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ESIPUHE

Suomen VII Mekaniikkapaivéat pidettiin Tampereella 25-26.5.2000 ja sielld pi-
detyt esitelmit on koottu kahteen niteeseen. Nide 1 sisdltdd ensimméisen ja ni-
de 2 toisen kokouspdivédn esitelmit. Kutsuttuina ulkomaisina esitelmdoitsijoind
olivat professori Wolfram Stadler (San Francisco State University, USA) seki
professori Niels Olhoff (Aalborg University, Tanska). Lisdksi tilaisuutta kunni-
oittivat esitelmilldan professorit Ulo Lepik ja Jaan Lellep Tarton yliopistosta.
Kotimaisina kutsuttuina esitelmditsijoind olivat professori Martti Mikkola
(Teknillinen korkeakoulu) ja professori Antti Pramila (Oulun yliopisto). Niteet
sisdltdvit yhteensd 58 artikkelia, jotka edustavat monipuolisesti teknillisen me-
kaniikan eri osa-alueita.

Suomen mekaniikkapdivdt on jdrjestetty vuodesta 1982 lihtien joka kolmas
vuosi (Oulu 1982, Tampere 1985, Otaniemi 1988, Lappeenranta 1991, Jyviskyld
1994, Oulu 1997). Niiden tarkoituksena on koota yhteen tutkijoita, suunnitteli-
joita ja opettajia, jotka tydssddn joutuvat tekemisiin mekaniikan ja lujuusopin
ongelmien kanssa. Uutena aiheena tdlld kerralla on mukaan otettu teknillisen
mekaniikan opetus, jolle on varattu oma istunto.

Jirjestelytoimikunta esittdd ldmpimét kiitoksensa kaikille esitelmijditsijoille
sekd artikkelien tekij6ille, kuten myds niille lukuisille henkilsille, jotka ovat
osallistuneet mekaniikkapdivien jérjestelyty6hon.

Juhani Koski ja Simo Virtanen
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A BRIEF HISTORY OF MULTICRITERIA OPTIMIZATION
AND ITS

APPLICATIONS IN MECHANICS

W. Stadler
School of Engineering
San Francisco State University
1600 Holloway Avenue
San Francisco, CA 94132, USA

ABSTRACT

We provide a brief history of multicriteria optimization, including applications in
Mechanics. We begin with the origins of optimization, provide a basic optimization
problem formulation, discuss some of the initiators of multicriteria optimization, show that
a classical principle in Mechanics has a multicriteria formulation and trace the evolution of
an optimization problem from its beginnings in antiquity to wide present application.

1. INTRODUCTION

Mechanics and Engineering Science may be defined as areas of instruction whose purpose
it is, at least in part, to bring new methods and concepts in the sciences and mathematics to
fruition by applying them in the solution of problems. Unfortunately, Mechancis has been
slow to adapt and continues to maintain a traditional offering rather than innovating with
courses in controls, mechatronics, multidisciplinary analysis, fuzzy systems and
optimization, to name only a few. In particular, optimization as a broad design tool, has
been, for the most part, ignored in the US.

In every book treating engineering design, the student is admonished to optimize his
designs with vague guidelines such as, ‘as strong as possible’, ‘as light as possible , ‘as
flexible as possible’, and so on, with little or no guidelines as to just how this is to be
accomplished. In part, this is due to the fact that the concept of design itself is separated
into two relatively disjoint approaches: One almost artful approach based on the
refinement of anything that works and satisfies the constraints, making virtually no use of
analysis, and a second approach which relies on detailed mathematical modeling, analysis
and concepts from decision making and optimization. When one has well-accepted and
tried mathematical models and computational methods for the area in which design is to be
carried out, it makes no sense not to use them to obtain optimal designs. Both approaches
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go back to antiquity. Not surprisingly, we know more about the origin of the analytical
approach.

As far as it was possible to determine, Dido’s problem is the first example of the practical
use of an optimality statement. We shall first tell the story as it is told now and then
indicate how it was pieced together from the historical fragments of Greek and Roman
historians.

Dido’s Problem. Mutto, the king of Tyre had two children, a son Pygmalion and a
daughter Elissa. Upon Mutto’s death, Pygmalion became king and Elissa married her
uncle Sicharbas, the priest of Heracles. Pygmalion had Sicharbas assassinated to seize the
priest’s treasure. Elissa, appalled at her brother’s action, had the treasure secretly loaded
onto boats and fled with some of the nobility partial to her plight. After a stop in Cyprus,
they continued westward along the northern coast of Africa, where they were welcomed by
the local inhabitants. They called Elissa, Deido (wanderer), because of her many
wanderings. She encountered a local ruler, King Iarbas of Numidia, whom she asked for
some land where she and her retinue could settle. He allowed her to take as much as she
could enclose in the hide of an ox. Dido had the hide cut into strips and then used these
strips to enclose a sizable piece of land. The inhabitants kept their promise and gave her
the land on which Dido eventually founded Carthage. Some time thereafter, the Lybian
king wished to marry her, but she refused. On the pretext of carrying out a rite to release
her from an oath not to marry, she constructed a large pyre near her chambers from which
she threw herself on the pyre afer it had been lighted.

This story is an amalgamation of at least three different references to Greek mythology and
history.

The earliest mention of the story dealing with Elissa and her escape from Tyre is due to
Timaeus (of Tarominium a Greek colony in Italy), who was exiled to Athens by
Agathocles, the local tyrant. Timaeus lived from about 356 B.C. to 260 B.C. and he is
considered to be the foremost third century historian whose fragments have survived in
sufficient bulk to make a good assessment of his contribution. He also seems to be the
originator of the myth that both Carthage and Rome were founded in the 38" year of the
Olympiad or about 814-813 B.C., the generally accepted date for the founding of Carthage.

The part of the story dealing with “as much land as she might enclose with an ox hide” was
penned by Publius Virgilius Marro (70-19 B.C.) in his epic tying the founding of Rome
into Greek mythology at the request of Augustus, who commissioned him. In this story,
she commits suicide because Aeneas leaves her. If nothing else, we now have to resolve
the difficult undertaking of having committed suicide twice. One resolution is to assign the
name Dido to all of the Punic queens. That is, they take on the name Dido upon becoming
Queen of Carthage.

Justinius, another Roman historian, provided the additional detail of cutting the hide into
strips in his book Historiae Phillippicae written in the second or third century A.D.
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The attendant geography is somewhat more deterministic. ~Tyre is a city in today’s
Lebanon and Carthage (or rather what remains of it) is located on a peninsula (an easily
defended location) in Libya, on the Bay of Tunis, just northeast of modern Tunis.

The earliest archeological evidence of Carthage dates from the eighth century B.C., so that
the city thrived for more than 500 years until its recorded destruction by Rome at the end
of the Third Punic War in 146 B.C. This is slightly at odds with Timaeus placement of the
founding of Carthage in the 9™ century B.C. Virgil places the mythiological founding of
Rome by Aeneas, a refugee from Troy, at about 1100 B.C.

According to Ref. 2, Zenodorus provided the first proof of the isoperimetric property of the
circle sometime between 340-212 B.C. The proof apparently contained a gap, which was
not removed until the 19 century by Karl Weierstrass (1815-1897) in his lectures at the
University of Berlin.

We may assume that Dido was aware of the isoperimetric property of the circle. Again,
according to Ref. 2, cutting the hide into 1/ 10" inch strips would yield about 1000-2000
yards of strips with which she could have enclosed about 16-65 acres of land for a
complete circle and considerably more, if taken as a semicircle along the ocean. Since
Carthage was located on a peninsula, she must have done well indeed.

Figure 1. Dido purchases land for the foundation of Carthage. Engraving
by Matthaus Merian the Elder, in Historische Chronika, Frankfurt a.M.,
Germany, 1630. (Ref. 2).
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Dido’s problem is and will probably remain the most celebrated optimal design problem.
Thanks to its mythological setting, it can be celebrated on several levels as shown in
Figures 1 and 2. Figure 3 shows that the civil engineers of the middle ages were quite
aware of this result in optimal design and put it to good use.

B s

B s,

Figure 2. J.M.W. Turner. Dido building Carthage.

Thus was born the isoperimetric problem: Among all closed plane curves of a given length
to find the one that encloses the largest area.

Virtually all of the early optimization problems concerned maximization or minimization
in geometric problems; there were no common methods and each problem thus was
individually dealt with. However, what was found, was proven to be the optimum and thus
was accepted as fact. Thus, Aristotle in the 4™ century B.C. already took it for granted that
the circle enclosed the largest area for a given perimeter with a similar conclusion for the
sphere as enclosing the largest volume for a given surface area.

The first optimization problem involving a physical phenomenon appears to have been
Heron of Alexandria’s probes concerning the reflection of light rays in a mirror posed in
his work on Catoptics (reflection) in 75 A.D. (According to Ref. 3, the law of reflection
had been known to Euclid, Aristotle and, probably, to Plato):

Determine the location of the point D so that the sum of the distances AD + BD is a
minimum (see Figure 4).



Figure 3. Medieval map of Paris.

B ]

D
Figure 4. Heron’s Problem

Eventually, this problem gave rise to the investigation of the law of refraction by Snell
(1591-1626) from an experimental viewpoint and by Pierre de Fermat (1608-1665) from a
theoretical point of view, concluding that light travels the minimum time path. As we shall
see, this problem is the beginning of a formulation with a wide range of applications.

In reading the scientific literature from the seventeenth to the nineteenth century, we get
the clear implication that nature “operates” optimally in optics, in mechanics, in
thermodynamics, in fact, everywhere, much in line with the Aristotelian principle that
“nature does nothing the hard way”. Courant and Robbins, in their classic book What is
Mathematics? summarize (Ref. 4): “It was observed long ago that natural phenomena
often follow some pattern of maxima and minima.” Leanhard Euler puts these sentiments
into a metaphysical context, in line with his religious beliefs, when he writes (Ref. 5):
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«_..For since the fabric of the universe is most perfect and is the work of a most wise
Creator, nothing whatsoever takes place in the universe in which some relation of
maximum and minimum does not appear. Wherefore there is absolutely no doubt that
every effect in the universe can be explained as satisfactorily from final causes, by the aid
of the method of maxima and minima, as it can from the effective causes themselves.”

This postulated optimality of the universe may seem to derive from religious belief but
those who held with this postulate ranged widely from the very religious Euler to those
who arrived at the conclusion from their own reasoning and observation. The fact is that
the extremum and minimum principles that we now so routinely employ, derive from such
deeply held convictions about the efficiency of natural law. We list only a few such
statements here:

Fermat’s Principle of Geometric Optics. In an inhomogeneous medium a light ray
traveling between two points follows a path along which the time taken is a minimum with
respect to all paths joining the two points.

Principle of Minimum Potential Energy. An equilibrium of a mechanical system is
stable if and only if the potential energy is a minimum.

Hamilton’s Principle. The Irish mathematician W.R. Hamilton (1805-1865) proposed the
following generalization of the principle of virtual work. Consider a system of n particles,
assume that the external forces are conservative and the possible motions holonomic. Let
T(¢) be the instantaneous kinetic energy of the system and let V(f) be the potential energy
of the external forces (we suppress the dependence on x and x). A motion x(f) of the
system is possible if and only if

t

1
S| (T - V(r)dr=0.

to
We have cited Fermat’s Principle to show what could be deduced from the simple problem
that Heron posed. We shall show subsequently that the problem has continued to evolve
far beyond its initial statement to the point where it now has evident applications in
electrical, civil and mechanical engineering. The principle of potential energy is one of the
oldest minimum principles and we have stated Hamilton’s Principle as a classical principle
which can be given a multicriteria formulation.

From statements such as “nature does nothing the hard way”, it is easy to infer that any
possible way of doing something is either the easiest way or we may find a way which is
easier. If there is only one way, it becomes easiest by default. The inference from the
previously stated “natural “ principles is that nature does it the easiest way; that is, nature
achieves an optimum. Collectively, we thus atrive at the common problem formulation:

A quantity is to be maximized or minimized by making a suitable choice from some set of
allowed choices. More concisely: Minimize g(d) subject to d € D.
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Note that this statement implicitly includes the possibility of comparing two different
designs d,,d, € D with

d, $d, iff g(d)) = g(d2)

2. THE MULTICRITERIA PROBLEM

The vector optimization problem or multicriteria problem may also be succinctly stated in
the form: “Optimize” g(d) subject to d € D, where the criterion g(d) now is given by the
criterion vector

g(d) = (g1(d),g(d),....gn(d))

Since we are no longer simply maximizing or minimizing a single criterion function, we
must give meaning to the optimization of a vector.

In order to gain a good understanding of the multicriteria problem, it is worthwhile to
dissect the whole idea of an optimization problem into its basic issues and concepts. In
virtually all optimal design endeavors, it is the optimal design which is of interest and not
the optimal value of some criterion function. The optimal design problem is best viewed in
this light:

(1) There exists a set D of possible designs. A design d € D may be characterized in a
variety of ways, by a single variable or function, vectors of these or by a mix thereof.
We shall present a design simply by d.

(2) There must be a way of comparing at least two designs d; and d, in D. This is usually

accomplished by introducing a relation < on D such that d, X d, (d; is preferred to

(<) or equivalent to (~ ) dy). For obvious reasons, we call such a relation a preference
relation. It may be that not all designs may be comparable to each other.

(3) There must be some notion of what constitutes a best design. Once one has achieved a
comparison of different designs, it is natural to attempt to isolate a design d* € D
which is better than at least a collection of other designs. Usually, this is done within

the context of the preference relation < ; e.g. d* Sdforalld € Dy Cc D.

Example 2.1. Suppose our design set is D = {x €R': x €[0,2]}. The usual preference
relation then is the complete or linear order < on R' restricted to the interval D. A

minimum with respect to < is given by x* = 0 with 0 < x for every x € D.

Rather than ordering the design set itself, suppose we have a mapping of the design set D
into the reals, $(-): D »R'. We may then use the usual order < on R' to induce a

preference < on the set D with

d] ,S d2 lff ¢(dl) < d)(dz)
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with the obvious correlation for the optimal design. This is, of course, the concept of a
utility function in economics.

Example 2.2. Let D= {x €R": x € [0,4]} and consider the mapping g(*): D - R' given
by

gx) =1+ (x-2)

The use of the previously described approach produces

x1 X xp iff g(xl) < (x2)
as illustrated in Figure 5.

L L ] 5 i
R A) X3 X44 5 X
Figure 5. The imposed preference

Note that x; ~ x4 and x, ~ x3 and that x; < x; as well as x, < x4, etc. With minimization as
the basic objective, the optimal design is given by x* =2 with x* X x for every x € D.

We emphasize again that the criterion values themselves are generally of lesser importance
than their use in comparing different designs in design space.

The same overall approach is used in the multicriteria problem. The only difference is that
the mapping now is a vector-valued map

g(): D~ R"
with g(d) = (gi(d),g2(d)....,gn(d)) as the criterion vector. A preference <y is introduced on
R" and is then used to induce a preference <p on D with
d; 3pd, iff g(d;) Ing(dy)

We shall trace the historical development of this problem along with its most prevalent
solution concept in the next section.
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3. INITIATORS OF MULTICRITERIA OPTIMIZATION

The relatively late appearance of the consideration of several criteria stems from the fact
that it is much harder to imagine an optimal choice, given the engrained view of the single
criterion problem where the ideas of maximum and minimum evolved together with the
usual number system and its ordering. Having grasped this concept, basic computation
generally is no more difficult than that for the single criterion case.

The development of economic theory provided the impetus for the multicriteria problem.
Such problems were first considered in economic utility theory and welfare theory. The
subsequent inception of game theory provided further insight and the more or less
simultaneous evolution of the mathematics of orderings on sets eventually put all of the
concepts on solid mathematical footing.

Formally, we take the beginning of economic theory to be the Wealth of Nations written by
Adam Smith, and his contemporary view of society expressed in: “A vile maxim of the
masters of mankind ... All for ourselves and nothing for other people.” One of the early

ideas was that of a utility function g(-): D » R? for each consumer, indicating which goods
or choices he preferred and it was assumed that individual choices were made in harmony
with his utility function; i.e.,

d; X &, iff g(d,) <g(d2)

The collective good or simultaneous consideration of the previously individually active
consumers is the basic idea of welfare theory and the first realization of the vector
maximum problem. That is, we wish to obtain an optimal decision d* € D which
optimizes all of the criteria simultaneously or, equivalently, provides for the optimum of
the vector g(d).

Francis Ysidro Edgeworth (1845 — 1926). He was the first to consider individuals with
competing preferences, more precisely, competing utilities. He generally visualized a
situation between two individuals and then extrapolated the results to groups of individuals
in his book Mathematical Psychics (Ref. 6). The two person situation is often illustrated
with the “Edgeworth Box”, an illustration first used by the statistician Arthur Lyon Bowley
(1869 — 1957).

Suppose we consider two economic agents A; and A; with convex utilities g;(x,y) and
22(x,y) which they seek to maximize by trading the commodities (x,y) with a total
endowment (a,b); thatis, 0 < x <a, 0 <y <b. Their consumption set thus is the quadrant
bounded by (a,b). The quadrant is arranged in such a way that A, reaches his total
endowment at (a,b) and A, reaches it at (0,0). In terms of the distribution of goods at a
point (x,y), A receives the amount (x,y) while A, gets (a — x, b — y). The situation is
illustrated in Figure 6.

In the sketch, the level curves of A, are the solid arcs emanating from g;(0,0) and those of
agent A, are dashed and emanate at g»(0,0) taken to coincide with (a,b). The arcs are the



lines of indifference for each agent, indicating that the agent is indifferent for all
allocations of goods associated with a given indifference set. Edgeworth then defines an
equilibrium point for the economy (defines optimality) in the following manner:

¥(0.0)

X(0.9)

Figure 6. The Edgeworth Box and the Core (of a cooperative game)

“It is required to find a point (x*,y*) such that in whatever direction we take an infinitely
small step, gi1(*) and g»(-) do not increase together but that while one increases the other
decreases.”

With this in mind, he arrives at what he terms the contract curve traced out by points at
which the gradients of g;(x,y) and g,(x,y) have the same direction. Furthermore, if we
take a small step away from a point on the contract curve, e.g., we move into the upper
cusped region, then 0g,/0x < 0 and 0Jgy/ dx > 0 as required by the definition. He
discusses many relevant implications and extensions of the basic definition, most of which
are mentioned in Ref. 6.

Vilfredo Federico Damaso Pareto (1848 — 1923). His parents were from Genoa and had
moved into exile in France for political reasons. When Vilfredo was born in 1848, they
first named him Fritz Wilfried, perhaps because of some admiration for the German
democrats, and only later did they turn this into Vilfredo.

Vilfredo was trained as and initially worked as a civil engineer. He held strong political
views and his socialist leanings eventually made him one of the founders of fascism.
Anecdotal lore has it that Mussolini attended some of his lectures in Political Economy at
Lausanne, where Pareto had accepted Leon Walrus’ position.

Pareto was a Greek and Latin scholar who developed an abiding interest in economics
through his close friendship with the economist Maffeo Pantaleoni. Vilfredo’s early
training in mathematics quickly placed him at the forefront of mathematical economics
where he was the first to use variational methods in deducing necessary conditions for
economic equilibrium. He was well aware of Edgeworth’s work and he particularly
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prided himself in making use only of the level curves in his analysis rather than assuming
the existence of utility functions. His somewhat rambling definition of the “maximum
ophelimity” of a collectivity (Ref. 7) and his associated variational necessary conditions
have evolved somewhat in what we now take to be the definition of a Pareto optimum.
Indeed this optimum should more appropriately be termed an Edgeworth-Pareto optimum
or EP-optimum in a more abbreviated form. We write the Edgeworth - Pareto definition
in the now accepted mathematical form:

Definition. Edgeworth-Pareto Optimality. Let d* € D. Then d* is an EP-optimal
decision iff

g(d) <gd*) = g(d)=g(d*)

for all d*-comparable d € D.

Here < is the so-called natural order on R"; the d*-comparable requirement is added to
the definition because < is a partial order, implying that not all of the criteria values may
be comparable to each other. Minimization of the individual criteria was taken to be the
basic desideratum in this definition.

Even in this succinct mathematical form, it isn’t all that clear what is meant by an EP-
optimum. Some more or less converse statements do provide some insight.

Perhaps the most obvious and useful from a computational point of view is that a criterion
value g(d) cannot be EP-optimal if there exists a gy € 4 = g(D) such that go; < gi(d) for i=
1,2,...,N, when minimization of each gi(*) is taken as the basic objective. Similarly, we
are at an EP-optimal point if we cannot deviate from it, even minutely, without increasing
at least one of the criteria. The EP-optimal set of designs is that set where we truly need to
compromise in moving from one design to another in that a further decrease in one
component would require an increase in at least one of the other components. To some
extent the value of multicriteria optimization thus lies in all of the bad designs that are
eliminated rather than in the particular attributes of the EP-optimal designs themselves.

Georg Cantor (1845 — 1918). The concepts of Edgeworth and Pareto grew out of the
socioeconomic viewpoint of what constituted an economic equilibrium; in essence, the
search for a point at which the consumers and the producers would be satisfied with what
they got. Indeed, it was shown later that subject to some convexity assumptions on
preferences, and on production costs and profits, that there exists an EP-optimal point at
which the producers maximize their profit — all in all not a bad economic situation if
realizable in practice.

The mathematical background for such statements was provided by Cantor in his work on
ordered sets (Ref. 8). (Recall that ordering the design set D to be able to compare designs
is our basic objective). In this context, EP-optimality is only one optimality concept
among an infinity of possible ones. As we shall see, however, there does seem to be
something natural about the concept of EP-optimality in that it is possible to cast some
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classical extremum principles in mechanics within this multicriteria framework.
Furthermore, natural structures appear to be optima for suitably chosen criteria.

Orderings come in a variety of colors and guises ranging from partial to complete preorders
to partial and linear orders; they can be smooth and connected or not, be imposed on

arbitrary spaces or on R", thus serving as a device for comparing virtually anything.

Within the economic context, the so-called natural order on R is of greatest interest since
it provides the partial order on the criteria values on which we have based the
mathematical concept of EP-optimality. (The word “partial” refers to the fact that not all

points are comparable to one another). The natural order on RN is defined in terms of the

usual order on the reals with x,y € R and

x<y iff x; <yi foreveryieI={1,2,....N}
x<y iff xi<y, x 2y, for iel

Xy iff xi<y,, foreveryiel

We can easily get a geometric view of this situation. As before, we take minimization as
the basic objective. At any given point x, we imagine a cone with vertex at x and with the

cone being a translate of the positive orthant of RN. The vertex x then is better than all of
the points y in the cone; that is, x <y. Points outside the cone are not comparable to x;
e.g., the point z Points x* on the dark border are the EP-optimal criteria values for the set

A. We have depicted the situation in the criteria space R". The ordering on R" is thus
used to induce an ordering in the design space D with d* given by g(d*) = x*, for example.
The situation is depicted in Figure 7.

&2

0 g1
Figure 7. EP-optimality on R™

Here, the economic definition of the optimum was probably given without an awareness of
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the ordering. Otherwise, it is common to define optimality relative to the ordering that has
been imposed.

Classical mathematics has led us to view < on R' as the only plausible or natural ordering
with the consideration of a single criterion and its maximum or minimum as a conse-
quence. It is gradually becoming apparent that the use of a single criterion is a straight-
jacket which tends to distort actual decision making where compromises between
conflicting choices are the norm. As a consequence, there also has been no use of
multicriteria models to describe natural phenomena.

Emile Borel (1871 — 1956). A third and final area contributing to the solution of the
vector maximum problem is provided by game theory. Not games of chance which have
an ancient history eminently traced by Florence David in her book Gods, Games and
Gambling, but games where the psychology of the player and his choices may affect the
outcome. Borel writes (Ref. 9): “We will consider a game where the winning depends
simultaneously on chance and on the skill of the player.”

The minimax theorem incorporates the first definition of an optimal strategy for a game.
Von Neumann laid claim to the founding of game theory by virtue of being the first to
provide a general proof of the theorem in 1929 (Ref. 10), even though Borel had
demonstrated the validity of the theorem for n = 3 and n = 5 as early as 1923. Von
Neumann was aware of the work of Borel, but he never cited it; indeed, he only cites
Borel’s text on probability theory.

The minmax theorem deals with the existence of a saddle point for the payoff matrix of a
rectangular game. A little insight into matrix games helps to appreciate the power of the
theorem. Consider the payoff matrix

[6 -2 -1 0]
|4 3 -1 3]
3 4 1 2]
[2-3 -2 -1]

and suppose a play of the game consists of P, choosing a row and P, choosing a column
with neither having prior knowledge of the others choice. After they choose, player P,
pays player P, the amount listed in the matrix. For example, if Py plays r2 and P, plays c2,
then P, pays P; 3 units of whatever the payoff consists of. A minus sign means that P, has
to pay P,

With this in mind, it is clear that P, would never play r4, since he can do better by playing
r1, r2 or r3 no matter what P, plays. We say that r4 is dominated by the other rows; that is,
(2,-3,-2,-1) < (4,3,-1,3).

Suppose now that we think of a; = f(i,j), a real-valued function defined on the matrix
element locations. A saddle point of the matrix game is a location (io,jo) such that

Ajjo £ Aiojo < Bioj
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or, equivalently,

ajojo = MAax min a;; = min max a;;
i j jooi

Put another way, there is a selection (ig,jo) and an ajgj, such that ajy is at once the minimum
of its row and the maximum of its column.

The desirability of playing this saddle point lies in the fact that by choosing 13, P; will
receive at least 1 and by choosing ¢3, P, can keep P from getting more than 1. This
reasoning forms the basis for calling this choice the optimal choice for the game and the
corresponding payoff the value of the game.

If every game had such a saddle point, then we would be done. Unfortunately, this is not
the case.

As usual, we may expand our horizons and raise our expectations when we settle for
probably rather than definitely. Suppose we are given an m X n game matrix A and we
assume that P; plays row i with probability x; and P, plays column j with probability y;.
This gives rise to the ordered tuples x = (X1,%2,...,Xm) and ¥y = (y1,¥2,...,y») Which we
constrain to belong to the simplexes Sm={Xx: i+ X + ...+ xm=1} and S,={y: y1+y2
+ ...+ ya=1}. Clearly, x; and y; may also be thought of as the frequencies with which P,
chooses row i and P, chooses column j, respectively.

Weterm x € Sy and y € S, mixed strategies for P, and P», respectively. If both players
play these mixed strategies, then the expectation of player P, is given by

E(x,y) = i. >_'ZT a4X;yj

Again, we look for the saddle point as an ideal solution to such a game. That is, if there
exists a pair (x*,y*) such that

E(x.y*) < E(x*y*) <E(x*.y)

then we term (x*,y*) an optimal mixed strategy for P; and P, and E(x*,y*) the value of the
game to P.

Minmax Theorem. Let A be a given game matrix and let E(x,y) be the expectation with
X€Spandy €8S,. Then
max min E(x,y)
x€S,, ye€S§,
and
min max E(x,y)
y€S, x€S,
both exist and are equal.
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This is essentially the theorem proven by von Neumann in 1929 and it formed the nucleus
for the unsurpassed study of game theory by von Neumann and Morgenstern entitled The
Theory of Games and Economic Behavior (Ref. 11) first published in 1944. A very
readable reference to game theory is McKinsey (Ref. 12) and we have used this text as our
desk reference for this discussion.

Game theory evolved to include numerous other reasonable outcomes of games of conflict
such as Nash equilibria, Stackelberg solutions and a plethora of others. This simply expres-
ses the fact that there is an infinity of possible game equilibria which may be reasonably
defined just as there is an infinity of possible optimality concepts between competing
orderings which may be defined on the decision space. In due course, there also appeared
the cooperative game where the players got more by cooperating with each other rather
than competing against each other. It is not surprising that the optimality or equilibrium
concepts of these cooperative games have much in common with those of the vector
maximum problem.

The remaining contributions to the early development of the vector maximum problem are
computational rather than conceptual. A first step in that direction was a scalarization of
the problem as part of the development of welfare theory. This consists of the introduction
of a welfare function

W(): R+ R

defined over a subset of the criteria space R"N. Of course, the most obvious such function
is a linear combination of the criteria

W(g)=cig) +caga+ ...+ CNEN

and the concept actually evolved from this view to the acceptance of a general function of
the criteria as conceived by Bergson in 1948 (Ref. 13). In this context, it is easy to show
the following result.

Lemma (Ref. 14). Suppose W(-) is a compromise (welfare) function which is
monotonically increasing in each of its arguments. Then d* € D such that

W(g(d*)) = max{Wog(d): d € D}
is an EP-optimal decision.

The inception of linear and nonlinear programming that followed then made possible the
routine calculation of maxima and minima as well as EP-optima when the problem
included inequality constraints. George Dantzig introduced linear programming and the
simplex method in 1948 (Ref. 15) and the process was quite likely used by Koopmans
(Ref. 16) in his linear production theory model where he introduced the term efficiency to
characterize the EP-optimal solutions in 1951. Indeed, both worked together at the Cowles
Commission. The general theory of nonlinear programming with inequality constraints
was first dealt with by Karush in 1939 (Ref. 17), followed by a paper by F. John in 1948,
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appropriately titled “Extremum Problems with Inequalities as Subsidiary Conditions” (Ref.
18) and eventually culminated in the well-known paper by Kuhn and Tucker in 1951 (Ref.
19). The last paper also included a section on the vector maximum problem, along with a
statement of necessary conditions for EP-optimality. For further reading on the history of
multicriteria optimization, see also Refs. 20,21, and 22.

4, EVOLUTION OF AN OPTIMIZATION PROBLEM

Practical optimization in an economic context has been around as long as mankind ranging
from cooperative behavior where all goods and property were communal, to gaining an
advantage in trade, to the amassing of great wealth by stealth or force. A knowledge of
geometry was probably first put to practical use in the building of structures in Egypt
many centuries before the rise of mathematics in Greece. According to Ref. 2: “It is likely
that the first major advance that the Greeks made was to consider mathematical concepts
(such as numbers and geometric figures) to be abstractions, creations of the human mind,
and not part of the real world”. It is this abstraction that allowed them to extend their work
beyond practical use and to ask questions whose answers might not be immediately
applicable to some physical problem or process. We now briefly trace the evolution of one
such optimization problem that began with an application, then went to abstraction, and
whose generalization now is a widely applicable research topic.

The story begins with the previously mentioned work of Heron concerning the reflection of
light-rays in one or more mirrors. Dealing with problems on triangles was a natural
extension of these investigations.

(1) Given two sides a and b of a triangle to determine the maximum area. The answer is a
right triangle whose two legs are a and b.

(2) Given the area a and one side c of a triangle to determine the triangle for which the
sum of the remaining sides is the smallest. Since A = Yich, his given. For a given b,
a + b is smallest when the triangle is isosceles.

(3) Given one side ¢ and the sum a + b of the other two sides to find among all such
triangles the one with the largest area. This is the converse statement of the previous
problem. The isosceles triangle has the largest area.

These problems and their solutions seem to have been known to the Greeks.

(4) Fermat’s Triangle Problem. Three cities A,B,C are to be connected by a system of
roads. To find the system of least possible length . The problem was posed by Fermat
in 1646 and was solved by Evangelista Toricelli, Galileo’s student, in 1646. The
problem was resurrected by Jacob Steiner (1796 — 1863) a professor at the University
of Berlin. This is no longer a simple triangle problem. We now are to find a point P
(Fermat point) such that the total length of the paths joining P with the vertices is a
minimum. For an acute triangle, the point is located in the interior of the triangle in
such a way that the lines connecting P with the vertices radiate at 120° intervals
(Figure 8(a)). For an obtuse triangle, the shortest network is one that connects the
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vertex with the obtuse angle to the other two points (Figure 8(b)). According to Kuhn
Ref. 23), the proof of this exceptional case was given by F. Heinen in 1834.

Figure 8. Fermat’s Problem

(5) Schwarz’s Triangle Problem. Hermann Amadeus Schwarz (1843 — 1921) was a
Professor of Mathematics first at Goettingen and subsequently in Berlin. Given an
acute triangle, find an inscribed triangle with smallest possible perimeter. The answer
is the altitude triangle. That is, a triangle whose vertices are at the base points of the
altitudes (Figure 9).

Figure 9. Schwarz’s altitude triangle

We note that at each of these vertices, the adjacent angles are equal and conclude that
a light ray would follow the perimeter of this triangle. For this reason, the altitude
triangle is also called a light triangle. It is the only light triangle with three sides.
There do exist other inscribed closed light paths that are not minimal.

(6) Generalized Fermat Problem. Find a point P in the plane the sum of whose
distances from n given points is a minimum. This generalization was proposed by
Simpson in his book Doctrine and Application of Fluxions (London, 1750) who also
contributed to the solution of Fermat’s Problem.

(7) Jarnik and Késsler’s Problem (Ref. 24). They proposed the following extension of
the road network problem: Find the shortest network which interconnects n points in
the plane. This problem is currently a very active rescarch area (see Ref. 25, for
example) with applications in electrical, civil and mechanical engineering (Figure 10).

At this point, one might ask what the previous string of problems has to do with
multicriteria optimization. Generalizations of any given problem are not always as obvious
as they seem after the generalization has been voiced. It took more than 2000 years from
Heron”s problem to the generalization of Jarnik and Késsler and it took almost the same
amount of time to go from the contemplation of a single criterion to the simultaneous
consideration of several criteria.
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Figure 10. Current applications of the network problem. (a) Routing plan for the ZORA chip.
(b) Fermat-Steiner truss. (c) Fermat tree connecting 49 cities in the US.

5. THE MULTICRITERIA VEIN IN MECHANICS

The first engineering application of the subject was published by Stadler (Ref. 26) and the
method has since been applied to a wide variety of engineering problems ranging from
axially symmetric extrusion, to the design of automatic braking systems to the design of
the dish for a radio telescope. These and more may be found in a number of monographs
(Refs. 14,27,and 28). The possible applications are limited only by the imagination,
particularly so, since most problems in engineering require a trade-off between conflicting
criteria.

Rather than dealing with a specific application, we shall take a multicriteria view of two
classical principles, whose original formulation already involves two criteria, the potential
energy and the kinetic energy. The investigation is an outgrowth of the author’s concept of
Natural Structural Shapes (Ref. 29), an application of multicriteria optimization to optimal
structural design based on the simultaneous minimization of the mass and the strain energy
of the loaded structure. The result was the following connection between Hamilton’s
principle and Rayleigh’s principle which be now briefly describe (see also Ref. 30).
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Suppose we consider a conservative elastic system with instantaneous kinetic energy T(r;d)
and potential energy V(#;d), d € D, being a design variable. Introduce the criteria
(" "
gid)=| V(sd)dr and gx(d)= | T(1;d) dr
to to
with the basic intent of minimizing g,(d) and maximizing g»(d) subject to d €D and with
V(t;d) + T(2;d) = constant.

It can be shown that the ratio R(d) = g;(d)/gx(d) is a minimum if and only if g;(d) is a
minimum and g»(d) is a maximum or equivalently, if and only if

Go(d) = g1(d) — ()

is a minimum. Thus, the modified Rayleigh Quotient is a minimum if and only if the usual
Hamiltonian is a minimum.

With these results in mind, we now formulate the extremal conditions for the
corresponding multicriteria principle. The corresponding multicriteria extremum principle
is based on the necessary conditions for EP-optimality. These may be obtained from those
for single criterion problems by replacing the single criterion with the linear combination
of criteria,

G(d) = c;g1(d) — c2g2(d)

with the ultimate result that the ratio c,/c; multiplies the frequency or, equivalently, that the
frequency parametrizes the set of EP-optima. Thus, the multicriteria principle is a
generalization of the original principle admitting a family of possible motions.

6. CONCLUSION

We close our presentation with some comments on the teaching of optimization. From the
preceding, it is evident that optimization is a vast and vibrant field whose results pervade
all of engineering and the sciences ranging from minimum principles in mechanics to the
optimal packing of cells in a honeycomb. Thus, optimization courses should be core
courses in a general curriculum and they should be central to curricula in Engineering
Science and Mechanics.

Optimization has occupied some of the greatest minds from Galileo to Huygens to Euler to
Lagrange to Rayleigh and Hamilton. Yet the power of optimization methods is barely
realized, is rarely taught at an undergraduate level and is considered to be a difficult topic
at the graduate level. This is a fallacy. Design optimization should be taught at every level
of instruction. If the subject is to be widely used, it is imperative that it be taught at the
undergraduate level. Indeed, the subject lends itself nicely to a structured approach since
its methods range from finite mathematics to the calculus of variations and optimal control.
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The level of the presentation thus could be adjusted to the students’ concurrent learning
experience.

The author has taught a senior course to students with the usual background in physics and
calculus and with courses in dynamics, circuits, strength of materials and systems analysis.
As their final examination, they were asked to criticize and review randomly selected
articles on optimization in their respective areas of interest or specialization. Two of the
students found errors in the papers they reviewed, one of them so much so that the results
of the paper were all but meaningless. All of them found the subject to be stimulating and
challenging, but manageable.
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ABSTRACT

Basic characteristics of vibration of flexible structures where the structure itself or fluid moving along
it are considered. The motivation of the research of such systems, called axially moving materials, is
discussed and brief historical notes are given indicating success and shortcomings of the work done.
Many complex engineering applications involve as a part axially moving materials, e.g. fiber winding,
paper sheet in a paper mill, magnetic tapes, band saw blades and pipes transporting fluids. A prototype
model, axially moving string or narrow band, is chosen in order to be able to illustrate analytically the
peculiar features, e.g. transport velocity dependent natural frequencies, and the existence of a critical
speed at which instability occurs.

INTRODUCTION

The problem area of axially moving materials involves flexible structures where the structure
itself or fluid moving along it has prescribed translational motion and that can vibrate about
the state of steady translation. Typical engineering applications are paper sheets in paper
machines, band saw blades, magnetic tapes, power transmission belts and chains, fluid
conveying pipes and aerial cable tramways. The stimulus of the present author has been the
first mentioned application. The engineering applications include many kind of complexities
like contact with surrounding structure and interaction with surrounding fluid which make the
formulation of the problem difficult and the solution even more difficult. Therefore the
fundamental research has considered mainly isolated prototype structures like travelling
strings, narrow bands, beams, plates, fluid conveying pipes and shells.

A detailed historical review is not possible nor necessary here. The work done within the field
of fluid conveying pipes until 1991 has been reviewed by Paidoussis and Li[1] and and within
the field of travelling strings and beams until 1987 by Wickert and Mote [2]. The first
mentioned contains over 200 references and the last mentioned over 100 references (sic!).

The research of the latter topic was at the beginning curiosity driven. Skutsch, who derived
more than hundred years ago the first correct equation for the natural frequencies of an axially
moving string, wrote at the beginning of his article [3] “Das hier vorliegende Problem, welches
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neben theoretischem Intresse vielleich auch die Moglickeit einer technischen Anwendung
bietet, ... ”. However, already at he end of fifties there appeared practical reasons to study the
dynamical behaviour of an axially moving tape in Bell Telephone Laboratories [4]. The
interest into this, perhaps simplest, problem has remained until these days [5] even in the linear
case. Many fundamental issues, like the kinematics of large deflections, have been clarified
not until recently [6]. Depending on simplifications made, the solution methods have been
between exact closed form solutions [7] and FEM approximations [8], [9].

On the other hand, the early research on vibrations of fluid conveying pipes was linked to
practical applications. The first attempt [10] associated with the vibration problems of Trans-
Arabian oil pipeline omitted, however, the transverse force due to curvature of the pipe and
only half of the Coriolis effect was taken into account. Next approach [11] led to the correct
equation of motion, but shortcomings in the boundary conditions due to inappropriate use of
Hamilton’s principle. The probably first author giving correct formulation and solutions for
the problem was Niordson [12]. Also here the interest has remained until recent days [13].

The purpose of the present paper is to clarify as simply as possible some basic, and slightly
peculiar characteristics of axially moving materials including transport velocity dependent
natural frequencies, eigenmodes with spatially distributed phase, and the existence ofa critical
velocity at which divergence or flutter instability occur.

AXIALLY MOVING STRING
Equation of motion and its solution

Consider a uniform, flexible, string or narrow band of mass per unit length m, tension P
translating along x-axis with constant speed v in vacuum for simplicity. The transverse
displacement of the material point located instantaneously at point x is denoted by w(x, ¢), i.e.
w(x, t) describes the configuration of the string as a function of time. The transverse velocity
of the material point located instantaneously at x is

dw _dw ow

L L 1
dt at+vax %

where the first term is due to the change of the configuration at point x and the second due to
the axial velocity and nonzero slope.

Here, small displacements are assumed. Kinematics of axially moving strings with large
displacements has been recently considered by Koivurova&Salonen, [6].

The operator of the material time derivative is according to equation (1)

d0_o0 a0

= Rt 2
o % @
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By applying it to the velocity (1) we obtain the acceleration of the material point

d*w a2w+2 ) *w e 9’w )
dr* ot oxot ox®
Thus, the equation of motion reads
maz—w+2mvazw +mv282_w_ a—ZW——O )
ot oxat ox? ox*

if there are no transverse forces present.

From equation (4) we immediately see that the net restoring force vanishes when v=(P/m -
, i.e. this is the critical velocity causing divergence type instability.

The last term in equation (4) is the restoring force due to the tension of the string and the first
one is the transverse “inertia force” due to the change of w at point x which, however, is
occupied by different material points at different time instants, therefore the citation marks.
The third term is the “centrifugal force” due to the curvature of the string. The second term is
due to the Coriolis effect, because the material elements moving with constant velocity v along
the configuration are turning with an angular velocity J& (/). Only the two first
mentioned terms are present in the equation of motion of a stationary string. The two last
mentioned depend on axial velocity and are the salient feature of axially moving material
systems. They are also guilty for the peculiar features of the dynamic behaviour of such

systems.

Except the Coriolis term the terms are in phase or in opposite phase with w. The Coriolis term
is in phase with the angular velocity and thus lags w by 90°. If we assume harmonic variation
of w with respect to time and x, all terms except the Coriolis term will equal to zero at the
straight equilibrium position. The Coriolis term will be at its maximum at that time. Hence,
the system can not have classical eigenfrequencies and eigenmodes where all points move
harmonically in phase passing the equilibrium position at the same time.

This can be seen also by considering the possible solutions for the case where both ends are
supported. If the wave propagation velocity of a stationary string is denoted by a, a’=P/m, the
disturbances in an axially moving string propagate with velocity (a+v) into the upstream
direction and with velocity (a-v) into the downstream direction. It can be shown by simple

substitution that
w=g (x—(a+v)t)+g,(x+(a—v)) (5)

is a solution of equation (4), g, and g,being arbitrary functional relationships of the parameters
x-(a+v)t and x+(a-v)t. The fundamental frequency for an axially moving string supported at
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both ends, distance L apart from each other can be deduced as follows. A disturbance caused
at the left end propagates with velocity (a+v) towards the right end and arrives to the right end
at time L/(a+v). The disturbance reflects there, propagates towards the left end with velocity
(a-v) and arrives back there at time L/(a+v)+L/(a-v). Thus, the string is after immediate
reflection again in the same state after a period

L L 24l

T = + = ©
a+v a-v a*-V? :
which means that the fundamental frequency is
2
a v
_a Y ©
S50

'This result was obtained by Skutsch already 1897 [3]. The natural vibration of a stationary
string can be regarded as standing waves produced by travelling waves of equal velocity,
wavelength and amplitude, but proceeding in opposite directions. Now, however the upstream
and downstream velocities are different. Thus, there are no eigenmodes in classical sense.

Equation (7) reveals the peculiar feature of axially moving material systems that the natural
frequencies depend on velocity and are the smaller the higher is the axial velocity. In this case,
when the axial velocity v equals a, f vanishes and the system becomes unstable by divergence.

Equation (4) can be rewritten as

azw+2 v o'w +v? azw—a2 azw= 0 (8)
or? Jxot ox? ox?

If a separable solution
w(x,t) =W (x)e” ®
is assumed and substituted for w in equation (8) we obtain an ordinary differential equation

a'w _

—7 =0 (10)

-*W + 2ia)v£1—ni —(a*-v?)
dx

By using the traditional approach, i.e. by assuming

W =e" (11)
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we are led to the characteristic equation
-@* +2iwvk —(a* - v)k* =0 (12)
the roots of which are

iw iw

k, = , ky=- (13)
a-—-v atv
Thus, the solution of equation (10) is of the form
_lwx o
W(x)= Ae °** + Be®™ (14)

where 4 and B depend on boundary conditions. Because #(0)=0, B=-4 and because W(L)=0,
we must satisfy condition

iol iwL

e a+v_e:;=0 (15)
which in turn requires that

L
w5 (16)

a—y atv

Thus, the natural angular frequencies are

_nrza

2

Vv
e (loms—s 17
@, =" (1=75) a7

With n=1 we obtain the same fundamental frequency as given already by equation (7).

The general solution of equation (8) is

m”(a—v)x 'nlt(—aﬂ i"—’m-(l—v—)l

w(x,t)=2(A,,e_ a —4e L e’ (18)
n=1

where the complex coefficients 4, are determined by the initial conditions. Details of
derivation of the solution for arbitrary initial conditions was presented as late as 1990 by
Wickert and Mote [7]. The form of equation (18) clearly shows that there is a nonzero phase
difference between w at different points whenever v is not equal to zero. This is illustrated for
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the fundamental frequency during a half cycle in Figure 1.

a)

b)

Figure 1. Shape of the string vibrating at its fundamental frequency a) v/a=1/4 b) via=3/4. The
numbers indicate the fraction of the period, /7.

When both ends are supported there are no peculiarities with the boundary conditions.
However, when either of the ends is free or forced to vibrate we are led to different conditions
depending on the assumption how the string arrives to the domain and leaves the domain. If
the string is forced to vibrate by using transverse force F at the right end and the left end is

supported, the boundary condition
F=P—-mv——-mv — (19)

applies at the right end if the string leaves the domain horizontally and
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F=p¥ (20)
ox

if it leaves tangentially the domain. The two last terms in equation (19) are due to the change
of the direction of the momentum flux. Equation (19) has been used by Le-Ngoc and
McCallion [5] in deriving the dynamic stiffness matrix for an axially moving string. However,
when the extended Hamilton’s principle is used for the derivation of the equation of motion
and boundary conditions we arrive to natural boundary condition at right end corresponding

to equation (20) with F=0.

For an axially moving string with boundary conditions

0,t)=0, P
w(0,1) ™

it is more instructing to assume that
w(x,t)=W(x)e" (22)

leading to solution of the form

A A
W(x)=Ae * + Be™ 23)

Application of boundary conditions reveals that the eigenvalues are now complex, A=c+iw,
the real parts of which are

2
a 12 1+v/a
o=——-(1-—)Inj|——— 24
2L( a2) 1-v/a @9
and the imaginary ones are the natural angular frequencies
(2n—1Dra v
w =" (l-— 25
A 51 ( pe ) (25)

Thus, with any initial conditions the motion is decaying when 0<v<a, because the real parts
of the eigenvalues are negative. Note that the damping factor (24) is independent of mode

number n.

If we use boundary conditions (19) purely imaginary eigenvalues are obtained, the imaginary
parts being the ones given by equation (25).
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Forced vibrations

If a harmonically varying transverse force
F(t)= Fe™ (26)

is assumed to the right end we obtain (by repetition of the steps from equation (9) to (14) but
now Q replacing w) a solution of the type

w(x,t) =W (x)e™ 27
where

e
W(x)= A(e ™ —ea) (28)

Depending whether (19) or (20) is used the equation for determination of 4 is

dw (L)
F,=P 29
0 e (29
or
F, = Pw—mviQW(L)-—mvzde’(CL2 (30)
respectively.

The resulting equations for transfer function Y(x, 2)=W(x)/F, become quite lengthy but can be
dealt with easily by symbolic mathematical software like Derive [14].

The absolute value of the dimensionless transfer function PW(L)/F,L is shown in figure 2.
We can see the peculiar feature that the absolute value of the frequency response function
remains finite at natural frequencies when the natural choice of tangential exit, equation (20),
is used in spite of the fact that we do not have damping present. The choice (19) leads to a
dimensionless transfer function which does not equal to 1 at Q=0. The reason is the third term
in equation (30).
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Horizontal

Tangential

Qw,

Figure 2. The absolute value of the dimensionless transfer function as function of the dimensionless
angular frequency, va=1/4.

INFLUENCE OF SURROUNDING FLUID
Axially moving narrow band vibrating in air

The first comparisons of result (17) with experimental results obtained in a pilot paper mill
[15] showed considerable differences (over 400%) as expected even with zero axial velocity.
However, when the added mass effect of the surrounding fluid was taken into account in a
traditional manner, the results agreed quite well. If ideal fluid assumption is made, the present
case does not differ from the vibrations of stationary band, because of the slip between the
band and the air in longitudinal direction. Thus, the added mass would appear just in the first

term.

In practice the flow is viscous, and there is a thin boundary layer above and below the band
where the velocity components of the flow in x and y directions should equal to v and

MW/&+v /& on the surface of the band, respectively. Far from the band the velocities should
approach zero. Thus, one possibility could be to include the effect of surrounding fluid to
second and third terms in equation (4) based on the displacement thickness and momentum
thickness of the boundary layer, respectively. The present purpose is to deal with the
characteristic features of the problem by using as simple as possible models amenable to
analytical solution and that is why we deliberately assume these thichknesses equal to zero.
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Thus, the equation of motion is based on the ideal fluid assumption and reads

o*w o’w ’w _o'w
+m,)—+2 ?——-P—=0 31
(mtm, ) +2my s Sty 57 o &0

By proceeding in a similar way as with the string (vide, equations (9)...(16)) we arrive at the
equation for natural angular frequencies

nra(1-v*/a*)

= (32)
LJ1+7r—m?/d

where r=m /m. The result agrees with the one obtained in [16] in a slightly different way. The
first natural frequency as a function of velocity is shown in figure 3 together with experimental
results from [16]. The non dimensional frequency and velocity are defined as follows

m m
V=v|— .F=2fL.|— 33
v,fP : fl,fp (33)

1
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o O . \
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0 0.2 04 06 08 1

\

Figure 3. First natural frequency as a function of velocity. Mass per unit area 35.5g/m?, length 2.4m
and width 0.47m. Experimental results [15] are denoted by squares.

As can be seen from the figure the surrounding fluid plays an important role.
CONCLUSIONS

Peculiar characteristics of axially moving materials are clarified by using an axially moving
string or narrow band as an idealized prototype structure. The system has velocity dependent
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natural frequencies and the corresponding modes of vibration have spatially varying phase.
The system loses its stability by divergence at the critical velocity. The transfer functions may
remain finite at natural frequencies even in undamped cases depending on boundary conditions
applied. When the axially moving narrow band is light, the surrounding air has a considerable

effect on the eigenfrequencies.
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ABSTRACT

A method for computing Pareto optima for composite laminates subjected to multiple loading
conditions is introduced. Laminate failure margins with respect to the applied loading conditions
are treated as criteria. The original problem is reduced to a bicriterion problem and solved through
an interactive iterative procedure. Improvement of the criterion values through the iterative
procedure, the iteration history in the reduced criterion space, convergence of the procedure with
respect to the used metric, and maximal points in the reduced criterion space corresponding to the
Pareto optimal laminate lay-up configurations are illustrated with an example and discussed.

1. INTRODUCTION

Structures composed of fiber-reinforced composites are typically laminated composite
plates and shells subjected to external mechanical loads, and internal loads caused by the
changes in the operating temperature and moisture content. Laminated composites are
frequently analyzed and designed by using the so-called point analysis methods, that is, the
laminate lay-up configuration is analyzed and optimized for the loading applied at a given
point. When the loading varies with the point position, the designer needs to consider
laminate designs that maximize laminate strength under several different loading
conditions. Furthermore, different loading conditions usually occur at different times under
in-service conditions, which calls for an optimization formulation that is capable of taking
into account the various loading conditions. A natural formulation for a problem with
several competing criteria is the multicriterion (multiobjective, vector) optimization
formulation, where the conflicting design objectives are introduced in a vector objective
function and so-called Pareto optima (efficient solutions, vector optima) are sought. In the

t On leave of absence from Helsinki University of Technology. Correspondence should be addressed to
petri.kere@hut.fi.
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present work, the objective is to find such symmetric and balanced laminate lay-up
configurations with constant ply properties and given initial allowable angles for layer
orientations that the laminate failure margins with respect to the applied loading conditions
are maximized with minimum feasible number of layers. Thus, we consider a
multicriterion optimization problem where laminate failure margins with respect to the
applied loading conditions are treated as criteria.

We describe an interactive iterative procedure, where some parameters are introduced to
reduce the number of the criteria. The decision-maker can interact in the computation by
setting the parameters on the basis of his preferences and the past computations. The
procedure is defined through a point-to-set mapping, where at each cycle a new set of
discrete design points, ie., laminate lay-up configurations, and their mapping to the
criterion space are generated from one design point. At each cycle, the generated sets
depend on the choice of the a priori selected parameters. The decision-maker can thus
control the evolution of the sequence generated by the optimization procedure toward a
desired objective.

A reduced problem with two strongly conflicting criteria is first formulated. One criterion
is chosen for the single criterion and others are combined linearly for the new bicriterion
problem formulation. The Pareto optimal stacking sequence corresponding to the user
defined parameters, i.e., initial allowable angles for layer orientations and weighting
factors for the combined criteria, is determined through the iterative procedure. Next,
laminate lay-up configurations based on the best-compromise stacking sequence with
variation of the +@ layers are generated and maximal solutions corresponding to the
Pareto optimal laminates determined with the constraint method.

2. STATEMENT OF THE PROBLEM

In this paper, a composite laminate design problem is considered as follows. Let constant
ply properties be given. The objective is to find a symmetric and balanced laminate lay-up
configuration with the minimum feasible total number of layers N such that laminate
failure margins measured in terms of laminate initial failure (First Ply Failure) Reserve
Factors RF;eR, RF>0 due to i=1, 2,..., m loading conditions are maximized. The laminate
thickness can only be multiples of the layer thickness.

Formally, we consider a multicriterion optimization problem in discrete form

max f(x), (M

where the components f, : Q - R,i=1,2,...,m of the objective function are called criteria

and they represent the design objectives by which the performance of the laminate is
measured.

In the present work, we treat laminate initial failure reserve factors with respect to the
different loading conditions as criteria and define the vector objective function as
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S (x)={RF\(x), RFy(x),..., RF,, (x)}. )]

We employ the laminate initial failure analysis based on the laminate load response
computed with the Classical Lamination Theory [4], and the constant and variable load
approach [5], [6]. We solve laminate initial failure reserve factors by using a derivative-
free line search method [7]. Since the failure criterion internal formulation has no influence
on the solution procedure, the method is suitable to be used also with complicated failure
criterion formulations.

Alternative laminate lay-up configurations are represented by zero-one design variables
(x,, =1 if the allowable angle ©(s)=(0,90,+6,-6), s=1,2,3,4 occurs andx, =0 if the
allowable angle does not occur to the kth layer)

x={X, | X fE{O,l},Z:x,Cs =1,Z(x,(3 —X%,,)=0,k=12,...,N/2,5=1,2,3,4} (3)
s k

that belong to the feasible set defined as
Q={x|g,(x)=1- RF,(x)<O,RF, € R,i=12,...,m}. @)
The image of the feasible set in the criterion space, i.e., the attainable set, is defined by

A={zeR"|z=f(x),xeQ} &)

Usually, there exists no unique solution which would maximize all m criteria
simultaneously. For the definition of optimal solution of a multicriterion optimization
problem we apply the optimality criterion introduced by Pareto 11, 121, [3]

3. THE REDUCED PROBLEM FORMULATION

Since the set of Pareto optima may be large, it is beneficial to formulate the multicriterion
problem computationally as economically as possible. Instead of computing all Pareto
optima, it is usually sufficient to determine only a relevant subset of Pareto optima. The
more appropriately the subset of Pareto optima is determined, the easier it is for the
decision-maker to deal with the results. For that reason, a reduced problem, where
parameters are introduced to combine linearly some criteria, is introduced. The decision-
maker can interact in computation by setting the parameters on the basis of his preferences
and the information available on the past computations. The reduced problem is solved
such that in nonconvex cases none of the Pareto optima are missed.

The objective is to formulate a bicriterion problem with strongly conflicting criteria.
However, it might be difficult to give a priori knowledge on the relative importance of
different criteria. The judgement can be made on the basis of the approximated criterion
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sensitivities for varying the laminate lay-up configuration. For analyzing criterion
sensitivities we apply the pay-off table introduced by Benayoun ef al. [8].

An initial set of design points, i.e., symmetric and balanced laminate lay-up configurations
with permutations on the allowable angles ® for layer orientations is first generated.
Failure margins to the given loading conditions are determined and results gathered into
the pay-off table (Table 1). In the pay-off table, the first row corresponds to the vector
maximizing the first criterion, the second row maximizing the second criterion, et cetera.
Thus, the in general infeasible ideal point f maximizing all criteria simultaneously is on
the diagonal of the pay-off table. The minimum value in each column of the pay-off table
is the nadir point denoted by n,.

Table 1. Pay-off table for m criteria.

Silx) Sox) - Sml(x)
x! RFy(x") RF(x") RFE(x"
x*> | RF\(x?) RFy(x?) RF,(x%)
| mRem | R | | REae

If the criterion value does not vary much from the best value for varying the laminate lay-
up configuration, the corresponding criterion will not be sensitive to a variation in the
parameter values that will be assigned to the criteria. To find the least sensitive criterion,
normalization coefficients

>

n; P
U, =——,where n, ===—,i=12,....m (©6)
>, /

are determined. A well-behaved formulation can usually be obtained by choosing the
criterion producing minimum g, for the single criterion. Other criteria are combined

linearly by introducing parameters called weighting factors. A new problem with a reduced
vector objective function is defined as

max{(f, (), /,()}. )

Si(x)=RF,(x),i=1,2,...,m,

f,(0)=> ARF,(x),4,>0,3 4 =Li=12,...m-1, (8)

where the weighting factors 4; €[0, 1] are arbitrarily chosen by the decision-maker.
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Before grouping the criteria, the decision-maker should also compare the lay-up
configurations of the ideal point and ensure that the most conflicting criteria will not be
combined linearly. In some cases, the normalization coefficients of the most conflicting
criteria are equal and combining these criteria would lead to a badly behaved problem
formulation.

4. DETERMINING PARETO OPTIMAL SOLUTIONS

We are interested in finding Pareto optimal solutions through an iterative discrete
procedure defined by a sequence {x},j=12,...,n. The state of a sequence x\
corresponds to the selected design point, i.e., laminate lay-up configuration, at that cycle.
The aim is to find a procedure converging toward a Pareto optimum, i.e., x*” — x".

Let a positive orthant of the criterion space be defined by the convex cone
Z' ={f(x)eR"| f;(x)>0,i=12,...,m} )

with nonempty interior. In order to find a monotone path from an initial infeasible state to
a Pareto optimal one, we seek the next state of the sequence through a point-to-set mapping

x(j) [BEY ¢(x(f))

(x(” ,0,0), (x”) ,0,90), (x(” ,90,0), (xm ,90,90),
XU € p(x) =1(0,0,x),(0,90,x),(90,0,x),(90,90,x*"), (10)
(x(j) .+ 05 il 0)5 (x(j) s 05 + 0), (+05 - 05 x(j))’(_a, + 0’ x(j))

where the layer orientations of the additional layers are for clarity denoted in deg. The
generated set of design points is mapped into the reduced criterion space

p(x ") f(p(x?),A4)e Z} and the ideal point

FO ={ max f,(x), max f,(x)} (1n

xep(x1) cp(x1)

is determined. The nearest point x € @(x"”) minimizing the distance to the ideal point in
the sense of Tchebycheff norm [11] (minimax approach) as

min || /Y - f(0)(|= min_max{f? - £,(0), f - £,(x)} (12)

xep(x)) xep(xt)

is sought as the next state of the sequence x“*V € @(x'”), such that in the reduced
criterion space the condition

F@IY - f(x)e 2 (13)



48

is satisfied. We thus require the monotone improvement of the criteria as the procedure
goes on [9], [10]. The design point x"/*" is selected by the procedure and depends on the
choise of the weighting factors of the combined criteria.

We study the convergence of the procedure with respect to the metric

d(y. xP) =] f(y) = f ) 1= max { £,07) = £,z (14)

where yeQ and f;(y) =1, and

Dy = £, 0< £,(x)<1
Li(x") { 1, £ (y>1. (15)

The termination condition is reached when the sequence {x"’} generated by the

optimization procedure has converged to the limit d(y, x*’) —0.

As the feasible lay-up configuration is reached through the iterative procedure, the number
of layers is tried to reduce, if possible, one layer at a time such that the feasible laminate
design is still maintained. Thus, for instance from a laminate having the sub-laminate
(0/90)2 with 4 layers, laminates including the blocks (90/0/90), (0/0/90), (0/90/90), and
(0/90/0) with 3 layers a block are generated. The (£8) blocks are kept constant since the
balanced laminate structure is required. Feasible laminate lay-up configurations are
mapped into the reduced criterion space and a solution corresponding to the closest point to
the ideal point is chosen for the best-compromise solution.

Finally, laminate lay-up configurations based on the best-compromise stacking sequence
with variation of the (£6) blocks are generated. Pareto optimal solutions are sought in the
set §e®’={0, 1, 2,..., 90} deg. Feasible laminate lay-up configurations are mapped into
the reduced criterion space and maximal points determined with the constraint method [1],
[2], [3].- The constraint method can generate the maximal points cotresponding to a
particular weighting factor also in nonconvex cases.

5. NUMERICAL EXAMPLE

To illustrate the optimization technique, we consider a laminate that is composed of layers
having the mechanical properties of AS4 Carbon/epoxy ply (+=0.25 mm, E,=126 GPa,
Ex=11 GPa, G1,=6.6 GPa, v1,=0.28, a,=—1 107%°C, 0726 107°/°C, X=1950 MPa,
X,=1480 MPa, S;,=79 MPa, Y=48 MPa, Y,=200 MPa) and subjected to three conflicting
loading conditions (Table 2).

The allowable angles for layer orientations are ®=(0,90,+6,—6) deg and the initial number
of layers is N/2=4. The temperature difference between the constant stress-free
temperature and the operating temperature is assumed to vary linearly through the
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thickness of a laminate. Factors of safety for constant and variable loads are FoS“=1.5 and
FoS*=1.5. Tsai-Hill failure criterion is used. Margin to failure is studied with respect to
the increase of the variable load. The laminate is assumed to have no free edges, i.e., there
are no interlaminar stresses which may cause failure.

Table 2. The three conflicting loading conditions subjected to the laminate.

LCI | LC2 [ LC3
Constant AT'=-100 °C, AT*=-80 °C
Variable | N, =2 MN/m N,=0 N, =-1.4 MN/m
N,=037TMN/m | N,=0 N, =—0.02 MN/m
N, =0 Ny=06MNm [N, =0
M.=-10Nm/m | M,=0 M, =0
M,=0 M,=0 M, =10 Nm/m
M, =0 M,, =10 Nm/m M, =0

An initial set of symmetric and balanced laminate lay-up configurations with N/2=4 and
permutations on the allowable angles ©= (0, 90, +23, —23) deg for layer orientations is first
generated. The number of stacking sequence permutations at this step is 70. On the basis of
the pay-off table, RF, producing the minimum normalization coefficient is chosen for the
single criterion and the problem with the reduced vector objective function is formulated as

max (RF, (x), A,RF, () + (1= A, )RF, (x))
Q={xlg,(x)=1-RF,(x)<O0,RF, € R,i=12,3}.

(16)

A solution to the design problem is found with A;=0.74 resuiting after 5 cycles to the
[+8/-0/(—8/+8)5/+8/—0 1SE stacking sequence with N=28 (Figure 1).

o
o07F oo

B
o6} f_af"
05| / 0 LCt

0O Le2
04F v LC3

N2

Figure 1. Improvement of the three criterion values as a function of the number of layers in a half
laminate, ©= (0, 90, +23, —23) deg and 1,=0.74.



Improvement of the criterion values is monotone as illustrated in Figure 1. The iteration
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history in the reduced criterion space is shown in Figure 2.
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1+
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‘ e L D j=4
o2ty qj=5
N
o ;
0 0.2 0.4 0.6 0.8 1
#(0)

Figure 2. The iteration history in the reduced criterion space, ©®=(0, 90, +23, —-23) deg and
A,=0.74. Points corresponding to the state of the sequence x? are marked with an asterix.

Figure 3 shows the convergence of the procedure with respect to the used metric (14).
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Figure 3. Convergence of the procedure with respect to the used metric.

Solution to the laminate design problem with different initial angles for layer orientations
and A,=0.74 is presented in Table 3.
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Table 3. Solution to the laminate design problem with different initial allowable angles for layer
orientations, A,=0.74.

© /deg Laminate stacking sequence N
(0,90, +22, -22) | [(=6/+6)6/+6/—8 ]SE 28
(0, 90, +23, -23) | [+8/-8/(—0/+6)5/+6/-0 )SE 28
(0, 90, +24, —24) | [(+6/-6)2/(—6/+6)4/+6/-01SE | 28
(0, 90, +25, —25) | [(+6/-0)2/(—6/+8)5]SE 28

The maximal points corresponding to the laminate stacking sequences in Table 3 are
shown in Figure 4.

116} Y E
1.15} 1
1.14f :
3
1.13f
N' 1.12f
1.1} - ]
11} 1
O [(-0/+0)6/+8/-0]SE
1.09F O [(+8/-6/(-0/+8)5/+8/-0]SE
Y [(+8/-8)2/(-8/+0)4/+6 /-0 ]SE %
1.08F A [(+0/-0)2/(-9/+8)5]SE

t 1.02 1.04 1.06 1.08 1.1 1.12

%

Figure 4. Maximal points corresponding to the laminate stacking sequences in Table 3. In each
case, values of 8 corresponding to the maximal points are 22, 23, 24, and 25 deg, A,=0.74.

In each case, the maximal points are reached with 0 e®'={22, 23, 24, 25} deg. Criterion
values and laminate failure margins with respect to the different loading conditions for the
Pareto optimal laminates corresponding to the [+6/-8/(—8/+8)5/+6/-0]SE stacking
sequence are given in Table 4.

Table 4. Pareto optimal laminates for the [+6/-6/(—6/+0)5/+68/-6]SE stacking sequence,
2.2=0.74.

O/deg |  fi¥) f) RF(x) RFy(x) RF;(x)
22 1.0375 1.1590 1.0375 1.1096 1.2997
23 1.0758 1.1353 1.0758 1.1153 1.1922
24 1.1008 1.1112 1.1008 1.1160 1.0975
25 1.1055 1.0860 1.1055 1.1114 1.0135
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CONCLUSIONS

Computing Pareto optima for composite laminates subjected to multiple loading conditions
is considered. Laminate failure margins are treated as criteria and determined with an
iterative line search method. The formulated bicriterion optimization scheme is solved
through an interactive iterative procedure. The internal formulation of the used failure
criterion has no effect on the solution procedure. The method is computationally efficient
and enables the designer to obtain results in any accuracy that is relevant.
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ANALYSIS AND OPTIMIZATION OF
PLASTIC CONICAL SHELLS

J. LELLEP and E. PUMAN
Institute of Applied Mathematics,
Tartu University, 51014 Tartu, ESTONIA

ABSTRACT

Optimization of conical shells made from ideal rigid plastic materials is studied. The designs
of minimum weight for given load carrying capacity and the designs of maximum load carrying
capacity for given weight are established for shells of piece wise constant thickness.

1. INTRODUCTION

Conical shells have many applications in engineering. Due to the need for methods of
analysis and design P. Hodge (1963) and his associates have studied limit analysis of
conical shells made of a material which obeys the Tresca yield condition and associated
flow law. Later R. H. Bryant, S. L. Lee and T. Mura (1969) established the safety factor
of full conical shells made of a von Mises material.

It is somewhat surprising that there exists only a few papers on optimal design of
plastic conical shells. J. Lellep and E. Puman (1994, 1999, 2000) developed methods
on optimal design of conical shells made of perfectly plastic materials obeying piece
wise linear yield conditions.

2. FORMULATION OF THE PROBLEM AND BASIC EQUATIONS

Let us consider a thin-walled conical shell subjected the uniformly distributed lateral
pressure of intensity P. Assume that the shell is simply supported or clamped at the
outer edge and absolutely free at the inner edge of radius a (Fig. 1).

The thickness of the shell wall is assumed to be piece wise constant, e.g.
h=h;, re€ (aj,aj+1), (1)

where j = 0,...,n and ap = @, any1 = R.

We are looking for the design of the shell which weight (material volume) attains the
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Figure 1: Conical shell subjected the uniformly distributed lateral pressure

minimum value for a given load carrying capacity. Evidently, the volume of the shell
material may be presented as

v

Vo= hj(al,, — a?)- (2)
=0

cos '

where ag, anq; and ¢ are considered as given constants.

In order to establish the minimum weight design of the shell one has to minimize (2)
so that the equilibrium equations, the associated flow law with geometrical relations
and plasticity conditions, are satisfied at each point of the shell.

Due to symmetry the stress state of the shell is defined by membrane forces N1, N,
and moments My, M,. Equilibrium equations of a shell element may be presented as
(Hodge, 1963)

d

I‘(?Nl) - N2 B 0,

d [d i P )
sin ¢ ro

dr [dr(er) B 1\42] N Nzcos’cp i cos?p i

The corresponding strain rate components are (Kuech et al., 1965)

v .1 oy
€1 = —— COs @, €2 = ~(U cos + Wsin )
dr T
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_ M, W , My, 1dW
KZ]:—FOE:Z—COS Y, K2=—FO';—‘FCOS w.
In (4) U and W stand for the displacement rates in the normal and circumferential
directions, respectively, whereas My = ooh?/4, Ny = ooh, oo being the yield stress of
the material.
In the case of a distributed loading it is reasonable to introduce the following nondi-

mensional quantities:

T a h; h
Qzﬁa ajzRv 7j=h_,., U=I‘
w=K u:g n12=Nl'2 mlg:@ (5)
R’ R’ ' N*’ i M-’
_ PR k_M*cosch
p_N.,singo’ " RN,sing’

In (5), M. and N, stand for the limit moment and limit load for the reference shell of
constant thickness h.. Thus M. = ooh?/4, N, = goh..
In variables (5) the equilibrium equations (3) take the form

(om) —nz =0,
kl(om1) — mgo] + ny 4+ po =0,

where the primes denote differentiation with respect to p.
Making use of (5) the strain rate components (4) may be presented as

1
€1 = u'cos ¢, €y = —(Ucosp + wsin ), (7)
14
k1 = —kot'sing, ko = ——'sin,
4
where W )
cos
RNysin

Boundary conditions for stress components are given below. Since the inner edge is

free one has
ni(a) =0, mi(a) =0, s(a)=0, (9)

where s stands for the nondimensional shear force. Evidently,
s = (my1p) — my. At the outer edge

in the case of a simply supported shell and

ma(1) = -1, (11)
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C2 D2 C1 D1

Figure 2: Generalized square yield condition
if the edge is clamped. In the both cases
w(l) =4(1) = 0. (12)

In the case of a conical shell loaded by the rigid central boss (see J. Lellep and E.
Puman, 2000) the equilibrium equations for a shell element have the form

d
%(Y‘Nl) - Ng = 0.,
(13)
d sin ¢ P
;(T‘Ml) - Mz —rh, cos? * 27 cosZp 0

3. SHELLS OF PIECE WISE CONSTANT THICKNESS
MADE OF A TRESCA MATERIAL

Let us consider conical shells subjected to uniformly distributed lateral loadings. As-
sume that the material of shells obeys the generalized square yield condition (Fig. 2)
and associated flow law. In this case the governing equations are presented by (6) -

(12).

It appears that the stress regime corresponds to the sides C1D; and A;B,; of squares
presented in Fig. 2.

Let v =, lor p € D;, where D; = (aj,aj4,) for g =0....,n. Thus

Ny =—7, (14)
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and

= (15)
for p€ D; (j =0,...,n).
Equation (14) and the first equation in the set (6) give
(om1) = —7;, Ja=all, . 5. affs (16)

Integrating (16) and satisfying (9) and the continuity condition of the quantity n; at
e=a; (j =1,...,n) leads to the relation

To (? = 1) ) 14 € (a0aal)a
= s i i j 17
o N O R O S

0 € (aj,541),

for p € Dj, j = 1,...,n. Inserting equations (14) and (15) in the second equation of
the set (6) one obtains

Fl(emi) = 7] = v; — pe, (18)

forpe Dj, 5=0,...,n
Integrating (18) leads to the bending moment distribution

1 i pe) 2

/ e 7

st . £ '} 1
for p € Dj; where D; = (aj,a;41), 7 =0,...,n
For determination of the constants of integration cy,...,c, one has the requirements
s(ap) = 0 and s(a;—) = s(a;+), s = 1,...,n, which give

P 2

o = 5 —Yao, (20)

J
¢ 5 — a0+ Y (-1 — %),

D 2
7% :
=1

for 7 =1,...,n. Subtituting equations (20) in (19) one obtains

1 v ’
m, + ~my = 2 + ; ( + g(ag —0) — Yoo + Za.’(‘y-‘-l - 7|'))7 (21)
4 =1
for p € D;, j =1,...,n. Integrating (21) once more
g P C
my = 7,] + ? (5 — a]) + 6—k (Ba - 9 Z’Yl(al'{*l k_g (22)

i=0
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and satisfying the boundary conditions mi(co) = 0 and continuity requirements im-
posed on the bending moment m; at ¢ = «; , we get the constants of integration

Co = —Ea+ 2ed — brfoo
3 2
P 3 d 1 2 2 2
i = 3%+t ; {5%' (af = afyy) + ki (aipr — @) } +
) (23)
+l7,»aj (o — 2kv;)

2

foryj=1,...,n.

Finally, one has to satisfy the boundary condition for bending moment at the outer
edge of the shell. Evidently, mi(1) = 0, in the case of a simply supported shell and
m1(1) = 72 in the case of a clamped shell. Making use of equations (22) and (23), we
can present the load carrying capacity p of the clamped shell of piece wise constant
thickness as

3
p = m(%ﬁ +75(2k7; + 1) + vio(; — 2 — 2ky;) +
(24)
J
+ 23 (loiss — ai)(kyi+ 1) = vilady, — o)) )
1=0
and the limit load for a simply supported shell as
= i 2k 2—2k

p = m(%‘( 7+ 1) +ve(ey — 2= 2ky;) +

(25)

2
+ 23 (loin — ) (b +1) = (e —ad)) ).
=0

i

4. SHELLS OF VON MISES MATERIAL

Assume that the material of shells obeys the yield condition presented in the form
nf —ning + ng +m2 —mim, + m2 =1 (26)

in the case of the shell of constant thickness. For determination of the load carrying
capacity of the shell we can use the lower bound theorem of limit analysis.
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According to this theorem (see P. Hodge, 1963) the limit load factor could be defined
as the maximal load factor corresponding to statically admissible stress fields, e.g. as
min(—p). In order to minimize the quantity —p(ao) so that equilibrium equations are
satisfied let us introduce the following augmented functional

1
5= —plot [ i (s 222 g (i 4
o e 0 20

0

(27)
F l\/1—Emz—n2—nz-}-nlnz-f-ﬂ——p—-(oz(";—gz) +
/) 41 i 2 k  2ko
+ 1/)3([)’ - O)}dga
where 1), 13 and 3 are the adjoint variables.
Minimization of the functional J, leads to the set of equations
[, _ ny N
nf=——+—-=
e 1%
\/1—§mf—nf—n§+n1ng
ml o= T 4 —E+L(a2—gz)'
) 20 0 k' 2kp° '
p=0;
UL B (g = 2m) + 224 (28)
g 2¢1—me—nf—n§+nlngg
3
"l’; = 1/)2 + ¢2 __ml) '
20 3 3 2 .2 2
2 1—Zm1—n1—n2+n1ngg
"/)2 2
¢3=—%(%— s

which is to be integrated by the use of boundary conditions

ni(ag) =0, mi(ao) =0, my(1) =0,
$1(1) =0, oa(a) =0, ¢s(l)=1. (29)

In the similar way one can solve the problem of optimization.
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ap P ay Yo 07} Vi V e

0,1 | 4,846 | 0,8733 | 0,8802 | 1,1661 | 0,9900 | 0,9393 | 0,9488
0,2 | 4,554 | 0,8571 | 0,8631 | 1,1513 | 0,9600 0,9051 | 0,9428
0,3 | 4,477 | 0,8495 | 0,8346 | 1,1401 | 0,9100 | 0,8489 | 0,9329
0,4 | 4,630 |0,8278 | 0,7917 | 1,1291 | 0,8400 | 0,7712 | 0,9181
0,5| 5,100 | 0,8235 | 0,7346 | 1,1147 | 0,7500 | 0,6733 0,8977
0,6 | 6,136 | 0,8351 | 0,6713 | 1,0949 | 0,6400 | 0,5579 | 0,8717
0,7 | 8472 |0,8635 | 0,6131 | 1,0712 | 0,5100 | 0,4293 | 0,8417
0,8 | 15,000 | 0,9038 | 0,5653 | 1,0459 | 0,3600 0,2915 | 0,8098
0,9 | 48,210 | 0,9505 | 0,5278 | 1,0213 | 0,1900 0,1479 | 0,7784

Table 1: Optimal values of parameters for a Tresca material (k = 0,2)

5. NUMERICAL RESULTS

The results of calculations are presented in Tables 1-2 and Fig. 3-4. Table 1 corresponds
to the shells with one step in the thickness made of a Tresca material whereas Table 2
is associated with a von Mises shell. In the last columns of Tables 1, 2 corresponding
values of coefficients of efficiency are accomodated. Table 1 corresponds to a minimum
weight problem where e = V/V., V and V. being volumes of the optimized shell and
the reference shell, respectively. In Table 2 ¢ = p/p. where p is the maximal load for
the stepped shell and p, stands for the limit load of the reference shell of constant
thickness. In Fig. 3 and 4 the bending moments m; and m, are depicted for shells of
von Mises material. The shell wall has a step at the point where m, changes rapidly
(Fig. 4).

6. CONCLUDING REMARKS

An optimization tehnique has been suggested for plastic conical shells subjected to the
uniformly distributed lateral loading. Calculations carried out showed that maximally
about 20% of the material can be saved when using the design of stepped shell with
one step in the thickness. Eventual material saving depends on geometrical parameters
of the shell and on the yield stress of the shell.
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Figure 3: Bending moment distribution for the shell of von Mises material (k = 0.9
o = 0.4)

g P o Yo ot ni(l) 1% e

0.4 | 2.0599 | 0.93099 | 1.05 | 0.73482 | -0.53345 | 0.84 | 1.0363
0.4 | 2.1579 | 0.87568 | 1.10 | 0.73978 | -0.55885 | 0.84 | 1.0857
0.4 | 2.2561 | 0.81598 | 1.15 | 0.77296 | -0.58426 | 0.84 | 1.1350
0.4 | 2.3542 | 0.75699 | 1.20 | 0.80652 | -0.60966 | 0.84 | 1.1844
0.5 | 1.8769 | 0.95485 | 1.05 | 0.62514 | -0.42827 | 0.75 | 1.0394
0.5 | 1.9663 | 0.92045 | 1.10 | 0.60907 | -0.44866 | 0.75 | 1.0889
0.5 | 2.0557 | 0.88714 | 1.15 | 0.62177 | -0.46905 | 0.75 | 1.1384
0.5 | 2.1451 | 0.85348 | 1.20 | 0.64767 | -0.48945 | 0.75 | 1.1879
0.6 | 1.7537 | 0.96695 | 1.05 | 0.55789 | -0.32312 | 0.64 | 1.0422
0.6 | 1.8372 | 0.94225 | 1.10 | 0.52937 | -0.33850 | 0.64 | 1.0918
0.6 | 1.9207 | 0.92354 | 1.15 | 0.49724 | -0.35389 | 0.64 | 1.1414
0.6 | 2.0053 | 0.90472 | 1.20 | 0.49468 | -0.36925 | 0.64 | 1.1917
0.7 | 1.7111 | 0.97634 | 1.05 | 0.50469 | -0.22139 | 0.51 | 1.0449
0.7 | 1.7926 | 0.96296 | 1.10 | 0.39854 | -0.23194 | 0.51 | 1.0947
0.7 [ 1.8741 | 0.94959 | 1.15 | 0.37230 | -0.24248 | 0.51 | 1.1445
0.7 | 1.9556 | 0.93489 | 1.20 | 0.39038 | -0.25302 | 0.51 | 1.1942
0.8 ] 1.8327 | 0.98455 [ 1.05 | 0.46312 | -0.12571 | 0.36 | 1.0476
0.8 11.9199 | 0.97682 | 1.10 | 0.31438 | -0.13169 | 0.36 | 1.0975
0.8 | 2.0073 | 0.96868 | 1.15 | 0.27417 | -0.13768 | 0.36 | 1.1471
0.8 | 2.0946 | 0.96090 | 1.20 | 0.26077 | -0.14367 | 0.36 | 1.1973

Table 2: The shell of von Mises material with one step in the thickness (k = 0.1)
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ON AUTOMATIC DERIVATIVES IN SENSITIVITY ANALYSIS FOR
SHAPE OPTIMIZATION PROBLEMS

R. A. E. MAKINEN
Department of Mathematical Information Technology
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FIN-40351 Jyviskyld, FINLAND

ABSTRACT

A hybrid approach for shape design sensitivity analysis for a class of shape optimization is
presented. Hand-coded derivatives and automatic derivatives are combined in such a way that
the adjoint equation technique can be utilized. This approach yields significant reduction in
the memory and time required to compute derivatives if compared to the approach where
automatic differentiation is applied to the whole code. Numerical example is given.

1. INTRODUCTION

We consider the following abstract shape optimization problem in discrete form

min ®(a) = f(a; q(a)) (1)
subject to a € U™ CR® (2)
R(a;q(a)) = 0. (3)

Here a is the vector of design parameters defining the shape Q(a) of the system. The
state g(a) of the system is obtained by solving the state equation (3).

Gradient free global optimization methods like Genetic Algorithms are becoming more
and more popular also in shape optimization [1], [2]. However, they cannot compete
with gradient based methods like Sequential Quadratic Programming in efficiency
when good initial guess is known and high accuracy is requested. Unfortunately, gra-
dient based methods require the computation of the partial derivatives of the cost
function with respect to design variables. Finite difference approximations for deriva-
tives are often unreliable and are obtained too slowly. Therefore, obtaining analytic
derivatives is an important step in the numerical optimization process.

By shape design sensitivity analysis we mean computing derivatives of the function ®
with respect to the geometrical parameter vector a defining the positions of nodal co-
ordinates of the finite element mesh. Hand-coding of shape design sensitivity analysis
has been considered extremely elaborate and difficult even for linear state problems.
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Despite this, hand-coded sensitivity analysis can be done with a reasonable amount of
work even in the case of quite complicated state problems [3], [4], [5]. However, fully
hand-coded derivatives require a lot of man-hours and therefore automatic derivatives
are now under active study [6], [7], [8].

2. ON AUTOMATIC DIFFERENTIATION OF COMPUTER PROGRAMS

Automatic differentiation (AD) is a technique for augmenting computer programs
with derivative computations [9]. It exploits the fact that every computer program
executes a sequence of elementary arithmetic operations. By applying the chain rule
of derivative calculus repeatedly to these operations, accurate derivatives of arbitrary
order can be computed automatically. Automatic differentiation has two basic modes
the “forward” and the “reverse” modes. The running time and storage requirements of
the forward mode are approximately proportional to the number of design variables.
The reverse mode which is closely related to adjoint methods has a lower operations
count for derivative computations, but potentially very large memory requirements.

Automatic differentiation can be implemented in two different ways: Existing analysis
code written in e.g. Fortran 77 is precompiled using a precompiler (like ADIFOR [10])
into a new code that includes derivative calculations, or operator overloading technique
available in e.g. Fortran 90 is used to produce sensitivity information. Modern pro-
gramming languages such as Fortran 90, C++ make it possible to redefine the meaning
of elementary operators. That is, we can define a new type for floating point numbers
that has gradient information associated with it. For each elementary operation and
standard function (+, *, sin(), dot_product(),...) we can define the meaning of the
operation for variables of that new data type. The advantages of operator overloading
is that it almost completely hides the AD tool from the user. If the implementation
of the AD tool is changed the source code needs no modification.

AD techniques can be applied to add gradient computations to codes in their entirety.
If forward mode is used, the computing time of one combined analysis and gradient
evaluation is approximately n times the computing time of sheer analysis, i.e. almost
the time needed for the forward difference approximation of the gradient. Moreover,
the amount of memory used is also multiplied by n. Significant reduction in the
memory and time required to compute derivatives is possible if some hand-coding is
coupled with AD techniques.

We proceed with the following hybrid approach. First, we implement the forward mode
of AD using operator overloading in Fortran 90. Secondly, we develop the geometric
sensitivity analysis with respect to positions of nodal coordinates in general matrix
form for a class of partial differential equations. As a by-product we also generate the
Jacobian of R(a;q), needed when (3) is solved using Newton’s method, using AD.
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3. HYBRID APPROACH TO SENSITIVITY ANALYSIS

Many physical phenomena in solid and fluid mechanics can be modeled using the (set
of) second order quasilinear partial differential equation(s) of type

V o(u)+g(u) =0 inQa) (4)

with suitable boundary conditions. For simplicity we assume that v = 0 on 0§} in
what follows. After the finite element discretization the discrete analogue of (4) reads

R(a;q) = K(a;9)q — g(a;q) =0, (5)
where K (a;q) and g(a; q) are the “stiffness” matrix and “force” vector, respectively.
Differentiating (5) with respect to a design variable a; implicitly gives

OR(a;q) , OR(a;q) 9q _
90, T oq oa " (6)

By introducing an adjoint state vector p we can eliminate the partial derivative of
g from (6) and obtain the formulae needed for the evaluation of the gradient of the
objective function ®(a):

(2Be9) = Vor(aa 7
0%(a) Of(a,q) 1 [OR
Bak - Gak 3 (8_%) ' (8)

In [11], the case with hand-coded Jacobian OR/0q and the right-hand side Vo f was
considered. The derivatives in (8) are more difficult due to the dependencies

a— X(a) - R(5q), f(;q) 9)

which imply that one must first differentiate the nodal coordinate matrix X (a) with
respect to design parameters. Hand-coding of this is error-prone and sometimes even
impossible. In this work all derivatives in equations (7), (8) are computed using
automatic differentiation.

We assume that every finite element has m degrees of freedom. The residual vector
R(a;q) € R is obtained using the standard assembly process

R(a;q) =S R'(a.q°), (10)

where

R(a;q¢°) = K°(a;q°)q° — g°(a; q°)
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and g°® € R™ is the vector of element degrees of freedom. Moreover, we assume that
the cost function is separable in the following sense:

flaig) = fela; g°). (11)

Now we can apply automatic differentiation to local contributions in (10), (11). Thus,
we have to differentiate only “small” matrices and vectors with respect to “small”
number of independent variables aj, ..., an, ¢5, ..., q5,. The global terms in (7), (8)
are then obtained using the standard assembly process which contains no automatic
differentiation.

In Table 1 a Fortran 90-style pseudo-code for calculating the value of the cost function
& and its gradient at a given point @ using the formulae

JTP = ha
0%(a) _ 9f(aiq) -pTs®, k=1, ..,n,
Oay dax

is shown. Here s(¥) = a%(;;q), J= "’Rgg“”, h =V,f(a;q).

We assume that there is m degrees of freedom per element. The Fortran 90-module AD
contains the code needed to implement the forward mode of automatic differentiation
using operator overloading. For a description of the technique (using C++), see [12].
A new data type DVAR containing derivative information is defined and the arithmetic
operations and standard functions are overloaded for this new data type. Also mixed
DVAR/REAL arithmetic is implemented. Moreover, module AD contains the functions
AD_indep_var, AD_value, and AD_pd. Let yO and y be n-vectors of type REAL and
DVAR, respectively. Then the call

y = AD_indep_var{ y0 )

declares y as an independent variable vector with initial value y0. The calls

f0 = AD_value( f )

df = AD_pd( f, i)

return the REAL values of £ and its partial derivative with respect to y(i).

4. NUMERICAL EXAMPLE

We test our approach with the following simple shape optimization problem with
nonlinear state problem:

min / |V (u — ug)|* dz
D
subject to @ € U
V- (p(w)Vu) =0 in Q(a)
u=1uy on [y

p(w)Vu-n=0 ondQa)\T
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SUBROUTINE objfun( n, a, Phi, dPhi )

USE _AD

INTEGER, INTENT(IN) :: n

REAL, INTENT(IN) :: a(n)

REAL, INTENT(OUT) : : Phi, dPhi(n)

!

REAL:: Q(M), dQ(M), R(M), J(M,M), p(M), h(M), q_e(m), h_e(m),
J_e(m,m), dRda_e(m), s(M,n)

?YPE(DVAR):: X(Nnodes,?2), R_e(m), f_e, z(n+m)

q.e =0
z = ad_indep_var( [a; q_e] )
CALL generate_mesh( z, X )
'
! Solution of the state equation:
\
Q=0
DO WHILE ( .not.converged )
J =20
R=20
DO e=1,Nelems
q_e = get_local_dofs( Q, e )
z = ad_indep_var( [ a; q_.e 1)
CALL calc_elem_res( X, z, R_e )

aBs.
R=R + ad_value( R_e)

DO j=1,m
J_e(:,j) = ad_pd( R_e, n + j )
END DO
aes,
J=J + J_e
DO k=1,n
dRda_e = ad_pd( R_e, k)
s(:,k) = s(:,k) n$' dRda_e
END DO
END DO
CALL LinearSolve( J, dQ, -R )
=Q +
END DO

i Calculation of the cost function and adjoint r.h.s.:

'
Phi = 0; h =0; dPhi = 0
DO e=1,Nelems
q_e = get_local_dofs( Q, e )
z = ad_indep_var( [ a; q_e 1)
CALL calc_elem_cost( X, z, f_e )
Phi = Phi + ad_value( f_e )

DO k=1,n
dPhi(k) = dPhi(k) + ad_pd( f_e, k)
END DO
DO j=1,
h_e(j) = ad_pd( f_e, n + j )
END DO
h = h_e
END DO

i Solve adjoint equation:

éALL LinearSolve( Transpose(J), p, h )

; Calculate the gradient of the cost functiom:
60 k=1,n

dPhi(k) = dPhi(k) - dot_product( p, s(:,k) )

END DO
END SUBROUTINE objfun

Table 1: Subroutine for the calculation of the value and the gradient of ® at a
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T Q(a) Lo

Figure 1: Problem geometry

Figure 2: Final domain with equipotential contours

Here p(u) = (1 + |Vu|?)~'/2. The domain Q(a), subdomain D, and parts of the
boundary with Dirichlet boundary condition are depicted in Figure 1. The dashed
part of the boundary is the object of the optimization. This problem can be considered
as a simplification of an inverse design problem for a nozzle, for example.

The unknown part of the boundary was parameterized using a Bezier curve with six
control points. Four of the control points are allowed to move between given “move
limits”. The state problem was discretized using 224 four-noded finite elements. Thus
in this case n +m = 4 + 4 = 8. The correctness of the derivative computations was
verified by comparing the AD derivatives of the cost function with (expensive) central
difference approximations.

The initial domain, the fixed subdomain, and the functions ug, uy were chosen to be
Q(a®) =]0,3[x]0,3[, D =}, 2[x]}, 3], w(z) = 3z1, ua(x) = 6z, respectively. The
final domain with selected equipotential contours of u is shown in Figure 2.

5. CONCLUSIONS

The proposed hybrid method for shape design sensitivity analysis is both easy to
program and efficient in terms of computer time and memory. It is efficient as the
differentiation of the (non)linear state solver is avoided making is possible to use stan-
dard software (LAPACK, for example) to solve the linearized state problem. Com-
puted sensitivities are very accurate provided that the mesh topology remains fixed
and the nonlinear state equation is solved with sufficiently strict stopping criterion.
Our approach is general as it applies to multidisciplinary shape optimization problems
and several finite elements. General purpose programs can be easily developed as the
dependence on the specific application can be isolated into separate modules.
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Figure 3: Cost vs. iterations
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KEHARAKENTEEN TOPOLOGIAN OPTIMOINNISTA
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TIIVISTELMA

Tissd artikkelissa kisitelldin kehdrakenteen topologian ja mitoituksen optimointia. Optimoititehtd-
viissd on kahdentyyppisid suunnittelumuuttujia eli topologia- ja mitoitusmuuttujia. Topolgiamuut-
tujilla pitetisin laitetaanko sauva, palkki vai poistetaanko kyseinen rakenneosa. Vastaavasti mi-
toitusmuuttujilla valitaan rakenteelle parhaat mahdolliset profiilit.

Optimointitehtivin ratkaisemiseksi on kehitetty kolme erilaista strategiaa. Relaksointimenetel-
missi seki topologia- ettd mitoitusmuuttujat relaksoidaan jatkuviksi, jonka jilkeen tehtdvi ratkais-
taan branch and bound algoritmilla. Hybridimenetelmiissi topologiamuuttujien arvot ratkaistaan
geneettiselld algoritmilla ja mitoitusmuuttujat relaksoidaan jatkuviksi. Suorassa menetelmissé sekd
topologia- ettd mitoitusmuuttujat ratkaistaan geneettiselld algoritmilla.

JOHDANTO

Topologia méiritelldin geometriseksi ominaisuudeksi, jota ei voi muuttaa elastisilla muo-
donmuutoksilla rikkomatta kappaletta. Esimerkiksi nelikulmaisesta pinnasta voidaan
muotoilla ympyrin tai kolmion muotoiset pinnat muttei rengasta. Kahdella eri ristikkora-
kenteella on sama topologia, jos ne voidaan muokata samanlaisiksi siten, ettei rakenteen
nivelkiinnityksid avata eikd rakenteeseen lisiti tai siitd poisteta sauvoja tai nivelid.

Ristikkorakenteiden topologiaa on optimoitu eri tekniikoilla jo kymmenid vuosia ja ai-
heesta 16ytyy runsaasti artikkeleita ja kirjallisuutta. Asia on késitelty jonkin verran esimer-
kiksi Kirschin [1] ja Bendsoen [2] oppikirjoissa. Geneettisen algoritmin soveltamista risti-
koiden topologian optimointiin on esitelty esimerkiksi Hajelan ja Leen artikkelissa [3].

Tissi artikkelissa ei kuitenkaan kisitell4 ristikoiden vaan tasokehien topologian opti-
mointia. Kehirakenne muodostuu palkeista, joita voidaan kuormittaa sekd normaalivoi-
malla etti taivuttamalla. Kehirakenteeseen voidaan asentaa myos nivelid, ja jos yksittdisen
palkin molemmissa pdissé on nivel, se kdyttdytyy sauvana eli kantaa vain normaalivoimaa.
Nivelen liséiys tai poisto muuttaa kehirakenteen topologian toiseksi.

Topologian optimointitehtivéi yksinkertaistetaan muuntamalla se valintatehtéviksi.
Tillsin suunnittelumuuttujilla paitetdin, kdytetddnkd rakenneosassa sauvaa vai palkkia.
Jos valitaan sauva, sen molemmissa péissd on nivelet. Niin nivelpisteiden sijoittelu voi-
daan yksinkertaistaa palkkien ja sauvojen valinnoiksi. Samalla rakenteen sauvojen analy-
sointi voidaan tehdi yksinkertaisemmalla nelivapausasteisella sauvaelementilld, kun palk-
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kielementilld vapausasteita on kuusi. Sauvojen ja palkkien selked erottelu mahdollistaa

myds eri profiilijoukkojen kdyton. Niinpé esimerkiksi sauvat voidaan valita putkiprofii-

leista ja palkit I-profiileista.

Optimoinnin Jahtokohtana on perusrakenne, jossa on ng solmua ja n viivaa. Sanaa viiva
on kiytetty sekaannusten vilttamiseksi ja sillid tarkoitetaan rakenneosaa, johon voidaan
asentaa sauva tai palkki. Viiva voidaan my6s poistaa rakenteesta, jolloin kyseisten solmu-
muuttujaa: topologiamuuttuja b ja mitoitusmuuttuja s. Topologiamuuttujilla on kolme
mahdollista arvoa, joista arvo b = 0 tarkoittaa kyseisen viivan poistoa, arvo b = 1 sauvaa ja
arvo b = 2 palkkia. Mitoitusmuuttujien avulla etsitdén rakenneosalle sopivin palkki- tai
sauvaprofiili.

Kehirakenteesta on tehty joitakin yksinkertaistavia oletuksia:

Tarkastellaan vain tasokehii.

Palkkielementti liittyy toiseen palkkielementtiin jaykilld liitoksella.
Sauvaelementti liitetdédn nivelilld molemmista pdistién,

Oletustuentana on jiykki tuenta palkkielementille ja niveltuenta sauvaelementille.
Niitd tuentoja kéyttdjd voi kuitenkin muuttaa.

e Rakennetta voidaan kuormittaa joko solmuihin kohdistuvilla pistevoimilla tai viiva-
kuormituksilla ennalta valituille palkeille. Jos kidytetddn viivakuormitusta, kyseisen vii-
van topologiamuuttuja b saa arvon 2.

Rakenne analysoidaan elementtimenetelmalld. Jokaiselle rakenteen viivalle kiytetddn yhtd

sauva- tai palkkielementtii.

Optimointitehtdvin kohdefuntio f(x) voi olla esimerkiksi rakenteen massa, joku siirty-
mikomponentti tai siirtymékomponenttien painotettu summa, rakenteeseen sitoutunut
kimmoenergia, rakenteen suurin normaalijdnnitys, alin ominaiskulmataajuus jne. Niitd
samoja suureita voidaan kdyttdd myos rajoitusehtoina. Diskreetti optimointitehtévi on siis

min f(x)
gx)<0

N
X = (1
S

be{012}  i=12..,n
s,e{l.2,...n}i=12,..n,

missi n, on palkki- tai sauvaprofiilien lukumiiri ja i on rakenteen viivan numero,

OPTIMOINTIALGORIMEISTA

Tutkimuksessa kdytetiddn branch and bound ja geneettistd algoritmia, jotka molemmat rat-
kaisevat diskreettejd optimointitehtidvid. Branch and bound algoritmia esitelldin esimerkik-
si Nemhauserin ja Wolseyn kirjassa [4]. Algoritmissa tarvitaan relaksoitu eli jatkuvaksi
muunnettu optimointitehtéivd. Aluksi relaksoitu tehtdvi ratkaistaan ilman yliméaraisia ra-
joitusehtoja. Jos tdméin optimointitehtévin ratkaisun kaikilla suunnittelumuuttujilla ei ole
diskreettid arvoa, valitaan yksi suunnittelumuuttujista, jonka arvo on kahden diskreetin
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arvon viilissid. Témin jilkeen muodostetaan kaksi uutta osatehtévid, joista toisessa kysei-
sen suunnittelumuuttujan arvon on oltava suurempi tai yhtdsuuri kuin ylempi diskreetti
arvo ja toisessa pienempi tai yhtdsuuri kuin alempi diskreetti arvo. Ndméi osatehtavit rat-
kaistaan ja, jos vieldk#én ei saada kaikille muuttujille diskreettid arvoa, muodostetaan uu-
det osatehtévit edellisen osatehtivin kéyvisti alueesta. Prosessia jatketaan kunnes 18yde-
tadn diskreetti ratkaisu, ei ole endd kiypii aluetta tai osatehtéviin kohdefunktion arvo on
suurempi kuin parhaassa tunnetussa diskreetissi ratkaisussa.

Branch and bound algoritmi antaa globaalin minimin, jos relaksoidun tehtédvin kohde-
funktiossa ei ole lokaaleja minimeji ja kdypi alue on konveksi. Yleensd rakenteiden opti-
mointitehtivissd nimi ehdot eivit toteudu. T4lldin optimoinnin tulos saattaa riippua ite-
roinnin aloituspisteesti.

Geneettinen algoritmi perustuu luonnonvalinnan simulointiin ja siitd on varsin perus-
teellinen esitys esimerkiksi Michalewiczin kirjassa [5]. Algoritmissa suunnittelumuuttujat
koodataan yksilon kromosomiksi, jolloin kukin yksil6 vastaa yhtd suunnitteluavaruuden
pistettd. Algoritmissa tutkitaan pisteiden joukkoa, ei yksittiistd pistettd. Pisteiden joukko
ajatellaan elidpopulaatioksi, jonka kehittymistd simuloidaan kymmenien, jopa satojen su-
kupolvien ajan.

Uuden sukupolven luomiseen tarvitaan kolme proseduuria: vanhempien valinta, kro-
mosomien risteytys ja geenimutaatio. Vanhemmat valitaan siten, ettd sukupolven parhailla
yksiloilld on heikompia parempi mahdollisuus saada jilkeldisid. Téssd yhteydessd on kay-
tetty modifioitua jirjestysvalintaa [6, s. 24], jossa kahden yksilon vilisen paremmuusjir-
jestyksen méirid kohdefunktion arvo, jos kumpikin yksilo rikkoo kédypai aluetta suunnil-
leen yhti paljon. Jos toinen yksild rikkoo selvisti enemmiin, se hividd kohdefunktion ar-
vosta riippumatta. Kun koko populaation yksiloiden keskindinen jérjestys on selvitetty,
jilkeliisten saamistodennikoisyys riippuu paremmuusjirjestyksen sijaluvusta. Risteytyk-
sessi vanhempien kromosomit katkaistaan ja loppuosat vaihdetaan keskeniin, jolloin jél-
kelidisen kromosomin alkuosa on eri yksiloltd kuin loppuosa. Geenimutaatiossa jotkut kro-
mosomin osat eli geenit saavat uuden arvon.

Koska geneettinen algoritmi parantaa pistejoukon keskiméérdistd kohdefunktion arvoa,
ei yksittdisen optimipisteen 18ytymisestd ole mitiin takeita. Saatujen laskentakokemuksien
perusteella geneettinen algoritmi antaa yleensd muutaman prosentin huonompia kohde-
funktion arvoja kuin branch and bound algoritmi. Vaihtelu on kuitenkin varsin suurta ja
joskus geneettinen algoritmi on selvisti branch and bound algoritmia parempi.

RATK