a least squares based method
described in e.g. [4] or iteratively from

8plk'H 1 8p;c
21 -= Vz Xm:nz,lmslm h|p +Pl%j (931,!’ - 9’1,!)

opr,
+ (1 . f1) [pm + g;;‘ (-Tj,m’ — :I}j,m):l } (15)

written here for the pressure.

In the implicit stage, i.e. for the calculation of the linearized terms in (13), the fluxes are ap-
proximated with first order schemes. This ensures that only the closest neighbours of an element
contribute to the linear system.

3.2.2 Mass balance

In order to avoid decoupling of the neighbouring velocities and pressures, some artificial damp-
ing must be added into the mass fluxes for the calculation of the mass balance error.[13] In the
current method, a simplified damping term or a term similar to the one proposed by Rhie and
Chow [13] is used. The simplified term is based directly on an approximation of the third derivative
of pressure on a regular grid

1
im = 1 (Pt — 3Pm + 301 — i) - (16)

Here p}.,, and p}},, are the values at the vertices opposite to the face on the left and right hand sides
respectively. With the added damping, the mass flux on a face can be written as

PS{im)
3 —% m
i = PS(am)Vom) + € - ” )dzm ; (17

where the asterisk is a common way to denote uncorrected values in pressure correction methods, C
is a parameter controlling the amount of damping and Ap,, is the average of the diagnonal terms
A Pl and A P,m-
3.2.3 Pressure correction
Corrected velocities can be written as
v; = v} + vj p=p*+p. (18)

Here, v] and p* are the provisional velocity components and pressure after the solution of the
momentum equations and v} and p’ are the unknown corrections. Continuity condition for the
corrected velocities gives a relation between the provisional values and the corrections

D ==Y i, - (19)
m m

The connection between the change of pressure and mass flux on a face can be derived from the
momentum equations. Following the approach used in the SIMPLE method [3] gives the pressure

correction equation
> Cimbly ==Y iy, (20)
m m



where

3 pSE,
S| Pim P E a 21
. 2 Ap,.l + Apm it ) fm @1

are the off-diagonal and diagonal elements respectively. Here the geometrical properties of triangles
have been utilised. In case there are highly skewed triangles in the grid, the pressure corrections are
adjusted with the deferred-correction approach [6].

Updated pressures and velocities are given by

n+l _ . n / nt+l _ , % !
D =D T oppy Vi1 =Vt Uy, (22)

where a, and o, are under-relaxation factors. Velocity corrections are calculated from

Apgvl == SinPiaTiin (23)
n

3.3 Free surface solution

A common approach to solve free surface problems is to decouple the bulk flow and free sur-
face problems. In that case, the solution of the flow consists of two steps iterated in turns until
a converged solution is reached. For each iteration, the bulk flow is updated first with boundary
conditions according to the current free surface. This is followed by the solution of the new free
surface location based on the updated bulk flow and adjustment of the grid to match the new bound-
ary. Calculation of the new wave height can be based on either the kinematic or dynamic boundary
condition. The next bulk flow step is then based on boundary conditions on the updated free surface.

In the current method, the approach above is improved slightly by partially coupling the bulk
flow and free surface solutions through the pressure correction equation.

3.3.1 Kinematic free surface approach

In this approach the update of the wave height is based on the kinematic boundary condition.
The grid is assumed to be fixed and to coincide with the current instantaneous free surface. Velocity
components are updated from the momentum balance (12) using dynamic boundary condition (7)
for the pressure and either zeroth or first order extrapolation for the velocities on the free surface.

Full decoupling of the bulk flow and free surface solutions would result into a constant pressure
boundary condition on the free surface, implying zero pressure correction on the free surface. On
the other hand, the deformation of the free surface combined with the dynamic boundary condition
changes the pressure on the free surface. This incompatibility of boundary conditions would lead to
a jump in pressure across the free surface during the iteration, affecting the stability of the method.
In order to avoid this complication, the deforming free surface is taken into account during the
pressure correction stage using the dynamic boundary condition.

After the calculation of the mass balance error, the change of wave height is evaluated by in-
tegrating the kinematic boundary condition (5) in time with the explicit Euler scheme, resulting
into

Ah = <v2 + ulﬂ) At. (24)
n2
Pressure on the new free surface has to satisfy the dynamic boundary condition, giving with Eq. (24)
relation
o = pg (vz 7 %) At (25)
2

between the pressure correction on the free surface and the change of wave height. For the solution
of the pressure correction equation (20), linear extrapolation is used for the ghost cell values, so that
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Eq. (25) is satisfied exactly on the free surface. Due to the relaxation of the pressure corrections,
wave heights have to be updated according to

R = ™ + ap,Ah (26)

in order to get a free surface compatible with the corrected pressure field.

3.3.2 Dynamic free surface approach

In the second approach used in the current method, the calculation of the new wave height is
based on the dynamic boundary condition. Each iteration starts with the calculation of the current
wave height from the pressure on the surface:

fs
=2, @27)
P9

As with the kinematic approach, the grid is assumed fixed. Time integration of the momentum
equations is done assuming slip condition on the free surface. The pressures are thus extrapolated
linearly into the ghost cells and velocity components are mirrored with respect to the surface, res-
ulting into zero mass flux through the surface. This same condition is used for the calculation of the
mass balance error as well.

Full decoupling of the solutions would lead to large deformations on the free surface, making
the method very unstable, unless considerable under-relaxation of the pressures is applied after
the solution of the pressure correction equation. Heavy under-relaxation would, however, have a
dramatic effect on the convergence speed of the solution process.

In this approach, the partial coupling of the bulk flow and free surface solutions is in a form of
under-relaxation in the pressure correction stage based on the deforming free surface. As in the first
method, the pressure correction on the free surface and the change in wave height can be related
through the dynamic boundary condition giving

p,fs
Ah=—. (28)
Py
If the grid is assumed fixed, this movement of the free surface results into a mass flux through the
face of the fixed grid given by the kinematic boundary condition as

o fimp+ (1 - f)p,
rpy = ==L AT ™ S T2t - (29)

Here ! is the computational cell with a face on the free surface and m the associated ghost cell. This
mass flux is substituted onto the right hand side of the pressure correction equation (20). Using
zeroth order extrapolation for the pressure corrections in Eq. (29), i.e. p}, = p} and transfering the
contribution on the left hand side, the diagonal term of a computational cell with a face on the free

surface can be written as s
fs ImT2,lm
ol = qp + /2 30
1 i g At ( )

3.3.3 Grid update

The wave heights are given at the centres of the faces on the free surface. Before the grid can be
updated, these values have to be transformed to the grid points on the surface. A centred scheme for
the transformation leads to decoupling of the neighbouring wave heights, when calculating normal



vectors and therefore an upwind scheme is used instead. Assuming that the flow is from left to right,
the wave height at the right hand end point of the face A" is approximated by a third order scheme

_ 2K +2n— R
==

Here k* and B! are the weighted averages of neighbouring wave heights at the right and left hand
ends of the face respectively. An alternative to this scheme is zeroth order extrapolation of wave
height, which can be used close to boundaries to damp out transient waves.

The updating of the grid is based on the well known linear spring analogy model first presented
by Batina [1], in which the edges of the grid connecting the grid points are assumed to be linear
springs. The grid points are moved by searching for the equilibrium of the spring system knowing
the displacements on the free surface.

h* (31)

4 NUMERICAL TESTS

The free surface solution approaches described above have been tested with two test cases.
These are a flow over a bump on the bottom of an infinitely wide channel [2] and flow over a
submerged hydofoil with an angle of attack [5].

Results are presented for three different free surface solution approaches. These are:

a. kinematic free surface approach with zero gradient condition for the velocity components
b. kinematic free surface approach with linear extrapolation for the velocity components

¢. dynamic free surface approach

Local time stepping is used for the bulk flow and free surface solutions in order to accelerate
the convergence of the solution process. These are controlled separately through nondimensional
CFL-numbers given by

CFL = max Vi 1N im Sim Aty CFL® = v At

2
m=1,3 Vi Sno (32)

for bulk flow and free surface time steps respectively.

4.1 Flow over a bump

This case was chosen for the overall comparison of different approaches during the development
of the free surface solution method due to its simplicity and the prior experience [10] with the case.
Testing has been preformed with both the unstructured solver decribed in this paper as well as with
a structured counterpart. The findings from the test performed with these two different solvers were
however very similar and thus only the results for the unstructured versions are presented.

The geometry of the bump on the floor of the channel is given by

zy = —1+0.1e~ (@10 (33)

with a height of 0.1 and the centre at z; = 10. In z; -direction the domain extends from -20 to 50,
with damping zones from -20 to 0 and from 30 to 50 on the free surface. Undisturbed water level
is at z; = 0. The grid for the case was created with EasyMesh grid generator [12] and has 1533
nodes, 4123 sides and 2591 triangles. The number of points on the free surface is 279. Cell size in
the grid increases towards the inflow and outflow boundaries.

Testing has been performed with both a subcritical and supercritical cases, with Froude num-
bers based on depth below and above unity respectively. The results presented below are for the
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subcritical case with Froude number of 0.567. At low inflow velocity, both free surface approaches
performed well in terms of convergence. The time step parameters CFL and CFL® were 5.0 and
1.0 respectively for both approaches. Pressure corrections were under-relaxed slightly more in the
case of the dynamic approach, with relaxation factor 0.3 for the kinematic and 0.2 for the dynamic
approach. With these choices the residuals converged to machine accuracy after around 6000 itera-
tions for the kinematic approach and after around 8000 iterations for the dynamic approach, where
the slower convergence of the latter is probably due to the smaller pressure relaxation factor. For
comparison, the case was tested also with fully decoupled approaches. In this case, the dynamic
approach was extremely unstable and, even with radical reduction of the pressure under-relaxation
factor, computations diverged. For the kinematic approach, the difference was more subtle. With
fully decoupled approach, the free surface CFL-number had to be limited to roughly 0.5. As the
limiting factor with the above choice of parameters seemed to be the free surface evolution, the
reduction of the free surface time step resulted into roughly twice as slow convergence of the total
solution.

At higher velocities considerable difference emerged between the approaches. As the inflow
velocity was increased, the dynamic approach became highly unstable with large free surface de-
formations leading to the divergence of the solution, unless the final pressure corrections were
heavily under-relaxed. The kinematic approaches on the other hand required very few changes to
the input parameters.

Some differences can also be seen in the wave profiles compared in Fig. 1 with results from a
previous test with FINFLO flow solver [10]. The damping with the dynamic approach is slightly
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Figure 1: Wave profiles for flow over a bump compared with results for FINFLO [10].

stronger than with the kinematic approach and linear extrapolation for the velocity components.
For the kinematic approach with zero gradient condition, the damping is considerably stronger than
with cases b and c. The location and depth of the first through as well as the location of the first
peak for all cases agree well with the previous results for FINFLO. The strong damping of the wave
field in the FINFLO result is partially due to the rapid increase of the cell size towards the outflow
boundary, and therefore further away from the obstacle the results are not comparable.
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Figure 2: Contours of vs-velocity for flow over a bump in cases a, b and ¢ respectively. Contour
interval is 0.02.

Differences in the flow field are most easily seen from the contours of vp-velocity shown in
Fig. 2 for the three different free surface approaches. Here the contours are drawn based on values
at the cell centres and averaged values at the grid points including ghost cells. Cases b and ¢ give
relatively smooth and almost identical velocity distributions, whereas the velocity field from case
a has some oscillations close to the free surface. It can be seen, that because of the zero gradient
condition the contours cross the free surface orthogonally for a large part, which clearly should not
be the case. Due to an incompatible boundary condition there is thus a jump in the gradient field
close to the free surface.

4.2 Flow over a submerged hydrofoil

The accuracy of the free surface approaches was checked with a flow over a submerged NACA-
0012 hydrofoil with an angle of attack of 5 degrees. The Froude number based on the chord length
is 0.567. Experimental results for this case have been presented by Duncan [5]. It has also been
extensively used for numerical testing, see e.g. [8] and [9].

The chord length of the hydrofoil is 1 and the leading edge is at (0,-0.99). The computational
domain and the unstructured grid generated for the case with EasyMesh are presented in Fig. 3. The
grid consists of 2996 points, 8699 sides and 5703 triangles. There are damping zones on the free
surface from the inflow boundary to -7 and from 6.25 to the outflow boundary. The resolution of the
grid is increased around the leading and trailing edges of the foil as well as close to the free surface
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Figure 3: Computational domain and unstructured grid for flow over a submerged hydrofoil.

between z; = 0 and z; = 6.25. The number of points on the hydrofoil and on the free surface are
128 and 115 respectively.

The CFL-numbers for the bulk flow and free surface solutions were set to 1.0 and 0.5 respect-
ively. For pressure correction factor 0.2 machine accuracy for the residuals was reached after 4000
to 5000 iterations in all cases, with slightly more iterations required for the dynamic approach.
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Figure 4: Wave profiles for flow over a submerged hydrofoil compared with measurements [5] and
numerical reference data [8].

Wave profiles for different approaches are compared with experimental and numerical references
in Fig. 4. Good agreement with the numerical and experimental results can be seen with similar
damping to the first test case. Compared to the experiment, the depth of the first through is however
under-estimated. This may be due to an insufficient resolution of the grid in front of the through,
where the cell size can be seen to increase quite rapidly. There is also a small difference in the wave



length between the computations and the measurement.
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Figure 5: Contours of pressure for flow over a submerged hydrofoil in case b. Contour interval is
100.

Comparison of the contours of velocities and pressure showed again, that cases b and ¢ give
practically identical results, while the contours in case a oscillate slightly close to the free surface.
Despite the differences close to the free surface, discrepancies close to the hydrofoil are negligible.
Pressure contours for case b are shown in Fig. 5.

5 CONCLUSIONS

Unstructured pressure correction solver based on triangle meshes has been extended for free
surface flows. Two kind of approaches for free surface solution with partial coupling to the pressure
correction method have been studied. In the kinematic approach the updating of the wave field is
based on the kinematic boundary condition, whereas in the dynamic approach the new wave height
is evaluated from the dynamic boundary condition. Additionally, the kinematic approach has been
tested with two different velocity boundary conditions.

Comparison with the fully decoupled approaches showed, that at low inflow velocity the stability
of the dynamic approach was greatly improved by the partial coupling of the solutions. Some
improvement was also shown for the kinematic approach. Both approaches performed equally well
in terms of convergence. At higher velocities partial coupling was effective only in the case of
kinematic approach.

Wave profiles agreed well with experimental and numerical reference data. Numerical damping
of the wave field was marginally stronger in the dynamic approach, as long as linear extrapolation
was used for the velocity components on the free surface with the kinematic approach. Zeroth order
extrapolation resulted into considerably stronger damping of the wave field.

The next phase of the research will concentrate on the development of the adaptive, surface
tracking grid reconstruction. The proposed approach consists of two parts. The first part is the
identification of the areas requiring updating and regridding of these areas, while the second one is
the initialization of the solution in the updated parts of the grid. Because the intended approach is
very similar to more common forms of adaptivity, it should be possible to make good use of existing
research on adaptive methods.
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ABSTRACT

A low-Reynolds number k-€ turbulence model is proposed that incorporates the model-
ing of turbulent Prandtl numbers o . ;). The anisotropic production in near-wall regions
is accounted for substantially by adding a secondary source term in the & equation. Hence,
it reduces the kinetic energy and length scale magnitudes to improve prediction of adverse
pressure gradient flows, involving flow separation and reattachment. Unlike the conven-
tional k-¢ model, it requires no wall function/distance parameter that bridges the near-wall
integration. The model is validated against a few flow cases, yielding predictions in good
agreement with the direct numerical simulation (DNS) and experimental data.

1 INTRODUCTION

The eddy viscosity concept is based on an analogy between turbulent transport and mo-
lecular diffusion. This analogy simply requires that the turbulent transport of any quantity
could be formulated as the gradient of that quantity multiplied by the eddy viscosity. Con-
sequently, alike molecular diffusion, appropriate turbulent Prandtl numbers are needed for
each variable to obtain plausible diffusion models. Another flaw seems to be attached to
the characteristic scale based on the turbulent kinetic energy k and its dissipation rate €
that enters the model for the diffusivity, appearing to be inadequate in accounting for the
near-wall viscous effects. Paradoxically, the precise situation where the turbulence model
encounters most difficulties is the turbulent diffusion, dominating the overall balance of the
flow. However, the amount of empiricism invoked in the model equations can favor such as
not to envisage a failure of the diffusion models. In fact, turbulent Prandtl numbers ranging
from 0.68 — 2.0 can be found for k¥ [1], the most widely used value being ox = 1.0. For
g o. = 1.3 is the standard choice, but values as low as 0.72 can be found. The commonly
used value for o; = 0.9. Nevertheless, it is not precisely correct and there are significant
departures from o; = 0.9, particularly in wake/near-wall regions {1, 2].

A wall-distance-free low-Reynolds number k-& turbulence model is developed. To en-
hance dissipation in nonequilibrium flow regions, an extra positive source term is included
in the & transport equation, thus reducing the turbulent kinetic energy and length scale
magnitudes to improve prediction of adverse pressure gradient flows involving separation
and reattachment. The wall singularity is removed by using an appropriate time scale
that never falls below the Kolmogorov (dissipative eddy) time scale representing the time
scale realizability enforcement accompanied by the near-wall turbulent phenomena. In this
way, the introduction of a pseudo-dissipation rate used to remove the singularity in the
dissipation equation at the wall, is avoided. A hybrid type eddy viscosity damping function
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is designed in terms of the total kinetic energy and invariants of strain-rate and vorticity
tensors with no reference to the distance from the wall. It reaches the upper limit value
of unity in the logarithmic layer. In addition, the turbulent Prandtl numbers o ) are
adjusted such as to provide substantial turbulent diffusion in near-wall regions.

The performance of the new model is demonstrated through the comparison with ex-
perimental and DN.S data of well documented flows, consisting of fully developed channel
flows, a flat plate boundary layer flow with zero pressure gradient and heat transfer from
the circular cylinder in cross flow, respectively.

2 GOVERNING EQUATIONS

The two-dimensional Reynolds-averaged Navier-Stokes (RANS) equations, including
the equations for the kinetic energy k and dissipation €, can be written in the following

s 8U O(F—F,) 8(G-Gy)
= — 4w - Yy — 1
ot + Oz + Oy @ (1)
where U = (p, pu, pv, E, pk, pé)T. The inviscid fluxes are
ou pU
pu? +p+ 2pk pou
2 2
_ puv _ | pv*+p+ 3ok
F= u(E+p+2pk) |’ &= v(E +p+ 3pk) @
puk pvk
pUE pUE

Here p is the density and p is the pressure. The total energy is defined as

- =

E=pe+p + pk (3)

where e is the specific internal energy and V = ui + vj is the velocity . The viscous fluxes
are

0 0
Taz + %pk Tey
— Tzy _ Tyy + %pk
Fy = UTyy + VTgy — Gz | Gy = UTgy + UTyy — Gy “)
1 (0K ) O) px (0k/By)
pe(0€/9z) pe(OE/By)

and the viscous stress tensor can be given as

1
Tij =2 (Sz'j = 5 Skk 5ij> = PUT; (5)

where p is the laminar viscosity and the Reynolds stresses pT;u; are related to the mean
strain-rate tensor S;; through the Boussinesq approximation:

(6)

1 2 1 /0u; Ou;
— Pl = 2 pr (Sij — 3 Sk 5ij> . gpkfsij, Sij = 5 (6w~ + 6:::3->
] It

The heat flux is calculated from

- C. C
§=- (uP—” + w—”) VT (7)
T g
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Figure 1: Variations of f, and o with wall distance in channel flow: (a) Re, = 180 and (b)
ReT = 395.

where pr is the coefficient of turbulent viscosity, ¢, is the specific heat at constant pressure,
Pr and o; represent the molecular and turbulent Prandtl numbers, respectively, and T
implies the temperature. Clearly, the turbulent part of the total heat flux is estimated
using the Boussinesq approximation. The diffusion of turbulence is modeled as

HT ~ BT\~

weVk = (p+ —=)Vk, 1 VE= (p+ —)Ve (8)

Ok J¢
where o1, and o, are the appropriate turbulent Prandtl numbers. The source term ¢ for
the k and € equations can be written as

pP — pe
Q ES OelpP — CGZPE + Ee (9)
T;

2

where € = € + 2v (8\/%/8:@) . The turbulent production term P = —u;u;(0u;/0z;) and
E. is a secondary source term designed to increase the level of € in nonequilibrium flow
regions. The symbolized T is the characteristic (mixed or hybrid) time scale, having the

asymptotic consistency in the near-wall region. The associated constants are C; = 1.45
and C., = 1.83.

3 NEAR-WALL TURBULENCE MODELING

In the vicinity of the wall, the molecular viscosity effect is superior to the turbulent
mixing, reflecting a strong anisotropic condition. Consequently, an important criterion
regarding the appropriateness of the turbulence model is to represent the near-wall behavior
of turbulence quantities accompanied by a preferential damping of velocity fluctuations in
the direction normal to the wall that reconciles the influence of wall proximity adequately.

The realizable time scale T; included in Eq. (9) can simply be defined as

| k2 ,v_k [, EC% _ K
T = §+CTZ_E 1+ER_T‘ RT"‘;E (10)
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where v denotes the kinematic viscosity and Rr is the turbulent Reynolds number. Equation
(10) warrants that the eddy time scale never falls below a compatibility bound deduced
from the Kolmogorov time scale Cr m It is dominant in the immediate neighborhood
of the solid wall and prevents the singularity in the dissipation equation down to the wall.
Alternatively, the turbulence time scale is k/€ at large Ry but approaches the Kolmogorov
limit Cr+/v/e for Ry <« 1. The empirical constant Cr associated with the Kolmogorov
time scale is estimated as follows. In the viscous sublayer k = y2/(C%v/¢), where the basic
scale is the Kolmogorov time scale. Besides, the k equation reduces to v8%k/9y? = € as the
wall is approached. Combining these relations provide Cr = /2. Obviously, the inclusion
of T; in the & equation guarantees near-wall asymptotic consistency without resorting to ad
hoc damping functions employed in many k — € models [3].

Since the viscous dissipation presumably dominates near the wall, the eddy viscosity is
evaluated from

pr =CufupkT (11)

where C, = 0.09 and the dynamic time scale k/é is replaced by T}, a distinct turbulence
time scale. The damping function is chosen pragmatically as

B N _ [C.Ex

fr = tanh(CiRy+CsR%), Kr = V-V/2+k

where C; = 1 x 1072 and Cy = 4.5 x 1073, The parameter = maz(S, W), containing
the invariants of strain-rate and vorticity respectively; S = 1/25;;S;; and W = /2W;; W;;.
The mean vorticity tensor W;; is defined as

_ 1 6’114 811,]'
Wi =3 (azj a 8m,~) (13)

The empirical function f, is valid in the whole flow field, including the viscous sublayer
and the logarithmic layer. In the region close to the wall, the Reynolds stress ~%v ~ y* and
k ~ y?. To preserve the correct cubic power-law behavior of —uv, the damping function
needs to increase proportionally to y in the near-wall region. Equation (12) confirms that
asy — 0, Ry ~ y and hence f, = O(,/C,) at the close proximity of the wall (i.e., f,
pretends to increase like f, ~ y~!). In principle, the construction of f, compared to the
traditional one [3] augments the potentiality of f, to grow particularly in near-wall regions,
thereby expediting the viscous dissipation. Alternatively, the adopted form of f, reproduces
correctly the asymptotic limit, involving the distinct effects of low-Reynolds number and
wall proximity. As evinced by Fig. 1 in comparison with the DNS data [4] for fully
developed turbulent channel flows, the proposed function f, = 1 remote from the wall to
ensure the model being compatible to the standard k — € turbulence model. The use of Ry
(a new parameter with no reference to the distance from the solid surface) confronts the
singularity at neither the separating nor the reattaching point in contrast to the adoption
of y* = u,y/v, where u, is the friction velocity. Consequently, the model is applicable to
separated and reattaching flows.

The budgets of k and € from the DNS data approve that the role of turbulent diffusion
in the near-wall region is substantial. Accordingly, the Prandtl numbers o, and o are
modeled, rather than being assigned constant values (unlike the commonly adopted practice
with ¢4 = 1.0, and o, = 1.3):

J¢

o =CrCy+ fo, 0k=1—_—m

(14)



where f, = 2f»/(1+ f2). The distribution of & is depicted in Fig. 1. The model coefficients
ok and o, are developed such that sufficient diffusion is obtained in the vicinity of the wall
and in the core region of the flow o1 /0. > 1 to eliminate the common drawback where the
turbulent diffusion of k overwhelms the diffusion of € with 0% < o [5].

The turbulent Prandtl number correlation of Ref. [6] is adopted with a near-wall
modification:

2
_____+
Pr(1+ pr/p)

The formulation is consistent with the theoretical behavior over a wide range of the mo-
lecular Prandtl number Pr, approaching 9 C,, as the turbulent Peclet number (= pr Pr/u)
is sufficiently large. To this end, it must be stressed that the modification to o; (rather
than applying o; = 0.9 [2], traditionally) facilitates the avoidance of excessive heat transfer
coefficients, particularly in near-wall regions.

The extra source term E. in Eq. (9) is constructed from the most extensive turbulent
diffusion models for k and € equations derived by Yoshizawa [7] with the two-scale direct-
interaction approach using the inertial-range simplification. To receive positive benefits
from the numerical reliability and to integrate the inertial-range condition directly to the
solid wall, the cross-diffusion term is designed with an assistance of Ref. [8] as

d(k/e) Ok

_o kBT L2 =
E. =C. T, maz [ 93, B’ 0] , Ce=1+Ce (16)

gy =

9C, (15)

Obviously, the source term E, stimulates the energy dissipation in nonequilibrium flows,
thereby reducing the departure of the turbulent length scale from its local equilibrium
value and enabling improved prediction of adverse pressure gradient flows accompanied by
flow separation and reattachment. At this stage, it appears necessary to identify that the
quantity E, is characteristically beneficial in the vicinity of reattachment point and hence,
it can be regarded as an attempt at replacing the Yap correction [9].

The transport equations for k¥ and € are subjected to the following boundary conditions
at solid walls:

ok
ky =0, (a—y)w =0 (17)

- 0¢
€y = 0, (5&)1‘) =0 (18)

Herein, it can be emphasized that reproducing the wall limiting behavior necessitates a fine
grid system in near-wall regions.

4 COMPUTATIONS

To ascertain the efficacy of the proposed model, a few applications to two-dimensional
turbulent flows consisting of a fully developed channel flow, a flat plate boundary layer
flow with zero pressure gradient and heat transfer from a circular cylinder in cross flow
are considered. For a comparison purpose, calculations from the original Chien (OCH)
model [10] and the modified Chien (MCH) model [8] are included. Note that both the
OCH and MCH models assume a constant value for ¢ (i.e., o = 1.0, 0. = 1.3 0y = 0.9).
A cell centered finite-volume scheme combined with an artificial compressibility approach
is employed to solve the flow equations (11, 12]. A fully upwinded second-order spatial
differencing is applied to approximate the convective terms. Roe’s [13] damping term is
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Figure 3: Shear stress profiles of channel flow.

used to calculate the flux on the cell face. A diagonally dominant alternating direction
implicit (DDADI) time integration method [14] is applied for the iterative solution to the
discretized equations. A multigrid method is utilized for the acceleration of convergence
[15]. The basic implementation of the artificial compressibility method and associated
features are described in [11, 12, 16].

Channel Flow

Computations are carried out for fully developed turbulent channel flows at Re, = 180
and 395, for which turbulence quantities are attainable from the DNS data [4]. Calcula-
tions are conducted in the half-width of the channel, imposing periodic boundary conditions,
except for the pressure, pertaining to the upstream and downstream boundaries. Compu-
tations involving a 48 x 32 nonuniform grid refinement for Re, = 180 and 48 x 48 for
Re, = 395 are considered to be sufficiently accurate to describe the flow characteristics.
For both cases, the length of the computational domain is 324, where § is the channel
half-width. To ensure the resolution of viscous sublayer the first grid node near the wall is
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Figure 4: Streamwise skin-friction coefficient of boundary layer flow.

placed at y* ~ 0.4. Comparisons are made by plotting the results in the form of ut = u/u,
and wo+ = T versus yt.

Figure 2 shows the velocity profiles for different models. Predictions of both the present
and MCH models agree well with the DN S data. The OCH model slightly overestimates
the mean velocity profile in the outer layer. Profiles of turbulent shear stresses are displayed
in Figure 3. Agreement of all model predictions with the DN S data seems to be almost
perfect.

4.1 Flat Plate Boundary Layer Flow

The performance of the proposed model is further contrasted with the experimental
data of the flow over a flat plate with a high free stream turbulence intensity. The test case
is taken from "ERCOFTAC” Fluid Dynamics Database WWW Services (http://fluindigo.
mech.surrey.ac.uk/) preserved by P. Voke. Measurements down to z = 1.495m which
corresponds to Re, ~ 94000, are made by J. Coupland at Rolls-Royce. The inlet velocity
is 9.4m /s and the pressure gradient is zero. The upstream turbulence intensity Tu = 6.0%,

defined as Tu = ,/%—k/ Ures, where Uyy indicates the reference velocity. The dissipation is

set so that the decay of free stream turbulence is in balance.

Computations begin 16cm ahead of the leading edge and symmetric conditions are ap-
plied. The length and height of the grid are 1.6m and 0.3m, respectively. The near-wall
grid node is located at y < 1.0, except the point at the leading edge (yT = 2.1). The grid
size is 96 x 64 and heavily clustered near the wall.

The predicted skin friction coefficients (Cy = 2u2 /U2, ;) are compared with the experi-
mental data in Figure 4. The overall performance in predicting the friction coefficient is the
best for the present model, exhibiting an interesting feature that the transition starts at
the right position and it is strong enough. In contrast, both the OCH and M CH models,
having the wall distance in the damping functions provide earlier transition than that seen
in the experiment, coincident with Savill’s investigation [17]. Seemingly, the agreement
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Figure 5: Local Nusselt number distribution over half of tube surface.

between the computations and the experiment is fairly good toward the end of the trans-
ition (e.g., beyond z = 0.195m). However, the MCH model prediction is somewhat on a
lower level than the data show.

4.2 Heat Transfer from Circular cylinder in Cross Flow

The performance of the proposed model is further evaluated by comparing with the
experimental data of turbulent heat transfer around a circular cylinder at Re = 3.6 x 104
in cross flow [18]. Probably, this is a typical Re for practical heat exchangers. The
configuration is geometrically simple but difficult to model. The reasoning is most likely
to be attributed to the boundary layer separation, leading to a complex environment. The
tested cylinder consists of a tube with D = 0.025 m, where D is the diameter. The reference
velocity is Uyes = 22.85m/s with an upstream turbulence intensity Tu = 0.5%. An O type
grid with 128 x 96 resolution, clustered heavily near the solid wall, is employed. The
radial length of the computational domain is 60D. External boundary, that is, far field,
conditions are applied. A constant temperature is prescribed at the wall, which simulates
the experimental boundary conditions.

Figure 5 portrays the variation of the local Nusselt number with the azimuth angle.
As can be seen, the distribution exhibits the characteristic feature of a minimum Nusselt
Number at the separation that corresponds to 6 = 85°, followed by an increase in heat
transfer in the wake regions. Obviously, the present model prediction maintains good
agreement with the experiment. The present model achieve some improvement with a
variable o; particularly in separation and wake regions.



5 CONCLUSIONS

The proposed turbulent model is wall distance free, tensorially invariant and frame-
indifferent. Consequently, it is applicable to arbitrary topology in conjunction with struc-
tured or unstructured grids. The model is susceptible to the near-wall and low-Reynolds
number effects emanating from the physical requirements. The potential importance of the
damping functions is conspicuous. The anisotropic production in the dissipation equation
is accounted for substantially by adding a secondary source term, leading to a reduced level
of turbulence generation in nonequilibrium flow regions. Consequently, the model is cap-
able of evaluating the flow cases entangling separation and reattachment. In particular, the
turbulent Prandtl numbers cannot be considered as constants throughout the flow, leading
to examine where an accurate modeling of the diffusion process is required. Contrasting
the predicted results with measurements demonstrates that the present model reproduces
correctly the skin-friction coefficients and the near-wall heat transfer behavior.
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ABSTRACT

A circular jet in a crossflow is simulated numerically using different computational grids,
turbulence models and near-wall treatments. A grid resolution study is performed to find a
grid that yields a grid-independent solution. The standard k-¢ model, the RNG k-¢ model,
the realizable k-¢ model, the standard k-w model, the shear-stress transport (SST) k-w
model and the Reynolds stress model (RSM) are compared. The three different near-wall
treatments (the standard wall functions, the non-equilibrium wall functions and the two-
layer zonal model) are used. In all calculations jet to crossflow velocity ratio R = 2.0 is
used. The Reynolds number of the main flow Rey, = 417,000 and the jet Rep = 96,000,
based on the hydraulic diameter and the jet diameter, respectively, are used. Results show
that a grid should be very fine to obtain a grid-independent solution. Differences between
the turbulence models are much smaller than expected. All near-wall treatments gave very
similar results; differences between wall functions are mainly a consequence of the different
grids used.

1 INTRODUCTION

The case considered in this paper is turbulent. Turbulent flow can be solved using turbu-
lence models based on Reynolds-averaged Navier-Stokes equations (RANS), large eddy sim-
ulation (LES) or direct numerical simulation (DNS). In this work RANS-based turbulence
models are used exclusively. In deriving traditional RANS-based models, high Reynolds
number is assumed. However, near the wall flow is laminar and classical RANS models
are not valid. Hence, some specific near-wall treatment is needed, low-Reynolds-number
turbulence models or so-called wall functions.

Jet in crossflow (Fig. 1) occurs in many applications, eg in vertical and/or short take-off
and landing (V/STOL) aircraft in transition from vertical to forward flight, in turboma-
chinery (film cooling of turbine blades, jets into combustors), in combustor chambers, in
oil or gas flow into a container and in waste discharge into water bodies and into the atmo-
sphere. Jet in crossflow has been under intensive study for over fifty years. The first studies
focused on determining the place of the core of the jet [1, 2]. In the articles [3, 4, 5, 6] the
shape of the jet has been studied experimentally. Numerical studies have been done by eg
[7, 8, 9, 10]. More extensive review can be found in [11, 12].
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Figure 1: Jet in crossflow.

2 GOVERNING EQUATIONS AND THEIR NUMERICAL SOLUTION

In this work incompressible, steady-state flow is assumed. No body forces or buoy-
ancy are taken to account. Under these assumptions, the Reynolds-averaged Navier-Stokes
equations (RANS) are

Bui
oz; 0 (1)
u  10p & w0 [ —
Y8z, = poa; 6xjyt9a:j u Oz; ( uiuj)’ 2)

where u; is the mean velocity component in z; direction, p is the mass density, p is the
mean pressure, ¥ is the kinematic viscosity and the overbar denotes time averaging.

2.1 Turbulence Models

In the k-e¢ models and the k-w models, the Boussinesq hypothesis [13] is used. The

Reynolds stresses, —u/u/;, are approximated with
P!

(el 2]

- .2 1 /0u; Ou;
—uwiyl = o e . Pl L J
uju; = 2145y 3k5”, S; 3 (&vj + 5$i> , (3)

where v is the turbulent (or eddy) viscosity.

Standard k-¢ Model In the standard k-e¢ model [14] the turbulence kinetic energy, k,
and its dissipation rate, ¢, are obtained from the modeled transport equations:

ujaTj—'é?jl:(V'i‘ak) 82)]] +VtS €, (4)
O 0 v\ Oe € o €2
’U,J%j . 3.’1:_7' l:(ll-i- ;:) EE] + ClekVtS Cae P (5)

where S = ,/285;;5;;. The turbulent viscosity is computed from

k'2
W= C[t?a (6)

where C, is a constant. The model constants have the following values [15]: C,, = 0.09,
Cie =144, Cyc = 1.92, 0, = 1.0 and 0. = 1.3.



RNG k-¢ Model In the RNG k-¢ model (16] the turbulence kinetic energy and its dissi-
pation rate are obtained from the following transport equations:

ok 8 ok ,
ujgj = 3.’1}_7' (akllt 617]> + I/tS €, (7)
e 8 Oe € up e Cumd(1-n/n) €
Y de, — ba; (ael’ta_mj> t Ozl —Ceer — =3 iy e (8)

where 7 = Sk/e, no = 4.38, § = 0.012 and v; is obtained in a similar way as in the standard
k-¢ model. The inverse effective Prandtl numbers, o) and a., are computed using the

following formula:

0.6321 0.3679

a — 1.3929 a+ 2.3929 _v
ap — 1.3929 ap + 2.3929 Ty
where ag = 1.0. The model constants are: C, = 0.0845, Ci = 1.42 and Cy. = 1.68.

bl

Realizable k-¢ Model The transport equations for £ and € in the realizable k-¢ model

[17] are
S =-‘9—[(u+ﬁ) -a—k]+vt52—e, ©)

7 8mj 8mj o™ 3.’17]'

Oe d w\ Oe €2
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where Ci = max [0.43,7n/ (n + 5)] and n = Sk/e. The turbulent viscosity is obtained from
(6), but now

1 . —— _
C, = m7 ut =4/85i58:5 + i€y, iy = Qi — 2eizewi, iy = Qi — €i5rwi

and Q;; is the mean rate-of-rotation tensor viewed in a rotating reference frame with the
angular velocity wg. Ag = 4.04 and As = v/6 cos ¢, where

_ 54 SikSki
(8155u)%/

The model constants are: Co. = 1.9, o, = 1.0 and 0. = 1.2.

(10)

¢ = —;;cos'1 (\/EW) ) W

Standard k-w Model In the standard k-w model [18] the turbulence kinetic energy, ,
and the specific dissipation rate, w, are obtained from the following transport equations:

ok 0 v\ Ok 2 x
'LLJa—xj = a(EJ [(U + O'k) 8$J:| + VtS ,Boofﬁgokw, (11)
0e 0 v\ Ow W o 9
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The model constants are: §; = 0.072, 8%, = 0.09, o = 2.0 and o, = 2.0.
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Shear-Stress Transport (SST) k-w Model The shear-stress transport (SST) k-w
model [19] has a similar form to the standard k-w model:

ok 0 ok o
LI hul 3 * k 1
u] 81‘] BICJ l:(l/+ Uk) 8:53] +VtS ﬂoo w, ( 3)
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vk 500v
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Bi = F1B8;1+ (1 —F1)B;,2 and Qij is the mean rate-of-rotation tensor. The model constants
are: a1 = 0.31, 8% = 0.09, 8,1 = 0.075, B;5 = 0.0828, 0f 1 = 1.176, 04 1 = 2.0, o2 = 1.0
and 0,5 = 1.168.

Reynolds Stress Model In the Reynolds stress model (RSM) there are the exact trans-
port equations for the transport of Reynolds stresses, —u;u’; [20, 21]:

9 o r ——— Ou; Bu,l

N .

e o 7
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(15)

where D;rj and ¢;; are modeled using the following relations:

D’,F,=i(ﬂ%>’ Vt:cﬂﬁ’

Y Oz \ op Oz €

€ [— 2
Gij = Pij1 + Gij2 + Bijws Pija = -CIE [Uiug - §5z'jk] ,

2 1 1
bijo = —Cs | (P + Fi; — Cy5) — g%‘ (P- C)] , P= EPkk, C= §Ckka



and qb” w is a so-called wall-reflection term [22]. The dissipation tensor, €;;, is modeled as
€i; = 20;5¢, where € is obtained from (5) in which the second last term is replaced with

C1cPii€/2k. The turbulence kinetic energy is modeled as k = 2 . The model constants
are: C7 = 1.8, Cy = 0.60, Cy¢ = 1.44, Co. = 1.92, C, =09, ak—lOandae—l?»

2.2 Calculation of Near-Wall Area

When using the k-¢ model or the RSM, the wall functions are needed to connect the
fully turbulent core flow with the viscosity-dominated near-wall region.

Standard Wall Functions The standard wall function [15] for mean velocity is

e iin(By*) (y* > 11.225) (16)
Ty (y* < 11.225)°
where 1/4,1/2 1/4), 1/2
* — uPCH kP * C yp
- Tw/p v ’

« is the von Kérmén constant (= 0.4185), E = 9.81, up is the mean velocity of the fluid at
point P, kp is the turbulence kinetic energy at point P, 7, is the shear stress at the wall
and yp is the distance from point P to the wall.

Non-Equilibrium Wall Functions  In the non-equilibrium wall functions [23] there is
a log law for mean velocity:

L/ s In (E——-mf”m ) (17)

Tw/p K v

where
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and yy = 11.225. When calculating the budget of turbulence kinetic energy, the two-layer
concept is used. It consists of the following profile assumptions:

2
o (w<w) (@) R w<w) [ w<w
T = , k = Yv €= )
Tw (¥ > yv) kp (y > yv) Ciy (y > yv)

where C; = xC, 8/,

Two-Layer Zonal Model In the two-layer zonal model the whole domain is subdivided
into two regions, based on Re, = \/Ey/ v, where y is the distance from the wall to the cell
centre. In the fully turbulent region (Re, > 200) the k-¢ model or the RSM is used. In the
area where Re, < 200 basic model equations are retained, but the turbulent viscosity and
the turbulence kinetic energy are computed from the following equations [24, 25):

v =CuVkly b= Coy (1— e Re/A),

kZ/2’ ¢ = Cuy (1 _ e—Rey/A5> ,

where A, = 70 and A, = 2C, [25].

€ =
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2.3 Calculation Procedure

Apart from the calculations which use the k-w models, all the calculations have been
done using FLUENT 5.5, a commercial software based on the finite volume method [26].
The k-w model calculations have been done using FLUENT 6.0 [22], because FLUENT 5.5
does not contain the k-w models. All terms in all equations are discretised in space using
second-order central differencing, apart from the convection term, which is discretised using
a second-order upwind scheme. Pressure-velocity coupling has been done using SIMPLE
algorithm.

3 COMPUTATIONAL DOMAIN AND MESH

The schematic of the problem is shown in Figure 2 (I is the turbulence intensity). The
Reynolds number of the main flow is Re, =~ 417,000 and jet Rep =~ 96,000, based on the
hydraulic diameter and the jet diameter, respectively. The working fluid is air with density
p = 1.225 kg/m?® and dynamic viscosity u = 1.7894 x 10~% kg/ms (v = pu/p).

—
—_—

™ tao = 30 m/s

1.0 bar

eI =05% Y g
o (vt/v)ee =200 I
—_— z a
——
— = wall
a ---- = symmetry plane
&
uj; = 60 m/s
I =5%
(v /v); = 100

25 225 620 mm :

Figure 2: Computational domain and boundary conditions.

All grids used consist of 8-node brick (hexahedral) control volumes. In the coarsest
grid (denoted grid I) the length of the edge of a control volume is about 8 mm (Table 1).
When grid I is refined in the area of the jet penetration (-3 < z/D < 10, y/D < 7,
z/D < 4), grid II is obtained. Grid III is obtained from grid II by refining in the region
~2<z/D<9,y/D <86, 2/D < 3 and grid IV is obtained from grid III by refining in the
region —2 < x/D < 7,y/D <5, z/D < 2.25. The finest grid (grid V) is obtained using the
solution of grid IV and refining only near the core of the jet (cf. [27]).

When using the two-layer zonal model, the grid has been refined near the wall so that
the dimensionless distance from the wall is y* = u,y/v < 4..5 (ur = /Tw/p)-

Table 1: Number of control volumes for different grids used.

Grid I I 111 v A%
Niotar 35,637 102,466 398,741 1,628,025 2,535,295




4 RESULTS

Figure 3 shows some general results of the calculations. It can be seen from the path lines
in Figure 3(a) how the jet divides into two separated counter-rotating vortices. Downstream
close to the jet and close to the wall there is a region where mean z-velocity is negative
and there is reverse flow (Fig. 3(b)). On the downstream side of the jet there is a region
where the turbulence kinetic energy is high (Fig. 3(c)). The viscosity ratio is also high on
the downstream side of the jet, but in addition in front of the jet (Fig. 3(d)).
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(a) Path lines (b) Horizontal velocity, u/uco
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Figure 3: General results using grid III, standard k-e¢ model and standard wall functions.

4.1 Grid Resolution Study

The grid resolution study was performed to find a grid that yields a grid-independent
solution.

There were no convergence problems and all the cases were performed for the situation
where scaled residuals were settled and all the residuals were decreased to the value 10~°
(Fig. 4). When using finer grids, the time needed for one iteration is substantially greater.
In addition, the needed number of iterations increases noticeably when the grid is refined.

The two coarsest grids (grid I and grid II) do not give good results (Fig. 5). On the
other hand, the results of the two finest grids (grid IV and grid V) do not differ much from
the results of grid III. Besides that, calculation using grid IV or grid V needs significantly
more computer time. Therefore, grid III was used exclusively from here onwards.
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Figure 4: Convergence history of scaled residuals using standard k-¢ model, standard wall
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Figure 5: Horizontal dimensionless mean velocity, #/uco, in plane z = 0 using standard k-¢
model, standard wall functions and different grids. Measurements [3].

There is no region of reverse flow in the measurements at all, but this can be a conse-
quence of the inability of the hot-wire anemometer to measure the direction of the velocities
accurately. In [8] they agree with this opinion.

4.2 Turbulence Model Comparison

In this section the standard k-e model, the RNG k-¢ model, the realizable k-¢ model, the
standard k-w model, the SST k-w model and the RSM are compared. In all these calcula-
tions, grid III and the standard wall functions are used, except in k-w model calculations,
where the near-wall region is treated in a different way [22].

In the case of the RNG k-¢ model there were serious convergence problems; residuals
did not settle and they decreased only to the value 10~2 (Fig. 6(b)). Reducing the under-
relaxation factors did not help. Also calculation using the RSM did not converge. The scaled



residuals settled well, but results changed considerably when iteration was continued. In
the case of other turbulence models, convergence problems did not occur and the results
did not change if iteration was continued. The standard k-w model needs about twice as
many iterations as other converged models.
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Figure 6: Convergence history of scaled residuals using grid III, standard wall functions
and different turbulence models.

Because of problems in convergence of the RNG k-e model and RSM, the results obtained
using these models are useless. Results of other turbulence models are close to each other
(Fig. 7). Only results obtained with the standard k-w model differ considerably from results
of other converged models; in the region of the jet the velocities are considerably slower. In

the upper part of the jet, the SST k-w model predicts slower velocities than other models,
but the difference is quite small.

4.3 Comparison of Near-Wall Treatments

In this section different near-wall treatments (standard wall functions, non-equilibrium
wall functions and two-layer zonal model) are compared. When the two-layer zonal model
was used, scaled residuals did not decrease properly (Fig 8(c)), but results did not change
when iteration was continued. Hence, it can be assumed that calculation is converged. All
wall functions needed about the same number of iterations (Fig 8).

The two-layer zonal model predicted slower velocity in the area where y/D = 0...2.5
and z/D = 3.06 (Fig. 9(b)), but this is a consequence of the different grid used (grid was
refined near the wall). Differences between other wall functions are quite small (Fig. 9).
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Figure 7: Horizontal dimensionless mean velocity, %/uc, in plane z = 0 using grid III,

standard wall functions and different turbulence models. Measurements [3].
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5 CONCLUSIONS

The grid resolution study showed that accurate calculation of the jet in a crossflow
requires a very fine grid. However, results change very little when a grid is refined from 1.6
million to 2.5 million cells. A grid with about 400,000 cells gives good enough results in
practical applications.

In the comparison of turbulence models it emerged that the RNG k-e¢ model and the
RSM do not converge well. There is some fluctuation in scaled residuals and results even
after a large number of iterations. All converged models give quite similar results; only the
results of the standard k-w model differ from results of other models and these differences
are quite moderate.

The two-layer zonal model predicted slower velocity in some regions, but this is a con-
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Figure 9: Horizontal dimensionless mean velocity, %/uco, in plane z = 0 using grid III,
standard k-¢ model and different turbulence models. Measurements [3].

sequence of the different grid used (grid was refined at near the wall). Differences between
other wall functions are quite small.
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ABSTRACT

Nip contact between the wound roll and the winding drum, rider roll or some other nip roller may
cause that the wound roll is deformed into a convex polygon. This deformation process is accompanied
with a very strong vibration. The conditions under which this phenomenon occurs depend much on the
web properties. For example, in the paper industry some bulky grades with a high layer-to-layer COF
are known to be prone to this unstable vibration.

In this paper a simple wind up model, capable of capturing quite comprehensively this phenom-
enon, is developed. The polygonal pattern formation is modeled as a viscoelastic surface deformation.
This results in linear delay differential equations. In order to analyze the stability, the Laplace
transformation is performed for the system equations. The inspection of the root locus shows several
zones of instability during the winding cycle. In an example, it is shown how the model can be utilized
to explain some well-known winder vibration phenomena.

The paper is concluded by stating general beneficial trends for the wind up design and by
explaining how to determine the susceptibility of certain webs to unstable vibration by simple
laboratory measurements.

NOMENCLATURE
A system muatrix in the Laplace-domain
€, viscous damping coefficients of the winding drum and wound roll, respectively
e(?) deviation of the wound roll's shape from circular evaluated at the nip
0] evolution of e(?) during one revolution of the roll
A first and second harmonic of the wound roll rotation frequency
fornSa first and second natural frequencies of the system
& diagonal terms of A (i = 1,2,3)
k, the spring constant of the winding drum
k, k, spring constants of the delayed and instant recovery elements of the wound roll,
respectively
m, core mass per unit length
m, m, the masses of the winding drum and wound roll, respectively
r(?) the deformed radius of the wound roll evaluated at the nip
r (8 the undeformed radius of the wound roll evaluated at the nip
r, the winding drum radius
R, the average of r,(¢) over one roll revolution
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the Laplace-variable

the complex roots of equation detA =0 (i=1,2,3,...)

time variable

wound roll rotation period

deformation of the delayed recovery element

the vertical displacements of the winding drum and wound roll, respectively
column vector of the state variables in the Laplace-domain
Laplace transforms of x, and x,

an internal translational degree-of-freedom of the wound roll
Laplace transform of z

delay term in the system equations

the recovery coefficient of the wound roll

the nip deformation of the wound roll

INTRODUCTION

Vibration is a common problem for two-drum winders running certain paper grades. Although
these "vibrating paper" grades are of quite wide variety, some common features of the vibrations can
be stated. Firstly, the frequency of the vibration is without exception equal to the wound roll rotation
frequency or its integer multiple. Secondly, the paper and roll properties are such that the nip induced
wound roll deformations will not fully recover during one roll revolution. As a consequence of these
features, the oscillating nip load will cause the wound roll to become deformed into a convex polygon.

The most common self-excited winder vibration categories are:

a)

b)

Vibration during the initial acceleration

This vibration mode occurs when the winder speed is accelerated from zero speed to full
running speed. Typically, this vibration state develops fast at the very end of the acceleration
stage. Typical paper grades for which this type of vibration can occur are rough and bulky
grades with high COF - such as book papers. However, also some thin, coated and calendered
paper grade can vibrate in this mode. Because of this vibration, the roll edges can become
uneven and the web can brake. Although not confirmed, the vibration mode relating to this
type of vibration is believed to be the one where the wound roll has the largest amplitude
(wound roll eigenmode). Since the rolls are still quite light when the vibration takes place,
the corresponding natural frequency is quite high, typically 40 — 150 Hz.

Roll bouncing, resulting to eccentricity

This is clearly the most serious vibration problem for two-drum winders nowadays.
Typically, the grades experiencing this problem are easily wound up to the roll diameter 500
— 700 mm but then, little by little, start increasingly to develop eccentricity. The paper grades
with a tendency to the above-mentioned vibration include DIP newsprint and bag paper. This
vibration mode occurs always at the roll rotation frequency and is hence not accompanied
with audible sound. On a two-drum winder the rolls are seen to bounce in a more or less
irregular pattern from drum to drum. Due to the roll eccentricity, also the core chucks are
vibrating heavily. The mechanism and mode for this type of vibration is quite complex,
involving interplay of the adjacent rolls due to the edge contact and frictional forces.



¢) Wound roll excited drum resonance vibration
This vibration occurs generally at steady running speed when a multiple of the wound roll
rotation frequency matches or is in the vicinity of the drum natural frequency. Depending on
the running speed and the value of the natural frequency, the multiple number of the rotation
frequency can be 2, 3, 4 or 5. Paper grades vibrating in this mode include uncoated fine paper
and sackkraft.

Common for all these above mentioned vibration categories is that they are generated by an oscillating
nip load which is synchronous to the wound roll rotation frequency or its multiple. Although a large
part of the nip induced roll deformation recovers in one revolution of the roll, some residual
deformation is fed back during the reentry into the nip. This results in a self-enforcing vibration state,
where the roll surface deformations and nip load oscillations grow hand in hand.

One of the earliest papers where the essential features of this self-excited vibration mechanism
were explained was written by Daly [1]. Without any modeling, Daly explained the vibration
phenomena using a washboard road analogy. Later Mohle et al. [2] studied two-drum winder
vibrations and developed a simple one-degree-of-freedom mathematical model based on experimental
observations. In their model, the generation of the wavy roll was implemented as a purely plastic
residual deformation developed one revolution earlier and reentering the nip. Although the model was
simple, they could nicely explain the unstable regions occurring at certain roll rotation frequencies. A
more comprehensive two-drum winder model including all interacting structural elements of the wind
up was presented by Jorkama [3]. Various eigenmodes of the wind up were presented and
requirements for damping the vibrations were studied. However, the self-enforcing development of the
wavy roll surface was omitted. Sueoka et al. [4] have presented an analogous calender rubber roll-
covering polygonalization model. In their model, the development of the roll surface deformation
pattern is based on a viscoelastic model of the behavior of the rubber cover. Their model results in a
constant coefficient, linear, time delay ordinary differential equation system which stability is
extensively studied.

The present paper follows the outline of Ref. [4]. In addition, some characteristic features of
winding, such as the time dependence of the coefficients of the differential equations and rotation
frequency of the wound roll, are included. The authors believe that even this simple model can
elucidate the essential features of the winder vibrations and, hence, lead the way to reduce the costly
problems due to winder vibrations.

THEORY

Consider the wind up model of Figure 1 consisting of the winding drum, depicted as the lower
uniform circle, and the wound roll, depicted as the wavy upper circle. On the right, the wind up is in its
undeformed state and on the left in its deformed state. The winding drum cover is undeformable but
has a translational vertical degree of freedom x,. The deviation of the wound roll's shape from circular
is denoted by e(¢). In addition, the wound roll has a vertical translational degree-of-freedom, denoted
by x,.
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Figure 1. Deformed (left) and undeformed (right) configurations. 0 x2—¢
From Figure 1 we see the following geometrical relation b
z-e
x+r{)—x,+et)=r). 0
§k2 &

Denoting the nip compression by &, the deformed radius ~#) can be L2
represented as

O =103, @ |

P.x

Substituting (2) to (1) yields

X, —x, +e(t)=5. 3) Figure 2. Description

of the paper roll de-
formation element.

This compression occurs between the points O and P. In this simple model, the description of the
response of & to the nip loading constitute the constitutive equation of the winding roll and, hence, will
determine dominantly the system characteristics. In general, this equation should be formulated so that
it reflects the observed deformation characteristics of the paper roll as close as possible. With a high
number of internal degrees of freedom, the behavior can be described accurately but the understanding
and interpretation of the model predictions become more difficult. In this paper, the emphasis lies in
the ease of the interpretation of the qualitative behavior. Hence, a viscoelastic constitutive model of



Figure 2 with only one internal degree of freedom (three independent parameters) is chosen for
describing the deformation characteristics of the wound roll.
The equations of motion become

mX, +kx +cx +k, [x, —z+e(t)]+c2 [)'cl —z'+é(t)] =0,
ky [x, —z+e()]+c,[% -2+ D))+ Kk (x,-2) =0, “)

my%, +ky(x,—2)=0.

Apparently e(f) is a function (or functional) of the nip deformation occurred one revolution
earlier. Denoting by u(7) the nip deformation and by T the revolution period, this relation reads

e(t) = F(u(t-T)). (%)

The nip-induced deformation of the spring element £, is instantaneously recovered, whereas the
deformation of the element c,-k, is restored only partially during one revolution. The deformation of
this element, which is denoted by u, is

u=x-2z, 6)

where the sign of u is chosen so that compression is positive. After exiting the nip, this element is free,
and hence, the balance equation reads

ké+cé=0, M

where & denotes the position of this element in the course of one revolution. The solution of equation
M is

(1) = —u(t,)e™"™" @®
where
a=ta ©)
%)

and 7, the time when the circumferential location under consideration passed the nip last time. Since
e(¢) is defined as the deviation of the wound roll from circular shape just before entering the nip, the
expression

e(t) =—-u(t-T)e™®" (10)

is obtained. Inserting the result (10) to the equations of motion (4) gives
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mi +c% +kx +k,w+e,w=0,
kyw+c,w+ky (x,-2)=0, (11

my%, +ky (%, -2)=0,
where

wit)=u®)-eTu@-T). (12)
Rearranging Eqs. (11) gives

mX, +c X% +(k +k)x, —ky(x-2)-kx, =0,
kw+ew—kyx, +ky (x,~z)+kyx, =0, (13)

my%, +kyx, —kyx, +ky (x,—2)=0.

It should be noted that in the analysis « is taken as an independent parameter since with the current
constitutive model it is not possible to describe simultaneously the nip damping and the dent recovery
on the roll surface.

In order to analyze the stability of the system, the Laplace transformation is performed for Eq.
(13). The revolution period T is treated as a constant when the Laplace transformation is done. During
most of the winding cycle, this is a good assumption since the angular frequency of the roll does not
change much during one roll revolution. When all initial values are set to zero, the Laplace
transformation yields

AX=0 (14)
where

X=(X,,X,-2Z,X,),

(15
0=(0,0,0)" )
and
g8 -~k -k
A=~k g Kk |, (16)
—k kg
where



=ms’+¢s+k +k, ,
& ) I 1 TR

g =k +(c2s+k2)|:1—e_(a”)TJ , a7

_ 2
g, =mys +k; .

RESULTS

Characteristic of winder dynamics is that both the excitation and natural frequencies change with
time. The change of the excitation frequency stems from the constantly increasing roll diameter and
changing running speed, which consists of acceleration, steady running speed and deceleration. The
natural frequencies change because the mass of the paper roll increases during winding. According to
experimental winder vibration studies [3], it is known that in severe vibration cases the excitation
source is almost exclusively the wound roll. Hence, it is instructive to start with determining the
situations when the multiples of the roll rotation frequency hit the resonances. Figure 3 depicts the
natural frequency curves (solid lines) together with the first and second harmonics of the roll rotation
frequency (dashed lines) during one winding cycle. The model parameters are chosen to be
representative for a modern wide winder running newsprint grade. These parameters are shown in
Table 1. The drum stiffness is determined from a modal measurement and the roll spring constant from
a roll compression test. The recovery coefficient a is most accurately measured from the paper roll by

indenting it with some "bump" attached onto the winding drum surface and observing the recovery of

the dent caused by the indenter. Here, however, a much simpler test set up was used to obtain an
estimate for a. A relaxation test was performed for a pile of newsprint (height 4 cm, area 7 cm x 7 cm).
Initially 1 MPa pressure was applied and then the compression was kept constant and the decay in the
pressure was observed. The data was fitted into a six parameter linear, viscoelastic model. The
calculated relaxation time constants corresponded to the following values of a: 0.35, 0.033 and 0.0033
1/s.

-
-~
- -

300
t[s]

100 200 400 500

Figure 3. Natural frequencies of the system f,; and f,, (solid lines), the roll rotation frequency f; (lower
dashed line) and the second harmonic of the roll rotation frequency f; (upper dashed line) as a function
of time ¢.
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Table 1.

Parameter values used in the calculations

Parameter Notation Value
Paper thickness T 63 um
Acceleration a 0.5 m/s’
Deceleration b 0.5 m/s*
Steady state running speed v, 40 m/s
Rounding time in the running speed , 12s
Core diameter d, 0.1m
Final roll diameter d, 1.25m
Paper density P 750 kg/m’
Winding drum mass m, 4000 kg
Winding drum stiffness k, 83.5 MN/m
Winding drum damping c 7 kNs/m
Mass of the core/length m, 5kg/m
S'tiffness coefficient of the k 100 MN/m
viscoelement E
Dampmg coefficient of the B 10 KNS/m
viscoelement 2
Stiffness coefficient of the roll k, 10 MN/m
Recovery coefficient a 0.11/s

During the first 50 seconds, the shapes of the eigenmodes corresponding to these natural
frequencies are well localized. Within this time region, the first eigenmode consists of a high
amplitude movement of the drum and a negligible movement of the roll whereas in the second mode
the opposite movements occur.

In the interval 50 —120 s, when the natural frequencies are closest to each other, the modes are
such that the amplitudes of the winding drum and the roll are comparable. In the first eigenmode, the
winding drum and the roll move in the same phase and in the second mode in opposite phases.

During the rest of the winding cycle, after 120 s, the modes become again localized. The first
eigenmode is the wound roll mode and the second one the winding drum mode.

It can be seen from Figure 3, that the first natural frequency f,, becomes equal to the first or
second roll harmonic only during the acceleration (7 ~ 20s and 40 s) and deceleration (¢ = 530 s and
560 s). During the steady running speed, the roll rotation frequency at this running speed is always
higher than £,,.

The second natural frequency f,, becomes first equal to the second roll harmonic at approximately
40 s and shortly later equal to the first roll harmonic. Both these incidents occur during the
acceleration. Later, at ¢ = 400 s, during the steady running speed phase, the second roll harmonic
becomes again equal to the second natural frequency.

From Eq. (14), the characteristic equation is given by

detA=0. (18)



Since there exists a time lag, there are an infinite number of characteristic roots s, of Eq. (18). The
system is stable if all the real parts of these roots are negative. On the other hand, the system is
unstable if one or more real parts are positive.

The evolution of the first and second characteristic roots during the winding cycle are shown in
Figs. 4 and 5, respectively. The upper panel shows the imaginary part together with the second natural
frequency and the lower panel the real part. The imaginary part of s, follows most of the time the
f—curve. At the end of the acceleration stage and at the beginning of the steady running speed stage, it
coincides with the second natural frequency f,. At this location, there exists a wide unstability region.
Although the vibration frequency here is lower than generally in the vibration case ), for this single
drum winder model this corresponds to the vibration during the initial acceleration.

80
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Figure 4. The imaginary (upper pane!) and real (lower panel) parts of the first characteristic root.
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The imaginary part of the second characteristic root in Fig. 5 follows during the acceleration and
deceleration the second harmonic of the roll and during most of the steady running speed stage the
second natural frequency. There are short duration unstability regions during the acceleration and
deceleration stages and a longer region between 350 s and 430 s. This latter region can be related to
vibration category c) since the second harmonic of the roll excites the natural frequency of the winding

drum.
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Figure 5. The imaginary (upper panel) and real (lower panel) parts of the second characteristic root.

A parameter study revealed that for values of & larger than 50 1/s, the system is always stable and
for values of & smaller than 0.1 1/s the system becomes quite immune for any changes of «. In the
viscoelastic measurement of paper, the relative weighting of the estimated «'s should also be taken
into account. The smaller the weighting of the small values of & is, the stabler the material is.

In this model, the winding drum stiffness does not seem to have any other influence than slightly
shifting the unstability zones. Increasing the winding drum damping is beneficial, since it shrinks the
unstability regions of all characteristic roots. However, it is not very effective, since doubling, which



might be very difficult to accomplish in practice, of the damping produced only approximately 10 — 20
% shorter unstability regions. Doubling of the roll damping didn't have practically any influence on the
stability. This is because the first natural frequency (which activates the roll damping) is excited only
during the acceleration and deceleration for short periods. For a two-drum winder, the case would be
different since the natural frequencies related to the wound roll movement are higher due to the
additional front drum and rider roll nips.

CONCLUSIONS

With the present model, the most common winder vibration cases could be represented. Due to
the time lag in the system equations, negative damping is fed into the system and during certain stages
along the winding cycle the system becomes unstable. In the studied example, long, unstable zones
were found at the end of the acceleration stage and later at steady running speed when the second
harmonic of the roll matched the second natural frequency. These unstability zones were identified as
"vibration during the initial acceleration" and "wound roll excited drum resonance vibration" which are
well known in practice. The non-existence of the third common winder vibration case "roll bouncing"
in single drum winders was explained by studying the excitation and natural frequencies.

The are several directions how to further develop the model and analysis. One possibility is to
model the winder structure more accurately and extend it to two-drum winding. Another, maybe more
challenging possibility, is to improve the constitutive description of the wound roll.
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TIIVISTELMA

Loviisan ydinvoimalaitoksen syottdvesiputkistolle RL61 on suoritettu pelkkien vasteiden
mittaamiseen  perustuva  output-only moodianalyysi (Ooma). Kiytetty menetelmd,
mittausjirjestelyt ja saadut tulokset on esitetty tdssé artikkelissa. Ooma -menetelmalld médritettyja
tuloksia, ominaistaajuuksia ja -muotoja, on verrattu tdristinherdtteen avulla saatuihin
moodianalyysi tuloksiin.

JOHDANTO

Perinteisessi moodianalyysissd rakenne herdtetddn kdyttden esimerkiksi iskuvasaraa tai,
massiivisten rakenteiden kyseessd ollessa, erilaisia hydraulisia tdristimid. Téristimen asentaminen
optimaaliseen heritepisteeseen voi olla erittdin vaikeaa tai jopa mahdotonta. Mittausten
suorittaminen perinteisilld menetelmilld saattaa vaatia ainakin laitoksen kyseisen osan toiminnan
pysdyttimistd ja aiheuttaa tuotantolaitokselle (tehdas, voimalaitos tms.) taloudellisia menetyksid
tuotannon hiiriintyessi.

Qutput-only moodianalyysissa (Qoma) heritteend toimivat rakenteen omat kdynninaikaiset tai
ympiristostd tulevat (ambient) heritteet. Ooma menetelmdd on kiytetty mm. siltojen
moodiparametrien maidrittimiseen, jolloin heritteend voi olla sillalla kulkeva liikenne ja
esimerkiksi tuuli. Meneilldidn olevassa projektissa on tarkoituksena selvittida Ooma -menetelmén
soveltuvuutta teollisuuslaitteiston moodianalysiin tilanteessa, jossa rakenteeseen vaikuttaa
voimakas kdynninaikainen harmoninen herite. Ooma -menetelmédn etuina teollisuuslaitoksissa
tehtivissi mittauksissa on helppo mittaus, mitattavaa jirjestelmad ei tarvitse ajaa alas ja liséksi
hankalilta tiristimen asennuksilta viltytdéin. Koska Ooma -mittaukset tehd4dn kdynninaikaisissa
olosuhteissa, tulevat moodiparametritkin madritellyiksi todellisten kidynninaikaisten reunaehtojen
vallitessa.

TARKASTELTAVA RAKENNE

Tarkasteltava putkisto on esitetty kuvassa 1. Kyseessd on Loviisan 1 laitoksen sy6ttovesilinjan
painepuolen putki RL61. RL61 on syéttovesipumpun painepuolen linja, joka alkaa
syottovesipumpusta ja padttyy runkolinjaan. Putkisto sijaitsee lahes yhdessé pystytasossa ja tehden
miltei tiydellisen silmukan ja sen kokonaispituus on noin 28 metrid. Putkistolinja RL61 on
valmistettu  hiiliterdksestdi ja sen nimellinen ulkohalkaisija 323.9 mm. Nimellinen
seindminpaksuus on 20 mm, paitsi alas laskevalla osuudella 17.5 mm (pisteiden 118 ja 222
vilinen osuus kuvassa 2). Putkisto on eristetty 120 mm paksuisella mineraalivilla eristeelld.

Putkisto on pidosin koottu hitsaamalla. Piittaisid hitsisaumoja on 12 kpl. Kaikki putkistossa olevat
mutkat ovat taivutettuja (so. ei esiinny hitsaamalla koottuja mutkia). Putkiston kolme laippaliitosta
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sijaitsevat pumpun/takaiskuventtiilin alueella. Linjan alaosan vaakasuoralla osuudella,
jousikannakkeen No. 46 molemmin puolin (kuva 1), on kaksi raskasta (978 kg) sulkuventtiilid V1
ja V2, jotka ovat putkiston kéyttaytymisen kannalta merkittdvid pistemassoja.

Putkisto on kannakoitu kolmella jousikannakkeella S1, S2 ja S3 (pisteet 46, 47 ja 48 kuvassa 1 tai
pisteet 227, 119 ja 109 kuvassa 2), joiden jousivakiot ovat S1 660 N/mm ja S2 ja S3 446 N/mm.
Pystysuorat kannakoinnit S2 ja S3 on toteutettu niin, ettd putkeen on hitsattu vahvikelevyt
vastakkaisille puolille poikkileikkausta. Kumpaankin vahvikelevyyn on hitsattu putken
pituusakselin tasossa oleva teriksinen kolmiomainen osa, jonka kautta jousen tukireaktio tuodaan
putkeen. Vaakaosalla oleva kannake S1 on toteutettu pulttiliitoksilla kootuista 180 asteen
taivutetuista sangoista, jotka on puristettu putken ympirille.
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Kuva 1. Loviisan 1 laitoksen syéttovesilinjan painepuolen putki RL61.

KOEJARJESTELYT

Taristinmittaus ja moodianalyysi

Antureiden ja heritepisteen optimaalinen sijainti médritettiin numeerisesti ABAQUS elementti-
menetelmiohjelmaa [1] ja FEMtools ohjelmaa [2] hyvidksi kdyttdaen. Esilaskenta, sekd iskuvasara-
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ja tiristinheritteelld mitattujen koetulosten alustava tarkastelu on raportoitu ldhteessé [3]. Kuvassa
2 on esitetty moodianalyysissi kdytetyt mittausmallin pisteet ja globaali koordinaatisto. Rakenne
heritettiin pisteestd 114 kahteen suuntaan: 114Y- ja 114Z+. Kaikista mittauspisteistd, joita on 31
kappaletta, mitattiin kiihtyvyysantureita kéyttien vasteet globaalin koordinaatiston akseleiden
suunnissa. Kokeet suoritettiin kdyttien yhtd heritesuuntaa kerrallaan. Rakenne heritettiin
servohydraulisella tiristimelld, joka tuottaa jatkuvaa heritesignaalia inertiamoodissa. Niin
saavutettiin tarvittavat voimatasot (luokkaa 2 kIN) seki tarvittava taajuusresoluutio (0.03125 Hz)
taajuusvastefunktio-mittauksissa. Taajuusvastetietokannan analysoimiseen kiytettiin SDRC:n
IDEAS-ohjelmistoa [4]. Moodiparametrit médritettiin kdyttamilld ominaistaajuuksien ja niihin
liittyvien vaimennusarvojen ratkaisuun Complex Exponential-menetelmadi ja ominaismuodot
ratkaistiin Circle-Fit- algoritmilla. Téristinmittaus ja siihen liittyvd moodianalyysi on selitetty
yksityiskohtaisesti ldhteessd [5].

Kuva 2. Putkilinja RL61 kokeellinen malli. Kuvassa esitetty mittapisteryhmi 1 ja Kiytetyt
referenssipisteet.

Kiynninaikaiset mittaukset

Kiynninaikaiset vasteiden aikasarjamittaukset Ooma-analyysid varten suoritettiin 16-kanavaisella
moodianalysaattorilla. Referenssipisteiti/suuntia oli kuusi (114Y-/Z+, 220X+/Y+, 231X+ ja
2347Z+), ja niihin tarvittiin siis jokaiseen anturi. Paikat ja suunnat on esitetty sinisin nuolin kuvassa
2. Kymmenti anturia siirrettiin mittaussuunnitelman mukaisesti mittauskertojen valilla.
Suunnitelma mahdollisti mittauksen suorittamisen siirtimilld antureita kymmenen kertaa, eli
tuloksena saatiin 10 mittausryhmai. Kuvassa 2 on esitetty mittausryhmi 1 vihrein nuolin. Kuuden
referenssipisteen kiytolld varmistettiin  mahdollisimman monen rakenteen ominaismuodon
16ytyminen myshemmissa moodianalyysissi, silld edellytys moodin identifioinnille on, ettd moodi
"nikyy" referenssipisteessid. Usean referenssipisteen kiyttd tekeekin Ooma menetelmaésti
todellisen multiple-input multiple-output -menetelmén.

Kiynninaikaisissa mittauksissa putkiston heritteend toimivat pumpulta tulevat mekaaniset
heritteet, nesteen virtaus ja virtauksen pulsaatio putkistossa, nesteen turbulenssi putkimutkissa,
nesteen mahdollinen painevirihtely ja muut ulkoiset tukirakenteiden kautta putkistoon vilittyvat
heritteet. Pumppu on ns. siipipumppu, jonka pydrimisnopeus on 1500 rpm.
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Mitattujen aikasarjojen pituus oli 600 sekuntia ja kidytetty ndytteenottotaajuus oli 1.024 kHz.
Niilld asetuksilla pyrittiin varmistamaan riittivin hyvilaatuisen mittausdatan saaminen, jotta
harmonisen heritteen tai melun aiheuttamat ongelmat olisivat mahdollisimman vahiiset. Lisdksi
ndin parannetaan mahdollisuuksia erottaa lihelld toisiaan olevat moodit toisistaan. Mittausdataa
ASCII-formaatissa oli noin 1 gigatavu.

Tarvittava aikasarjan pituus 7 midrittdad alimman oletetun ominaistaajuuden f,;, avulla ja
néytteenottotaajuus f; korkeimman kiinnostavan ominaistaajuuden f,,, perusteella seuraavasti [6]:

T =1000/ f,,. &)

Je 23 fnan - )

OOMA-ANALYYSI

Ooma-analyysi eli moodien médrittdminen kdynninaikaisista aikasarjoista suoritettiin kaupallisella
ARTeMIS Extractor [6] ohjelmistolla. Analyysi suoritettiin usealla taajuusviivojen madralls,
viivojen vilit 12.5 mHz, 25 mHz, 50 mHz ja 100 mHz. Mitd vihemmin viivoja kdytetddn sitd
enemmin spektriviivojen keskiarvoistuminen vaikuttaa ja sitd helpommin ominaistaajuudet ovat
tunnistettavissa. Liian pieni viivamidrd voi kuitenkin johtaa liialliseen keskiarvoistumiseen ja
ominaistaajuuden virheelliseen arviointiin ja mahdollisten vierekkiisten moodien huomaamatta
jadmiseen. Koska suurin kiinnostus kohdistui mataliin taajuuksiin, mittausdataa desimoitiin 20
kertaa eli vain joka 20. ndyte siilytettiin. Tdmén seurauksena Nyqvistin taajuudeksi tuli 25.6 Hz.
Nyqvistin taajuudella tarkoitetaan tdssé taajuutta, joka on puolet kiytetystd ndytteenottotaajuudesta
51.2 Hz.

Frequency Domain Decomposition (FDD) menetelmi

Moodien identifioimiseksi kdynninaikaisesta mittausdatasta kéytettiin nyt ns. Frequency Domain
Decomposition (FDD) menetelmii, jonka teoria on esitetty ldhteessd [7]. Menetelmd pohjautuu
Basic Frequency Domain (BFD) tekniikaksi kutsuttuun taajuustason lahestymistapaan, jonka
mukaan toisistaan erilldin olevat moodit voidaan laskea suoraan tehospektrin tiheysmatriisista [§].
FDD menetelmisséd, sen sijaan ettd kiytettdisiin spektrin tiheysmatriisia suoraan kuten BFD
menetelmissd, spektrimatriisit hajotetaan jokaisen spektriviivan kohdalla (taajuudella) kdyttden
Singular Value Decomposition (SVD) menetelmid. Tilloin spektrimatriisit hajotetaan, mikili
vaimennus on vihdistd, kuormitus puhdasta valkoista kohinaa ja lihekkidin olevien moodien
ominaismuodot geometrisesti ortogonaalisia, ryhméksi yhden vapausasteen systeemid vastaavia
autospektrin tiheysfunktioita. Todellisessa tilanteessa niitd ehtoja ei voida yleensid tiyttdd, vaan
hajotelmaa yhden vapausasteen systeemiksi on pidettivd vain arviona, joka kuitenkin on
huomattavasti tarkempi kuin perinteisen BFD menetelmin tulokset.

SVD menetelmdlld ratkaistuja singulaarivektoreita voidaan pitdd ominaismuotoina ja
ominaistaajuudet voidaan ratkaista viemilld yksittdiset yhden vapausasteen autospektrin
tiheysfunktiot takaisin aikatasoon kidnteismuunnoksen avulla. Taajuus ja vaimennus arvioidaan
yhden vapausasteen autokorrelaatiofunktion avulla virdhdysajan ja logaritmisen dekrementin
perustella [9].

Moodien identifiointi

Mittausten laadun varmistamiseksi ennen varsinaista moodien identifiointia tarkasteltiin saatuja
spektrin tiheyksid ja spektrin tiheysmatriiseja. Kuvassa 3 on esitetty ns. autospektrin tiheys
kaikissa eri dataseteissd (10 kpl) referenssipisteen 4 (220Y+) tapauksessa. Kuvan perusteella voi
padtelld, ettd eri mittauskerroilla saatu data on hyvin samanlaista eli kaikki moodit ovat
todennikoisesti hyvin edustettuina jokaisessa datasetissi ja ettd energiatasot ovat my®s saman-
kaltaisia kaikissa dataseteissi. Kuvassa 4 on esitetty autospektrin tiheys referenssipisteen 2



(114Z+) tapauksessa, timéin perusteella mittausryhmissi seitsemén referenssipisteen 2 energiataso
on alhaisempi kuin muiden, vaikka autospektrin muoto onkin hyvin samanlainen. Lisdksi
mittausryhmissa yksi referenssipisteen 2 energiataso on korkeampi kuin muissa tapauksissa.
Nimi erot saattavat aiheuttaa ongelmia mittausryhmien yksi ja seitseman kasittelyssd, vaikkakin
erot ovat varsin vihaisid. Muiden referenssipisteiden tapauksessa tilanne muistuttaa kuvan 3
tilannetta, eli autospektrit ovat hyvin samankaltaisia.
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ARTeM S Extractor, 8bf -4d17-9a41-3256, ARTX-0320A-021202PRO, Academic License

Kuva 3. Autospektrin tiheys kaikissa dataseteissi referenssipisteelle 4 (220Y+).
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Kuva 4. Autospektrin tiheys kaikissa dataseteissi referenssipisteelie 2 (114Z+).

Kuvan 5 perusteella kaikkien referenssipisteiden autospektrien tiheysfunktioiden keskiarvot ovat
hyvin samankaltaisia kaikissa mittausryhmissd. Yleisesti ottaen mittauksia voidaan pitdd
onnistuneina ja kerdtyn datan laatua hyvéni.

Autospektrin tiheysfunktioiden huippujen avulla voidaan paitelld, milta taajuuksilta moodeja voisi
identifioida. Ensimméiset ominaistaajuudet 16ytyvit taajuuksien 4.5 Hz ja 7 Hz véliltd. Toinen
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menetelmi mahdollisten ominaistaajuuksien tunnistamiseksi on eri kanavien vilisen koherenssin
tarkastelu (kuva 6), silld koherenssi saa normaalisti korkeita arvoja resonanssitaajuuksilla.

[dB | (1 NONE}/ Hz] Average of Diagonal Bements of Spectral Density Matrix
of all Data Sets
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Kuva 5. Kaikkien referenssipisteiden autospektrien tiheysfunktioiden keskiarvot mitatuista
dataseteisti.
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Kuva 6. Koherenssi funktio mittauspisteiden 220X+ ja 233X- vililli.

Varsinainen moodien identifiointi suoritetaan FDD meneteimissd poimimalla ns. piikit kaikkien
mittausryhmien spektrien tiheysmatriisien SVD hajotelmien normalisoitujen singulaariarvojen
keskiarvoista. Kuvassa 7 on esitetty 11 korkeinta singulaariarvoa (SVD-kayrdd) kaikkien eri
mittausryhmien spektrin tiheysmatriisien singulaariarvojen keskiarvoista, jotka on normalisoitu
ylimmén kdyrin (ensimmaiinen singulaariarvo) alle jadvdan alan suhteen. Kuvassa 7 on néhtavissi,
ettd taajuudella ~4.5 Hz on selvi piikki kolmessa korkeimmassa SVD-kdyrassd. Tama tarkoittaa,
ettd kyseiselld taajuudella on ainakin kolme ns. toistuvaa moodia. Kuvasta vol tunnistaa
mahdollisia vierekkiisid tai kaksoismoodeja esimerkiksi taajuudella 6.7 Hz kolmannella SVD-
kdyralld. Lisdksi kuvassa on nihtdvissd heikkoja piikkeja kohdissa 4 Hz, 6 Hz ja 8 Hz alimmilla



SVD-kiyrilld. Nam4 piikit ilmeisesti aiheutuvat heikoista harmonisista heritteistd, joilla on yhteys
siipipumpun siipien lukuméairian. Kuvassa mahdolliset ominaistaajuudet on merkitty viivoilla ja

nelid viivassa ilmoittaa SVD-kidyrin, jonka perusteella kyseinen moodi médritetaan.
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Kuva 7. Mahdollisia ominaistaajuuksia. Kéytetty spektriviivojen tiheys 25 mHz.
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Kuva 8. Harmonisen heriitteen aiheuttama piikki SVD-kéyrissda 49.9 Hz taajuudella ja

mahdollisia ominaistaajuuksia.
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Siipipumpun aiheuttama voimakas harmoninen herite taajuudella ~49.9 Hz on nahtivissd selvisti
kuvassa 8. Lisdksi kuvassa nikyy kaksi, ilmeisesti harmonisten muotojen aiheuttamaa, piikkid
taajuuksien 49.1 Hz ja 50.6 Hz kohdalla. Kuvaan 8 on myds merkitty 4 mahdollista
ominaistaajuutta harmonisten heritteiden aiheuttamien piikkien ldheisyydessd. Ndiden moodien
verifiointi vaatisi moodien identifiointia ns. Stochastic Subspace Iteration (SSI) menetelmalla.

TULOKSET

Ooma -menetelmilld FDD -tekniikalla médritetyt moodit, kdyttden sekd 25 mHz ettd 50 mHz
spektriviivojen jaottelua ja keskimiairaisia SVD-kiyrid, on esitetty taulukossa 1. Moodit 1 - 12
midritettiin kdyttden 25 mHz jaottelua ja moodit 13 - 35 50 mHz jaottelulla. Taulukon sarakkeissa
2 ja 3 on listattu parhaiten vastaavat tiristinkokeen perusteella madritellyt moodit.
Téristinherdtteen avulla médritettyjen moodien ja Ooma-moodien vilinen korrelaatio, taajuuseron
ja ominaismuotojen korrelaation avulla, on esitetty sarakkeessa 7. Korrelaatio on laskettu kiyttden
Modal Assurace Criteria (MAC) menetelmad [10], jossa kahden ominaisvektorin @; ja (I)j vilinen

korrelaatio voidaan mairittdd seuraavasti:

(o {o)]
AC, = - - - s 3)
[{o) {o) | {o,} {o,]
missd * merkitsee vektorin kompleksikonjugaattia. Mitd korkeampi MAC arvo on, sitd parempi on
ominaisvektoreiden vilinen korrelaatio. Usein kaytetty kriteeri hyville korrelaatiolle on MAC >
0.7 ja heikolle korrelaatiolle MAC < 0.5. Liszksi taulukossa on ilmoitettu miltd SVD-kdyraltd
kyseinen moodi on identifioitu.
Moodien keskindistid korrelaatiota, kuten ominaistaajuuksien erot ja ominaismuotojen korrelaatio,
tarkasteltaessa on muistettava, etteivit olosuhteet k.o. mittauksissa ole olleet tdysin identtiset.
Putkiston kiyttdpaine on noin 7,5 MPa ja kidyttslampoétila noin 165 °C, taristinmittausten aikana
putkisto oli tdytetty kuumalla vedelld mutta sekd lampoétila ettd paine olivat kuitenkin selvisti
alhaisempia kuin kdyttotilassa. Mittausten vélilld oli yli vuosi aikaa, jonka aikana eristeiden
ominaisuudet ovat voineet muuttua. Menetelmid vertailtaessa on myos muistettava, ettd téristin
herite ei vilttiméttd herdtd kaikkia muotoja kuten todellinen kdynninaikainen multiple-input
herite.
Taulukon 1 perusteella on havaittavissa, ettd Ooma menetelmalld 18ytyisi selvisti useampia
moodeja kuin tdristinheridtteelld. Osa moodipareista korreloi keskenddn kuitenkin varsin hyvin
sekd taajuudeltaan ettd ominaismuodoltaan, kuten esim. ensimmaéinen moodi. Matalien taajuuksien
omanaismuodot korreloivat paremmin kuin korkeampien taajuuksien muodot. Kaiken kaikkiaan
moodien keskindiseen vastaavuus on varsin hyvi, vaikka vallinneissa olosuhteissa ja kdytetyissid
heritteissd oli eroja.
Ooma-menetelmilld identifioitujen ominaismuotojen tarkempi vertailu téristinherdtteen avulla
midriteltyihin ominaismuotoihin osoittaa suurimpien eroavaisuuksien olevan yleensd rakenteen
alaosassa sekd venttiileissd erityisesti Y ja Z-suunnissa eli taristyssuunnissa ettd putkimutkissa,
jotka virdhtelevit selvisti voimakkaammin kdynninaikaisen herdtteen tapauksessa. Erityisesti
ensimmiisen SVD-kidyrdn perusteella identifioidut moodit virihtelevit voimakkaasti
putkimutkissa varsinkin pisteissd 116 - 219. Syyni tihin ilmicon on todenndkdisesti kyseisessd
putkimutkassa tapahtuva turbulentti virtaus, joka aiheuttaa mutkaan erillisen voimakkaan
heritteen. Toisen ja kolmannen SVD-kidyrdn perusteetla identifioidut moodit ovat selvisti
lahempini perinteisid rakenteellisia ominaismuotoja.




Taulukko 1. FDD menetelmilléi méiritetyt ominaistaajuudet ja -muodot seki niiden

korrelaatio tiristinkokeen tulosten kanssa.

OOMA |Taajuus (Hz) |Téristin [Taajuus (Hz) |Erotus (Hz) |Erotus MAC |SVD
1 4.6 1 4.279 0321 698 %| 0.78 3
2 4.6 4.510 0.090] 196 %| 0.35 1
3 4.625 3 6.821 -2.196| -47.48 %| 0.31 2
4 5.5 2
5 5.525 1
6 6.375 2
7 6.4 4 6.833 -0.433| -6.77 %| 0.38 3
8 6.725 2
9 6.725 3

10 6.75 1
11 6.825 2
12 7.225 4
13 8.2 5 9.175 -0.975| -11.89 %| 0.56 4
14 9.15 1
15 9.2 2
16 9.25 4
17 9.25 3
18 9.7 6 9.339 0.361| 3.72%| 0.65 2
19 10.05 3
20 11.25 7 11.431 -0.181| -1.61 %| 0.61 2
21 11.35 1
22 114 8 13.514 -2.114| -18.54 %| 0.49 3
23 12.25 3
24 13.6 9 13.763 -0.163| -1.20%| 0.37 2
25 13.6 1
26 13.9 1
27 14.3 3
28 15.75 1
29 16.75 3
30 17.15 2
31 18.45 3
32 18.6 1
33 19.2 11 20.299 -1.099| -5.72 %| 0.46 2
33 19.2 12 20.506 -1.306| -6.80 %| 0.34 2
34 20.95 10 20.124 0.826|] 3.94%| 0.37 1
34 20.95 13 20.634 0.316] 151%| 042 1
35 21 3

Kuvassa 9 on esitetty moodipari Ooma 4.6 Hz (project A) ja tdristin 4.279 Hz (project B), joiden
ominaismuotojen korrelaatio on hyvid, MAC = 0.78. Ominaismuotojen suurimmat eroavaisuudet
ovat pisteiden 220 ja 227 vililld ja venttiilissd, pisteessd 326. Ooma-moodi on identifioitu

kolmannen SVD-kiyrin perusteella.
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Kuva 9. Moodipari Qoma 4.600 Hz ja tiiristin 4.279 Hz. Ominaismuotojen korrelaatio MAC
0.78.

Kuvassa 10 on esitetty mahdollinen ominaismuoto, joka on identifioitu harmonisen heritteen
aiheuttaman SVD-kidyrien piikin vierestd (Kuva 8, piikin oikeapuoli) toisesta SVD-Kiyristi.
Kyseinen ominaismuoto muistuttaa rakenteellista muotoa, mutta timidn varmistaminen vaatisi
lisdanalyysid esim. SSI -menetelmalla.

Kuva 10. Ooma-moodi 50.5 Hz. Mahdollinen ominaismuoto harmonisen heritteen
tuntumassa.

Taulukossa 2 on esitetty tarkemman moodien identifioinnin tulokset joillekin taulukon 1
perusteella valituille moodipareille. Tarkemmassa identifioinnissa pyrittiin etsiméddn paremmin



taristinmittausten perusteella ratkaistujen moodien kanssa korreloivia moodeja kiyttien erilaisia
spektriviivojen tiheyksid (12.5 mHz - 100 mHz) ja tarkastelemalla jokaista mittausryhmis
erikseen. Tulokset osoittavat, ettd nidin saadut ominaismuodot korreloivat paremmin kuin
keskimidrdisida SVD-kdyrid kdyttdmilld saadut muodot, mutta menetelmd on huomattavasti
tybladmpi. Menetelméin soveltamisen mielekkyys normaalitilanteessa riippuu siitd, kuinka paljon
moodien ominaistaajuudet vaeltavat eri mittausryhmien kesken ja muuttuvatko vasteiden
energiatasot voimakkaasti eri moodien ja mittausryhmien kesken. Taulukossa 2 moodit, joiden
identifiointi onnistuu paremmin kiyttden jotakin muuta menetelmai kuin aiemmin kdytettyd 25
mHz spektriviivojen tiheyttd ja keskimdardisia SVD-kayrid ilman “jatkuvaa" vertailua tdristin-
moodeihin, on merkitty tahdella*.

Taulukko 2. Moodien identifioinnin tuloksia erilaisilla asetuksilla.

OOMA TARISTIN |Ero (Hz) |Ero (%) |[MAC
Taajuus (Hz) [Taajuus (Hz)
4.512* 4.279 0.233] 5.16%| 0.71
4.592 4.279 0.313] 6.82%| 0.79
9.387 9.175 0.212] 226 %| 0.57
9.68* 9.339 0.341| 3.52%| 0.67
10.62 9.339 1.281] 12.06 %| 0.68
10.62 9.175 1.445| 13.61 %| 0.60
11.2% 11.431 -0.231| -2.06 %| 0.67
11.39 13.514| -2.124| -18.65 %| 0.52
13.7 13.763 -0.063| -0.46 %| 0.44
24.42 24.732] -0.312| -1.28%| 0.44
YHTEENVETO

Mittaamalla vain kidynninaikaiset vasteet ja identifioimalla moodit Ooma -menetelmalld
Frequency Domain Decomposition (FDD) menetelmid hycdyntden onnistuttiin 10ytdméin useita
moodeja voimalaitosputkistosta, joka oli voimakkaan harmonisen heritteen alaisena.
Identifioitujen moodien lihempi tarkastelu ja vertailu tdristinmittauksen perusteella médritettyihin
moodeihin osoittaa, ettd vaikka 16ydettyjen moodien lukuméirassa on selvé ero, niin kuitenkin osa
moodeista on varsin samankaltaisia ja saatuja tuloksia voidaan pitdd varsin luotettavina.
Selvimmit eroavaisuudet Ooma-muotojen ja tdristinmuotojen vililld ovat, erityisesti
taristyssuunnissa, putkimutkissa ja rakenteen alaosassa. Eroavuuksia analysoitaessa on
muistettava, etteivit vallitsevat reunaehdot olleet aivan samat eri mittaustilanteissa.
Mittaustuloksien ja Ooma analyysin perusteella rakenteessa on havaittavissa useita taajuuksia,
joilta 16ytyy ns. toistuvia moodeja (repeated modes), joiden 16ytiminen muilla menetelmilld
saattaa olla vaikeaa. Ensimmdiisen SVD-kdyrdn perusteella identifioidut ominaismuodot olivat
usein muotoja, jotka varidhtelivit voimakkaasti putkimutkissa. Toisen ja kolmannen SVD-kdyridn
perusteella identifioidut muodot korreloivat yleensd paremmin tiristinmuotojen kanssa kuin
ensimmdisen SVD-kiiyrin perusteella ratkaistut muodot. Syyna tihan saattaa olla putkimutkien
voimakas vaste niissd vaikuttavan turbulentin virtauksen aiheuttamaan herétteeseen.

Nyt saatujen tulosten perusteella lihestymistapa vaikuttaa toimivalta ja tulevaisuudessa vastaavan
kaltaista putkistoa tarkasteltaessa on todennikoisesti mahdollista tulla toimeen lyhyemmilld
aikasarjoilla ja alhaisemmalla niytteenottotaajuudella. T4lloin varsinainen mittaustapahtuma olisi
nopeampi ja moodien identifiointi vaatisi pienempien tiedostojen ansioista vihemman resursseja.
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APPLICATIONS OF FREQUENCY-DOMAIN APPROACH FOR
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ABSTRACT

In the present paper, analysis of vortex-induced vibrations of two challenging long-span bridges is
described. The frequency-domain approach employing spectral analysis and amplitude dependant
correlation model is used. An attempt is make, not only to demonstrate features and capabilities of
the approach, but also to discuss implications the phenomenon of vortex shedding might enter into
the design of modern suspended-span bridges.

1. VORTEX-INDUCED VIBRATIONS OF BRIDGES

In bridge aerodynamics, vortex-induced vibrations are a concern of light-weight deck sections and
pylons. In the recent decade, the importance of vortex shedding to cause potential problems is re-
discovered. Historically, the phenomena has been well noticed, but the break-through research has
been buried under the extensive work on bridge flutter and buffeting in periods 1940-1960 and
1960-1990, respectively. This is partly due to fact that the resulting oscillations, although embar-
rassing and harmful to users, are usually not destructive regarding overall structural safety and
stability. Furthermore, most big suspended-span bridges built in the past have open truss-type
stiffening girder, which will usually not initiate problematic vortex shedding actions.

The modern European-style decks of long-span bridges are usually made of steel and have stream-
lined box or double-I girder design. Optimisation of steel consumption and usage of light-weight
road pavements will reduce overall mass further, increasing vulnerability to problematic vortex-
induced vibrations. Among recent suspension bridges and in-field situations, it is interesting to
note that for example the deck of Great-Belt East Bridge (main span 1624 m) was found suffering
form vortex-induced vibrations, although extensive and sophisticated analysis was made in ad-
vance. Moreover, typical long-span Norwegian suspension bridges, employing narrow steel box-
girder, have possessed embarrassing deck oscillations. In some occasions in moderate wind around
5...15 m/s at deck level, the double amplitudes of these structures have been of order 1 m and
accelerations of order 0.5 g. These bridges have been successfully corrected afterwards by mount-
ing guide vanes at lower corners of the cross-section (Fig. ).

Another specific issue is the construction of pylons of cable-stayed and suspension bridges. During
the construction, the tallest pylons act as slender towers. Again, steel pylons are more susceptible
to vortex-induced vibrations in comparison with concrete ones, due to smaller mass and mechani-
cal damping. In many cases reinforced concrete pylon alternatives are competitive with respect to
steel ones. Former mentioned could usually be constructed without notable wind-induced prob-
lems. In longest cable-stayed spans built so far, the pylons have exceed heights of 200 m, and at
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least upper part of pylon is made of steel to reduce dead load end ease the construction. Another
reason to use steel is to avoid winter casting, which might be too complex or expensive.

F
! 13,6 m s_ L 0,94 m

e——

Fig. 1: Guide vane of the Osteray Suspension Bridge after ISAKSON et al. (2001).

There are some fundamental concems in reliable analysis of bridge decks for vortex shedding,
which follows from the size and elongated shape of the cross-section:

—  resonances with mode shapes and lock-in falls usually to the critical Reynolds number range,
where at least circular cylinders are known to have marked decrease of drag and disorganised
vortex street. Substantial uncertainties could exists in wind-tunnel experiments of scale mod-
els due to dissimilarity of Reynolds number

— elongated shape causes vortices shedding from the leading edge to interface and attach to the
rest of the body and the vortex trail in a complicated manner. This reflects into the phenome-
non that only decks having certain aspect ratio A (= h/B, where » = reference across-wind di-
mension and B = width of the cross-section) and shape, will have dominant response and lock-
in at or near resonance suggested by the classical Strouhal law. The Strouhal law is expressed
as

U
ng =5, PR (1)
where ng = shedding frequency of vortices in the von Kérmén vortex street; S, = Strouhal
number (a geometric constant or slowly varying function of Reynolds number) and U = steady
wind velocity. Instead, in some wind-tunnel experiments it is found that other forms of peri-
odic vortex excitation, synchronized with oscillation of the body at structural natural fre-
quency, will control the phenomena

—  as in analysis of other line-like structures, span-wise correlation of loading vs. vibration am-
plitude is an important issue. Bridge decks have usually sharp corners, which have been dem-
onstrated to result higher level of correlation with respect to circular cylinders. Consequently,
analysis of bridge decks needs additional family of correlation models to be developed. These
are also needed for vibrations in torsion mode, which could be important in some cases.

Two widespread analytical models exist for assessments of bridge decks, including the conven-
tiona] harmonic excitation model and the models inspired by the nonlinear fluid-oscillator model.
Both models, to give realistic results, should be extended to include effects of span-wise load cor-
relation. For the former model, this extension could be done by means of spectral analysis and
random vibration theory, while for the latter model no definite theory is probably available. In the
case of fluid-oscillator models, some authors have proposed, to account effects of correlation loss,
that excitation could be modelled to occur only in some portion along the bridge span. In discuss-
ing which model type is more useful for bridge design, it could be noted that:



— relative “non-dimensional” amplitudes (z,/4, where z, = displacement amplitude) in successful
bridge designs could not be big. For example, a deck section of 2...3 m in height, if possess-
ing non-dimensional amplitude around 10 % will probably be classified as unacceptable. Non-
linear actions within the phenomena, although important, are not expected to weaken the ap-
plicability of linear approaches, provided that open design parameters are tuned to applicable
level of non-dimensional amplitudes

— due to Reynolds number range, the excitation process will probably have stronger random
character vs. the sub-critical Reynolds number range being the bases of most fluid-oscillator
models.

The analysis of vortex-induced vibrations of bridges is usually based on wind-tunnel tests directly
or indirectly. Although full and taut-strip models, i.e. 3D scale models, could be used to obtain
response estimates directly, 2D “section model” type scale models have several advantages in
practical engineering work. In particularly, 2D scale-model results could be used to extract loads
on structures to prepare design tables of associated non-dimensional quantities (Strouhal numbers,
aerodynamic exciting coefficients etc.). As soon as problematic actions are indicated, original
section model could be easily modified to search aerodynamic devices to mitigate excitation. One
of the most useful approaches is semi-empirical: to calculate, as accurate as possible, full bridge
behaviours by means of measured responses of section models. Once the successful cross-section
is found, testing of full models could be optionally conducted to make the final design check.

2. FREQUENCY-DOMAIN APPROACH FOR ANALYSIS OF VORTEX SHEDDING

Application of frequency-domain approach, or the spectral analysis, seems to be not new, but
promising branch for developing generally accepted method for analysing vortex-induced vibra-
tions of bridges. For example, the model adopted in EUROCODE (1991), available also analysis of
conventional bridges, is in many sense identical to the Correlation model of BLEVINS et al. (1976),
in which the Correlation model was developed for cylindrical structures in the framework of ran-
dom vibrations and spectral analysis. More recently, a rigorous frequency-domain model is pro-
posed by KIVILUOMA (2001) for bridges. The model is, despite its mutual simplicity, versatile to
take into account key properties of the phenomenon: amplitude dependence of load correlation;
turbulence reduction effect on response; and self-limiting nature of the excitation force vs. ampli-
tude. The excitation process is modelled as band-limited white noise, which will have finite vari-
ance. While the bandwidth will be dependant on relative amplitude at lock-in vibrations, the exci-
tation load variance is proposed to be invariant. Inspired by the model of VICKERY et al. (1983) for
circular cylinders, the bandwidth is assumed to be dependent on longitudinal turbulence level of
air in a simply and justifiable form. Response calculations follow the standard procedures of spec-
tral analysis and normal mode summation, and are suitable to efficient computer implementations.
The core equations of the excitation model are repeated below.

Spectral density of exiting force is modelled as

1 =2V C2 A, A,

Sg(n) = (EPU h] A (n,-—TS n Sni+7j 2)
0 ; elsewhere,

where Sx(n) = one-sided spectral density of excitation load acting per unit length; » = frequency; p

= density of air; 5K = non-dimensional RMS-exciting coefficient; n; = structural natural fre-

quency of interest; and A, = bandwidth of dominant excitation. For theoretical zero bandwidth

(i.e., harmonic load), relation Cy = J2¢ x holds, in which tabulated peak values of Cy could be

found in literature. In general, non-dimensional RMS-exciting coefficients are to be determined
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experimentally as function of reduced velocity U/(hn;). Aerodynamic damping is taken as zero
when extracting or applying these. The bandwidth is proposed to be dependent on non-
dimensional amplitude and turbulence intensity in a convex functional form. The proposed form is

_n=ﬂ[1_ _G_J e

where B = non-dimensional constant specifying the bandwidth in smooth flow (8= 0.05...0.1); B,
= 1.31,, with I, = longitudinal turbulence intensity; ¢, = response standard deviation; and o, =
critical standard deviation response. In above formulation at critical amplitude, specified by o¢,,,
the bandwidth is zero. Model’s extension to actual 3D structures is made by specifying the cross-
spectrum through formula

Sk (), =[Sk, S|, X, @

where C(A,) = non-dimensional decay function; / and j denote coordinates on the structure; and A,
= separation between the coordinates i and j. For bridge decks

a A i
C(Ar)=_'—l h_r';hmE lzj;o-mz = 4 (5)
az'l'h—m G

m

where parameters a; = 0.001 and a, = 0.019 have been reported for H-shape cross-sections by
other investigators. Alike formulation could be used also for twisting oscillations. For pylon legs,
the original model of BLEVINS et al. (1976) could be written as

a, =2
C(A,)=—ﬁ ; L=ay ST . ; az=5 a4=w : a5=ﬁ. 6)
hl, 05—07’” V2 V2

The resulting analysis model is nonlinear with respect to non-dimensional amplitude and needs to
be solved, e.g., through fixed-point iteration.

3. TWO APPLICATIONS OF THE PRESENT MODEL

Applications of the present model for two internationally notable bridges, with the author being
involved in aerodynamic analysis in the years 2000-2002, are described: the world-record span
cable-stayed bridge proposal for the Stonecutters design competition in Hong Kong, China; and
the Neva Cable-Stayed Bridge in St. Petersburg, Russia. Main designers for the former bridge
came from Finnish company ConsultingKORTES Ltd. The latter bridge is designed by Russian
consultants Institute Giprostroymost - Saint Petersburg (the cable-stayed part) and Institute Stroi-
poect (approach spans and management of the whole project). General views of these bridges, as
used in aerodynamic analysis, are illustrated in Figs 2 and 3.
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Fig. 3: Pylons of a) the proposed Stonecutters Bridge and b) the Neva Cable-Stayed Bridge.
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The Stonecutters bridge competition in the year 2000, promoted bridge engineers around the world
to consider breaking a 1 km span-limit among cable-stayed bridges. The Finnish proposal, ranked
to 4" prize in the competition, was based on the proven technology and classical-style cable-stayed
alternative. The A-shaped pylons, reaching the height 298 m, comprise reinforced concrete legs
and steel anchorage upper part about 80 m in height. In aerodynamic analysis, about 50 lowest
mode shapes were calculated using the commercial FE-programs FEMAP & CAEFEM for three
3D models of in-service bridge and two construction stages. Extracted natural frequencies lie in
range 0.11...2.5 Hz. The modal analysis results were used as input to aerodynamic analysis, as-
sisted with the integrated computer code BWIND-3 developed by the author. Paraliel verification
calculations were conducted using the simplified models of EUROCODE (1991).

The analysis of vortex shedding indicates that dominant displacements occur in fundamental
modes, but the acceleration responses increase with wind speed due to lock-in with higher modes
(Fig. 4). It was demonstrated that vortex shedding will be the governing aerodynamic excitation
mechanism for the deck and pylons under construction. Up to the design wind velocity, accelera-
tions of order 0.5 g and 1 g were predicted to occur at pylon and cantilever tips, respectively. The
aerodynamic analysis output static-equivalent wind loads to structural engineers. These include the
actions of inertia forces (mass multiplied by acceleration) as one component. The loads were found
to be within acceptable limits. At in-service stage, the cables will “fix” the pylons, and asphalt
pavement will increase mass to reduce deck oscillations. Furthermore, steel parts at pylon tips
have perforated cladding, which will distort formation of regular vortex trail.

It was concluded that calculated pylon responses were in agreement with the simplified model.
This was not the case, however, in deck analysis. This was attributed to disparity in correlation
models, or correlation lengths, of EUROCODE (1991) and the models deduced for bridge decks. The
aerodynamic study as a whole implies that 1 km span length among cable-stayed bridges is quite
reachable from aerodynamic point-of-view, if aerodynamic issues are seriously taken into account
in design. The most concern is probably the parametric excitation of extremely long and flexible
stay-cables at main spans. In the proposed design, stay-cables were fixed with cross-ties (Fig. 2).

In the context of Stonecutters design competition, it has been later observed that vortex-induced
pylon oscillations were problematic in the winning concept, which has mast-type steel pylon with
circular cross-section. This design has been replaced by steel-concrete composite alternative.

The Neva Cable-Stayed Bridge is a big twin bridge (two identical bridges side by side) currently
under construction. Planned completion of the 1¥ and the 2™ bridges are in the years 2005 and
2009, respectively. During the construction, continuous long-term monitoring system is operating
to report health of the structure, including recordings of wind-induced vibrations. Deck and pylons
are both light-weight steel-box structures. Of special interest in aerodynamic analysis are the vor-
tex-induced vibrations and their possible interaction with fluid coupling. In fluid coupling, adja-
cent structures can interface with each other over the fluid medium. Generally, windward structure
either provides windshield to leeward structure, or magnifies the response of the leeward structure
due to highly periodic wake generated from the windward structure. In the present case, both
bridges have identical natural frequencies, which could further reinforce the phenomena.

The main aerodynamic analysis is made experimentally using wind-tunnel tests of full models by
Danish Maritime Institute and analytically by the author. FE-based modal analysis was done by
the main designer for 3 different models, including in-service bridge and two critical construction
stages. These results were used as input to the BWIND-3 analysis conducted by the author.

Wind-tunnel experiments indicate that in smooth flow, width of the first lock-in wind-speed range
associated to the fundamental bending mode of 0.27 Hz, is very narrow. This reflects into analyti-



cal calculations in a sense that results are sensitive to across-wind dimensions the cross-section
(the pylons are slightly tapered in elevation) and height profile of the mean wind velocity. Obvi-
ously, lock-in excitation is not encountered simultaneously in all cross-sections at varying alti-
tudes. In turbulent-flow experiments, vortex-induced response of fundamental mode was small and
hardly noticeable.

Pylon tip during construction: RMS vortex- Pylon tip during construction: RMS vortex-
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Fig. 4: Calculated vortex-induced vibrations for critical construction stages of the proposed
Stonecutters Bridge. Reduction effect of turbulence is neglected by taking B, = 0 in Eq. (3). The
parameler z, refers to surface roughness length used to calculate height profile of the mean wind
velocity.

It was found that the pylons could possess problematic oscillations in extreme winds during the
construction. After re-analysis of wind tunnel data due to analytical calculations, these were attrib-
uted to the vortex shedding with resonance to the 2™ bending mode in direction to bridge span (1.7
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Hz). The main disparity between the experimental and analytical results was due to the Strouhal
number of the pylon leg. Experiments indicate S, =~ 0.2 while EUROCODE (1991) value S, = 0.1 was
applied in initial calculations. From designer’s point-of-view, uncertainties in S, are problematic
when inspecting whether or not certain higher mode will reach resonance in wind velocity range
up to the design value. It is also important to know good initial estimate for minimum lock-in wind
speed to detect, if the lowest controllable flow speed in wind tunnel is sufficient to inspect vortex
shedding concerning natural frequencies of the scale model.

After matching the Strouhal number with the experimental one, and making some minor changes
to analysis model, a good agreement was found between the results (Figs 5 and 6). The responses
in Fig. 5 are related to the wind-tunnel experiment conducted in smooth flow and in very low
value of mechanical damping. For design value of damping, analytical calculations indicate peak
accelerations of order 1.5 g and 0.6 g to occur in smooth and turbulent wind conditions, respec-
tively. Former mentioned “design value” of acceleration is still big concerning inertial loads and
static-equivalent wind loads, and will put structural capacity into the “limit”. The installation of
temporary tuned-mass-dampers was calculated to be sufficient and optimum solution to suppress
vibrations of the 2™ mode, if required. Perhaps the most important contribution of analytical
calculations was to demonstrate that the high accelerations were due to vortex shedding instead of
more serious form of instability called galloping.

Vortex-shedding response (converted to full- Vortex-shedding acceleration response
scale) at pylon tip (converted to full-scale) at pylon tip
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Fig. 5: Smooth-flow responses (I, = 0) of the pylon tip at construction stage of the Neva Cable-
Stayed Bridge in very low mechanical damping. “Overload level” refers to problems in empirical
setup, in which the upper measuring range of accelerometers was exceeded.

Wind-tunnel experiments indicate that fluid-coupling in the presence of both bridges will have no
remarkable adverse effects into responses of pylons and decks. It seams that the windward struc-
tures only provide some shielding to leeward structures. The horizontal clearance between the
decks is about 10 m. In the case of two adjacent pylons and wind perpendicular to bridge span, it
was even found that the response of the windward pylon was slightly lower than in the single py-
lon case. A possible explanation of this is that leeward pylon tends to distort regular vortex street
generated from the windward pylon (Fig. 6).
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Fig. 6: a) Idealization done in assessments of pylons for vortex shedding. Pylon legs in “part 1”
are assumed to act as single body. In “part 27, wind velocity hitting the leeward pylon leg is lower
than in the windward leg due to shielding effect. b) Illustration of possible “splitter-plate” action
of the leeward pylon. The structures in wake can distort regular vortex trail and reduce the excita-
tion in windward structure.

4. CONCLUSIONS

vortex-induced vibrations have became of special interest in design of modern bridges with
lighter decks, increasing span-lengths and taller pylons. Generally, the most severe problems
occur in suspended-span steel bridges due to relatively small mass and damping
frequency-domain approach provide a promising framework for deducing reliable and gener-
ally accepted design method for vortex shedding of bridges, with the present model being one
candidate

separate correlation models are evidently needed for pylons and bridge decks

vortex-induced vibrations in resonance with very low natural frequency (i.e., fundamental
modes of tall pylons during construction) are sensitive to various design parameters, including
also simply across-wind dimensions of cross-sections. The height profile of mean wind veloc-
ity needs carefully be reproduced in analysis, to ensure correct assessments of lock-in at vari-
ous altitudes

study of the proposed Stonecutters Bridge suggests that 1 km span length among cable-stayed
bridges is technically reachable from aerodynamic point-of-view, if aerodynamic issues are
taken into account when designating the key design solutions. Suppression of stay-cable vi-
brations will be of special importance in most designs

aerodynamic analysis of the Neva Cable-Stayed Bridge demonstrated the usefuiness of ana-
lytical models in purpose of complementing wind-tunnel tests. Analytical models could give
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close insight to loading of structures to assist structural engineers to perform stress-check for
design. It also helps correct interpretation of wind-tunnel test results

—  in wind-tunnel tests of the Neva Cable-Stayed Bridge, fluid coupling was not found initiating
problematic interactions between the two identical bridges close to each other.
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BALLISTOKARDIOGRAFIA SYDAMEN KUNNON SEURANNASSA
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TIIVISTELMA

Tyossi tutkittiin kuntoharjoittelujakson yhteydessi ballistokardiografialla (BKG) saatuja mittaus-
tuloksia. Spektrianalyysin ja tyossd johdetun matemaattisen muunnoksen avulla etsittiin BKG-
signaalista ja sen taajuusspektristi fyysisen kunnon nousun kanssa korreloivia tekijoiti.
Osoittautui, ettd maksimaalisen hapenottokyvyn muutos korreloi skaalatun spektrin painopisteen
muutoksen kanssa (#* = 0.78) ja muunnetun signaalin I J-amplitudi kasvoi selvisti kunnon
kohoamisen myota.

JOHDANTO

Ballistokardiografia (BKG) on menetelmsd, jolla rekisterdidddn syddmen pumppauksesta kehoon
aiheutuvia rekyylivoimia. Mittaustuloksena saadaan ballistokardiogrammi, jonka huiput vastaavat
tiettyjen sydamen aiheuttamien verenkierrollisten muutosten kehoon kohdistamia rekyylivoimia
ihmisen ollessa paikallaan mittauslaitteessa. Koska sydéimen pumppaus- ja supistuskyky paranevat
kuntourheilun tuloksena, pitdisi menetelmdlld pystyd seuraamaan syddmen sekd muiden
verenkiertoelinten kunnon kehitystd kuntoharjoittelujakson aikana. Syddmen tutkimiseen
menetelméd tarjoaa hyvin vaihtoehdon, silli se on tiysin ei-invasiivinen eik# kiinnittdmistd
tarvittavia elektrodeja ole; koehenkilon tai potilaan tarvitsee vain istua mittaustuolissa. T#ssd
tyossd mittauslaitteena kiytetty tuoli antaakin mahdollisuuden mitata syddmen toimintakuntoa
helpon rekisterdinnin avulla, jonka vuoksi sitd voitaisiinkin kéyttdd esimerkiksi kotona tai
kuntosaleilla.

Erityisesti aiemmissa tutkimuksissa BKG-signaalin amplitudia ja yksittdisida huippuja on
analysoitu hyvin tarkkaan [1], [2]. Amplitudien vertailuja on tehty muun muassa normaalien
ihmisten ja urheilijoiden vililld [1]. Jo niiss# tutkimuksissa todettiin syddmen pumppauksesta
ajheutuvien rekyylivoimien kasvu kuntourheilun seurauksena [2]. Samassa tutkimuksessa
havaittiin lisiksi BKG-signaalin amplitudin olevan suuri juoksulajien urheilijoilla. Myos
amplitudien hyvi korrelaatio iskuvolyymin kanssa on 16ydetty sairaalapotilailla [3]. Itse signaalin
spektrid ei ole kuitenkaan aikaisemmin juuri analysoitu kuntourheilun yhteydessi, minkd vuoksi
erityisesti spektrin tutkiminen saattaa tuoda uutta tietoa syddmen toiminnan muutoksista kuntoilun
seurauksena.

Tyon tarkoituksena oli tutkia ballistokardiografisesta tuolimittauksesta saatavaa signaalia seki
signaalin taajuusspektrin muutoksia kuntoharjoittelun seurauksena. Tavoitteena oli 16ytad
ballistokardiogrammin ominaisuuksia, jotka korreloivat fyysisen kunnon muutoksen kanssa.
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TUTKIMUSMENETELMAT JA KOHTEET
Aiemmin suoritetut mittaukset

Paikallisessa sanomalehdessd olleen ilmoituksen perusteella vapaachtoisia koehenkil&itd
ilmoittautui 119. Ilmoittautuneet palauttivat taytetyn kyselykaavakkeen, jonka avulla médritettiin
poissulkukriteerit, joita olivat paapiirteissddn yli 65 vuoden ikd, syddn- tai verisuonisairaus,
syddmen lyontitiheyteen vaikuttava ladkitys, astma tai merkittivd ylipaino. Testiohjelmaan
yritettiin tilld tavoin saada mahdollisimman terveitd henkiloitd, joilla ei ollut syddmen
toimintah&iridihin liittyvds historiaa. Kaikkien ilmoittautuneiden joukosta tutkimukseen valittiin
64 henkilsd. Lopullisessa koehenkildiden joukossa keski-iké oli néin ollen 43,2 vuotta.

Koehenkiloiden tuli harjoitella 3 kertaa viikossa 10 viikon ajan véhintdén puoli tuntia kerrallaan
syddamen lydntitiheyden ollessa 120 iskua minuutissa. T4llaisen harjoittelujakson on jo aiemmin
Koehenkildille suoritettiin peruskunnon testaus perinteiselld polkupyorikuormitustestilld ennen
kuntoharjoittelujakson alkua sekd 10 viikon kuluttua tutkimusjakson padittyessd. Talloin mitattiin
mm. maksimaalinen hapenottokyky, jota kdytettiin mittarina tarkasteltaessa kunnon muutoksia.
Ballistokardiografinen tutkimus suoritettiin mittaustuolilla, jossa sydimen kehoon kohdistamat
rekyylivoimat mitattiin pystysuorassa suunnassa tuolissa olevien voima-antureiden avulla, jolloin
tuloksena saatiin voima-ballistokardiogrammi. Neljltd kanavalta saatujen BKG-sigaalien summaa
kdytettiin myShemmaissd vaiheessa tehdyssd signaalin analysoinnissa. Polkupydritestien
yhteydessd ennen ja jilkeen harjoittelujakson tehtyjen BKG-mittausten lisiksi rekisterditiin
yksikanavainen elektrokardiogrammi, rintalastan kiihtyvyys-ballistokardiogrammi sek4 olkavarren
valtimopulssikdyrd mansettimenetelmilld. Néistd EKG:a kéytettiin syketaajuuden miérittimiseen
kulloisenkin mittauksen kohdalla. Ennen jaksoa seki sen loputtua 34 koehenkildlle tehtiin myds
syddimen magneettikuvaus vasemman kammion lihasmassan, sydimen koon ja ejektiofraktion
selvittimiseksi. Ejektiofraktiolla tarkoitetaan iskutilavuuden suhdetta koko kammion tayttd-
tilavuuteen [4], [5].

BKG-signaalin késittely ja analysointi

Kuvan 1 mukaiselta BKG-tuolilta mitatut signaalit luettiin, suodatettiin ja summattiin yhteen
kidyttden J. Ritolan laatimia Matlab-pohjaisia funktioita. Summasignaalille tehtiin Fourier-
muunnos ki#yttden Matlabin funktioita fft (fast fourier transform), jonka jilkeen signaalin
itseisarvoistettu taajuusspektri piirrettiin Matlabilla ja taajuusakseli skaalattiin kunkin mittauksen
syketaajuuden mukaan. Niytteistystaajuus oli 1000 Hz, syketaajuus laskettiin BKG-mittausten
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Kuva 1. Ballistokardiografinen mittaustuoli [6].




yhteydessd rekisterdidyisti EKG-signaaleista ja Fourier-muunnokseen otettiin koko minuutin
mittainen signaali. Graafisen tarkastelun jilkeen taajuusspektrille laskettiin painopiste
integroimalla spektrid ja edelleen tutkimalla, milld taajuudella spektrin pinta-alaintegraali saavutti
puolivalinsi.

Suoran graafisen amplitudianalyysin ja spektrianalyysin lisdksi summasignaalille tehtiin
matemaattinen muunnos, joka minimoi tuolin vaikutukset alkuperiiseen signaaliin. Muunnoksen
avulla pystyasennossa tuolista mitattu signaali voidaan saada muistuttamaan vaaka-asennossa
laakeroidulla poyddlld tehtyd BKG-mittausta tai ULF-alueen mittausta. Muunnos johdettiin
tarkastelemalla aluksi poytdmallisen mittauslaitteen massakeskipisteitd erikseen keholle, verelle ja
poydille. Kaavio pSytimallisesta mittauslaitteesta on esitetty kuvassa 2, missd M on kehon kiinted
massa, m veren massa ja m, pOydidn massa. Vastaavasti massakeskipisteiden sijainnit ovat
keholle x, + X , verelle xy +x ja pdydalle x; +x, . Koko systeemin massakeskipisteeksi saadaan
siis

_ M (xp+ X)+m(xy+x)+m,(xp+x,) _ +MX +tmx+m,x,

M+m+m, M+m+m,

)

[4

joka on vakio, silld systeemiin ei vaikuta ulkoisia vaakavoimia ja nettosiirtymd on nolla.
Derivoimalla systeemin massakeskipisteen lauseke ajan suhteen ( X, x, vakioita) saadaan

. mx
X, =%+———=0, 2
e M+m+m, @
jolloin
m -
Xg =——————X%=Xppo 3
0 M+m+m, BKG 3)

missd X grg = X +a on saatu mittaustulos poydilld ja a = vakio.

Kuva 2. Kaavio poytimallisesta mittauslaitteesta systeemin eri osien massakeskipisteet
huomioiden. Signaali X g on mittaustuloksena saatava siirtyméd-BKG poydalld mitattuna.

Kuvassa 3 on esitetty yhden vapausasteen malli tuolityyppiselle mittauslaitteelle. Talloin M +m
on koko kehon massa, johon lasketaan siis erikseen kiinted massa ja veri, m, on mittaustuolin
massa, x, koko kehon massakeskipiste, x, tuolin pystykoordinaatti, X tuolin jousivakio ja [ jousen
pituus venymittoménd. Systeemin resonanssikulmataajuuden neliclle voidaan tilldin muodostaa
lauseke
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k

2

Wy =—————. 4
0 M+m+m, @

Koko kehon massakeskipisteen lauseke on

+MX+mx )
M+m

X, =X

josta derivoimalla ja yhtdlod (3) kayttimalld saadaan

. 5 . mp :
xc=x0+ =x0—(1+ M)XBKG' (6)

M+m m+

Kuva 3. Yhden vapausasteen malli tuolityyppiselle mittauslaitteelle, jossa tuolin elastisuus on
mallinnettu jousella.

Henkilon ja tuolin liikkeyht#ldiksi voidaan siis kirjoittaa

(M +m)i, =F-(M +m)g , (7

mxy=—F—-mg—k(xy-1). ®)
Lasketaan yhtilot (7) ja (8) puolittain yhteen, jolloin saadaan

(M +m)i, +m¥y=—(M +m+m)g—k(xg—1). )
Yhtilson (9) sijoitetaan vield

X () = Yo () + X » (10)
missi

%, =l- E’%‘ﬂ : 11)

on tuolin siirtymi staattisessa tilanteessa (ei virahtelyjd). Yhtaloitd (6), (10) ja (11) kayttamélld
saadaan yhtildstd (9) tuolin vérdhtelyvasteen y,(¢) differentiaaliyhtiloksi



M +m+m, .

5o + 28wy o + W3 Yo = X gk » (12)

M+m+m,

missd yhtdlén vasemmalle puolelle on lisitty tuolin vaimennuksesta aiheutuva termi. Yhtdld (12)
ilmaisee tuolilla ja poyddlld mitattujen BKG-signaalien vilisen yhteyden. Seuraavaksi
muodostetaan BKG-pdytasignaalit, kun tuolisignaali y,(¢) tunnetaan. Merkitdén

M+m+ my, X (13)
M +m+m, BKG >
jolloin yhtilo (12) tulee muotoon
X (8) = 5o (1)+ 260030 (1) + @03 3o @) . (14)
Integroimalla yhtdlod (14) saadaan
t
X (1) = 3o(6)+ 260030 (1) + 05 | yo(mdn (15)
0
' t&
X (6) = yo(t) + 24w, [ yo(mdn + o [ [ yo(mdnde. (16)
0 00

Yhtildiden (14)-(16) osoittamalla tavalla voidaan siis poydilld mitatut kiihtyvyys-, nopeus- ja
siirtymi-BKG:t laskea tuolisignaalin y,(z) avulla. Lausekkeen (14) mukainen Kiihtyvyys-
ballistokardiogrammi X (z;) laskettiin keskeisdifferenssié kdyttien, missd i = 2,..., N-1, signaalin
pituus on N merkki, 4 on askelvili, #; = ih ja y; = y,(¢;) . Nopeussignaalin X (¢;) muodostamiseen
kiytettiin Matlab-funktiota, joka integroi kiihtyvyyssignaalin trapetsikaavaa kdyttien. Saatu
nopeussignaali lisiksi keskiarvoistettiin nollaksi, jotta edelleen laskettavaan siirtymisignaaliin
X(t;) ei muodostuisi kumuloituvaa komponenttia. Lopuksi vield siirtymdsignaali keskiarvois-
tettiin nollatasoon.

TULOKSET
Taajuussiirtymi ja korrelaatio hapenottokyvyn kanssa

Kuvassa 4 nihdiin koehenkilén 2021* (katso Taulukko 1) summasignaalien taajuusspektrit sekd
ennen harjoittelua ettd harjoittelun jilkeen. Kuvasta voidaan havaita harjoittelun jilkeisen spektrin
siirtymé suurempia taajuuskomponentteja kohti. Kuvan 4 spektrit on kerrottu funktiolla y =x/5
painottaen korkeampia taajuuksia ja esitetty logaritmisella y-asteikolla. Spektrien taajuusakselit on
lisiksi skaalattu x-suunnassa kunkin mittauksen syketaajuudella. Taulukkoon 1 on kirjattu eri
koehenkilsiden kunkin mittauksen syketaajuus, taajuusspektristd laskettu spektrin painopiste seka
rasituskokeella mitattu maksimaalinen hapenottokyky yksikoissdé ml/kg/min. Kaikista niistd on
myos laskettu prosentuaaliset muutokset alkumittauksen ja loppumittauksen vililld. Niissd
tuloksissa negatiivinen muutos ilment## painopisteen siirtymistd matalammille taajuuksille,
positiivinen muutos korkeammille taajuuksille. Taulukon 1 koehenkilsille 2001 ja 2021 on tehty
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TAULUKKO 1. Maksimaalinen hapenottokyky ja taajuusspektrin painopiste sekd ndiden
prosentuaaliset muutokset alku- ja loppumittauksen vililli kullekin koehenkildlle. Lisdksi
taulukossa on esitetty syketaajuus jokaisen mittauksen aikana EKG:n avulla laskettuna ja
syketaajuuden muutokselle on laskettu prosentuaalinen arvo.

Ennen hat Harjolttalulakssn [Alkeen
Koo Syke- Paino- V(Oa)max Syke- Palno- V{O2)nas | Sykelsajuuden | Palnoplateen |  V{Oxvu
henkild | teatuua/Hz ;nh;wui;m; tasjuus/Hz | plate f suht. | {mbkgimin}] muuios /% muutos/% | muutos /%
2001* | 12687 63689 3% 1,0000 aes73 | a7 -21,0547 35,6640 27778
2001 10167 7,7900 38 1.0000 86873 | 37 -1.6428 11.2619 27778
2010 ‘I‘w 83655 4 1,0167 7.8720 49 -11,5913 23,6666 13,8535
2018 1,039 7.0518 28 02333 80192 44 -9.6777 13,7185 157895
20214 1,1500 62350 a7 09033 8.2340 47 -188435 32,0609 27,0270
2021 1,0833 86528 ar 2,933 8.2340 47 138466 | 237674 27,0270
228 | 1,088 74704 4 oy | 81268 45 Q8777 87840 22727
2060 14167 5,8292 44 118 | 6883 44 16,4749 14,8538 00000 |
2015 | 15187 53680 a4 1,393 81125 30 +12,0920 33,0692 14,7059
2053 1,2667 66122 a1 1,2500 86,7697 13184 64516
2011 1.0667 B.0840 46 09833 88278 E ~7j|;’_&‘5 ﬂzﬁ 17&
2012 0,9500 9.1700 a5 0,8167 10,0776 35 14,0316 98975 0,0000
2013 1.3000 6,6304 34 120 | s9d0 42 41,2846 5482 23,5294
2014 1,0833 7.2688 4 1,2000 62411 40 10,7726 -14,1385 89767
2019 1,1833 62885 41 14333 51736 40 21,1274 =17,7305 -243L
2031 1,3000 27,1040 a7 1,3667 70394 39 51308 0900 54054
2047 13000 6.7456 39 13187 £.2484 a2 12848 73707 76922
2085 | 09500 85005 A3 1,0000 76152 48 52632 13,4882 6.9787

kaksi alkumittausta. Taulukossa yksi tdhti (*) ilment#4 ensimméisen alkumittauksen ja kaksi tahted
(**) toisen alkumittauksen vertailua loppumittaukseen. Korrelaatioanalyysi antoi selvédn yhteyden
(r* =0.78) maksimaalisen hapenottokyvyn muutoksen ja spektrin painopisteen muutoksen

kanssa.
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Kuva 4. Taajuusspektrit kerrottuna funktiolla y = x/5 ja esitettyni logaritmisella y-asteikolla.

1J-amplitudin kasvu

mitattu signaali muistuttamaan pdytamallisella laitteella mitattua signaalia. Muunnoksella saadut
signaalit siirtymille, nopeudelle ja kiihtyvyydelle ennen ja jilkeen harjoittelun on esitetty kuvissa
5ja6
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Kuva 5. Muunnoksella saadut ballistokardiogrammit siirtymdlle, nopeudelle ja kiihtyvyydelle
ennen harjoittelua. Pystyakselien yksikot ovat suhteellisia.

4.0

4.65 4.6 4,05 A7 pareinl Bowuing ® 405
x 10" - PRI

! T Y T Y T ! T Y T

.6 : :

o AV

s A /
i : i ¥ 7 !

4.8 455 4.0 408 4.7 Alka/riiT Sokuni 4.0 408 4.9 .06 10‘5

L3

Kuva 6. Kuten kuva 5, mutta harjoittelujakson jilkeen.

koehenkil6lle 2021*. Tuolirakenteen suhteellisena vaimennuksena kiytettiin arvoa § =0.1 ja
resonanssikulmataajuutena tuolin mittauksista saatua arvoa @, =27 -12Hz . Kuvassa 7 on esitetty
muunnoksella saadut siirtymi-ballistokardiogrammit ennen harjoittelua ja harjoittelujakson
jdlkeen. Signaaleista voidaan helposti havaita I- ja J-huippujen vilisen nousun suureneminen.
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Kuva 7. Muunnoksella saadut siirtymé-ballistokardiogrammit ennen harjoittelujaksoa ja jakson
jilkeen. Kuvasta havaitaan selvisti harjoittelun IJ-amplitudia kasvattava vaikutus (17> 1J).
Siirtymin yksikko on suhteellinen.
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TULOSTEN ANALYSOINTI

Taulukosta 1 nidhdiin, etti painopisteen muutos kohti suurempia taajuuksia ei ole kaikilla
koehenkildilld huomattava ja muutamalla muutos on jopa negatiivinen eli spektri on siirtynyt
matalammille taajuuksille. Kuitenkin niilli koehenkiloistd, joilla maksimaalisen hapenottokyvyn
kasvu oli merkittdvd, havaittiin selvd syddmen supistusvireyden paranemiseen viittaava
spektrisiirtyms. Nailld henkiloilld todetut muutokset taajuusspektrissd todennédkdisesti aiheutuvat
syddmen tehostuneesta pumppauskyvystd, mutta myds ddreisverenkierron vastus sekd
autonominen hermosto saattavat vaikuttaa havaittuun siirtyméin [5]. Lisdksi on syytd todeta, ettd
syketaajuuden pieneneminen jo sinilldin siirtdd skaalattua spektrid korkeammille taajuuksille.
T#ami ei kuitenkaan suoraan selitd spektrin jakaumassa tapahtuvia selvid muodonmuutoksia.

Kuvissa 5 ja 6 nihddin muunnoksella lasketut siirtymd-, nopeus- ja kiihtyvyys-ballistokardio-
grammit koehenkilslle 2021* ennen ja jilkeen harjoittelujakson. Aiemmissa tutkimuksissa [6] on
esitetty, ettd siirtymd-BKG ilmoittaisi syddmen pumppaaman veren méadrdn eli toisin sanoen
iskutilavuuden. Nopeuden ollessa siirtymin ensimmdinen derivaatta ilmentdisi nopeus-BKG
talldin veren virtausta aortassa. Vastaavasti kithtyvyys-BKG:lld voitaisiin havainnoida veren
kiihtyvyyttd aortassa. Tamin veren virtauksen kiihtyvyyden on ehdotettu olevan hyvéd syddmen
supistuskyvyn mittari [6]. Lisiksi kiihtyvyyttd laskevassa aortassa pidetddn hyvind sydanlihaksen
yleisen toiminnan indikaattorina [6]. Kuvista 5 ja 6 huomataan, ettd siirtymasignaalin I-huippua
vastaa aina kiihtyvyyden maksimi, miké on todettu jo aikaisemmissa tutkimuksissa [6]. Voidaan
siis padtelld muunnoksen toimivan hyvin, silla alkuperdisistd tuolilla mitatuista BKG-signaaleista
muunnetut signaalit vastaavat muodoltaan kirjallisuudessa esiintyvid poydillda mitattuja
ballistokardiogrammeja. Erityisesti siirtymésignaali vastaa hyvin viitteessd [7] esitettyd signaalia
(ks. kuva 8), missi siirtymisignaalin suurien huippujen ajoitus ja muoto nékyvit erityisen selvisti.
Vastaavuus kirjallisuudessa esitettyihin ballistokardiogrammeihin huomataan jo pelkéstddn
tarkastelemalla silmdmédrdisesti huippujen ajoitusta: jokaisen nopeussignaalin suuremman
maksimin jilkeen tulee siirtymén suurin maksimi, jota vastaa kiihtyvyyden pienin minimi.
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Kuva 8. Viitteen [7] ja timdn tyon muunnoksella johdettujen siirtymésignaalien vertailu.
Alkuperdinen BKG-signaali, josta siirtymd-signaali on laskettu, on periisin koehenkilén 2021*
alkumittauksesta.



Vastaavasti jokaista kiihtyvyyden pienintikin maksimia vastaa siirtymén minimi. Liséksi kuvien 5
ja 6 siirtymisignaaleista huomataan pienempien vérdhtelyjen poistuminen, ts. signaali on
’rauhoittunut’. Jo timé itsessdin tekee signaalin tulkitsemisen helpommaksi. Edelld mainittujen
tulosten vastaavuuksien avulla voidaan todeta edelld johdetun matemaattisen muunnoksen
toimivan hyvin haluttaessa minimoida tdssd tydssid mittauslaitteena kiytetyn tuolin dynaamisia
vaikutuksia prim#4riin BKG-signaaliin.

JOHTOPAATOKSET

T#ssd tyossid johdetulla matemaattisella muunnoksella saadut signaalit vastaavat hyvin kirjalli-
suudessa esiintyvid poydilld rekisteroityja ballistokardiogrammeja. Muunnoksen tarkkuutta
voitaisiin kasvattaa lisdamilld systeemiin toinen vapausaste siten, ettd henkildn ja tuolin viliin
mallinnettaisiin jousi ja vaimennin. Tuolin pehmusteet ja jhmisen lihakset sekd rasvakudos
saattavat vaimentaa signaalia omalta osaltaan, jolloin vaimennetun kahden vapausasteen systeemin
kdyttiminen olisi perusteltua. Koehenkiloilld tapahtuneet kunnon muutokset ovat myds nédhtivissa
taajuusspektristi. Vaikka kuntoharjoittelun aikana kehossa tapahtuvat monimuotoiset muutokset
kaikki saattavat vaikuttaa spektrin siirtymiseen, on kuitenkin varmaa, ettd Korkeampitaajuisten
virihtelyjen lisdintyminen indikoi fyysisen kunnon nousua.

Tutkimustulosten perusteella ballistokardiografinen tuoli voi toimia helppokayttdisend
mittausmenetelménd kuntourheilijoiden sydin- ja verenkiertoelimistdn kehityksen seurannassa.
Laitteistoa voitaisiinkin kehittii suuntaan, jossa henkilon fyysisen kunnon tasoa kvantisoitaisiin
jonkinlaisen laskettavan ’kuntoindeksin’ avulla. Mahdollisuudet my6s kliiniseen kidyttéon ovat
olemassa. Mittausmenetelmii voitaisiin kdyttdd mm. syddmen vajaatoiminnan hoidon seurannassa
ja ladkityksen oikeassa mitoituksessa. T#lldin etsittdisiin sellainen lddkityksen midrd, jolla
pumppauskyky ei enidd huomattavasti vastaa lddkityksen kasvuun. Samantyyppisesti BKG-
mittauksia voitaisiin kayttdd digitaliksen annostelussa, jossa ongelmana on se, ettd 1ddke ei vaikuta
kaikilla potilailla, mutta sivuvaikutukset ovat kuitenkin olemassa. La#kitys voitaisiin tilloin
nopeasti lopettaa, jos BKG-mittauksissa ei todettaisi mink4énlaista pumppauskyvyn kasvua. BKG-
mittauksilla on myos mahdollisuuksia toimia etildiketieteellisend menetelmédnd esimerkiksi
kotihoidon seurannassa: jatkokehityksen avulla voitaisiin tuoliin lisétd verenpainemittari ja
muutama EKG-elektrodi kisinojiin. T#lld tavoin lddkiri voisi esimerkiksi verkon vilitykselld
seurata potilaan tilannetta tySpaikaltaan kisin tietyin viliajoin ja pakollisia kontrollikdyntejd
voitaisiin nidin ollen vihentdd. Tdssd mielessd ballistokardiografia yhdistettynd muihin
seurantamenetelmiin vihentdisi my6s syddn- ja verisuonisairauksiin liittyvid kansantaloudellisia
kustannuksia.
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ABSTRACT

Paper material is a true anisotropic material. To understand the behavior of the paper web in web
handling applications, using the usual orthotropic material assumptions gives inaccurate results.
The literature of anisotropic materials is very limited. Most papers handling anisotropy are
essentially limited to orthotropic materials.

Paper is not purely elastic material, but in many cases, when the stresses are low, the behavior can
be essentially explained by elastic deformations. The methods and devices to measure all elastic
parameters, even in plane stress case, are not publicly available. In this presentation, a method for
measuring full elastic parameter matrix by image deformation analysis is detailed.

Knowing the elastic orientation of the web is essential in web handling. The elastic orientation of
paper material is related to the fiber orientation. Some results of measured correlation between
fiber orientation and elastic orientation is also described.

1. INTRODUCTION

In most part of the web handling, we can approach the web as two-dimensional material. This
leads to assumptions of generalized plane stress. We do not assume that the tension is constant
over the thickness of the web, we just have very limited information of the tension distribution. In
contrary, we know that the paper material is very inhomogenous in the thickness direction, and
also the stress distribution might be very inhomogenous. Fortunately, integrating the three-
dimensional stress and strain equations over the thickness of the web can derive the generalized
plane stress equations (Lekhnitskii 1968). By using two-dimensional approach, we can avoid
problems connected to thickness of the web. In the case of paper material the definition of the
thickness is problematic. We can measure caliper ¢ instead. Caliper is measured by laying the
paper sample between two parallel plates, compressed with certain pressure, and measuring the
distance between the plates. The measured caliper depends of the area and pressure of those plates.
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2. MEASURES OF ELASTIC PROPERTIES, STRESS AND STRAIN

The routinely measured elastic properties of paper material are tensile stiffness § and bending
stiffness’ B. They are usually measured in machne direction (MD) and in cross-machine direction
(CD) of the web. We can not measure directly the modulus of elasticity, because we have very
limited information of the distribution of the stresses and strains in the thickness direction. The
tensile stiffness can be measured directly. Theoretically tensile stiffness is the modulus of
elasticity integrated over the thickness. If we divide the tensile stiffness by the caliper we can get
the average modulus of elasticity of the paper. Because we do not know the distribution of the
modulus of elasticity and the thickness, we can not calculate the bending stiffness using tensile
stiffness of the material, but it has to be measured directly.

In web handling, the web tension {T}, is the measure of the stress. The word tension reminds us of
the fact that an unsupported thin web material can not take compression, it buckles at very low
compressive tension. Web tension is the force divided by linear length. Also, it can be understood
theoretically as the stress integrated over the thickness of the web. In certain coordinate system,
the web tension can be divided in normal tensions T, and T, and shear tension T,,. In the paper
machines, we can measure only the machine direction tension. From this reason, scalar T denotes
very often the machine direction normal tension component T=Typ.

Paper material is very complicated composite material with fibrous structure. The deformation of
paper material, in general, is rather complicated matter. The deformation can be a combination of
elastic strain, plastic strain, creep, moisture expansion and temperature expansion. In many cases,
when elastic strain is dominating, we can simplify the treatment by dividing the total deformation
in two parts: the elastic strain {€} and the material expansion by other reasons {c.}.

du/ox € o
dv/dy ={g, r+{0 (1
ou/dy+0ov/ox| |, o,

In this equation, # and v are the displacements of material particles in x and y directions. The
measures of the strain in the coordinate system x,y are the engineering strains &, and &, in the
direction of the coordinate axes, and the shear strain y,, in radians. In this work, we concentrate on
elastic strain, and in the measurements we try to keep other expansions minimal. Some creep
always happens, even at low tension levels, giving some error to the measurements. In these tests,
we use small strain assumptions and engineering strains, because dry paper material usually breaks
at relatively low 1...2 % strain.

3. UNIAXIAL TENSILE TEST

With the uniaxial tensile test according to figure la, we can get information of the tensile stiffness,
Poisson's ratio and shear deformation in one direction of the material. Because the paper material
is very thin, it is quite difficult to apply shear stresses to the sample, and we can not measure shear
modulus directly. The method to define all the elastic parameters of anisotropic materials by
simple tensile tests is based on the idea of Salonen (1999). Same kind of method to determine the

! Most authors use S, for tension stiffness and S, for bending stiffness, but because both are tensor quantities, we do not
want to use subindex with basic symbols.



shear modulus of paper has been used by Seo (1999). If we measure the strains under the influence
of uniaxial stress in different directions, we can collect information to determine all the terms of
the material compliance matrix.

The global X, Y coordinate system is fixed to the material in the reference state. The direction of X-
coordinate coincides to the machine direction of the paper machine (MD), and Y-coordinate points
to cross-machine direction (CD). The local x,y coordinate system rotates with material sample
direction. The angle of the loading direction and the direction of the material sample is denoted by
B. Also, the tensions, strains and material parameters referring to certain direction are labeled by
superscript . The matrices and vectors are labeled with subscript. For example [D]g denotes the
material compliance matrix rotated to angle 8. The symbols and matrices without a reference to
rotated coordinate system, refer to global coordinates, where p=0.

W, -
il w‘ L’
i g 180 160°
di y y
i A
¥ 8x=(11'10)/10
S I = 90°
I | ™ i €=(W W)W
1 € y 1 0 0 CD
e I
’nyr-
T, i
XV B x
00
(a) (b) MD

Figure 1. Uniaxial tensile test. (a) Measurements of plane strains €, €y and Yy, . (b) Sample stripe-cutting
directions. MD=machine direction, CD = cross machine direction

In the case of paper material, the reference tension T; can not be zero, because the thin paper is not
necessarily straight, and the measurement of dimensions is unreliable. In this test we have used
low initial tension as a reference and forced the tension-strain curves to go trough origin by curve
fitting.

The measurement arrangement is shown in figure 2. To minimize the end effects caused by end
clamps, quite long test stripes have been used. Also, the clamps have been pivoted from the middle
of the grip line of the clamps. We have tested the effect of the clamps to the shear strains by
cutting the ends of the test pieces to narrow (2mm) stripes. Within the measurement accuracy, the
results of striped samples can not be differentiated from the ordinary ones.

Especially the measurement of the shear strain is rather sensitive to errors in clamping. To
minimize this effect, and to eliminate unsymmetries in the measurement device, every stripe has
been measured twice using both sides. When we turn the sample around the longitudinal axis, we
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should get the same shear strain with opposite sign. The shear strain values have been calculated
from the average of the absolute values of these measurements. The strains have been measured in
a small area in the middle of the stripe by image analysis described in chapter 5.

700 mm
l paper sample \ l pivot point sy F,
N 1

e

a) :
TSO MM glass bar/l— \1mage area 31x20 mm

3mm;§;
b) S | light table

Figure 2. The measurement device and the arrangement. a) Front view b) Side view

1

The sample has been forced flat in the image area by bending it slightly over a glass bar as shown
in figure 2b. If we assume the coefficient of friction to be 0.3, the friction force should be only 0.5
% of the tensile force, with this geometry. Of course, some forces caused by static electricity
between the glass material and paper, and adhesive forces, can decrease the accuracy of the device.
In future, we should develop air lubrication between the support plate and the sample, so that we
can force the samples flat even at low-tension levels, without having disturbing frictions.

4. THE MATERIAL COMPLIANCE MATRIX AND THE
ENGINEERING PARAMETERS

According to the generalized Hooke's law, the linear elastic relationship between stresses and
strains can be given in a form of compliance matrix [D] or material stiffness matrix [C] according
to equations (2) and (3). The compliance matrix is the inverse of the stiffness matrix [D] =[C] 1

le}=[plr} )
{r}=[cle} 3

If the material is isotropic or the material has elastic potential function, the matrix [D] and [C] are
symmetric (Malvern 1977). Because the paper material is anisotropic and not perfectly elastic, the
measured values of the compliance matrix do not have to be symmetric. In this measurement,
however, we approximate the material as elastic and measure the elastic parameters. The equation
(2) in detail, not including the assumption of symmetry, at local coordinate system rotated at angle
B is written

ex Dll D12 Dl3 Tx
€,t =(Dy D, Dy T, 4)
Y s B D, D), D, plio)g



If we know the material parameters [D] or [C] in some coordinate system, we can rotate the matrix
by using rotation matrix [R]. Derivation of the material stiffness rotation in matrix formulation is
lucidly detailed in the book of Cook et al. (1989). In plane problems we need the rotation matrix
[R] and the inverse of the matrix. The inverse of the rotation matrix can be achieved from the
rotation matrix by replacing the rotation angle B by —B.

2 2 2 2

c s cs c s —cs
[Rl,;=| s ¢ -cs |and R =| s> ¢° cs 5
5
—2¢cs 2¢s ci-st 2cs —2¢s c*—s*

where c=cos(B) , s =sin(B)

The rotation of the stiffness matrix from global coordinate system to the local coordinate system,
which is rotated by angle B, as in figure 1, can be carried out by using equation (6a). The inverse
rotation is defined by (6b).

[c} =[R]y" [C]R]S

[c] =[R];[C]s[R],

Because the compliance matrix [D]g is the inverse of the stiffness matrix [C]p at any coordinate
system, we can derive the rotations of the compliance matrix by taking matrix inverses of the
equations (6a,b).

it

(6a,b)

[D], =[R],[DIR]
[p] =[RI;IDLIR]"
In the uniaxial tensile test at certain angle [3, the tension vector is {T}B={TX,O,O}|3T. Multiplying

this vector with the rotated compliance matrix (7a), we can get three equations of the strains at
that angle.

It
—
=
- 3

(7a,b)

EX
e, t =Tf[AL{D} @®)
Yo,

Where {D} is a vector of nine material parameters in the global coordinate system, T,? is the
uniaxial tension in the test. The coefficient matrix [A]p depends only on the rotation angle (sample

angle) .

159



160

{D}= {Dll D12 D13 DZI D22 D23 D31 D32 D33}T
ct c’s? c’s cst st cs® c’s cs® c’s?
[A]B =| ¢%s? st cs’ ct et s -c’s -cs® -c*s?
—2¢% —=2cs® —2c¢%5% 26% 205 2c%5t ¢t -t st st Ps—cs’

s =sin(B), c=cos(PB)

B

If we assume symmetry of the compliance matrix, we have six independent material parameters.

{D}= {Dll’DIZ’D13’D22’D23’D33 }T
3 2.2

4 4
c 2¢%s? 2¢’s s 2cs c’s
[A]ﬁ =| ¢c°s ct+st es®—c’s st Ps-cs? -c%s?

~2c%s 2c%s—2¢s® ¢t -3c¢%s? 2¢s® Bcist-st cPs—cs’

Here, the strains are measured at angle B and the uniaxial stress acts at the same angle. The
material parameter vector {D} is a vector of independent components of [D]. In the symmetric
case, we have six unknown material parameters to solve. Measuring at two different directions
gives us six equations, but they are not linearly independent. Measuring at three different
directions gives enough information to determine the six independent parameters. To increase
accuracy of the measurement we can measure stripes at different angles (see fig. 1b), and solve the
parameters from the overdetermined system by least squares method.

A. L. Rabinovich has proposed a system of "technical constants” for the general case of anisotropy
(Lekhnitskii 1963). By modifyind the system and notation of the general anisotropic case to the 2-
dimensional plane stress case, we can express the compliance matrix in the terms of the
engineering parameters.

(1 Ve My
. S, S, Su |77
X V p.d
e, | =|-= — 2=||r ©)
s, S, S, ||
ny Txy
N I PRI P “
S, S, S,

Here the coordinates x,y refer to the local coordinate system defined by angle B. S, is the tensile
stiffness defined by uniaxial tensile test S, = Ti/€,. The tensile stiffness Sy can be defined by
rotating the coordinate system 90 degrees eg. SyB=SxB”"2. S,y is the shear stiffness of the material.

% Tensile stiffuess and the shear stiffness are the Young's modulus and shear modulus integrated over the thickness of the
material. Web tension is the stress integrated over the thickness. The notation of the shear couplings has been simplified for
the 2-dimensional case, because we do not have to indicate the plane to which the parameter is connected to:

MNx = Nxyx > Ny = Nxyy, My 2= Ny, Nyx = Ny



Poisson ratio v,, defines the transverse strain in y-direction when uniaxial tension is applied in x-
direction Vyy=-€,/€, . The shear coupling coefficients 1, and 1, define the couplings between shear
strain and normal tensions. Shear coupling coefficients 1, and 1y define the couplings between
the shear tension and normal strains. If the material is orthotropic, the shear couplings disappear in
the coordinate systems where the directions of axes x and y coincide with the principal directions
of elasticity. By using the symmetry of the elastic compliance matrix, we can express the matrix in
terms of the six free engineering parameters.

1 Ve M

S S
D, D, D, Vx fx nx
D, D,, Dy| = _S_xy S_ S_y (10)
D; Dy Dzsﬁ nx ny 1y

_1x . =

S, S, Sy .

5. MEASUREMENT OF DEFORMATION BY IMAGE ANALYSIS

The measurement of the deformations of a thin paper web is best to do with visual methods,
without disturbing the material. Several researchers like Kujala and Kajanto (1995), Korteoja
(1997), Lif and Fellers (1995) have used image correlation analysis of paper deformations. The
method used in this research is based on the methods used in these papers, and only the outlines of
the algorithm is described here.

A digital intensity image is a matrix [[;;], whose values represent intensities within some range. In
this test, we have used color camera with resolution of 3008x1960 pixels. The color image has
been converted to intensity image by summing the three 8-bit (0...255) color RGB intensities to a
grayscale image (0...765). The fiber structure of the transilluminated paper sample usually gives
us the necessary random pattern for displacement detection.

The basic idea of correlation methods is to move small sub-images of the reference image (fig 3b)
over an image of deformed material (fig 3c), and to find the best match between the images. The
method is basically a simple search method. Gradient methods are not powerful for this kind of
problems, because the error surface is too complicated having a lot of local minimum (local
maximum of the cross-correlation function, see figure 3d). Usually we have some a priori
information of the possible displacements for determining the search area in the deformed image,
so that we do not have to search the whole image area for every control point. The measure of the
similarity is the two-dimensional normalized cross-correlation between image pixel values. The
values of the correlation as a function of displacement are called the cross-correlation function (fig
3d).

For computational efficiency, the cross correlation function is calculated in frequency domain
using discrete Fourier transform as suggested by Matlab Image Processing Toolbox (2001). The
basic maximum accuracy of strain measurement of this arrangement is ~1/3000 (1 pixel per 3008
pixels in horizontal direction). We can increase accuracy to the subpixel level by fitting a two-
dimensional 2™ order polynomial to the pixel intensities surrounding the maximum peak of the
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correlation function (fig 3¢). By using subpixel method, we have tested the practical sensitivity to
strain to be better than 1/10000.
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Figure 3. Principle of the image deformation analysis. Reference image (a), sub image of the reference
image (b), search area of the deformed image (c), normalized cross correlation function between reference
and deformed image (d), highest peak of the cross correlation function and the maximum value of the bicubic

polynomial fitted to the peak (e)

When we have some area of homogenous material in an uniform tension field, the deformation is
affine, including normal strains, shear strain, translation and rotation. Affine transformation of
points from reference state (X,Y) to deformed state (x,y) is defined with six parameters as
x=a,X +a,Y +a;,
y=ayX +ayY +a

(11

If we measure the displacements of three points (the center points of sub images); we have six
equations to solve the six parameters. Because the values of x and y have some measurement error
included, we have used a grid of control points and solved the parameters with least squares
method. We are interested only of the strains, and ignore the rigid body translation and rotation.
Using the definition of displacement components, u=X-x and v=Y-y , we can get the (small) strains
by partial derivatives of equations (11)

g, =0u/dX =a, -1
g, =0v/dY =a, -1 (12)
Y,, =0u/0Y +0v/0X =ay, +ay,
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Figure 4. Displacement field between reference- and deformed image®

6. MEASUREMENT RESULTS

The results of measurements of one paper material at test tension T,P=1000 N/m is shown in figure
5. The material is sizer coated wood-free paper having basis weight of 115g/m? and coat weight of
2x7 g/m?. The measurements show slight anisotropy, because the directions where the shear strain
is zero are -6° and 86° (difference 92°), see figure 5c. Also, the directions of the maximum and
minimum tensile stiffness are the same (see figure 6a).

86 174 266 354 (deg)

ZEero:

270
a) max: 86 266 (deg) b) max: 79 169 259 349 (deg) c) max: 35 215 (deg)
min; 354 174 (deg) min: 214 304 34 124 (deg) min: 134 314 (deg)

Figure 5. Strains measured by the uniaxial tensile test. Measured strains (points) and the fitted material
model (lines). a) Strain in the direction of uniaxial tension &,. b) Strain perpendicular to uniaxial tension &y. ¢)
Shear strain ¥,,. Positive values are indicated with symbol (+) and solid line (-), negative values with symbol
(o) and dashed line (- -).

The fibers of the machine made paper is usually more oriented in the machine direction than in
cross-machine direction. Also, the tensile stiffness is usually much higher in the MD. In this tests
we have tried to find out, if we can estimate the direction of the elastic orientation from the fiber
orientation. The fiber orientation has been measured by image analysis using the method described
by Xu, Parker and Filonenko (1999).

® The deformed image means an image of a deformed material. The pixels of a digital image do not move. They are new
samples of the continuous intensity values of the material surface.
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Figure 6. Engineering parameters as a function of direction angle 8. The symmetric compliance matrix [D] is
given in the global MD/CD coordinate system. Positive values (-) , negative values (- -).

The paper sample has been split in 11 layers using adhesive tape, and the fiber orientation of every
layer has been determined (fig 7a). Because the top and bottom layers consist mainly of coating
color, showing very low orientation, we have calculated the average orientation without those
layers. The average fiber orientation is directed very close to machine direction (fig. 7b). The
elastic orientation, however, has 6 degrees shift from the MD. In this tests we have not found good
correlation between the fiber orientation and the elastic orientation, they have to be measured
separately.

90
1500000
H 60

b)

Figure 7. Fiber orientation and elastic orientation. a) Fiber orientations of 11 different layers of the paper
b) Average of the fiber orientations of layers 2...10 c) Elastic orientation of the tensile stiffness.
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ABSTRACT

Channel composite is a special sandwich structure, in which v-shaped diagonal webs are added to
a conventional foam core. In this study, the channel composite panel component elastic properties
are measured separately, and the behavior of the complete channel composite panel is determined
with the help of FEM-models. Different modeling techniques are introduced and discussed, and
their results are compared with physical tests of beams and T-joints. Computational and empirical
results have a good correlation, which proves the method to be reasonable. Surprisingly, a simple
laminate element model gave more realistic results than a complicated solid model, being the right
tool for practical vehicle engineering.

1. INTRODUCTION

Company Fibrocom Oy has patented a special sandwich structure, in which v-shaped diagonal
webs are added to a conventional foam core, see Figure 1. The advantages of this special structure
are increased stiffness, redundancy, increased crash energy absorption capacity and with special
manufacturing techniques, lower production costs.

Currently, the most promising application for the material is a double-deck commuter train coach,
which would have a self-supporting channel composite chassis structure. Companies Fibrocom Oy
and Talgo Oy have performed intensive R&D work to develop the concept. Since no self-
supporting composite train coaches exist in operative use, Mikkeli Polytechnic Research Centre
YTI generated a research project to determine channel composite material properties to support the
structural design, authority evaluation and positive client attitude towards the novel technology.
VTT Technical Research Centre of Finland and University of Oulu also participated the project as
research subcontractors.

Previously, Fibrocom Oy has tried to determinate the elastic and strength properties with channel
composite panel specimens, but with remarkable results deviation. Hence, a new approach was
suggested, in which the channel composite panel component-mould face plate, bagging face plate,
diagonals and foam—elastic properties and strength are measured separately, and the behavior of
the complete channel composite panel is determined with the help of a FEM-model. This paper
introduces the process: the channel composite component material tests, the formulation of
different FEM models and complete channel composite panel elastic properties determination with
FEM, as well as the verification of the FEM results with physical tests. No material property
values are listed, as they are proprietary to the client companies.
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2. ELASTIC PROPERTIES OF CHANNEL COMPOSITE COMPONENTS

Figure 1 illustrates the structure of a complete channel composite panel consisting of glassfibre
face plates, glassfibre diagonals and core foam.

To get sufficient data of the component elastic properties, we made the following tests for all the
components:

e  Tensile tests for glassfibre laminates
e Compression tests for glassfibre laminates
e  Shear tests for fiber glassfibre laminates.

Due to the diagonal web structure, all the face laminate fibres are not continuous in y-direction. To
be able to study the effect of the discontinuity, specimens were cut from various laminate
locations. Figure 1 shows the labeling, location and orientation of the specimens tested.

".. 4"—--—~—"’

‘ — - -/,— -— - -’ _‘,"( \

f . ot — oo
Corefoam - T ;

Bagging plate

60" 60°

Y
Mould plate / \ Diagonal laminate

Figure 1. The labeling, location and orientation of the test specimens A-F.

The specimens were cut out from a complete channel composite panel with a circular saw.
Excessive foam was removed with a abrasivebelt grinder, resulting in a neat laminate sheet, out of
which the specimen were cut. Diagonal laminate specimens F were not cut out of channel
composite structure, but laminated on table, since cut-out specimens would have been too short for
reliable testing. The resulting error can be estimated by comparing the results of specimen E
batches that have been manufactured both as cut-outs and laminated on table.

We did not extend the abrasivebelt grinding to the very surface of fiber glass layer, but left about
0.5 mm residual foam layer to prevent unintended fibre cutting. This excessive specimen thickness
naturally decreases the elastic property and strength values. This effect is cancelled out when
FEM-modeling the complete channel composite panel, as the input laminate thicknesses include
the residual foam thickness. So, the excessive laminate thickness plays no role when considering
complete channel composite panel elastic properties.



2.1 Tensile tests for glassfibre laminates

Most tensile tests were carried out at Mikkeli Polytechnic Machine Laboratory, employing
Shimadzu Autograph AG-100kN universal testing machine that has been calibrated to the
Accuracy Class 1. Elongation was measured with the extensometer MTS Model 632.31F-24,
typically engaged with rubber bands. Materials were loaded to break.

The laminates were tested conforming ISO/DIS 527.1-2 standards [1, 2], testing speed was
2mm/min. Specimen shape was straight rectangular 25x250 mm ISO/DIS 527 type 2, with epoxy
clued end tabs. Work drawing of test specimen is shown in Figure 2.

To find out the effect of specimen shape to the results and respective standard deviation, some
tensile test series were also carried out with two different dog bone -shaped specimens that are
depicted in Figure 3.

Young’s Modulus was calculated by definition in ISO/DIS 527-1 part 4.6 and 10.3. Strain values
0,005% and 0,025 % were employed in the Young’s Modulus calculation.

The ultimate tensile stresses and strains were also calculated.

Approximatie 42

Laminate thickness
f (3,2 mmj) F
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Figure 2. Work drawing of tensile test specimen with clued end tabs.

Tensile tests with different specimens shape batches indicated the standard deviations to be 2-10 %
regardless the specimen batch shape. So, the specimen shape was not an issue, but the
manufacturing tolerance had to be tight to yield small standard deviations. Circular sawing was
found a good method for rectangular specimens and CNC-milling or water jet cutting for dog bone
and shear specimens, starting from a mechanically drilled initial hole.
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Figure 3. Dimension drawings of the two tested dog bone -shaped tensile test specimens.

2.2 Compression tests for fibre glass laminates

Most compression tests were carried out at Mikkeli Polytechnic Machine Laboratory, employing
Shimadzu Autograph AG-100kN universal testing machine. Since no compression clamping jaws
were available, a special fixture was used to convert the tensile motion to compression. Reduction
was measured with the extensometer MTS Model 632.31F-24, typically engaged with rubber
bands. Materials were loaded to break.

The laminates were tested conforming Standards DIN 53454 [3] mod. and ISO/DIS 527-1, [1],
testing speed was 2mm/min. Compression specimen was modified from ISO/DIS 527 Type 1 to
the 16 mm wide dog bone shape depicted in Figure 3.

The compression tests indicated considerable results standard deviation, varying between 12%-
22%, and should therefore be addressed for advisory use only.

2.3 Shear test for fibre glass laminates

All shear tests were carried out at Mikkeli Polytechnic Machine Laboratory, employing Shimadzu
Autograph AG-100kN universal testing machine. The shear properties were determined
conforming Standard ASTM D4255 [4]. Load was introduced to the specimen by a three-rail
testing fixture that was built after ASTM D4255 standard. The load magnitude was varied from
0 N to 5 kN in 250 N steps, and the microstrains were manually written down at each load step.
For strains measurements, four strain gauge rosettes per specimen were attached. Figure 4
illustrates the test set-up and shows the strain gauge locations.



Figure 4. Shear Modulus test set-up.

Figure 5 shows the work drawing of the specimen. Due to the roughness of the channel composite
bagging face plates, it was practical to test the mould face laminates only. The orientation of the
specimen is along channe! (direction x is vertical in Figure 5).

Shear Modulus G,, is calculated after Standard ASTM D4255. Six specimens were tested, as
required by the Standard. For Shear Modulus calculation, data points F=2 kN and F=5 kN lying in
the linear region were chosen.

Prior to the fibre glass testing, we performed tests with polycarbonate plates to determine a
correction coefficient to compensate for test fixture friction.

The standard deviation of measured Gy, values is relatively low, 8,8%, which indicates the test
procedure to be pretty reliable. In addition to typical material and test system error sources it
should be noted that the laminate is asymmetric and it tends to bend even when loaded in plane,
thus generating more unknown friction forces and unknown strains to the stress gauges.
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Figure 5. Shear Modulus test specimen work drawing.

3. COMPOSING THE CHANNEL COMPOSITE PANEL PROPERTIES WITH FEM

After the channel composite component elastic properties were determined by testing, we proceed
to compose the elastic properties of a complete channel composite panel with the help of FEM.
Since our aim is to simulate large structures with both a) shell elements and b) laminate elements
for their performance comparison, we need to compose the combined elastic properties for both a)
a complete channel composite panel and b) to a “virtual core” that represents the combined elastic
properties of the foam and the diagonal laminates as a single orthotropic material.

The FEM analyses were performed employing I-DEAS 9.0 software. To find out the most
productive modeling technique for future engineering applications, we tested two different
modeling approaches and executed a number of test runs with different mesh sizes, element types,
numbers of elements and element order (linear/quadrilateral):

1. Solid models, in which face plates, diagonals and foam are all modeled with solid

elements.
2. Hybrid models, in which face plates and diagonals are modeled with shell elements and

foam is modeled with solid elements.

Figure 6 shows a typical FEM model used in the analysis and Table 1 gives the boundary
conditions used in the analysis.
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Figure 6. A typical FEM model used in the analysis. Black letters indicate the visible surfaces
referred in Table 1, and grey letters indicate the hidden surfaces referred in Table 1, respectively.

Table 1. Loads, restraints and constraints definition for FEM analysis.

Case | Force face | Restraints, face Additional Constraints added to a
/direction /Components restraints, face/ face / direction
components
Ex C/X B/UX Onenodeon B/ | C/X, A/’Y,D/Y,E/Z,F/Z
UY, UZ
Ey AY D/UY Onenodeon D/ | A/Y,B/X,C/X,E/Z, F/Z
UX, Uz
Ez F/Z E/UZ Onenode on E/ | F/Z, A/Y, D/Y, B/X, C/X
UX, UY
Gxy A/X, CY B/UX, D/UY Node at origin/ A/X,C/Y,E/Z
UX, UY, UZ
Gy, F/Y E/All F/XYZ,B/X, C/X
Gxz F/X E/All F/XYZ, A/Y,D/Y

UX = Displacement, X-direction
UY = Displacement, Y-direction
UZ = Displacement, Z-direction

RX = Rotation around X-axis
RY = Rotation around Y-axis
RZ = Rotation around Z-axis

Elastic properties for both complete channel composite block and the core layer were calculated by
defining the strains and shear values using displacement results of FEM-analysis, defining the
stress values and by computing stiffness values E=s/e and G=t/? for the block.

In addition to the FEM models, we also created an analytical computing model for the composition
of the elastic properties of a complete channel composite panel. The analytical model is
fundamentally based on mixing formulas of the glassfibre sheets and the foam. For brevity, the
analytical model is not discussed here, but since its results were pretty close to the FEM results,
we consider the analytical solution to be a reliable and the most economical way to determine the
complete channel composite panel elastic properties, see Table 3.
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Table 2 shows the properties of a few FEM models we compared, and Table 3 shows different
“virtual core” models results deviation from the analytical solution. The differences are small, the
solid element model yields smallest overall deviation, but of course, with the largest modeling
effort and cost. Surprisingly, the higher order models B and C have slightly larger differences than
the linear models. The reason obviously is that the simple analytical model and “linear” problem
setting favors the use of simple linear elements.

Table 2. Characterization of a few executed FEM-models.

Model type | Element size | Element type | Model size jmm]
Model A Shell + solid Small Linear 320 x 320 x 55
Model B Shell + solid Small Parabolic 320 x 320 x 55
Model C Shell + solid Big Parabolic 320x320x 55
Model D Solid Small Linear 640 x 640 x 55

Table 3. Result differences between the analytical solution and the FEM models of Table 2.

Quantity Model A Model B Model C Model D
Difference % Difference % Difference % | Difference %
Ex 0.4 0.4 0.4 0.4
Ey 0.0 1.9 3.8 0.0
E, 0.0 0.0 -0.4 0.0
Gxy -1.9 -3.7 3.7 0.0
Gyz 1.9 1.9 1.9 1.9
Gxz, -3.3 -4.1 -3.3 -0.8
XY 0.0 0.0 0.0 0.0

4. EMPIRICAL TESTS AND THE COMPARISON TO FEM RESULTS

To verify the validity of the elastic property values composed with FEM, the following test cases
were computed with different FEM models and the respective physical comparison tests were

carried out:

1. Three- and four-point bending tests for channel composite beams.
2. T-joint bending tests.
3. Natural frequency and damping tests for channel composite beams.

4.1 Three- and four-point bending tests for channel composite beams

The tests were performed at Mikkeli Polytechnic Machine Laboratory, employing Matertest
225kN universal testing machine that has been calibrated to the Accuracy Class 1. Displacement
was measured with a Hottinger HBM Type WSF/50 telltale.

Beams were tested conforming Standard ASTM C 393-00 [5]. The specimens were loaded to
break with the testing speed of 11 mm/min. Specimen dimensions were 900x210x55mm and the
test span was 720 mm. Six along-channel oriented specimens and six across-channel oriented
specimens were tested both in three- and four-point bending, yielding the total amount of 24
specimens. Figure 7 illustrates the three-point bending test set-up and Figure 8 illustrates the four-

point bending test set-up.
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Figure 8. Four-point bending test set-up, along-channel orientation.

The tests were simulated with three different I-DEAS 9.0 FEM-models:

Model A: Face plates and diagonals are modeled using quadratic, rectangular orthotropic
shell elements. Foam is modeled with isotropic solid elements.

Model B: All components are modeled with solid elements.
Model C: Face plates are modeled with orthotropic rectangular solids elements. The “virtual
core” (diagonals+foam) is modeled with orthotropic rectangular solid elements.

Models were solved with linear analysis and load 5 kN, which lies well in the linear behaviour
area of the physical tests. Table 4 gives the average bending at 5kN load in the physical test as
well as the FEM model results difference percentage from the measured displacement

Table 4. Beam bending test average results and the difference percentage of FEM models A-C.

Test Orientation Measured FEM FEM FEM
type bending Model A Model B Model C
[mm] % %o %
3-point
bending Along channel 3.10 6.77 8.71 5.48
4-point
bending Along channel 2.30 8.26 10.43 7.39
3-point
bending Across channel 2.90 -3.45 1.38 -2.41
4-point
bending Across channel 2.30 -8.26 -3.48 -7.83
Average difference N/A 6.69 6.00 5.78
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All the three different FEM models have a very good correlation with the measured results,
especially, when taking the 2-10 % standard deviation of the initial material values into account.
Since the solid model B requires most effort, but the “virtual core” model C requires least effort
and cost, the virtual core method is recommended for engineering applications. Most probably, the
use of simple laminate element model would have yielded as good results with lowest effort, but
unfortunately, this alternative was not included in the study.

4.2 T-joint bending tests and the comparison to FEM results

T-joint bending test were carried out at Mikkeli Polytechnic Machine Laboratory with the same
equipment as the beam bending tests. Two test specimens were employed in these static tests,
while six more specimens were reserved for fatigue tests. The two static specimens were loaded to
break with the testing speed of 17 mm/min. Figure 9 shows the test specimen geometry and the
test set-up.
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Figure 9. T-joint specimen geometry and the test set-up.
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The tests were simulated with five different I-DEAS 9.0 FEM-models:

Model A: Face plates and diagonals are modeled using quadratic, rectangular orthotropic
shell elements. Foam is modeled with isotropic solid elements. Diagonal joints are idealized
to R=0mm. T-joint roundings R=10 mm are modeled as in reality.

Model B: As Model A, but diagonal joints have a realistic rounding of R=3mm.
Model C: As Model B, but T-joint backing face rounding is R=20mm.
Model D: Modeled with laminate shell elements.

Model E: Modeled with solid elements only.



Models were solved with linear analysis and load 800 N, which lies well in the linear behaviour
area of the physical tests. Table 5 gives the average bending at 800N load in the physical test as
well as the FEM model results, and the difference percentage from the measured displacement.

Table 5. T-joint bending test results, FEM Models A-E results and their difference percentage.

Quantity Measured Model A Model B Model C Model D Model E
Displacement [mm] 1,37 2,08 3,18 1,97 1,24 1,98
Difference from the
measurement [%] N/A 54% 136% 46% -8% 47%

Only the laminate shell element model D gave proper results, being somewhat stiffer than the
reality, as expected. Models A, C and E have a good mutual correlation, but the deflection is some
50% larger than in reality. Model B results are very far from reality. We have carefully cross-
checked the models and the physical tests to find a trivial error source that would explain the
results, but found nothing. Moreover, since models A, B, C and E assume all the fibers to be
continuous between all the plates, but only some 50% of the fibers really are continuous, these
models should yield smaller displacement than in reality.

So, we can’t explain the result, but we are happy to note that the cost-effective and simple,
laminate shell element model yields good correlation with reality, as this is the method we would
like to use for modeling large structures.

4.3 Natural frequency tests and their comparison to FEM results

In addition to the static behaviour, we wanted to find out how well different FEM models simulate
the dynamic behaviour of complete channel composite panels.

The empirical tests were carried out at the University of Oulu by hanging a test specimen with a
rope, excitating the specimen with a hammer and measuring the specimen natural frequencies with
two acceleration sensors. One along-channel oriented specimen and one across-channel oriented
specimen were measured. Specimen dimensions were originally 800x150x57 mm, but the
specimen length was cut in 60 mm steps down to 500 mm, and the specimen natural frequencies
were re-measured after each cut to get more comparison data with ease.

The tests were simulated with three different I-DEAS 9.0 FEM-models:

Model 1. Face plates and diagonals are modeled using quadratic, rectangular orthotropic
shell elements. Foam is modeled with isotropic solid elements.

Model 2. Face plates are modeled with orthotropic rectangular solids elements. The
“virtual core” (diagonals+foam) is modeled with orthotropic rectangular solid elements.

Model 3. Modeled with laminate shell elements.

The FEM model dimensions were equal to the tested specimen. For resource reasons, only along-
channel beam was modeled and executed with FEM. Table 6 summarizes results comparison.
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Table 6. First natural frequency measurement and FEM Model 1-3 values for a beam.

L fimessurem. | fimodent fimodett | Fimodetz | fimodetz | fimoders | Ffimodena
[mm] [Hz] [Hz] Diff. % [Hz] Diff. % |Hz) Diff. %
800 335 337 0.6 339 1.2 341 1.8
740 384 389 1.3 391 1.8 395 2.9
680 444 453 2.0 457 2.9 462 4.1
620 520 534 2.7 540 38 548 5.4
560 615 638 3.7 647 5.2 659 7.2
500 738 773 4.7 788 6.8 807 9.3

As Table 6 indicates, all three FEM models have a very good correlation with the experimental
data. Not surprisingly, the correlation becomes worse as the beam becomes shorter, and no longer
represents a proper beam, but rather a long brick with a complex internal structure. For the very
same reason, Model 1, which has the most realistic internal structure, gives the most accurate
results for a short beam, and the simplest Model 3 gives worst, but fair results for a short beam.

5. CONCLUSION

Channel composite panel component elastic properties can be detected employing standard
material testing procedures with good accuracy and moderate standard deviation. In tensile tests,
specimen shape has little influence on test results and deviation.

Complete channel composite panel elastic properties composition is most cost-effectively done
with our analytical computing that is based on mixing formulas. Results comparison show that
differently built FEM models produce pretty similar results. Should it be necessary to cross-check
analytical results with FEM computation, simple hybrid models are recommended.

Comparison of empirical and FEM results had a good agreement with beam static and especially
natural frequency results, but for a more complex T-joint, only simple laminate element FEM-
model yielded good correlation with experimental data. We found no reason for the poor
correlation of experimental data and more complex FEM model results.

Overall, the proposed process was proven a sound tool for channel composite structures
simulation.
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RAJAKERROKSEN VAIKUTUS AKSIAALISESTI LIIKKUVAN
NAUHAN OMINAISTAAJUUKSIIN

T. FRONDELIUS, J. LAUKKANEN, A. PRAMILA

Oulun yliopisto, Konetekniikan osasto,
Teknillisen mekaniikan laboratorio
PL 4200, 90014 Oulun yliopisto

TIIVISTELMA

Tarkasteltaessa aksiaalisessa liikkeess3 olevaan, fluidin ympéar6iméé, nauhaa syntyy vis-
kositeetin vaikutuksesta nauhan ja fluidin rajapintaan alue, jossa nopeusgradientin arvo on
suuri. Tétd aluetta kutsutaan rajakerrokseksi. Aksiaalisesti liilkkuvan nauhan ja sitd ympa-
réivan fluidin oletetaan tissi esityksessd muodostavan kerroksellisen systeemin. Lisdksi ole-
tetaan kerroksien liikkuvan niin, ett siirtyma poikittaissuunnassa on jokaisessa kerroksessa
sama, eikd fluidissa ole vetoa. Kerrosten summan raja-arvona saadaan mirétty integraali
systeemin paksuuden yli. Integroimalla edelleen tdméan alueen yli kolmessa palassa saadaan
liikeyht#l66n liikkemairs- ja siirtymépaksuuteen verrannolliset lisétyn massan termit, jotka
lasketaan rajakerrosteorian avulla.

Tyén tuloksista mainittakoon, ettd laminaarisesta rajakerroksesta lasketuilla massoilla
ei ole kiytinnosss vaikutusta systeemin ominaistaajuuksiin, kun taas turbulenttisen raja-
kerroksen kyseessi ollessa lisdttyjen massojen merkitys ominaistaajuuksiin on huomattava.
Suurimmillaan ero tissi tyossd lasketun kriittisen nopeuden ja lihteessd [1] lasketun valilla
on jopa 15 %.

1 JOHDANTO

Paperikoneiden tuottavuutta rajoittaa nykyisellisn niiden ajonopeuksien yldrajat, silld
tuottavuutta ei enid kannata kasvattaa rakentamalla yhi levedmpid koneita. Kayttono-
peutta rajoittavat monet seikat. Yksi tirkeimmisté syistd on rainan lepatus, joka aiheuttaa
laatuongelmia ja lisda tuotantokatkoksien todenndkdéisyytta [2]. My®s rainan tasoa vastaan
kohtisuorien virahtelyiden esiintyminen ja voimakkuus on kasvanut. Ndmé seikat johtavat
laatuongelmiin ja kasvattavat katkosten todennékéisyyttd paperin valmistuksessa. Rainan
katkeamisen katsotaan yleensi johtuvan paperin paikallisesta heikkoudesta, mutta ainakin
osa katkoista johtunee my&s paperin virihtelyista [3].

Mekaniikan nikdkulmasta lepatus on tyypillinen aksiaalisesti liikkuvan materiaalin vé-
rahtelyilmio [2]. Muista aksiaalisesti liikkuvan materiaalin viréhtelyongelmista esimerkkeiné
mainittakoon vannesahanterit, magneettinauhat, voimansiirtoketjut ja nestetta kuljettavat
putket [4]. Aihetta on tutkittu aikaisemmin olettaen rainaa ympéaréivé fluidi ideaaliseksi, ja
esimerkiksi lihteessi [1] on aihetta kisitelty analyyttisesti.

Tiss3 esityksessd tarkastellaan aksiaalisesti lilkkuvan nauhan ominaisvérihtelyjd otta-
malla huomioon ympardiva ilma rajakerrosteorian avulla. Nauhan ja sitd ympérdivén flui-
din ajatellaan muodostavan kerroksellisen systeemin, jolla kuvataan nauhan ja virtauksen
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vuorovaikutusta.

2 AKSIAALISESTI LIIKKUVA NAUHA

Aksiaalisesti liikkkuvan materiaalin analyyseilld tarkoitetaan pituussuuntaisessa liikkees-
sd olevan rakenteen virihtely- ja stabiilisuustarkasteluja kulkusuuntaa vastaan kohtisuo-
rassa suunnassa. Tarkastellaan kuvan 1 mukaista taipuisaa lankaa tai kapeaa nauhaa, jonka
massa pituusyksikk6d kohti on m, kireys P ja joka liikkkuu tukien vililld pitkin x-akselia
vakionopeudella v. Kohdassa = hetkellisesti olevan materiaalipisteen kohtisuora siirtymi,
joka kuvaa nauhan muodon ajan funktiona, on muotoa w(z,t) [4].

%
()~
J -

L

Kuva 1: Kapea nauha tai lanka

Nauhan liikeyht&l6 on [4]
MW gt + 2Mow 54 + mvzw@z — Pw 4, =0. (1)

Liikeyht&lon ensimmaéistd termid kutsutaan perinteiseksi inertiatermiksi, toista gyroskoop-
piseksi inertiatermiksi ja kolmatta keskeiskiihtyvyystermiksi. Jalkimmaiset termit johtuvat
nauhan aksiaalisesta nopeudesta. Yhtalsstd (1) saadaan ratkaistua alin ominaistaajuus [1]

(1-=2y [P
fl=—5§—\/;- @

L&hteess3 [1] ympirdiva ilma on otettu huomioon mm. lisidmélla massaan m ilman osuus
termilld mg, jolloin alimmaksi ominaistaajuudeksi saadaan

B (1 _ !m‘i-nta !UZ) P
h= 2LP \ (m+ma) ®

Léhteen [1] mukaan ympérdivan ilman voidaan ajatella myds liittyvan pelkéstddn perintei-
seen inertiatermiin. Kun yhtald (1) kirjoitetaan muodossa

(m 4+ mg)w,y + 2mow 44 + mvzwyu — Pw . =0, (4)

saadaan alimmaksi ominaistaajuudeksi [1]
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3 YMPAROIVAN ILMAN VAIKUTUS

Kun tarkastellaan kevytti nauhaa, on ympardivalld ilmalla huomattava vaikutus sys-
teemin dynaamiseen kiyttiytymiseen. Perinteisesti tamén tyyppisen systeemin ympé&roivaa
fluidia on tarkasteltu ideaalisena, jolloin nauhan aksiaalisella nopeudella ei ole vaikutusta
fluidin virtaukseen. Todellinen tilanne ei kuitenkaan ole néin yksinkertainen, koska kiytén-
nossi kaikkien fluidien viskositeetti on suurempi kuin nolla.

3.1 KIINTEAN MATERIAALIN JA YMPAROIVAN FLUIDIN MUODOS-
TAMA KERROSSYSTEEMI

Tarkastellaan kuvan 2(b) systeemid seuraavin oletuksin:

1. Nauhan ja sitd ympardivin ilman ajatellaan muodostavan kerrossysteemin

2. Oletetaan ettd kerrokset liikkuvat niin, ettd siirtyma w on jokaissa kerroksessa sama
(toisin sanoen oletetaan, ettd kalvossa ja ilmassa on sama w)

Fluidissa ei ole vetoa (P = 0 ilmassa)
Kiinte4n aineen tiheys on ps
Fluidin tiheys on pf

. Nauhan leveys on b

N e o s w

. Massa pituusyksikkda kohti on b [* pdz

Soveltamalla edelld mainittuja oletuksia liikeyhtaloén (1) saadaan

b/pw,ttdz—l—b/2pv(z)w,$tdz+b/pv(z)2w7mdz—b/%w,mdz=0 (6)

Jakamalla integraali osiin kiintesin aineen ja fluidin rajapinnoissa, sekd integroimalla paloit-
tain saadaan

h h h
3 3 2 3
P
b / pswedz +b / psvWw redz 4+ b / Ps v?w,gcz dz — / —i;w’" dz
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[NIEg
vl
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+b/pfw’tt dz + bfpfuf(z)w,zt dz + b/pfuf(z)zwym dz =0, (7)
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missé us on fluidin nopeus. Olettamalla lisdksi, ettd taipuma w on kaikissa termeissé sama,
saadaan se ulos integraaleista. Laventamalla (7) vakionopeudella v

2
b/psdzwtt-l-b/psdszxﬁ—b/psdzv Wz — /dz
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U
+b/pfdzwtt+b/pf—dszm+b/pf-v—gdQOw’M=0 (8)

(S

Yhdistamalld termit saadaan liikeyhtdlo edelleen muotoon
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h _x
2 2 o0
us
+b psdz + pf——dz+ prdz VW, g
_h —o0 h
2 2
h h
) o2 o
+b /psdz+/pfv—£dz+/pf—dz v*W gz — b /dz —Wer =0 (9)
oo b —h

— L .3
2 2

Integroimalla kiintein materiaalin yli saadaan nauhan massa pituusyksikk6a kohti

m = psbh, (10)
gyroskooppiseen termiin lisdttava massa pituusyksikkoa kohti
iy
2 oo
Mag = b / pf— dz + b/pf—— dz, (11)
-0 h
2
keskeiskiihtyvyystermiin lisittava massa pituusyksikkoa kohti
&
2 o0
U U
Mok = b / pf(—v):)zdz+b/pf(7f)2dz, (12)
—co h
2
ja perinteiseen inertiatermiin lisdttdva massa pituusyksikkod kohti
_k
2
—b/pfdz—l—b/pfdz (13)
—o0

[N

182



Yhtildiden (10) - (13) avulla voidaan litkeyhtald kirjoittaa muotoon
(m + ma)w gt + 2(m + Mag)oW ot + (M + Mg )V*W 5o — Pw o0 = 0. (14)

Liikeyht#ldn gyroskooppitermisti havaitaan analogia siirtymépaksuuden méaritelméén ja
keskeiskiihtyvyystermisti analogia liikkem&dardpaksuuden mééritelmaén. Lisdtty massa gy-
roskooppiseen ja jiaykkyystermiin voidaan siis laskea rajakerrosteorian avulla. Tulos on loo-
ginen, koska verrattaessa sitd kuvan 2(a) nopeusjakaumaan, oletettavaa on, ettd lisdtty mas-
sa gyroskooppiseen- ja keskeiskiihtyvyystermiin ovat verrannollisia aksiaalisesti materiaalin
mukana liikkuvan ilman massaan.

Perinteiseen inertiatermiin liittyvid lisdttyd massaa ei voida laskea rajakerrosteorian
avulla, silli perinteiseen inertiatermiin liittyvd massa on verrannollinen materiaalin poi-
kittaisen vdrahtelyn siirtiméin ilman massaan. Edellisessd tarkastelussa tehtiin oletus, ettei
taipuma ole z:n funktio (oletettiin taipumat pieniksi suhteessa rajakerroksen paksuuteen) ja
siksi perinteiseen inertiatermiin lisittivi massa lasketaankin ottamatta huomioon nauhan
aksiaalista nopeutta.

;:(lld
wj nauha I h
Tho
L = |
v
L
(a) Kaareva aksiaalisesti nopeudella v Likkuva (b) Kiintedn materiaalin ja ymparéivin
materiaali ja sitd ympérdivin fluidin nopeusja- fluidin muodostama kerrossysteemi

kauma

Kuva 2: Kerrossysteemi ja nopeusjakauma

3.2 LISATTY MASSA INERTIATERMEILLE

Lisatty massa on hoikille rakenteille perinteisesti laskettu yht&lostd

2
_ @ (15)

Mg 2

Toisaalta lihteessi [5] lisdttyd massaa kuvataan yhtél6illd, missd o ja B ovat vakioita, joille
on esitetty arvoja parametrien b/L ja L/b funktioina taulukossa 1

. Tpb?
Mo = a— — (16)
mq = BpLb, (17)

Jaykkyys- ja gyroskooppiseen matriisiin liittyvit lisityt massat pituusyksikk6a kohti laske-
taan siten, ettd elementtid kohti kohdistuvan ilman tilavuus kerrotaan tiheydelld ja jaetaan
elementin pituudella. Elementin yli- ja alapuolelta kohdistuvat massat lasketaan yhteen.
Kuvassa 3 varjostettu alue kerrottuna leveydelld b kuvaa yhteen elementtiin kohdistuvan
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ilman tilavuutta. Kun tim3 tilavuus kerrotaan ilman tiheydelld p, saadaan elementin lisi-
tyiksi massoiksi pituusyksikkoé kohti

L. L.
mac=p—l:/5;dm+§—i/5;dx (18)
0 0
ja
Le L.
Moy = z—z/Gadz+ z—z/ﬁydx, (19)
0 0

missi &:n ja #:n alaindeksit a ja y viittaavat elementin ala- ja yldpuoleen.

Kuva 3: Virtauskentin symmetrinen jakauma

Taulukko 1: Vakiot a ja 8 kaavoihin (16) ja (17) [5]

/)L o |LJb B
0 1,0 | 0,1 243
01 09502 1,70
02 090 03 1,56
0315 0,84 | 04 1,32
04 080 05 1,17
05 0,76 | 0,6 1,05
0,63 0,70 | 0,7 0,97
08 064] 08 093
10 05809 086
1,0 0,81
50 0,34

3.3 TURBULENTTINEN RAJAKERROSPAKSUUS

Lihteen [6] mukaan ainoa tyydyttivd menetelmd turbulenttisen rajakerroksen paksuu-
den miirittimiseksi annetulle pinnalle perustuu rajakerroksen lilkkeméérén differentiaaliyh-
taloon. Tama yhtils on kiypa sekd laminaariselle, ettd turbulenttiselle rajakerrokselle [6].
Liikemaérén differentiaaliyhtils rajakerrokselle on [6]

d o 9cTs



Nopeusjakaumaa arvioidaan yhtal5ll4 [6]
K ~1/7
hat Ay 21
» L/ (21)

joka on analoginen putkivirtauksen turbulenttisen nopeusprofiilin kanssa. Arvio soveltuu
maiiratyn mittaiselle liikkuvalle tasaiselle levylle kohtuullisilla Reynoldsin luvuilla. Turbu-
lenttinen nopeusjakauma saatiin, siis valitsemalla vastaava jakauma kuin &arellisen mittai-
selle levylle. Tekemailla lisiksi oletuksen, ettd leikkausjannitys kiinteélld pinnalla noudattaa
yhtilsa [6]

gch 1/4
=0, 5 22
pu? . (Ué) ' (22)

saadaan liikemairdpaksuudeksi [6]

0o 1

1 2 A]. 72 1

_2/ u2 :/ /P57 = 526, (23)
0 0

Sijoittamalla leikkausjannitys (22) ja liikkem&drapaksuus (23) liikem&arén differentiaaliyh-
taloon (20) sekd jirjestelemlld termit uudelleen ja integroimalla 18htSpisteestd 6 = 0 kun
z = 0, saadaan rajakerroksen paksuudeksi [6]

1
4

d, 4 9cTy d, ,1 ge pv2
6 —(v'=d) = = -0,0225
d:c( )= P = d:c(v 36 ) = p ge 22 ( 6)
= §=1,01 »r(é) (24)
Siirtyméapaksuus miaritelliin 1dhteessi [6]
0o il
& = l/u dy = /[1 — i /76dh = Ls—o 126 - z(—)/5 (25)
v ! 8 ’ ve’
0 0
Liikemi4rapaksuus saadaan edelleen sijoittamalla yhtilo (24) yhtaloon (23)
6=10,028-z(— )1/5 (26)

4 ELEMENTTIMALLI

Elementtimenetelmin yhtild on johdettu liikeyht&lostd kiyttden Hamiltonin periaatetta
8 [, 2 ( '2(T—V) = 0 [7] ja se on ratkaistu Matlab ohjelmalla [7]. Diskretoitu liikeyht&l6 voidaan

k1r301tta,a matriisimuodossa
Mw + Gw + Kw =0, (27)

misséd M on massamatriisi, G gyroskooppinenmatriisi ja XK jaykkyysmatriisi. Matriisit saa-
daan vastaavista elemementtien matriiseista sijoittelusummaamalla. Elementin matriisit
saadaan kaavoista [7]: massamatriisi

i
M?® = (m + m,) /NTNdx = (_m-}-_;na)i E ;] ; (28)
0
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gyroskooppimatriisi

L.
G® = (m+ mas)v /(NTN,x ~N,TN)dz = (m + mag)vLe [(1) —01] , (29)
0
sekd jaykyysmatriisi
L.
K® = (P — (m + mak )v?) [N,XTN,x de = £ (mz Tl [_11 _11} - (30)
0

4.1 LIIKEYHTALON RATKAISEMINEN

A

Sijoittamalla liikeyht#&166n (27) yrite w = e** saadaan ominaisarvotehtédva

(K +AG +XM)X =0. (31)
Ominaiskulmataajuus w saadaan ominaisarvon \ imaginddriosan positiivisena nelidjuurena
w=vIm), (32)

ja edelleen ominaistaajuus saadaan tunnetusti
w
= . 33
f 2 (33)

Otetaan kiytt66n dimensioton nopeus ja dimensioton (ensimméinen) ominaistaajuus [1]

V=u (34)

m
F=f-" 2L\/;. (35)

Koska ominaistaajuudet f riippuvat aksiaalisesta nopeudesta v, voidaan ne esittaa graa-
fisesti esimerkiksi vastaavien dimensiottomien suureiden avulla, eli dimensioton taajuus F'
dimensiottoman nopeuden V funktiona. Laskennassa kdytetdan adaptiivista dimensiotto-
man nopeuden askelta, koska F:n riippuvuus V:sté ei ole lineaarinen ja kuvaaja piirretaén
V F-koordinaatistoon pistepareina, joiden kautta piirretdan murtoviiva. Askeleen laskemi-
seen hyddynnetisn edellisii tuloksia siten, etti arvioidaan kiyran derivaattaa differenssiar-
violla

Fi—F

A (36)

F, il+1 =
Nyt lasketaan dimensioton nopeus lisdamalls edelliseen nopeuteen vakio kertaa derivaatan
kasnteisarvon vastaluku. Kaava (37) pienentdd askelta kun kiyrén jyrkkyys kasvaa. Pisteet
lasketaan kaavalla

1 Viai-V;

1 , V2 2 )a +1 +400 T, F,

ykun i=2,3,4,... (37)
missi V; on edellisen kierroksen dimensioton nopeus ja vastaavasti dimensioton taajuus F;
vakiokerroin ﬁ on empiirisesti mairitetty kahden laskentakierroksen avulla. Ohjelmasil-
mukan lopetusehtona kiytetiin dimensiottoman taajuuden F absoluuttista arvoa 0,001.



Toisin sanoen, kun dimensioton taajuus on pienempi kuin 0,001, laskenta lopetetaan. Li-
séksi tarkastellaan V F-kiyrdn numeerista derivaattaa. Jos derivaatta F;, , saa positiivisen
arvon, lasketaan piste uudelleen puolitetulla askeleella.

0.2r
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Kuva 4: Dimensioton taajuus F' dimensiottoman nopeuden V funktiona. Katkoviivalla on
esitetty tarkan ratkaisun tulokset [1] ja + merkilld 13hteen [5] mittauspisteet. Solmupistei-
den lukumiird on 62. Jakauman tyyppi on turbulenttinen kasvava ja paperin massa pi-
tuusyksikkéa kohti m = 0,017 kg/m. Perinteiseen inertiatermiin on lisdtty massa kaavalla
7).
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Kuva 5: Dimensioton taajuus F dimensiottoman nopeuden V funktiona. Katkoviivalla on
esitetty tarkan ratkaisun tulokset [1] ja + merkill4 lihteen [5] mittauspisteet. Solmupisteiden
lukumaiirs on 62. Jakauman tyyppi on turbulenttinen epdsymmetrinen ja paperin massa
pituusyksikkdd kohti m = 0,017 kg/m. Perinteiseen inertiatermiin on lisdtty massa kaavalla

(17).
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Kuva 6: Lisityn massan turbulenttiset jakaumat pituuskoordinaatin x funktiona eri dimen-
siottoman nopeuden arvoilla, kun jakauma m,¢ on epdsymmetrinen.



5 YHTEENVETO

Tissi esityksessi tarkasteltiin aksiaalisesti liikkuvan nauhan ominaisvarihtelyita kitkal-
lisessa fluidissa. Nauhan ja sitd ympérdivan ilman oletettiin muodostavan kerrossysteemin,
ja nain ollen paidyttiin liikeyht&lossd muotoon, josta oli havaittavissa vastaavat termit kuin
rajakerrosteorian avulla voidaan laskea, eli siirtymépaksuus ja litkkemadrapaksuus. Termit
huomioitiin lisittyns massana, joka ei ole saman suuruinen joka termissd. Perinteiseen iner-
tiatermiin lisdtty massa m, laskettiin vastaavasti kuin ilman aksiaalista nopeutta v lasket-
taisiin.

Koska lisdtyt massat eivit ole vakioita nauhan aksiaalisuunnassa, ongelma ratkaistiin
elementtimenetelmalli. Laskennassa kiytettiin kaksivapausasteisia elementtejd ja ominai-
sarvotehtdvi ratkaistiin numeerisella laskentaohjelmalla.

Vertaamalla saatuja tuloksia lihteess3 [5] esitettyihin kokeellisiin havaitaan, ettd nau-
haa ympéréivilla fluidilla on hyvin suuri merkitys nauhan ominaistaajuuksiin. Suurin vai-
kutus on perinteiseen inertiatermiin liséttévalla massalla mq. Téssd esityksessd keskityttiin
tarkastelemaan lisityn massan vaikutusta gyroskooppiseen- ja jaykkyystermiin. Tuloksien
mukaan lisitylli massalla on vaikutusta — varsinkin suurilla dimensiottoman nopeuden ar-
voilla maksimissaan noin 15%, kun kyseessé on kasvava turbulenttinen jakauma ja paperi on
kevytts. Tulokset osoittavat, ettd kiintedd materiaalia ympardivilld fluidilla ja fluidialueen
muodolla on suuri merkitys rakenteen vérdhtelyihin.

Jatkossa kiinnostavaa, olisi tietds fluidin aiheuttaman vaimennuksen suuruus ja toisaalta
lisittys massaa voisi yrittdd laskea, jollain virtauslaskentaohjelmalla. Kytketyn ongelman
(rakenteen virdhtely ja virtaava fluidi) ALE-formulointi saattaisi olla mielenkiintoista ja
haastavaa. Mahdollisesti mittauslaitteiston kehittidminen ja mittaaminen varsinkin suurilla
dimensiottoman nopeuden V arvoilla saattaisi tarjota haasteita ja olisi merkittdvaa verrat-
taessa laskettuja tuloksia mitattuihin.
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NUMERICAL ANALYSES OF A WATER POOL UNDER LOADING
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ABSTRACT

The experiments done at Lappeenranta University of Technology, where large air bubbles were
injected in a water pool, were simulated by using the commercial computational fluid dynamics
code Fluent. The CFD simulations were found to produce correctly the main features observed in
the experiments. The pressure loads on the inner walls of the pool were determined and transferred
to the structural analysis code ABAQUS using a transfer tool written for this study. The response
of the structure to the transferred pressure loads was analysed.

1. INTRODUCTION

Behaviour of suppression pool during a loss-of-coolant accident (LOCA) is an important safety
issue in boiling water reactors. During LOCA, a large amount of air and steam is injected into the
suppression pool by the pressure difference of the drywell and the wetwell. Extensive
experimental effort has been done on this topic during the past decades. In Marviken, small-scale
experiments were performed with the Testa facility /1/ followed by full-scale containment
experiments/2/. An example of recent experimental work is the thesis of Meyer /3/ which contains
short reviews of different aspects of this field.

Behaviour of air bubbles injected in water pools has also been investigated by using computational
fluid dynamics (CFD) during the past decades. The Volume Of Fluid (VOF) method introduced by
Hirt and Nichols /4/ made possible simulations of large air bubbles with a reasonable
computational cost. The early simulations were two-dimensional because of the limited computer
resources /4,5,6/. Even the recent work of Meyer /3/ and Meyer and Yadigarogly /7/ contains only
two-dimensional CFD simulations.

In the TOKE project of the Finnish Research Programme on Nuclear Power Plant Safety
(FINNUS), injection of air and steam into a water pool is investigated experimentally at
Lappeenranta University of Technology. In the first experimental series, air has been injected into
the pool through a vertical pipe submerged in water. In the second series, experiments with steam
are planned. In the planned steam experiments, possible occurrence of condensation water
hammers may cause problems. The high loads due to water hammers may damage the pipe and the
pool structures. Therefore, obtaining estimates for the loads and transferring them to structural
analysis codes is of importance.
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In the present work, the behaviour of large air bubbles in a water pool is investigated with three-
dimensional CFD calculations. A method for transferring pressure loads from the computational
fluid dynamics code Fluent to the structural analysis code ABAQUS is developed and tested. In
the test case presented here, the loads on the pool structures are caused by sloshing of water during
injection of air into the pool. The structural behaviour of the pool under the loads is numerically
solved with a three-dimensional finite element model. The main aim is to solve numerically the
three-dimensional loads caused by rapid water movements in a pool and to verify the transfer tool
that interpolates the pressure from the CFD mesh to the structural analysis mesh. Another goal is
to ensure that the future experiments with injected steam at Lappeenranta University of
Technology are safe and in the right order before they are carried out.

2. EXPERIMENTAL SET-UP

In the TOKE project of the Finnish Research Programme on Nuclear Power Plant Safety
(FINNUS), injection of air and steam into a water pool is investigated experimentally at
Lappeenranta University of Technology. The pool constructed for the experiments is illustrated in
Fig. 1. The pool is supported by beams to the floor and to the nearby concrete walls.
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Figure 1. Experimental set-up in the TOKE-project at the Lappeenranta University of Technology
/8/. The height is approximately 5 m and the diameter 2.4 m.

3. CFD MODEL

Injection of air into the pool shown in Fig. 1 was modelled with flow simulation. The height of the
pool was 5.1 m and the pool diameter was 2.4 m. Initially, the pool contained water up to the level
2.87 m from the bottom. The axis of the vertical pipe was located 0.3 m from the pool axis. The
diameter of the pipe was 300 mm and its submergence depth was 1.63 m.

Part of the surface mesh of the pool is shown in Fig. 2, where the bottom and part of the inner wall
of the pool are shown. A fairly coarse mesh was used in the simulations: the number of grid cells
was only about 80 000.



Pressure boundary conditions were applied at the pipe inlet and at the pool outlet. At the pipe inlet,
air was injected into the pool and the relative total pressure was 20 kPa. The chosen value was
somewhat larger than the hydrostatic pressure at the submergence depth of the pipe, which was
16.0 kPa. At the pool outlet, the relative total pressure was zero.

AT T T T T W O L W I WL W

Figure 2. Surface mesh of the inner wall of the pool.

The flow equations were solved with the commercial Fluent 5.5.14 CFD program. The injection of
air into water was described by using the Volume Of Fluid (VOF) model, where the surface
between air and water is tracked during the simulation. The grid size used in the simulations sets a
lower limit for the size of the bubbles that can be formed in the numerical model. Therefore, the
break-up and the coalescence of the bubbles cannot be described accurately. Another limitation is
that in Fluent 5.5 both water and air must be assumed incompressible. The compressibility of air
would be an important effect especially inside the pipe, where pressure oscillations can occur.

4. CFD RESULTS

When air is injected into the water pool, pressure loads on the pool walls are caused by the
sloshing motion of water in the pool. In addition, formation of large bubbles at the pipe outlet also
pushes water further away from the pipe. When the large bubbles are detached from the pipe
outlet, water hits strongly back against the pipe.

In Fig. 3, the vertical flow velocity is shown on the bubble surface at different instants of time. The
iso-surface of volume fraction of air has been coloured with the vertical velocity of the surface,
where blue and red stand for motion downwards and upwards, respectively. Initially at time ¢ = Q,
the water surface in the pool is at rest (cyan colour) but the surface starts rising when air is injected
into the pool.

193



194

At time ¢ = 0, the pressure at the inlet of the pipe rises by 20 kPa. The water column in the pipe
starts moving downwards with increasing velocity. At time ¢ = 0.6 s, a bubble starts forming at the
pipe outlet, and it hits the bottom of the pool approximately at time ¢ = 0.8 s. A ring-shaped bubble
is formed in the bottom. The radius of this ring-shaped bubble increases and it moves towards the
wall of the pool. At time 7 = 1.0 s, water hits back to the outlet of the pipe and a jet of water shoots
into the pipe.

The first bubble is detached from the pipe outlet at time ¢ = 1.2 s. The bubble starts rising towards
the water surface. Formation of the second bubble starts at # = 1.3 s, and the first and second
bubble reach the water surface almost simultaneously approximately at time ¢ = 1.56 s. Formation
of the third bubble at the pipe outlet starts at time £ = 1.6 s, and it reaches the water surface at time
t=20s.

When the bubbles break the water surface, water starts sloshing strongly in the pool. In the time
intervals # = 2...3 s and ¢ = 4.5...5.0 s, some water splashes over the edge of the pool. In Fig. 3,
this splashing can be seen to occur on the left-hand side of the pool where the distance of the pipe
from the wall is small. The weight of water moves from one side of the pool to the other side
during the sloshing motion, which induces stresses in the supporting structures of the pool. The
velocity of the water surface in this sloshing motion is typically between —3 and 3 m/s.

An air channel is formed from the pipe outlet to the water surface at time ¢ = 1.56 s. The channel is
rapidly closed by water hitting against the pipe. Such sudden opening and closing down of air
channels causes rapid pressure variations in the pipe and in the pool.

In the early phase of the simulation, the time interval between the detaching bubbles is about At =
0.4 s. Later, the interval becomes somewhat shorter and the successive bubbles can not be
distinguished so clearly. In the time interval ¢ = 2.73...5.33 s, an increasing amount of small air
bubbles are flowing around in the pool. Since the flow in the vicinity of the pipe is upwards, a
return flow downwards is formed further away from the pipe. The smallest bubbles can be carried
downwards by this return flow.

In Fig. 4, the relative static pressure on the pool wall is shown at eight different instants of time. At
time ¢ = 0, an overpressure of Ap = 20 kPa is applied at the pipe inlet and maintained until the end
of the simulation. The effect of this overpressure propagates immediately to the pipe outlet and it
also has some effect on the pool wall. At time ¢ = 0.20 s, mainly the effect of the hydrostatic
pressure can be seen in Fig. 4, where the pressure at the lowest point of the pool bottom is about
28 kPa.

At time ¢ = 0.70 s, the water plug has been expelled from the pipe, where the flow velocity of air is
21 m/s. The pressure at the pool bottom is increased by 12 kPa due to the water plug hitting at the
pool bottom with a velocity of about 5 m/s. The overpressure caused by the expulsion of the water
plug from the pipe is followed by lower pressure at time ¢ = 1.00 s. The first bubble breaks the
water surface approximately at # = 1.56 s, and the sloshing of water leads to an increased load on
the bottom of the pool.

The CFD simulations and the experiments performed in the TOKE project are discussed more
closely by Pittikangas and Pokela /9/ and Laine /8/.
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Figure 4. Relative static pressure on the inner wall and bottom of the pool at different instants of
time.



5. TRANSFERING DATA

The transient inner wall pressure described above was transferred from the CFD calculation to the
ABAQUS structural analysis code. In structural analysis, the numerical mesh was different
compared to the CFD analysis. Therefore, interpolation of the pressure from the CFD mesh to the
structural analysis mesh at the inner wall had to be performed. The interpolation was done by
using the D2A v. 1.02 interpolation programme, which was written in collaboration with Ari Silde
for this purpose /10/.

The D2A interpolation programme is based on the MpCCI library (Mesh-based parallel Code
Coupling Interface) which has been written in the Fraunhofer Institute for Algorithms and
Scientific Computing /11,12/. The MpCClI library enables coupling of two mesh based codes, such
as CFD and structural analysis codes. The codes exchange coupling data, such as pressure,
velocity and temperature on a meshed coupling surface. MpCCI provides tools for interpolation of
the coupling data from the mesh of the sending code to the mesh of the receiving code. Bi-
directional coupling of the codes via a moving coupling surface is also supported.

In the D2A interpolation programme that was implemented in this work, the basic features of
MpCCI were used to obtain a simple one-directional coupling of Fluent and ABAQUS. The
motion of the pool wall was not taken into account in the CFD calculation. The mesh on the
coupling surface did not move during the simulation. In the present work, interpolation was tested
only from quad to quad elements but the programme has been written to support alf seven element
types known by MpCCI. The bi-directional coupling is currently being tested.

6. FEM MODEL

The pool is simulated with an axisymmetric and a three-dimensional model. Some preliminary
analyses not discussed here are conducted with the axisymmetric model. Boundary conditions and
loads are altered in the three-dimensional model, but mainly one case is described in this article.
Pressure loads omto the inner wall of the pool are transferred from the CFD analysis. The
simulation results are verified against analytical calculations.

The pool stands in the corner of the large testing room and is supported from beneath by four
bearers (200 mm x 200 mm x 6 mm) and from the side by five side stays (150 mm x 150 mm x 6
mm). Two horizontal beams (150 mm x 150 mm x 6 mm) are welded between the bearers. The
bearers have springs under them, but they are not modelled until the second experimental series
with injected steam. All beams are rectangular hollow sections.

A complex model with different element types is created for three-dimensional structural analyses.
It corresponds relatively accurately to the real pool and its supporting structures. The mesh can be
seen in Fig. 5. The pool is meshed with 4-node doubly curved general-purpose shell elements with
finite membrane strains. Reduced integration with hourglass control is used. The length of the
shell element edge is on the average 50 mm. The beams are meshed with 2-node linear beam
elements. The elements are 100 mm long. Every node has six active degrees of freedom. Number
of elements in the whole model is 6581, number of nodes is 7328 and total number of variables in
the model is 39828.
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Figure 5. The pool mesh on the left. Notice the supporfs. Detail of the pool bottom
right. Notice the stiffening bracings.

Three different materials are used in the pool. The pool itself and the L-pipe around it are stainless
steel SS2333, the U-pipe bracings around it are normal steel S235JRG2 and the rectangular beams
are S355J2H. An elastic-plastic material model with von Mises yield function and isotropic yield
hardening is adopted. The material properties are listed in Tables 1 and 2.

Table 1. Elastic material properties at room temperature. Young's Modulus [MPa], Poisson's ratio
and density [kg/m’]. /13/

582333 S$355J2H S235JRG2
T E v p E v P E v P
25 200000 0.3 7900 206000 0.3 7850 206000 0.3 7850

Table 2. Plastic material properties. Stress [MPa] and corresponding plastic strain. /13/

$52333 S355J2H S$235JRG2
T 4 £ o £ o £
25 200 0 315 0 195 0
25 210 0.002 325 0.002 205 0.002
25 240 0.01 355 0.01 235 0.01

7. FEM RESULTS

The FE analyses were carried out using ABAQUS/Standard code version 6.3.1 /14/. A static
analysis is conducted with the same air blow data than the dynamic analysis. The material does not
reach the yield point at any moment in any area. The model behaves logically, like it should
behave with the concerned data. This partly verifies the data and its transfer.

The eigenvalue extraction is done for two three-dimensional models. In the first one the water
mass is not included in the dynamic equations of motion, but in the second one the mass is



included in the steel walls of the pool, where an equivalent density is used. In the first case, the
total mass of the model is 2455 kg and the lowest eigenfrequency is approximately 20 Hz. In the
second case, the total mass is 14352 kg and the lowest eigenfrequency is approximately 8 Hz.

Nonlinear dynamic analysis uses implicit time integration to calculate the transient dynamic
response of the system. The pool is swaying back and forth and the supporting beams are bending.
Fig. 6 shows the vertical displacement of the pool bottom of both cases mentioned above. The
maximum displacement is approximately 0.87 mm downwards. The displacement magnitudes of
both cases are close to each other, but the peaks are higher without the mass of water. The peaks
coincide with the pressure peaks. The first lower pressure occurred after approximately 1 seconds
and a clear overpressure occurred after 1.5 seconds, for example. From here on, only the results of
the model without the mass of water are introduced.
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Figure 6. Vertical displacement of the pool bottom. Case without the mass of water on the left,
case with it on the right.
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The horizontal displacements of the top of the pool are surprisingly low. The maximum
displacement is approximately 1.5 mm. The horizontal displacement magnitudes of the side stay
and bearer leg ends from which they are joined to the pool stay below 0.6 mm.

The vertical reaction forces in the location where the legs are fixed into the floor are calculated.
The mean value is approximately 27 kN and the magnitudes stay below 50 kN, which corresponds
to analytical calculations that have been performed. The reaction forces alter by approximately 50
% during the analysis.

The maximum stress value during the whole analysis is approximately 97 MPa (at 1.567 s) and it
is located in the rounding, i.e., the joint of pool cylinder wall and pool bottom wall. Outer wall has
lower stresses in the pool rounding, but higher stresses where the supports are joined to the pool.
Fig. 7 shows the hoop and axial stresses in the bottom of the pool, close to the rounding. Hoop
stresses are compressive and they are higher by magnitude in the outer wall (46 MPa). In the axial
direction there is approximately 30 MPa tension in the inner wall and 20 MPa compression in the
outer wall. Fig. 8 shows a von Mises stress contour plot of the pool bottom. Notice the supporting
beams and their effect on the stresses in the pool wall. The stresses correspond to analytical
calculations.
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Figure 7. Hoop stresses on the left and axial (meridian) stresses on the right near the pool bottom
rounding. The upper curves represent inner wall values.
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Figure 8. Von Mises stress distribution in the inner wall of the pool. Time instant is 1.999 seconds.
The white colour represents stress magnitudes over 20 MPa.

8. SUMMARY AND CONCLUSIONS

Three-dimensional simulations of large air bubbles injected in a water pool have been performed
by using the commercial computational fluid dynamics (CFD) code Fluent. The experiments
performed at Lappeenranta University of Technology were modelled by using the volume of fluid
(VOF) model for large bubbles. The CFD simulations were found to produce correctly the main
features observed in the experiments. The pressure loads on the wall and the bottom of the pool
were determined and transferred to the structural analysis code ABAQUS.

Pressure loads on the pool wall and bottom were caused by sloshing motion of the water. Rapid
movements of water occur when large bubbles were detached from the pipe and when air channels



from the pipe outlet to the surface were suddenly closed. Then, water was found to hit strongly
against the pipe causing rapid increases of pressure. Strong oscillation in the load occurs when the
first bubble breaks the water surface. The variations of the pressure loads on the wall are about
+15 kPa. The loads on the pipe are somewhat larger.

Investigations of fluid-structure interactions are made possible by the tool written for transferring
the pressure loads from Fluent to the structural analysis code ABAQUS. The transfer tool D2A is
based on the MpCCI subroutine library. D2A interpolates the pressure load on the inner wall of the
pool from the CFD mesh to the ABAQUS mesh. In D2A, only one-directional coupling of the
codes has been implemented, i.e., the motion of the pool wall was not taken into account in the
CFD simulation.

The structural effects caused by rapid water movements were examined. The stresses stayed below
the yield point and no plastic deformations took place. The maximum stresses were expectedly
located in the rounding between the pool cylinder wall and the end plate. The rapid water
movements had no significant structural effect. The stress variations in the pool wall corresponded
to the pressure load variations. The reaction forces in supports naturally varied more.

The motion of the pool was surprisingly minor. The largest displacements were only
approximately 2 mm. According to the visual inspections in the experimental tests, the vibration
amplitude was at least 10 mm. Otherwise, the model responded realistically to the transferred
pressure loads. The addition of mass of water to the model had no significant effect on the
structural response in these analyses. It probably would be more significant with higher pressure
loads, when the pool clearly starts vibrating.

Preliminary analyses for water hammer loading caused by a steam bubble condensation were
carried out using an axisymmetric FE model. The springs below the columns were modelled as an
equivalent spring. A hydrodynamic material model was used for water. According to these
analyses, the allowed stress level would clearly be exceeded in supporting columns.

An important application of the method used in this project is the load transients caused by water
hammers. A condensation water hammer may occur in the future experiments, where steam is
injected into the pool. In that case, material yielding is expected to take place. The springs under
the supporting legs will be modelled also in the three-dimensional model.
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ABSTRACT

A coupled model for gas damped micromechanical resonators is presented. The model
includes 3D elasticity and gas flow in a narrow gap, which both are modeled by com-
putationally economical methods. The displacement of a rigid block is expressed by the
translational and rotational degrees of freedom of the center of mass. The gas damping is
modeled by the Reynolds equation, which solves the pressure distribution in narrow chan-
nels. The reduced elasticity model is verified in a modal analysis. The effect of different
design parameters on the behavior of the resonator is studied in transient simulations.

1 INTRODUCTION

In micromechanical systems, the gas restricted in narrow gaps between moving structures
causes considerable forces on the structures. The gas may either be compressed or forced
to flow out of the gap. The isothermal compression of gas is a reversible process and
it results in a spring-like force on the resonating structure. The forced gas flow, on the
other hand, results in damping of the oscillations, since kinetic energy of the resonator is
used to overcome viscous resistance of the flow. In micromechanical dimensions these both
phenomena are notable. The gas damping is often called the squeezed-film-damping, and
it is most influential in planar resonators such as accelerometers or torsional micro mirrors.

In this paper we present a method for simulating micromechanical resonators under
squeezed-film-damping and apply it to a simple accelerometer. We have previously de-
scribed a similar model for a thin resonating membrane including perforation holes [1]. The
current model is fully coupled, it is not restricted to small pressure deviations or small
amplitudes, and it can manage the true three-dimensional geometry of the problem. The
mathematical model is based on the linear elasticity equation and on the Reynolds equation
describing the gas flow in narrow gaps. In addition, the deformations of the proof mass
are assumed to be negligible compared to those of the elastic springs. A linear elasticity
solver may be used since the displacements are small compared to the dimensions of the
structure. The displacements, however, need not be small compared to the air gap height,
because the Reynolds equation is not linearized. The Reynolds equation has been used in
modeling of micromechanical systems in literature, e.g. in [2] and references therein.

A perfectly three-dimensional model of the gas damped resonator would require solving
the elasticity and Navier-Stokes equations in a coupled manner. This is not feasible in finite
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element simulations for several reasons. The large aspect ratios of the geometry results to a
huge number of elements as the size of the elements is defined by the height of the channel.
The number of mesh points may easily total in hundreds of thousands, and the problem
would have more than a million degrees of freedom as the velocity field and the pressure
should be solved on each node. The fluid-structure interaction problem present in squeezed-
film-damping requires usually several iterations between the elasticity and fluidics, thus the
Navier-Stokes equations have to be solved repeatedly. In transient problems, the number
of solution steps is again greatly increased. Therefore the use of the full Navier-Stokes
equations in realistic geometries is not possible in practice.

A computational difficulty is encountered also in solving the elasticity equation. Mi-
cromechanical structures have often regions which are very different in stiffness. A large
part of the structure may be almost non-deforming and another, usually the smaller part,
deformes significantly. An example of such a structure is an accelerometer for which we
present results in Section 3. The stiffness matrix for such geometries is ill-conditioned,
and consequently, the resulting matrix equation is difficult to solve. Often an iterative lin-
ear equation solver fails in this instance. However, the size and complexity of the matrix
equation of elasticity is greatly decreased by replacing the nodal degrees of freedom in the
non-deforming block by the degrees of freedom of a single point which represents the whole
rigid domain. This scheme we have called reduced-order elasticity.

2 MATHEMATICAL MODELS
2.1 Linear elasticity

Elastic deformations can be computed from the well known linear elasticity equation

8%v
pa_tz__V'T=ha (1)

where v is the displacement field, A is an external volume force, and 7 is the stress tensor.
The stress tensor for isotropic material is
T =2pe + AV -dl, (2)

where p and X are the first and second Lame parameters, respectively, / is the unit tensor,
and ¢ is the linearized strain tensor

e =5 (Vo+ (Vo)T), 3)

The Lame parameters may be expressed in terms of Youngs modulus Y and Poisson ratio &
by

Yk Y
FEaa-m M AT ETs ?

The boundary conditions for the linear elasticity equation are either a Dirichlet condition
v = vo implying a fixed value v on the boundary or the Neumann boundary condition

T-n=g, (5)

which defines a force g acting on the boundary with outward unit normal vector n.
The modal analysis is performed with a Fourier transformed equation

pwve = V - 7(ve), (6)

where w is the angular frequency. This equation is a generalized eigenproblem and may be
solved to find the eigen frequencies and eigen vectors v.



2.2 Reduced-order elasticity

The elastic analysis may be reduced by assuming a part of the geometry to form a rigid
body. The displacements of all points in the rigid block can be stated using the translations
of and rotations about a single point, the mass center of the rigid block. For writing out
the reduction scheme we need to work out two separate steps: transforming the distributed
forces acting on the rigid block on the mass center point and expressing the displacements
of an arbitrary point in terms of the degrees of freedom of the mass center point.

Let us first go through the relation of the displacement of an arbitrary point and the
degrees of freedom of the mass center point. The rotation has remarkably simpler expres-
sions in two dimensions and generalizing them into three dimensions is straigthforward.
The details are thus gone through in 2D and briefly stated for 3D.

Assume we wish to rotate a point w over an angle ¢ about the mass center point w..
The vector from the rotation axis we shall call r = w — w, and the rotated vector r'. The
rotation can written as a matrix

= < cosy  —sing )r:Rr, (7)
sing cosyp

which gives for the displacement due to rotation
dr'=r'—=r=Rr—-r=(R—-I)r=Mr. (8)
Using the summation formulae for the sines and cosines and assuming small rotations

the linear matrix reads 0
_ 4
u=(0 7). ©

Finally, together with the translation the displacement vector v is
v=Mr+uv, (10)

where v, is the translation of the rigid body mass center point. Now, inserting r = w—w, we
finally get an expression for the displacements of a single node related to the displacement
and rotation of the whole rigid block

()= (e )+ ()

v
1 0 yo—y i
< 01 z—=z ) U;y (11)

S
|

)

where z and y are the components of the vector w and z. and y. the components of the
vector we.

In three dimensions the rotation is somewhat more cumbersome but the basic principle
remains the same. We have used the Euler angles to represent the rotation with the order
xyz, i.e. the first rotation being about the z-axis in cartesian coordinates, and so on. As
with the two-dimensional case, the displacements due to rotation can be expressed by a
linearized matrix

0 -y £
M=R-I)= v 0 -a (12)
-8 « 0
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into which the effect of translation may be incorporated as shown in the two-dimensional
case.

Let us now consider the transformation of a distributed force on the mass center point.
The forces acting on each nodal point, f;, may be summed to form a resultant force on the
mass center point. However, the torques about the mass center point have to be taken also
into account. We may define a vector fr which corresponds to the distributed force f; on
the nodal points w; but acts on a single point as

Ei fi,z
Ei fiy

—_ E f12
fR=| 5, fwi - we) x £, (13)
S s — we) % fil,
Zz[( '_wC Xf,,]

Now we are in a position to consider combining the pointwise transformations as a matrix
reduction scheme. The starting point for the reduction is a system of linear equatios for the
unknown displacements x, Ax = b, which is constructed by the finite element method just
as usual. Instead of solving this matrix equation we aim to reduce its number of unknowns.
Assume that in the geometry there are n nodes belonging to the elastic domain and m nodes
belonging in the rigid domain. Then the 3(n 4+ m) x 3(n + m) matrix A will be reduced
into a 3n + 6 x 3n + 6 matrix B. Corresponding reductions are made also for the vectors
and the matrix equation takes the form Bu = f.

For the unknowns z the reduction can be represented by matrix multiplication: z = Pu,
where the 3(n + m) x 3n + 6 matrix P consists of a unit matrix block of size 3 x 3 for
each node in the elastic domain and of m times the combined rotation-translation matrix
block that was defined for 2D case in Equation (11). The vector u has the first n elements
identical to those elements of vector z, which correspond to the elastic nodes of the mesh.
After that there are six elements that correspond to the degrees of freedom of the rigid
body.

In the same fashion, for the right hand sides, we can write define a matrix @ such as
f = Qb. The 3n + 6 x 3(n + m) matrix @ has a unit matrix block of size 3 x 3 for the
degrees of freedom of the elastic domain and m times the force transformation matrix,
which may be derived from Equation (13). The reduced right-hand side vector f has as
last six elements the resultant force vector fg.

Writing out the matrices P and Q one notices that they are equal apart of a transpose
operation. It is rather appealing that the matrix that is used to transform a distributed force
to act on a single point is identical to the matrix, which is used to express the distributed
displacements based on the displacement of the single point. The similarity of the matrices
seems natural and brings confidence on the reduction method. This observation allows us
to rename the matrices as follows

c=Q=PT. (14)

It is now possible to write the original matrix equation as ACTu = b and the reduced-
order matrix equation as Bu = Cb. Combining these gives for the reduced matrix

B =CACT. (15)

The reduced matrix equation Bu = f can be solved with standard numerical techniques.
The solution vector u can be mapped back to the original group of nodes by multiplication,
z=CTu.



The advantage gained by the matrix reduction scheme is dependent on the relative
amount of node points that belong to the rigid body. However, the reduction is usually
beneficial even if a small part of the geometry can be assumed to be rigid. Also, the number
of computer operations required in constructing the reduced matrix equation grows only
linearly as the degrees of freedom increase.

2.3 Reynolds Equation

In narrow channels the computational mesh required for the solution of Navier-Stokes
equations is not economic. In order to reduce the computational effort, the full Navier-
Stokes equations may be replaced with the Reynolds equation for pressure p. The Reynolds
equation is derived from the Navier-Stokes equations under the assumptions that the air
gap height is far smaller that the side length of the gap, that the Reynolds number of the
problem is small, which means that the mass of the gas can be neglected, and that the gas
follows the ideal gas law for isothermal processes.

Under these assumptions, it is found that the pressure is not changing in the direction
of the gap. Additionally, no-slip boundary conditions for the gas velocity are used and
the plates are assumed not to move in lateral direction. With these boundary conditions,
the gas flow follows a parabolic velocity profile with a time-dependent gap height. It then
suffices to solve an equation for pressure in a plane. This equation is the Reynolds equation

pd® _ 9(pd)
V. (mVp> = 57 (16)

where d is the gap height and 7 is the viscosity of the gas [3]. The wake for the equation is
thus the rate of change of the gap height d, which equals the velocity of the elastic resonator.
A possible boundary condition for the equation is

Op

—= =0, 17

n (17)
where n is the unit normal vector of the boundary. This condition implies symmetry or a
closed wall. A boundary condition for an open wall is

P = Po. (18)

where pg is the ambient pressure.

The Reynolds equation is nonlinear with respect to the pressure. In the discretization
of the equation this nonlinearity is preserved. The discretized iterative scheme is written
by dividing the pressure into two components p = po + ¢, where po is the constant ambient
pressure and q is the deviation from the ambient pressure. Using the derivation rule of
summation and changing the order of the terms gives an equation for g

dq , 0d (Po+g)d®c \ _ _ 0d
at T aml Y ( Tog V9= Py (19)
Accordingly, the nonlinear solution is found using the following iteration scheme
8g™  0d (m (o + g™ NP oy 8d
5 vl -V 127 Vg = —Pog; (20)

where the superscripts correspond to the number of iteration. Thus, the nonlinear term
is discretized by taking advantage of the iterative solution of the previous round. The
iterations are continued until a defined convergence tolerance is achieved.
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2.4 Coupling of equations

In the coupled model, the air gap needs not to be meshed but the Reynolds equation
is solved utilizing the surface of the meshed three-dimensional elastic structure. A relevant
surface of the elastic structure forms one side of the air gap, whereas the other side is defined
by an equation for a plane

CzT + Ccyy + 22 = Cp. (21)

This approach allows the reference plane to be oriented freely as long as the assumption of
a narrow gap is everywhere sustained.

The coupling of the elasticity equation and the Reynolds equation needs an itermediate
step in which the gap height and gap height velocity are computed. This is done for each
relevant nodal point on the surface of the elastic structure based on the reference plane
defined above and on the current elasticity solution. For example, if the reference plane
is defined by z = —D then the gap height is d = D + vs ,, and the rate of change of the
gap height is d= 0s,z, where vg , refers to the displacements of the relevant surface of the
elastic structure.

The Reynolds equation is thus coupled with the elasticity, since the displacement of the
elastic structure affects the pressure in the air gap. On the other hand, the gas pressure
deviation ¢ in the air gap causes a net force acting on the elastic body as a boundary

condition according to Equation (5)
Tn=gq. (22)

This fully coupled fluid-structure interaction problem is solved using a method of sequen-
tial iterations, where the coupled equations are iterated on every time step until convergence
criteria for each equation are satisfied.

3 RESULTS

The mathematical models were used to simulate the behavior of an accelerometer struc-
ture shown in Figure 1. The dimensions of the accelerometer proof mass were 2.0mmXx
1.5mmx0.45mm. The elastic springs were 1.0mm in length with a cross section of 50umXx
100um. Elastic material parameters of Silicon were used (density p = 2330%%, Youngs
modulus Y = 130.0GPa, Poisson ratio & = 0.27). The accelerometer proof mass contained
three square holes with sides measuring 200um. The end surfaces of the elastic springs are
attached to the wall. The models were implemented in and the simulations performed on
Elmer finite-element software [4].

A linear tetrahedral meshing of the geometry was used. The mesh contained 72064 bulk
elements and 14970 nodes. On the surface, where the Reynolds equation was solved, there
were 1568 triangular surface elements. Altogether 83% of all nodes belonged to the rigid
block. Netgen software was used in creating and meshing the geometry [5]. The simulations
were performed on a Compaq AlphaServer ES45 system with a 1 GHz Alpha EV68 central
Processor.

3.1 Eigen mode computations

The eight smallest eigen frequencies and eigen modes of the structure were calculated.
The calculations were used to compare the results and time consumption of the reduced-
order elastic simulation and the full elastic simulation. The matrix equation from FEM
discretization was solved using an iterative conjugate gradient method and a direct method.
The results from different linear system solver types were identical at least up to sixth digit.
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Figure 1: An accelerometer containing two elastic springs and a rigid proof mass; left,
schematic picture not in scale; right, the geometry used in simulations.
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Computing the first eight eigen modes with the reduced-order elasticity took 265 cpu
seconds on an iterative solver and 394 cpu seconds on a direct solver. The time-consumption
of the full elasticity was 4660 cpu seconds on a iterative solver and 1656 cpu seconds on
a direct solver. Comparing the faster solvers the computer time consumption in reduced-
order scheme is about one sixth of the full elasticity. However, the direct solver uses large
amounts of computer memory, in this case with ca. 45000 degrees of freedom more than one
gigabyte. Thus, the direct solution method is not often feasible due to memory limitations
and an iterative solver has to be used also for the full elasticity. Then, in this test case, the
time used to compute the full elasticity solution is almost twenty times longer than the one
of the reduced-order scheme.

Usually, the iterative solvers are faster than direct solvers. However, the direct solver is
here faster for the full elasticity, since iterative solvers are in trouble with ill-conditioned
stiffness matrices. The direct solution of the reduced-order elasticity is relatively slow. The
reason for this is that the structure of reduced matrix is not optimised for the direct solution
method but the full matrix is optimised.

The eigen frequencies had some differences when calculating with the different schemes.
The relative error of the reduced-order scheme results compared to the standard elasticity
ranged from 0.4% in the first eigen mode up to 3.6% in the seventh mode. The eigen mode
results are summarised in the Table 1. As the Table shows, the accuracy of the reduced-
order elastic model is reasonably good, and together with its economical use of computer
resources, the utilization of reduced-order elasticity in coupled simulations seems justified.

The eigen frequency computed by the reduced-order scheme was consistently higher
than the value calculated by the full model. In words, this means that the reduced-order
scheme makes the structure appear stiffer than in reality. This is quite natural, since some

Table 1: FEigen frequencies (in Hz) computed with the reduced-order elasticity and with the
full elasticity, and their difference (in %).

Mode nbr | reduced-order standard rel. difference
1 1.5409-10° 1.5351-10° 0.38
2 7.9590-103 7.8130-10% 1.9
3 1.1207-10% 1.0890-10% 2.9
4 1.9756-10% 1.9215-10% 2.8
5 9.3159-10* 9.0872-10* 2.5
6 1.0777-10° 1.0528-105 2.4
7 5.0048-10° 4.8321-10° 3.6
8 5.3287-10° 5.1531-10° 3.4
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small deformations may be removed by the assumption. The computation might be more
accurate if the elastic domain extended a small distance into the proof mass, whereas the
elastic domain now comprises just the thin springs.

3.2 Transient simulations

Transient simulations of the accelerometer structure were performed with the reduced-
order elastic scheme coupled with the reduced-dimensional fluidics model, i.e. the Reynolds
equation. The proof mass of the accelerometer was first statically loaded during a long time
period with a constant external force so that the gas pressure had time to settle. When the
mass is released it starts to oscillate around the equilibrium state. The open wall boundary
condition defined in Equation (18) was used on all boundaries thus allowing the gas to flow
in and out of the gap.

The transient simulations were used to study the effect of the ambient pressure and air
gap height on the time evolution of the system. Other factors determining the damping
behavior include the gas viscosity, the initial displacement, and the overall geometry of
the system. The ambient pressure levels of latm, 0.latm and 0.0latm were studied. Air
gap heights of 5um, 10um and 20pum were used. The initial displacement was achieved
with an external force with a magnitude of 150 Pascals for the simulation with the air gap
height of 10um. The external force for the other air gaps was chosen such that the relative
displacement of the initial state in each simulation was identical. In this initial state, the
mass center point of the rigid body was displaced a distance of 12% of the original air gap
height. The gas was assumed to be air (viscosity 1.67-107° %f—) and the time step size of
15us was used.

First, the effect of the air gap height was studied. Naturally one would expect a res-
onator with a larger air gap height to experience less gas damping than a resonator with a
smaller air gap, since in a smaller gap the gas flow encounters stronger viscous resistance.
Consequently, the pressure in the air gap reaches higher level in the smaller air gap. These
dependencies are also present in our results. With the smallest studied air gap the damping
of the system is over-critical, i.e. the resonator returns to the undisplaced state following
an exponential curve without any oscillations. With the two larger air gap heights, the
damping is weaker and the equilibrium state is reached via oscillations. The time behavior
of the results is illustrated in Figure 2 and snapshots of the displaced accelerometer with
pressure distribution in Figure 3.

The change in the ambient pressure level had more unexpected response. At first, it
seems that the higher the ambient pressure the stronger the gas flow resistance should be.
But in fact, the relation is not that simple. If the gas tends only to flow out of the gap and
not significantly to compress, it turns out that the gas damping is not depending on the
ambient pressure. This condition is compactly stated using a nondimensional parameter
called the squeeze number

12nwL?
o=—,
poD?
where w is the angular frequency of the oscillations, L is the effective side length of the
resonator, and D is the air gap height at rest.

A small value of the squeeze number means that the gas flow is dominant and a large
value that the gas compression dominates. Furthermore, o < 1 implies roughly that the gas
damping is not depending on the ambient pressure. The squeeze number, however, does
depend on the ambient pressure, and in the current case the transition froms <1too > 1
occurs when ambient pressure is reduced below 0.1latm. In accordance, the simulations with
ambient pressures of 1.0atm and 0.latm show almost identical behavior, but the simulation

(23)
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Figure 2: Left, the displacement of the mass center point of the rigid proof mass relative to
the initial gap height, right, the mean pressure deviation from the ambient pressure in the
air gap. Curves with different air gap heights; 5.0um (dash-dot line), 10.0um (solid line)
and 20.0pm.

Figure 3: The pressure distribution under the accelerometer; left, time step 0.3ms (mass
traveling up), right, time step 0.6ms (mass traveling down). The initial air gap height
was 10pm and ambient pressure 1.0atm. Black and white colors mark the lowest and
highest values of pressure, respectively. The displacement of the accelerometer is greatly
exaggerated.

with ambient pressure 0.0latm results in considerably weaker gas damping. The results of
these simulations are shown in Figure 4.

Figure 4 shows also that the frequency of the oscillations change when ambient pressure
is low enough. This is further evidence on the above speculation that the behavior of the
gas changes when the squeeze number is no longer small. The pure damping mode does not
change the frequency of the oscillations, which in all other simulations were very close to
the first eigen frequency and is thus determined by the elastic properties of resonator. In
low pressures, however, when the gas compression is more notable, a fluidic spring-like force
appears and changes the frequency of the oscillations. The effect of compression can be seen
also in Figure 5, in which the mean pressure deviation in the air gap and the displacement
of the rigid proof mass are plotted. As is seen in the figure, the phase shift between the
pressure and the displacement is not 90 degrees in low ambient pressure, which indicates
the presence of a fluidic spring force.
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Figure 5: The displacement of the mass center point of the rigid body (solid line) and
the mean pressure deviation from the ambient pressure in the air gap; left, ambient pres-
sure 1.0atm, right, ambient pressure 0.0latm. The variables are plotted relative to their

corresponding maximum amplitudes.

4 CONCLUSIONS

An economical modeling scheme for gas damped micromechnical resonators was pro-
posed. The scheme enables a comparatively fast solution of the otherwise intractable fluid-
structure interaction problem. The modeling method takes also into account the true 3D
geometry without any assumption on the symmetry of the resonator. A clear benefit is also
that only the resonator needs to be meshed, since the gas domain is taken into account by
a fictitious reference plane. Thus, the method is well applicable to transient simulations of
micromechanical devices under squeezed-film-damping.

The gas damping model could be further refined by taking into account the gas rarefi-
cation effects. The continuum theory of fluid flow is no longer accurate for gases when the
problem dimensions are comparable to the mean free path of gas particles, which might be



the case in micro systems. In such a case, an effective viscosity could be used to compen-
sate for the rarefied gas. A suitable effective viscosity is available for the parameter range
encountered in micro devices [2].

The results of the modal analysis show that the proposed reduced-order elasticity model
is sufficiently accurate to gain insight in the behavior of the resonator, although the reduced-
order scheme appeared somewhat to stiffen the structure. A further refinement here would
be to extend the elastic structure a small distance into the proof mass in order to better
account for bending at the junction of the springs. The demands for computer resources,
however, were greatly decreased compared to the full elasticity model.

The transient results show that the air gap height could be used to control the amount of
damping in the system if other parameters are suitably chosen to make the squeeze number
small. However, a small air gap is usually preferable in capacitive micromechanical com-
ponents. Therefore the air gap may not be freely chosen and the squeezed-film-damping is
controlled by creating holes in the resonating structure. Alternatively, the ambient pressure
may be used to change the damping behavior. The amount of damping, however, does not
depend linearly on the ambient pressure and it may also affect the frequency of the damped
oscillations.

The problem of designing a micromechanical resonator with desired amount damping
and desired frequency is complicated, as reflected also by the results in this paper. The
differences in the system behavior that a change in parameters influence are often difficult
to foresee. Thus, there is a definite need for accurate models for micro systems.
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ABSTRACT

The purpose of this study is to present a numerical calculation method for the investigation of the
flow between the hull of a vessel and a fully submerged ice floe, which is sliding along the hull,
when the vessel is moving with constant speed in a level ice field. The analysis of the flow
indicates that the calculation method has to be able to model time dependent laminar and turbulent
flow with inertia effects. For this purpose, the constant density, constant viscosity incompressible
RANS-equations for Newtonian fluid flow are simplified using shear layer approximations. The
momentum equations are then integrated over the thickness of the fluid layer, in order to arrive at a
two-dimensional formulation, assuming that the shape of the velocity profiles is not strongly
affected by the presence of the inertia forces. A two-dimensional formulation greatly simplifies the
grid generation and the numerical solution process. The turbulent lubrication model of
Constantinescu based on the Prandtl mixing length model is used to model turbulent flow in the
gap between the hull and the ice floe. A numerical solution of the resulting equations is presented
using the finite-difference method. The computer program ICEFLO is verified comparing the
results of the numerical solution with the analytical solution of Constantinescu and Galetuse.

1 INTRODUCTION

When an icebreaking vessel is moving in level ice, four different phases in the icebreaking process
can be separated in time domain following the time history of the ice floes (Puntigliano, 1995): the
breaking phase, the rotating phase, the sliding phase and the final phase.

The breaking phase starts when the ship makes contact with the intact ice sheet and ends when a
crack occurs, the intact ice sheet breaks and a new ice floe is generated. During the rotating phase
the bent ice floes are rotated until they are parallel to the hull surface. During the sliding phase the
ice floes will then be pushed further downwards along the ship hull by other floes breaking later to
a certain depth until they leave the hull. In the ice sliding phase the ice floes form a kind of "ice
mat"” below the forebody of the vessel consisting of irregular shaped ice floes as can be observed
in figure 1-1.
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The purpose of this study is to present a numerical model to investigate theoretically the pressure
and viscous forces due to flow in the gap between the hull of a vessel and a fully submerged ice
floe, which is sliding along the hull, when the vessel is moving with constant speed in a level ice
field.

Figure 1-1. An underwater picture of a ship model advancing in thick level ice in the Wiirtsild
Arctic Research Center's (WARC) ice tank. The underwater hull is fully covered by ice floes
(Valanto, 2001, figure 4).

2 THE CALCULATION PROBLEM

The aim is to develop a numerical calculation method for calculation of the steady or unsteady
shear driven flow and pressure in a converging-diverging gap shown in figure 2-1. The upper
drawing in figure 2-1 depicts the gap between a rectangular ice floe and a convex hull form. The
origin is placed in the middle of the contact area of the hull surface and the ice floe. The gap has a
length I, a breadth b, and a height /# which is a function of x and y. The hull surface has a radius of
curvature R, in the x-direction and R, in the y-direction. The hull surface moves with speed U in
the positive direction of the x-axis and the speed of the ice floe is assumed to be zero in the
direction of the x-axis. The hull surface as well as the surface of the ice floe are assumed to be
perfectly smooth. The fluid in the gap is assumed to be water in constant temperature with
constant density and viscosity.

The lower drawing in figure 2-1 depicts a section A-A of the gap between the ice floe and the hull
surface. A flow is generated in the gap due to motion of the hull surface. Assuming no-slip
condition on the surfaces, on the surface of the ice floe the flow has zero speed and on the hull
surface the flow speed equals the speed of the hull surface. The flow field and the pressure in the
gap strongly depends on the boundary conditions on the edges of the ice floe.



The nature of the flow in the gap can be characterized by two dimensioniess numbers, the Couette
Reynolds number and the reduced Reynolds number. The Couette Reynolds number, Re., is

defined as
_Uk

Re, Y

, 2.1
where v i1s the kinematic viscosity of the fluid, v = p/p, where p is the molecular viscosity,
and p is the density of the fluid. According to experiments, a Couette flow, i.e. flow between two
parallel plates in relative motion is turbulent, if Re. >1300 (Schlichting and Gersten, 2000).

Hull
surface

Ice floe

Hull

surface A z u=U

’k_’/g’w
u=0 ’ 4
y
Section A - A Upper surface of

the ice floe

Figure 2-1. The geometry considered in the study.

The reduced Reynolds number, Re*, is defined as the ratio of viscous forces to inertia forces

ree- (1) e, [2), 22

v !

where [ is the length of the ice floe. The inertia forces can be neglected with respect to the viscous
forces, if the reduced Reynolds number Re* « 1.
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The analysis for the flow in the gap for a typical hull form, based on calculation of the Couette
Reynolds number and the reduced Reynolds number, indicated that the calculation method has to
be able to model time dependent laminar and turbulent flow with inertia effects.

3 THE EQUATIONS

The Reynolds averaged Navier-Stokes (RANS) equations with constant density and viscosity are

) —\. 0 _ op Bu,__ 0 ==
E(pui)+§j(puju‘.)——gj+um axj(pujui) (3.1

Ou,
—i=0, 3.2
o (3.2)

where u; are the mean velocity components, p, is the mean dynamic pressure, puu, are the

Reynolds stresses, and ¢ is time. Equations (3.1) and (3.2) can be simplified by making the
boundary layer approximations, assuming that 2 </ and A< b, and that the pressure in the
boundary layer is constant in the vertical direction along the z-axis. Taking these assumptions into
account, the RANS-equations (3.1) and (3.2) can be written in Cartesian coordinates as follows,
known also as Prandtl's turbulent boundary-layer equations

oZrpLlm)eo(m)rol(m)=-LernZE o 2(H) @3

ot Oox oz ox 822
v d— . 8. b8/~ _ 0p, v [
pa'l'pa(uV)+pgy-(VV)*—pE(WV)——E'FMaZ—Z—pE(WV) (34)
or,
0=—-——"% 3.5
o (3.5)
6_u+@+a_w___ R (3.6)
ox oy oz

where ;,; and w is the mean speed in the x-, y- and z-direction, respéctively. Equation (3.5)
indicates that

Py =Py (x=y)- (3.7

Equations can be further simplified by integrating them across the gap height, 4. In this way we
can reduce the dimensions of the calculation problem from three to two dimensions, which greatly
simplifies the numerical calculation procedure. We now consider the momentum equations in the
directions of the x- and y-axis. Integrating equations (3.3) and (3.4) gives, taking into into account
equation (3.7)
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where the subscripts / and 2 denote the lower and upper surfaces, respectively. Using the Leibnitz-
rule, assuming no-slip condition at the walls, and taking into account that the turbulent fluctuations
vanish at z=0 and z=h, equations (3.8) and (3.9) can be written as follows, which are in fact the
equivalent of the von Karman's momentum integral equations for boundary layers (Schlichting,
1960).

8 oI al op ou du
—(u V+p—Et+p-Z=—-ph—L | —| -y} — 3.10
oo n) t P42 = H(@zl “[azl (3.10)
and
al ol D v v
o2 (v, )+ p 2z rp o p ey [ [ 2 (3.11)
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where we have defined the mean speed of the flow in the x-direction
1 h
ty = oj;dz (3.12)

and the mean speed of the flow in the y-direction

1 h
v, =— |vdz, 3.13
s J" (3.13)
and denoted
h h h
I, = [uudz, I, =1, = [uvdz and I, = [wvdz . (3.14)
0 0 0

To proceed further assumptions must be made about the distribution of velocity within the fluid
film in the gap. Constantinescu, 1970, and Constantinescu and Galetuse, 1974, assume that the
shape of the mean velocity distribution in the film is unaffected by inertia. We now follow the

method given in Leschziner, 1976, to determine the velocity profiles u(x) and v(x). Neglecting

the inertia terms, and assuming the flow to be steady, equations (3.10) and (3.11) were integrated
twice with respect to z, and after eliminating the pressure gradient we get
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;(z)=[i—%J(3U—6um)+%U (3.15)

and

v(z)= 6vmz(1-5]. (3.16)

Now [, I, =1, and]  can be calculated by inserting (3.15) and (3.16) into equations (3.14).
We get finally

Im=h[§u; -lUum+3U2J,1 =1 =h(§umvm-iUvm 1 =Sm2. @
5" 5 5 10

15 Cll -

Now we get, by inserting equations (3.17) into equations (3.10) and (3.11), and inserting equations
(3.15) and (3.16) into the last two terms in equations (3.10) and (3.11), the following equations,
which describe laminar two-dimensional flow with inertia effects in a gap between the hull surface
and an ice floe:

0 a(u,,h) +p i(au;h+ BUh—y umUh)+ p%(aumvmh —8Uvmh)+

ot Ox
5 0P +“_kx_(um _Zj -0 (3.18)
ox h 2
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pm+p—a—(ocu,,,vmh—SUumh)+p—a—(ocv;h)+haﬂ+u—ivm=0 (3.19)

ot ox By »  h

where

a =12, $=0.133,y=0.2 and $=0.1 (3.20)

for laminar flow. These equations were originally given by Constantinescu and Galetuse, 1974, for
steady flow. Leschziner, 1976, also presented the derivation of the equations for steady laminar
flow. According to Constantinescu and Galetuse, 1974, the equations can be used for calculation
of turbulent flow if we set

a=1 B =0.885[2-Re.(x,y)]"", v =0and 5=0. (3.21)

In a similar way the continuity equation (3.6) can be integrated over the gap height, when we get
—24+—=0. (3.22)

Analytical solution of equations (3.18), (3.19) and (3.22) is not possible, except in special cases,
but a numerical solution method has to be used.



4 NUMERICAL SOLUTION OF THE EQUATIONS

A computer program ICEFLO was written to solve equations (3.18), (3.19) and (3.22). The
numerical solution method presented is based on the finite difference method given in Griebel ez
al., 1998. The program can be used to calculate the velocity of the flow and the pressure in the gap
between the hull surface and a rectangular ice floe.

4.1 Solution of the momentum equations

We first consider the time dependent terms of equations (3.18) and (3.19):

6(u h) ou oh
—am /o h__m -+ —_— 41
P ph=—r+pu, — 4.1)
8(v h) ov oh
S = ph It pu — 4.2
o ph—r+ Pty — 4.2)

The time derivatives of u,, and v, on the right hand side of equations (4.1) and (4.2) can be
discretized by using Euler's method:

(n+1) (1) . (n)
8 -
[ ;‘:} i At - “3)

(n+1) + n

[af“ ] S (44)
ot At
where the subscript # denotes the value of the variable at time ¢, and (n+1) denotes the value of the
variable at the next time step ¢,.;, after time Ar has passed. Using equations (4.3) and (4.4),
equations (3.18) and (3.19) can now be written in the following form:

u,(,,”]) =F —ﬁ——apd 4.5
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The spatial derivatives in F and G were calculated by replacing the first derivatives by centered
differences and the second derivatives by the donor-cell discretization. If F and G are calculated at

time ¢,, and 5;,1 /&x and 6;,, /0y at time t,,;, we get the following time discretized equations of
momentum

—(n+1)

u,(,,n+]) = F(n) _ﬂ 5Pd

—— 4.9)
—(n+1)
o _ g AL a_P_ady , (4.10)
p

A staggered rectangular grid is used to discretize equations (4.9) and (4.10) with respect to
position (see figure 4-1).
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Figure 4-1. Staggered grid.
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Figure 4-2. A calculation domain surrounded by one row of ghost cells (imax=6, jmax=6).



The velocities in the x-direction, u;;, in the cells of the calculation domain, are calculated on the
right hand edges of the cells, the velocities in the y-direction, v;;, are calculated on the upper edges

of the cells, and the pressure, p, , is calculated in the middle of the cells, in order to avoid
L

pressure fluctuations during the iteration process.

A calculation domain surrounded by one row of ghost cells is depicted in figure 4-2. The ghost

cells are used to define boundary conditions at the edges of the calculation domain. Equations
(4.9) and (4.10) can now be discretized with respect to position

(;(nﬂ) ;(n+l))
nil o At \Fdw, Py
u’("i.,l ) = F;vj( ) -

p Ax

,i=2,..,imax+1,j=2,.., jmax+1 4.11)
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ol g @ By T % )

,i=2,.,imax+1,j=2,.., jmax+1 4.12)
P Ay

where F and G are discretized at the right and upper edges of the cells respectively.

4.2 The solution of the Poisson-type equation

In order to solve pressure at the new time step, the continuity equation (3.22) is first written as
follows

hau"‘ +um%+hav’" +vmgh-+%= . 4.13)
Ox Ox & oy ot

T
We now insert the velocity field (u("”) ("”)) from equations (4.11) and (4.12) into equation

m >m

(4.13) and get the following Poisson-type equation
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The Poisson-type equation can now be discretized after which we get a set of linear equations,
which has imax - jmax unknown values of p 4, i=1,...,imax, j=2,...,jmax, which have to be solved

by using a suitable algorithm, like the Gauss-Seidel method

AWl‘J ;d:‘-l.j * AP’J ;du + AE’-J pdm./ + AN’-J pdi./*' * AS"-J' pd.’.}“ = Bi'j (415)

where
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where the subscripts in 4,,/, and 4, mean that the height of the gap is calculated at the center of

the cell, at the right edge of the cell, and at the upper edge of the cell, respectively. After the
pressure in the cells of the calculation domain has been calculated at the new time step t,, the

new values for the speed components uf,,'::l) and v,(,,’:_‘;') can be calculated by using the discretized

equations of motion (4.11) and (4.12). The iteration continues now until a preset value for the L2-
norm of the change of speed between iteration cycles has been achieved. The L2-norm is defined

as

it

[ L “"z":’i(r..f;f} (4.16)

Tnax Jmax =1 j=1

n-1
i,j °

where r" is the change of speed, #". —u”7', between the successive iteration cycles.
h Ly

4.3 The boundary conditions
The symmetric and periodic boundary conditions were used in this study.

Symmetric boundary

The symmetry boundary condition can be assigned e.g. for the lower edge of the calculation
domain shown in figure 3-2 by setting:

u”' n - m; 2
Vn, =0 (4.17)
Py, =P,

Periodic boundary

The periodic boundary condition can be assigned e.g. for the left and right edges of the calculation
domain shown in figure 3-2 by setting:



U =u u =u

m; Mimaxal,; 7 Plimexa2,) my ;

v, =V v =V (4.18)

m; Mimaxs1,j > Mimaxs2,j m;

pdl,/ - pdmum.j’ pdlrrwu»l.j - pdl,j

4.4 The stability conditions

In order to ensure stability of the numerical algorithm and to avoid generating oscillations,
stability conditions must be imposed on the step sizes Ax, Ay and At . In the program the Courant-

Friedrichs-Levy (CFL) conditions were used, which state that no fluid particle may travel a
distance greater than the mesh spacing Ax or Ay intime Af:

At < &% At < &y

2
[t [Vias

, (4.19)

where ]umax| and ]vmax| are the maximal absolute values of the velocities occurring on the grid.

4.5 The turbulence model

The turbulence model of Constantinescu (see Constantinescu and Galetuse, 1974) based on the
mixing length approach was used.

k, =12+0.0136(2-Re. )"

(4.20)
0.96
k, =12+0.0043(2-Re,)

5 VERIFICATION OF THE COMPUTER PROGRAM ICEFLO

The computer program ICEFLO was verified for a one-dimensional flow against the results
obtained by using the analytical solution given in Constantinescu and Galetuse, 1974. We
consider now a steady one-dimensional flow in the gap between a curved wall at z = A(x) , moving
with speed U in the x-direction, and a flat stationary wall at y=0, as depicted in figure 5-1. The
length of the lower wall is / and the minimum distance between the walls is 4, in the middle of the

gap atx = 0.
; A wal,u=U 3®

L —

Inlet Qutlet

>
-1/2 wall, u=0 2

Figure 5-1. The geometry of the gap between a moving curved wall and a stationary flat wall.

We assume that the upper surface in figure 5-1 is an arc of a circle with radius R,. The height of
the gap between the walls can now be written as:
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h(x)=h,+R, -\R; -x". (5.1)

The results of ICEFLO, when R, = 75 m, / = 1 mand A, =0.001 m, are compared in figure 5-2
with the results for turbulent flow obtained by using the analytical solution of Constantinescu and
Galetuse. The fluid in the gap was water at 0°C, p =1000 kg/m’ and p=0.001792 Pa-s. The

velocity of the upper wall was 5 m/s in the x-direction. Periodic boundary conditions with zero
dynamic pressure at the ends of the gap were used. The numerical solution seems to correlate very
well with the analytical solution.

Comparison of the results of Iceflo with the analytical
results, U =5 m/s,Ix =1m, h0 =0.001 m

o

o

[

[

[

2 0

o —rIceflo
3 .
3 m  Analytical
E

~

c

)

a8

x [m]

Figure 5-2. Comparison of the results of ICEFLO with the analytical solution of Constantinescu
and Galetuse. Turbulent flow, U =5 m/s, | = Im, hy = 0.00] m.

6 A SAMPLE CALCULATION

A rectangular ice floe with dimensions 1 m x 1 m and a ball-shaped hull form with R, = 75 m and
R, = 75 m was the chosen geometry for the sample run. The ice floe is assumed to be located
symmetrically on the moving hull surface. The ball-shaped hull form was approximated by the
following equation:

2 2
byt 2, (6.1)
2R, 2R,

where &y is the distance of the hull and the ice floe at the origin. The origin was placed in the
middle of the ice floe. Due to symmetry, half of the ice floe (y >20) was chosen to be the

calculation domain. For stability reasons 4, was given a value of 0.0001 m. Six cells around the
origin were marked as obstacle cells where the flow speed was zero. The symmetric boundary
condition was set at the edge y = 0. It was assumed that the neighbouring ice floes are of the same
size as the floe in question, and thus periodic boundary conditions given in equations (4.18) were
set at the inlet (x = -0.5 m) and at the outlet (x = 0.5 m). At the edge y = 0.5 m a symmetric
boundary condition was set. The velocity of the hull was 5 m/s in the x-direction. The fluid in the

gap was water at 0°C, p =1000 kg/m’ and n=0.001792 Pa-s. The flow in the gap is thus



predominantly turbulent, the maximum local Couette Reynolds number being about 4700, and the
minimum about 140. The turbulence model of Constantinescu was used in the calculations. An
equidistant grid with imax x jmax = 50 x 25 was used, giving a grid spacing of 0.02 m.

-50000+

Pressure [Pa]

-100000-

-150000

Figure 6-1. The pressure distribution in the gap between a ball-shaped hull form and a
rectangular ice floe. The inlet is on the left-hand side, outlet on the right-hand side, and the

centerline of the ice floe is at the back of the figure. The cell numbers, i and j, are shown on the x-
and y-axis, respectively.

Pressure aty =0.25 m

—e— Inertia forces
included

—=— Inertia forces
excluded

Pressure [Pa]

x [m]

Figure 6-2. The pressure distribution at section y = 0.25 m shown with and without inertia forces.
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The results of the calculation are shown in figures 6-1 and 6-2. In figure 6-2 the pressure
distribution is given for a calculation with and without inertia forces. The case without the inertia
forces is the same as the solution of the Reynolds equation. Figure 6-2 also indicates that the net
dynamic pressure in the gap is negative. The effect of the inertia forces can be clearly seen.

7 SUMMARY

A computer program ICEFLO has been written to calculate the flow in a converging-diverging gap
between the hull surface of a moving vessel and a stationary ice floe. The computer program can
calculate both laminar and turbulent flow with inertia effects. The program was verified in 1d
against the results calculated by using the analytical solution of Constantinescu and Galetuse. The
preliminary calculations indicate that the inertia effects have an important role when calculating
the pressure distribution in the gap between the hull surface of a vessel and ice floes.
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ABSTRACT

This work proposes a coupled displacement-crack growth analysis for two-dimensional
problems of linear elastic fracture mechanics (LEFM). The main scope of the analysis is
to evaluate the amount of crack propagation during a process of stable crack growth. The
analysis is based on the coupled displacement-crack propagation problem defined by Q. S.
Nguyen et al. in 1990. To avoid the remeshing usually needed for modelling crack growth,
the analysis is implemented in a code where a PUFEM model is utilized. The proposed
algorithm is valid for rectilinear crack growth in LEFM but it can be extended to evaluate
curvilinear crack growth in materials showing dissipative deformations.

1 INTRODUCTION

At present the computer codes for simulation of crack growth (e.g. BEASY, FRANC2D,
FRANC3D, ZENCRACK) do not calculate the amount of crack propagation on the basis of
theoretical formulations. In fact the crack increments due to given loads are: (a) assigned
after the determination of the direction of crack extension or (b) determined trough laws
describing fatigue crack growth models (e.g. the empirical Paris law [1]). In this context,
the direction of crack growth is computed by well known criteria defined in terms of the
stress intensity factors (see the citations in [3]). The same kind of approach to crack growth
simulation can be found in the recent finite element methods without remeshing [3] and in
the meshless methods for crack propagation [4].

The codes and methods cited above, when no fatigue analysis is performed, are consid-
ered to be quasi-automatic, because the user needs to assign a crack length increment at
the beginning of each simulation. As pointed out in [2], excessive increment sizes in such
situations may lead to cumulative distortion in the crack propagation path. Furthermore
the Paris law, used for fatigue crack growth problems only, is too basic for the accurate
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prediction of crack growth in many practical situations.

In 1990 Q. S. Nguyen et al. [5] proposed a coupled displacement-crack length rate anal-
ysis for problems of stable rectilinear elastic crack growth characterized by crack opening
mode. The analysis was based on the well known Griffith criterion of crack growth [1] and
on a mathematical separation of the cracked body. The present work introduces a finite
increment formulation of the Nguyen displacement-crack propagation rate analysis. For the
sake of simplicity, only one rectilinear crack is considered. The proposed strategy allows
the increments of displacement and crack propagation relative to assigned load increments
in the case of stable rectilinear crack growth to be determined. The analysis is promis-
ing because it can be extended for evaluating curvilinear crack propagation in elastic and
elastoplastic materials.

The analysis was implemented by the authors into a 2D FEM code. In order to avoid
the remeshing required by the traditional FEM discretizations, a PUFEM model for crack
growth [3] was also implemented.

2 FORMULATION OF THE COUPLED DISPLACEMENT-CRACK PROP-
AGATION PROBLEM IN 2D ELASTIC DOMAINS

The problem of stable rectilinear crack growth in linear elastic bodies under crack opening
mode is studied. Let us consider a two-dimensional body € of unit thickness characterized
by an initial rectilinear crack of length ag and surface £ = X; + ¥y + 33 in the direction of
the z1-axis (see Figure 1). No traction is applied along the surface of the crack. The body
is subjected to a proportional load T()) = AT applied on the boundary St. The material
is assumed to be homogeneous and the body forces are neglected.

T(A)A A A AAAAL

I
/r-"'_'_“-\\ (n
v Ya o \(
Tl & gk
1/ l! \l
M
PN
x A ;2\“0 5 0e=0-05

VP T IV F I E I Frrr eyl erd syt ssd

Sy

-
Xy

Figure 1: Fixed and moving coordinate systems in a cracked 2D domain.

The aim of this study is to determine the curve (a(t), A(t)) (crack length-load multiplier)
starting from the initial configuration (a(0) = ag, A(0)), where ¢ represents the time.

Let us write the potential energy of the system which depends on the displacement field
u(t) = {u(z,y,t),v(z,y,t)}, on the crack length a and on the load multiplier A:

H(u,a,A):/Qw(s(u,a))dQ— i T()\) -udS

where €(u,a) represents the strain field and w(e(u,a)) is the strain energy density. The
displacement field u belongs to the set of kinematically admissible displacements

(1)

U(a,)) = {u:uregularin Q; u=u4q onSy; [u] >0o0nX} (2)



where S, is the boundary with assigned displacements and [u] is the difference in displace-
ments across L.

In this work we refer to materials that exhibit flat R-curves, where R is the crack growth
resistance (see [1]). The constant value of R is denoted by Gt which represents the fracture
energy. We use the Griffith criterion for crack growth in the form given by Irwin [1] who
defined the energy release rate G as —0II/8a when u = const. As pointed out in [5], during
the evaluation of the energy release rate G in the presence of crack growth (a # 0), the
domain integrals containing the strain tensor diverge (see also [9] for the details). In order
to avoid this divergence, in [5] the fracture zone containing the singularity was isolated into
a subdomain Qr surrounding the crack tip and delimited by a closed curve I'. In this way,
the domain §) is mathematically separated into two subdomains, Qr and Qg = Q — Qr.
As proposed in [5], the moving coordinate system (y1,y2) is used to express the physical
quantities within the domain Qr, while in g the fixed coordinate system (z1, To) is utilized.
For example, the displacement field u is described as

— uM (a:l,:cg,t) in Qs (3)
u(2) (yl » Y2, t) in QF

If the separation of the body described above is used, the Griffith criterion can be written
in the following form:
{azo if J=Gr and J=0 @
a=0 otherwise
where J is the well known J integral of Rice which is path-independent when the material
is elastic (linear or not) and homogeneous. In particular, when the material behaviour is
linear elastic, the well known equality J = G holds. Furthermore, as shown in detail in [3]
and [9], Jis given by the following path-independent integral

j=/(n-a,1-ﬁ—n-&-u,1)dr (5)
e

where the subscript (1) indicates the partial derivative in the direction of crack propagation.
The analysis proposed in this work is based on the coupled displacement-crack propaga-
tion problem defined by Nguyen et al. in [5]. The coupled problem was expressed in terms

of rates fields 101, 3, 3', ... defined as

o
LEN T, =

" ,6’,... in Qs

(6)

o ©
u, £

-
®* m-

* .
,0,... in Qp

)

where 1 = duV)(z;,2,t)/dt represents the total time displacement derivative and u=
8u® (y;,y2,t)/0t is the partial time displacement derivative. The following displacement
jump condition holds:

[Q] +éu; =0 on T (7

where |[1°1]] = 01— u is the difference in displacement rates across I', while the traction rate
o-nis subjected to the jump condition

[6 n]+dc,-n=0onT (8

where [o n] = (6— ) -n and n is the outside normal to the curve I
In order to describe the crack growth process, conditions (7) and (8), criterion (4)
and some additional conditions must be added to the rate form of the usual equations
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of linear elasticity (see [5] and [9]). The integral formulation of the obtained boundary
value problem furnishes the following coupled displacement-crack propagation system valid
Yéu,uel, ba > 0:

fﬂd':V&udﬂ—fsTT-éudS'—frda"l ‘n-éudl =0
* )
- frn-o1u)dadl + (o1 -n-u;)adadl =0

Starting from the coupled problem (9) the following quadratic functional is obtained:

F(ha) = %/E:E:E dn-}./ T4 ds
Q Sy

22
—a/a,l-n-u dF+a—/a',1-n-u,1dI‘ (10)
r 2 Jr

defined on the convex domain

I={(,a) | G=ug on Sy; [A]>0 on T if [u] =0; a>0; [u]+au; =0 onT}

3 ANALYSIS OF CRACK PROPAGATION WITHOUT REMESHING

The finite increment formulation of the coupled displacement-crack propagation problem
allows to define a curve in the space (u,a, A). Applying the explicit-forward Euler scheme
to the equations describing the boundary value coupled problem, the unknowns can be
expressed in terms of the increments

do = c*t) —g® | du=utD) —u® dg = o+ — o) (11)

where k indicates the generic initial step and k + 1 the generic end-step. Then, using a
discretization procedure like the finite element method, the incremental form of functional
(10) becomes:

F(du,da) = %duTKudu — AT du — du"Kyada + %da K. da

where T represents the assigned loads, K, is the usual stiffness matrix of the body, K, the
matrix relative to the unknown crack growth increment and Ky, the mixed matrix related
to both displacement and crack growth increments.

The algorithm adopted to follow the mechanical response in terms of the rectilinear
growth of the initial crack can be summarized as follows:

1. Evaluation of the load multiplier As connected with the reaching of Gf, i.e. the critical
value of the J integral, and determination of the first point of the equilibrium curve

(u, A):

JlufA]] = Gt = Ae (12)
where u[}] is the elastic solution and assumes the following simple expression:

uf)] = A, u, = K;!T (13)

As a consequence equation (12) gives:

Jup] = NJul =k = A= (14)



2. Solution of the incremental displacement-crack propagation problem

K., -Ku du | _ [ dAT
e e {e {0 )
on the basis of the scheme:

2.1 evaluation of the crack increment

-1
da = -dAK{,u, (Kiur - K.) (16)

under the condition
da>0 (17)
2.2 evaluation of the displacement increment

du = d\ u, + da ug (18)

where
w =K 'K, (19)

Inequality (17) implies that the sign of the assigned load increment dA must eventually
be changed in equation (16).

3. Repeat step 2 until a suitable condition is reached, e.g. a maximum value of the
displacement and/or a minimum value for the load are reached.

Figure 2: Nodal enrichment along a crack: the circled nodes are enriched with a discontin-
uous function and the boxed nodes are enriched with the asymptotic crack tip functions.

The proposed algorithm was implemented starting from the finite element code "FEM-
Object” (for 2D and 3D linear elastic problems), distributed by ZACE SERVICES Ltd
Software engineering, Lausanne, Switzerland. The program is based on a C++ object-
oriented architecture. PUFEM (Partition of Unity Finite Element Model) elements were
implemented by the authors to avoid the continuous remeshing of the domain. The partition
of unity can be generated by using different methods related to data fitting techniques [6].
Within the PUFEM approach the partition of unity is built by using coarse patches of
quadrilateral or triangular elements and the bilinear shape functions associated with these
elements [7]. A PUFEM model suitable for describing one or more cracks in a 2D domain
can be formulated as proposed in [3]. In order to carefully model the crack two items are
required: (¢) the description of the discontinuity of the displacement field along the crack;
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(#) the description of the solution near the tip of the crack. Then, the aforementioned
requirements can be met by a suitable enrichment of the nodes placed on the crack.
The first requirement is satisfied by adopting the jump function

_ 1 fory >0
H(z,y) = { -1 fory <0 (20)

for the nodes placed on the crack but not near the crack tip (circled nodes of Figure 2).
The following local approximation space is obtained:

@; = {1,H(z,y)} (21)

The second requirement is satisfied by enriching the nodes which fork the crack tip
through the asymptotic crack tip functions. In this case (boxed nodes of Figure 2), the
local approximation space is given by

T, = {1, \/Fsin(g), \/Fcos(g), \/?sin(g)sin(e), \/Fcos(%)sin(e)} (22)

where the local approximations are defined with respect to a polar coordinate system with
its center at the crack tip.

4 NUMERICAL EXAMPLE: CENTER CRACKED PLATE IN TENSION

Tw IIITTTTTY
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B

Figure 3: Center cracked plate in tension: description of the problem (ap = initial crack
length, SI units) and example mesh. The mesh also shows the enriched nodes required by
the PUFEM approach.

The crack growth analysis of a symmetric rectangular plate subjected to an initial uni-
form tensile stress T(Ag) = 100 (SI units) normal to a central horizontal crack is performed.
Figure 3 shows the half plate considered for the analysis with the PUFEM model and the
typical mesh adopted in the case of quadrangular elements. In particular, the half plate is
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Figure 4: Center cracked plate in tension: plotting of the load multiplier A with respect to
the vertical displacement v of the left corner of the plate. The curves are normalized with
respect to the values As and v relative to the activation of crack growth, i.e. the peak of
the curve.

modeled through PUFEM quadrilateral elements on the basis of a 12x24 mesh and of a
24x48 mesh. The crack growth analysis is performed by using load increments dA = 0.01.
The obtained load vs displacement curves and load vs crack length curves are reported
respectively in Figure 4 and Figure 5.

5 CONCLUSIONS

The results obtained showed that the proposed algorithm permits the amount of crack
growth in case of rectilinear elastic crack propagation to be calculated. This main fea-
ture, together with the typical advantages of the recent strategies based on unremeshing
approaches (see [3]), makes the method very competitive with respect to the existing tech-
niques for simulating crack growth in LEFM.

The present method can also be extended for describing curvilinear crack growth in
linear elastic fracture mechanics. Starting from the basic algorithm and using suitable
criteria for determining the crack growth direction, both the amount of crack growth and
the direction of crack propagation can be determined.

The proposed method is interesting particularly because it can be extended to materials
showing dissipative behaviour. In this case, a suitable criterion of crack propagation must be
selected. In particular, crack growth criteria obtained by using thermomechanics approaches
seem promising ([8]).
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Figure 5: Center cracked plate in tension: plotting of the load multiplier A with respect to
the crack length a. The curves are normalized with respect to the values Ar and as relative
to the activation of crack growth, i.e. the peak of the curve.
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ABSTRACT

This paper provides a summary of proposed life prediction methods for crack propagation during
variable amplitude fatigue. Much of the published work relates to overload effect in thin sheet
materials where plane stress dominates and retardation effects can be very large. Less attention is
given to cracks propagating from nominally defect free components in the high cycle regime
where a significant portion of the fatigue damage can be attributed to cycles with amplitude less
that the fatigue limit observed under constant amplitude loading. This type of load spectrum is
relevant for a number of mechanical engineering companies. Of special concern are those load
spectra that produce crack growth acceleration and the traditional “Miner’s Rule” becomes very
non-conservative. An effective stress method for variable amplitude loaded is proposed and used
on a high strength nodular iron.

1. INTRODUCTION
Variable Amplitude Life Prediction Methods

Because of its significance in both the aircraft and ground vehicle industries, variable amplitude
fatigue has been extensively studied for several decades and numerous predictive models have
been developed. Numerous overviews of variable amplitude life prediction methods have been
published [1-5]. Figure 1 shows the relationships between several classes of models used for
predicting fatigue crack propagation under variable amplitude loading. The non-interaction models
on the left side of this figure are examples of models that were developed primarily for predicting
the effect of R-ratio on the growth of fatigue cracks. These models can be applied to variable
amplitude loading, but they predict that crack growth from any cycle is a function only of the
magnitude and stress ratio of the cycle itself without regard for previous events. Forman {6] and
Walker [7] proposed models of this type for the “Paris law” region of the crack growth rate curve
while Barsom [8] and Lal [9] have proposed relationships for the near threshold region.

Models that consider the interaction between the current fatigue cycle and preceding cycles can
generally be classified into closure based models and crack tip stress models. The yield zone
models of Wheeler [10] and Willenborg [11] are based on the concept of residual stresses in the
plastic zone. Wheeler used the ratio of the current and previous plastic zone sizes to compute crack
retardation while Willenborg computed effective values of AK and R as a function of the overload
plastic zone size. These models have historic significance in that they were attempts to use fracture
mechanics concepts to explain changes in the crack growth rates observed during variable
amplitude loading. However, following the observations of crack closure by Elber [12,13], these
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models are rarely used in the scientific literature. Recent observations have led Sadananda et al.
[14] to reject the significance of closure and propose the “Unified Approach” variable amplitude
model based the stress state ahead of the crack tip. Sehitoglu and Sun [15] noted especially the
significance of residual stresses ahead of the crack tip during plane strain and variable amplitude
loading or for crack growth from micro notches.

Variable amplitude life prediction

‘ |
Non-interaction models Interaction models
Forman
Walker
Barsom
Closure models Crack tip stress models
Willenborg
Wheeler
Unified Approach
Empirical models Strip yield models
ONERA Dugdale models
CORPUS FASTRAN
Topper FFA

FIG. 1 - Classes of variable amplitude fatigue life prediction models.

The empirical closure models are intended to account especially for the effect of plasticity induced
crack closure on fatigue crack propagation [16-18]. They model the effective stress intensity factor
defined by Elber, AKett = (Smax - Sop) F (112)"°, where Sy is the maximum stress, S, is the stress
at which a crack is open and F is the geometry factor. Most empirical models have been developed
with aircraft fatigue problems in mind. The ductile materials, load spectra with large mean stress
shifts and thin sections found in these applications result in relatively large plastic zone sizes and
frequently high degrees of closure. Various empirical relationships for computing S, have been
proposed and the models show significant improvements in life prediction capability as compared
to non-interaction models {1). The suitability for these models for other materials and other classes
of load spectra is not fully confirmed.

Yield strip type models attempt to physically model the growing crack tip area and the plastic
wake generated [19-21]. Modifications of the Dugdale-type plastic zone [22] concept are made so
as to leave deformed material in the wake of an advancing crack. The crack closure contribution of
this deformed plastic wake as function of crack advance is computed. These models are usually
computationally demanding but they are successful in modeling a variety of transient events
including multiple overloads and delayed retardation.

Small Cycle Damage

Machine components and structures are frequently subjected to variable amplitude loading in
which significant portions of the fatigue cycles have amplitudes less than fatigue limit observed



under constant amplitude loading. Small amplitude cycles are normally associated with normal
operation of rotating equipment, but maintenance operations, thermal events, or other transients
may induce some cycles with amplitudes exceeding the fatigue limit. Numerous experimental
studies have shown that small amplitude cycles that are part of a load spectrum are more damaging
than the same size cycle applied using constant amplitude loading [23-49].

Topper and co-workers have performed numerous series of tests on both smooth and notched
specimens of SAE 1045 steel, 2024-T231 aluminum and 319 cast aluminum alloy [23-31].
Intermittent over- or understraining was applied to specimens followed by blocks of low amplitude
cycling. These authors found that cycles below the fatigue limit became damaging and that cycles
slightly above the fatigue limit showed increased damage in the presence of either over- or
understresses. The increase in damage for the small cycles was a maximum immediately following the
over- or understress and then returned toward a steady state value as cycling progressed.

The number of experimental programs directed toward the problem of near-threshold fatigue under
variable amplitude loading is limited, so some observations for spectrum load testing of nominally
smooth components are also relevant. Conle and Topper [25,26] studied the question of small cycle
fatigue damage with the goal of accelerating test times while retaining a sufficient portion of the
fatigue damage. Small smooth specimens were tested under axial strain control loading. By
successively editing out smaller and smaller fatigue cycles, the actual damage caused by cycles with
different strain ranges could be determined. The actual damage produced by cycles with strain ranges
below the endurance limit far exceeded what was predicted by constant amplitude test data. Three
small cycle omission criteria were tested, but it was consistently observed that the actual damage
omitted was greater than what was predicted, i.e., the small cycles were always more damaging in
practice than what would be predicted based on constant amplitude tests.

In a similar set of experiments, constant amplitude fatigue life results and the bi-linear damage
accurnulation line as proposed by Haibach [32] were used to predict the fatigue life of simple notched
steel components subject to random fatigue loads. The predicted lives were non-conservative by a
factor of six at Ny=1 x 10° and by a factor of 12 at Ny =1 X 107[33]. In another large set of tests on
five different automotive suspension components subject to constant amplitude and service loads,
Schiitz and Heuler [34] found that fatigue life was consistently over predicted when life estimations
were based on linear damage accumulation rules and constant amplitude testing. Four damage
accumulation hypotheses, including the three most common versions of Miner's rule, were used. It
was argued that the complex process of crack initiation and propagation is oversimplified by linear
damage accumulation rules. In general, the Zenner-Liu rule [35], which attributes an artificially large
damage contribution to cycles with AS > AS,/2, best fits the service load data.

Tokaji and Ando [36] conducted two level tests where the secondary stress was below AS,. They
found that the smaller stress cycles had little influence on the initiation of surface cracks up to about
80 um in length. Scatter in these results, however, was very large with some tests showing a large
damage contribution due to the small cycles and others showing a negative contribution, i.e., small
cycles delayed crack initiation. Small cycles contributed significantly to crack growth in the range of
80 pm to 200 pm, but periods of both slow and fast propagation were observed. For cracks longer than
200 um, even the lower stress cycles produced stress intensity ranges exceeding AK.

Yan et al. [37] have suggested an alternate curve-fitting algorithm for long-life specimen fatigue data.
This method essentially recognizes that the constant amplitude fatigue process will have three regions
depending on stress level: 1) the low cycle regime, 2) the high cycle regime, and 3) the endurance
regime. When computing the proposed elastic strain amplitude vs. reversals to failure regression line,
i.e., ACepssic/2 Vs. 2Ng, only data in the high cycle regime should be included and this line should be
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extrapolated below the endurance regime when estimating the damage contribution of small cycles as
part of a spectrum. The proposed Aeg.qi/2 vs. 2N; curve has a steeper slope and, therefore, attributes
more damage to small amplitude cycles than would be observed during constant amplitude loading.
This method was shown to give better life predictions for spectrum loaded specimens as compared to
the more conventional approach in which all elastic strain range data is used to compute the Aeejaqic/2
vs. 2N;regression line.

Stanzl-Tschegg et al. [38] investigated the high cycle fatigue behavior of cast aluminum alloys under
both constant amplitude and service load conditions with a cumulative frequency dlstnbunon
considered representatwe of car wheel loading. The number of cycles to failure ranged from 10° to
more than 10°. Experimental lives were found to be seven to 23 times shorter than the fatigue life
predicted using the original Palmgren-Miner damage accumulation rule.

Crack closure arguments are frequently used to explain the differences between constant and variable
amplitude fatigue damage accumulation. Vormvald and Seeger [39] found that larger strain cycles
caused an instantaneous change in the crack closure strain of the smaller cycles. The crack closure
strain of the large cycle was approximately the same under both constant amplitude and variable
amplitude loading. During a small strain cycle, the crack, which was closed for a considerable portion
of the cycle under constant amplitude loading, was always open under variable amplitude loading. The
effective strain range during which the crack was open was greater during variable amplitude loading
and more crack growth per cycle occurred.

Variable amplitude load where a significant portion of the fatigue cycles are smaller than the
fatigue limit brings up significant questions with regard to damage accumulation. It is clear that in
such cases the linear damage rule proposed by Palmgren [50] and Miner [51] cannot be used
because this simple rule attributes no damage to cycles less than the fatigue limit. This problem
has led researchers to a variety of more complex damage accumulation rules. Fatemi and Yang
[52] survey and categorize many of this many of these rules and report more than 50 modifications
of Palmgren-Miner rule. Many of these were developed to account for the effect of cycles below
the fatigue limit.

The Model

The life prediction model used in this paper is based on several fundamental assumptions:

1. The fatigue process is governed by the propagation/nonprogagation of fatigue cracks in which
growth rate per cycle is related to the effective stress intensity factor range by a Paris-type
equation.

2. The effective crack driving stress is affected by both maximum and minimum stresses in a
history.

3. The material has an intrinsic threshold below which cracks will not propagate if the effective
stress range is less than the threshold.

4. High cycle fatigue behavior of this material is controlled by the presence of shrinkage pores
that behave as initial cracks.

5. Over- or underload events alter the crack driving force and, if a crack is not arrested, the
driving force returns to the steady state value as an exponential function similar to that in the
Topper model.

The most difficult aspect in developing the model is determining the intrinsic threshold, i.e.,
defining the effective driving force at the limit where crack propagation is not observed, AK int.
During the variable amplitude underload tests at high mean stresses, it was observed that cycles
with amplitudes equivalent to 60% of the constant amplitude fatigue limit produced failure at



about 100 million cycles in about half the test specimens. This value is therefore used as a
practical engineering value.

If it is assumed that the effective stress is related to the intrinsic threshold at the fatigue limit, a
relationship between effective driving force and applied stress can be established. Effective driving
force can be defined in terms of Spyax and Spir. This is illustrated in Fig. 2. This figure indicates that
under completely reversed loading only a small portion of the applied stress cycle is effective in
propagating a crack.

In the experiments reported here, no attempts were made to specifically measure the crack opening
loads of the small cracks during the fatigue process. Such measurments have been reported by
DuQuesnay et al. [27] Varvani-Farahani and Topper [28], Vormwald and Seeger [39], and
McClung and Sehitoglu [53]. In the current experiments, the difference between applied stress
range and effective stress range may be attributable to crack closure but some researchers have
suggested that stresses ahead of the crack tip are more significant that closure stresses [2,14,15].
Stresses ahead of the crack tip become more significant in the case of plane strain or cracks
propagating from micro notches as is the case with nodular cast iron.
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FIG. 2 — Smith diagram: relationship between maximum and effective stress.

Most types of defects for thick-section castings can be avoided using high quality foundry
practices, however, shrinkage pores cannot be completely avoided. The role of micro shrinkage
pores on the high cycle fatigue behavior of this nodular cast iron has been well documented [54-
58]. SEM investigations have shown that long life fatigue failures in test specimen can normally
be attributed to crack initiation and growth from individual defects. The statistical size distribution
of shrinkage pores has also been determined. Throughout his paper, a maximum defect size
corresponding to 50% probability of occurrence is used. Using a crack propagation based model it
is also possible to compute other probability of failure curves based on the statistical distribution
of defects.

After the issues of initial crack size and intrinsic threshold stress intensity are established, the

crack growth constants C and m used in a modified Paris-type relationship are relatively easy to
establish based on either finite life test data or direct observations of small crack propagation.
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:;_; = c[(Kmax _Kop )m _AKth,imm] ¢

The variable amplitude interaction model chosen is based on that used by Topper and colleagues
[18, 22, 23]. This model assumes that the interactive damage for a given cycle decreased as an
exponential function of the number of small cycles following an overload or underload. It is
assumed that, under constant amplitude loading, a small crack will have a certain driving force
based on the maximum stress, stress ratio and crack size. In the case of underloads, the driving
force is assumed to increase immediately after the underload and then gradually decay back
toward the original constant amplitude state.

EXPERIMENTS

Test Material

Nodular cast iron is used extensively in the production of ground vehicle components and large
machinery. When compared to gray iron, nodular cast irons have significantly higher fatigue
strengths that can be used to advantage in the design of fatigue-loaded components. Rigid quality
control during the casting operation can eliminate the relatively large defects often associated with
complex castings, but small microstructural irregularities can never be completely eliminated for
large thick-section castings. These shrinkage pores, inclusions, and other types of naturally
occurring defects have a controlling effect on the endurance limit strength. Interest in this material
for fatigue-loaded components is reflected in the large number of recent scientific publications
devoted to this material [54-68]. Test bars were cut from either 100 x 100 x 300 mm ingots or
from the cylinder head of a Wirtsild 64 diesel engine. Material from both the ingots and cylinder
head were nominally identical, GRP 500/ISO 1083 nodular cast iron, but were received from two
different foundries.

Material taken from the cylinder head had average tensile properties of Ry, =307 MPa and R, =
517 MPa while material taken from the ingots was slightly stronger with Ry > =340 MPa and R, =
620 MPa. Both showed approximately the same distribution of nodular graphites and a dual
ferritic-pearlitic matrix. Material from the cylinder head was approximately 50% pearlite, 40%
ferrite and 10% graphite and material from the ingots is 77% pearlite, 10% ferrite and 13%
graphite.

Fatigue Testing

Fatigue testing was accomplished using a computer controlled resonant type test machine. Test
frequency was nominally 160 Hz. Axial test specimens were ¢12 mm with a 30 mm gage section
and 50 mm transition radius. Axial testing was performed using several stress ratios or mean stress
levels. The staircase strategy was used to determine the constant amplitude fatigue limit at several
different R ratios. Tests exceeding 1x10’ cycles were considered run-outs. Material from both
foundries was used in the constant amplitude fatigue limit testing.

The variable amplitude history is illustrated generally in Fig. 3 with details of the spectra given in
Table 1. In all cases the variable amplitude spectrum consisted of a large number of small
amplitude cycles at a high mean stress followed by a single unloading event to near zero stress.
Only the material taken from the ingots was used in the variable amplitude testing. Due to the
natural scatter in result found in fatigue of cast iron, most variable amplitude histories were
repeated. The number of specimens used for a single load history is also given in Table I.
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Table 1 — Details of variable amplitude test matrix

mean cycles to # of
Omean, Ic Ca lc Gmean, he Oa. he failure, N¢ Dhe/ D specimens

190 180.5 260 111 543 900 3300 10
177.5 167 260 83,5 4 636 200 20 000 10
167.5 157.5 260 65 80 000 000+ 300 000 10
180.4 170.4 260 90,7 3274 000 10 000 3
180.4 170.4 260 90,7 47 800 000 100 000 1
177.5 167 260 83,5 27 026 000 220 000 6
177.5 167 260 83,5 3986 000 5000 1

+ six of ten specimens resulted in run-outs, N> 150x10°
RESULTS AND DISCUSSION
Crack Growth Parameters

Since the work of Elber on crack closure, many studies have been devoted to quantifying the effect
of closure under a variety of load situations. Several empirical or semi-empirical relationships
have been proposed to compute the crack opening stress based on a combination of loading and
material parameters. Models by Newman [69], Sehitoglu [70] and Duquesny et al. [27] are similar
in the respect that opening load is computed to be a function of Spax, Smin (or R ratio) and material
strength, i.e., yield strength, cyclic yield strength, or flow strength.

If it is assumed that the small cracks reported here grow in plane strain, the Newman model
applied to near threshold crack growth predicts that small cracks are fully open for stress ratios
above approximately 0.2. Similarly the Duquesny et al. model for positive stress ratios assumes
that there is a minimum stress above which the stress range at the fatigue limit becomes constant.
As seen from Fig. 4, the nodular iron reported here shows no such constant stress range even for
stress ratios approaching 0.5.
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Based on the Smith diagram of Fig. 2, it is assumed that, at the fatigue limit, the effective crack
driving stress is independent of mean stress. This allows the crack opening stress to be formulated
as a linear function of either the maximum or minimum stress. The variable amplitude spectra of
interest consisted only of underload histories, so it was chosen to use a linear function of minimum
stress.

S,, =170+0.36-S ©

For other types of load histories it would be necessary to formulate opening stress in terms of S,
and Sp,.

For material taken from ingots, a 50% probability of occurrence defect size was about 180um [57],
i.e. half-circular defect with radius 180pum. As previously presented, the intrinsic threshold stress
range was about 60% of the applied stress range in the longest variable amplitude tests. This
correlates to an intrinsic threshold stress intensity factor of 2.2 MPa m” for da/dN < 1x10® mm/cy.
It should be remember that the value of 60% was found for stress cycles with relatively high R
ratios, R = 0.4. For completely reversed strain cycles, Bonnen and Topper [30] found no effect
from the small cycles only when the amplitude was 1/3 the fatigue limit. The current data would
be very close to this value for R = -1 cycling. On a microstructural level it has been observed that
cycles as small as AS,/2 still cause changes in the materials dislocation structure [71].

Based on the constant amplitude finite life data, crack growth parameters for the Paris equation are
found to be m = 4 and C = 4x10” (units: mm/cycle, MPa m”). Constant amplitude fatigue life
from experiment and analysis are show in Fig. 5. At high stress amplitudes for the high mean
stress data the analytical predictions give slightly longer fatigue lives. This is partially explained in
that the maximum stress for these cases is approaching the flow strength of the material so
significant plastic deformation is present and linear elastic assumptions are violated. Scatter in the
experiment results is due largely to the significant scatter observed in the initial defect sizes.

Variable Amplitude Life Predictions

Table 1 gives the number of specimens tested for each of the seven variable amplitude histories
and the mean fatigue life. It can be noted from this table that the number of repetitions of the
underload stress was always very small. The damage contribution of the larger stress cycles was
always less than 1%. In a typical case the large cycle was repeated 300 times in a variable
amplitude tests where a cycle of that size in constant amplitude loads would required 2 x 10°
tepetitions for failure, i.e., large cycle damage contribution = 300 / 2x10°=0.15%.

Based on a comparison of variable amplitude tests with similar 6,1, Gm,c, Ganc, a0d Ompe, but with
different Ny/Ny, it was possible to compute the rate at which the crack growth rate retumned to a
steady state value. A best fit was obtained for x = -0.0008 where

ASeff,NUL =ASgrca + (Aseﬁ‘,ul —AS ca )eKNUL (4)

In this equation ASefr.Nu,, is the effective stress range for cycle Ny, after the under load,
AS . ca is the effective crack driving stress range of the small amplitude cycle under constant
amplitude loading, and AS g , is the effective driving force of the underload cycle during
constant amplitude loading. The value k = -0.0008 means that 6000 load cycles following an
underload, the crack driving stress range has returned to within 1% of the constant amplitude stress
value. Linking the change in crack driving stress range to the number of cycles following an



underload event is a matter of convenience. Physically it would be more appropriate to link this to

the crack advance.
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— Experimental constant amplitude data and crack growth predictions

Crack growth for a typical variable amplitude test, G, = 83.5, Np./Ni. = 20 000, is shown in Fig.

7. The prediction in this figure is made based on previous computed values of C, m, AKgpin, and x.
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FIG. 7 — Observed and predicted crack growth for one test, G,;c = 83.5, Nyo/N;c = 20 000.

Figure 8 shows the predicted S-N curves in comparison to the experimental data for the long-life
variable amplitude tests. These curves tend to follow the mean of the experiment data. Using this
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type of fracture mechanics approach, however, it is relatively easy to compute curves representing
other failure probabilities based on knowledge of the shrinkage pore distributions.
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FIG. 8 — Measured fatigue lives and predicted SN curves for several variable amplitude histories.
CONCLUSIONS

This paper has reviewed numerous life prediction methods for variable amplitude fatigue. Special
attention was given to cracks propagating from nominally defect free components in the high cycle
regime where a significant portion of the fatigue damage can be attributed to cycles with
amplitude less that the constant amplitude fatigue limit. An effective stress method for variable
amplitude loaded similar to the Topper model is presented for long-life fatigue of a nodular cast
iron. Model parameters are derived from a constant amplitude S-N curve and the Haigh diagram.
Two sets of long- life variable amplitude tests were used to derive the underload interaction
parameters.

Previously measured shrinkage pore distributions for the iron were used to determine the 50%
probability of occurrence initial defect size. This size defect was chosen to illustrate the model, but
in design a much lower probability of occurrence initial defect size would need to be chosen.

Current experiments were limited to constant amplitude loading and variable amplitude loading
containing underloads so the crack driving stress was formulated only in terms of the minimum
stress in a cycle of block of cycles. Good agreement is found between the experiments and the
model prediction. However, a relationship between the maximum load and the effective crack
driving stress would also need to be established for more general loading situations that also
include overloads.
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FAILURE STRAIN DETERMINATION USING RUPTURE TESTS WITH
REACTOR PRESSURE VESSEL HEAD MODELS
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ABSTRACT

In the LISSAC project (LImit Strains in Severe ACcidents), partly funded by the EC Nuclear
Fission and Safety Programme within the 5th Framework programme, an extensive experimental
and computational research programme was conducted to study the stress state and size
dependence of ultimate failure strains. The results are aimed especially to make the assessment of
severe accident cases more realistic.

For the project a block of material of the German Biblis C reactor pressure vessel (RPV) was
available. As part of the project, RPV head models from this material (22 NiMoCr 3 7) were tested
under quasistatic pressure load at room temperature up to rupture at VIT. Half of the specimens
contained holes describing the control rod penetrations of an actual RPV head. In this paper, the
experimental results are presented and compared with numerical predictions.

1. SPECIMENS AND EXPERIMENTAL SETUP

At VTT totally eight pressure vessel head models were tested. The specimens were delivered by
FzK and they were loaded up to rupture under quasistatic pressure load at room temperature. Six
first specimens were of the smaller size (diameter ¢ = 90 mm, wall thickness t = 5 mm) and for the
other two, all dimensions were scaled by a factor of 5. Half of the specimens contained 73
equiaxial holes, describing the control rod penetrations in an actual reactor pressure vessel head.

One of the main challenges in planning the test arrangements was to obtain failure at the test
specimens without losing the tightness of the support structures. A 3 mm thick aluminium liner
was designed for the tests with the small specimens with holes. In order to estimate the stiffening
effect of the liner, also one of the small specimens without holes was tested using a liner. The
testing counterparts were not allowed to undergo significant plastic deformations as they had to be
used several times. Rather stiff support structures, shown schematically in Figure 1, were thus
necessary.

For testing, the specimens were bolted to a rigid base plate using a fixture ring. The geometry of
the specimen and the principle of the experimental setup are shown in Figure 1. The main
dimensions of the smaller specimens are given in Table 1.
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(H)

Fig. 1. Geometry of the small pressure vessel models with holes (left) and a schematic presentation
the experimental setup (right).

Table 1. Main dimensions of the smaller pressure vessel models.

a[mm] | R [mm] s(mm] | h[mm] | b[mm] | d[mm] | e [mm]

90.6 55.6 5 23.2 22 2 4.6

2. FE ANALYSES FOR PLANNING THE EXPERIMENTS

The experimental setup was carefully designed to withstand the failure pressure of the specimen,
which was estimated to be around 1150 bar. The fixture system had to be very rigid, in order to
ensure that no tightness problems would occur during the tests. Besides, no essential plastic
deformations were allowed as the same fixture system had to be used in all tests with the same
specimen size. Axisymmetric and three-dimensional finite element analyses were conducted to
assess the behaviour of the experimental setup (see Fig. 2). Actually, only the smaller specimens
without holes were modelled. An important goal of the analyses was to help in assuring the
reliability of the support structures and other facilities during the tests. Also, the specimen
behaviour during the test was estimated. The analyses have been reported in {2].

As the dimensions of the fixture ring set limitations for the size and number of bolts, one of the
main concerns in planning the test arrangements was the endurance of the bolts. On the other hand,
due to the high expected failure pressure it was of paramount importance that no failure of test
arrangements would occur during the tests. To ensure the proper functioning, both axisymmetric
and three-dimensional finite element (FE) models were used in the computations. The 3D model
enabled a more accurate estimation of the bolt behaviour.

The elasto-plastic analyses were performed using Abaqus 5.8-14 finite element code [3]. Large
strains and deformations were taken into account. In the analyses, mechanical properties
documented by the LISSAC theoretical task group [4] were applied for the specimen.

The main result of the analyses was that the maximum pressure would be about 1140 bar. So the
bolts had to be able to carry a total load of 735 kN in the smaller size and 18 500 kN in the larger
size. The results also indicated that no problems concerning to deformations and loss of integrity
were to be expected.
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Fig. 2. Axisymmetric and three-dimensional finite element models used in the analyses [2]. The
3D model describes 1/32 of the whole geometry, corresponding to 32 bolts.

3. EXPERIMENTAL RESULTS

Seven from the eight tests were completed totally successfully. In the test with the large specimen
with holes, the properties of the aluminium liner material proved to differ from those of the smaller
ones. As a consequence the experiment ended at the failure of the liner. All other tests yielded very
consistent results which also agreed well with the numerical predictions.

3.1 Global results

During all tests the internal pressure and the dome displacement were recorded up to failure. For
small specimens also some strain measurements were performed. After the test, the minimum
thickness values of the specimens without holes were measured.

For none of the eight performed tests, any interruptions or repetitions were necessary [1]. Seven
tests were an immediate success. Although pressure loading is to be considered as a load
controlled type loading, the test specimens strained in full control far beyond the strains at
maximum pressure, as it was not possible to maintain the pressure level when the specimen started
to yield rapidly. This was because the low displacement pump provided no accumulator to feed
more water to compensate for the volume increase of the test piece. For the test with the large
specimen with holes, however, the test ended prematurely before reaching failure of the specimen.

Table 2 compares the maximum pressure and related displacement values. It shows that the tests
were very well reproducible. All tests with specimens without holes which were tested without
liner, i.e. specimens EU1, ET1 and EW, gave maximum pressure values deviating only by + 0.2 %
from the mean value of 115 MPa, which agrees well with the estimated ultimate load of 114 MPa.
The scatter of the scaled maximum dome displacement values was 4.2 % from the mean value
69.9 % and, quite surprisingly, it was largest for the large specimen.

The three tests with small specimens with holes, EZ1, EY1 and FAl, also showed quite modest
variation in the measured maximum pressures (0.7 % of the mean value 110 MPa). The failure
occurred at a scaled displacement of 28.2 % with a fairly small scatter of £ 1.1 %. According to
Figure 6 this seems to correspond roughly to the ultimate load. In the test with the large specimen
a pressure of 115 MPa, which seems to be smaller than the ultimate load, was reached. This
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different behaviour is most probably due to the lesser ductility of the liner material, compared to
that of the small liners, although they were assumed to be identical and chosen with such

expectations.

Table 2. Summary of main results from the pressure vessel head model tests.

Specimen | Diameter a | Holes | Liner | Max. pressure Max. displ.
[mm] [MPa] [% of dome height]
EU1 90.6 116 69.1
ET1 90.6 115 66.9
EV1 90.6 X 126 34.8
EZ1 90.6 X X 111 27.9
EY1 90.6 X X 109 28.3
FAl 90.6 X X 109 28.4
EwW 453 115 73.6
FB 453 X X 117 17.3
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Fig. 3. Scaled dome displacement as a function of internal pressure.
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Figure 3 shows the measured scaled dome displacement of each test as a function of pressure. The

results seem to fall in four groups:

1) the tests with the specimens EU1, ET1 and EW without holes;
2) the test with the small specimen EV1 without holes which was tested with liner for

comparison;
3) the three test results with small specimens EZ1, EY1 and FA1 with holes and



4) the test with the large specimen FB with holes.

Groups 2 and 4 contain both only one tests. Only in group 1 the tests continued beyond the strain
at maximum pressure whereas this happened in none of the tests with a liner. Comparison of test
groups 1 and 2 indicates that the liner increases the maximum pressure by about 10 MPa. The
increase of maximum pressure appears to be an artefact due to the observed liner displacement
during the test such that the strength of the lower ring of the liner increases the strength of the
assembly.

Lowest maximum pressure values were obtained in the tests of group 3. The three tests in this
group show very similar behaviour. The test with specimen FB (group 4) shows abnormal
behaviour. The measured pressure values exceed clearly those in the corresponding tests with
small specimens (group 3) while no difference was observed in the case of different specimen
sizes without holes. Obviously the difference is thus connected to the behaviour of the liner.

Normalisation for the effect of the holes and the liner

Pressure-displacement records were normalised using global membrane stress and shape criteria
and relative strength values for the steel specimens and the aluminjum liners (Fig. 4). The test
pressures were converted into steel net section membrane stress by adopting the usual sphere stress
formula and factors for the liner thickness and strengths and the hole configuration.
The normalisation factors are:
for sphere stress 6 = p*R/2s * hf * If, where

p = the internal pressure,

R = dome inside radius and

s = dome thickness = sst below

yielding R/2s = 5.56.

Further, hf = hole factor (hf = 1 for tests without holes and as given below for tests with holes) and
If = liner factor (If = 1 for tests without liner and as given below for the liner effect).

Here the hole factor is hf = 1/ (1-d/2e), where d/2e = 2/9.2 = 10/46 = 0.217391 for small and large
specimen sizes. Thus hf = 1.28 .

The liner factor is If = 1 / (1+ k*YSal/YSst * sal/sst), in which k is a fitting parameter and
YSal/YSst the ratio of flow strengths aluminium/steel. Here YSal/YSst = 234/500 = 0.47 and
sal/sst = thickness ratio liner/specimen.

It was found that a value for k = 0.32 for the smaller liner and k = 0.72 for the larger produced
consolidation of the different test records (taking aluminium yield stresses as 234 MPa for both
small and large liners). A ratio of 1.13 is found for the "strengthening" effect of the holes using
these net section membrane stress criteria, or a factor of 1.13/1.28 = 0.884 for the weakening effect
of the holes on the global behaviour disregarding holes in the stress calculation. The consolidated
curves are shown in Figure 4.

The factor 1.13 on the net section strength is interesting because it is close to the ratio of fully
plastic principal stress components for plane strain and equibiaxial strain thus proposing that the
specimen ligaments between holes adopt a plane strain deformation mode whereas the dome
without holes remains in the equibiaxial mode. This interpretation may be fortuitious, because the
stress-strain concentration effect of the holes is neglected and the net section factor 1.28 is related
to the less densely spaced 90 degree configuration prevailing in the dome centre.
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