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ESIPUHE

Suomen VII Mekaniikkapaivéat pidettiin Tampereella 25-26.5.2000 ja sielld pi-
detyt esitelmit on koottu kahteen niteeseen. Nide 1 sisdltdd ensimméisen ja ni-
de 2 toisen kokouspdivédn esitelmit. Kutsuttuina ulkomaisina esitelmdoitsijoind
olivat professori Wolfram Stadler (San Francisco State University, USA) seki
professori Niels Olhoff (Aalborg University, Tanska). Lisdksi tilaisuutta kunni-
oittivat esitelmilldan professorit Ulo Lepik ja Jaan Lellep Tarton yliopistosta.
Kotimaisina kutsuttuina esitelmditsijoind olivat professori Martti Mikkola
(Teknillinen korkeakoulu) ja professori Antti Pramila (Oulun yliopisto). Niteet
sisdltdvit yhteensd 58 artikkelia, jotka edustavat monipuolisesti teknillisen me-
kaniikan eri osa-alueita.

Suomen mekaniikkapdivdt on jdrjestetty vuodesta 1982 lihtien joka kolmas
vuosi (Oulu 1982, Tampere 1985, Otaniemi 1988, Lappeenranta 1991, Jyviskyld
1994, Oulu 1997). Niiden tarkoituksena on koota yhteen tutkijoita, suunnitteli-
joita ja opettajia, jotka tydssddn joutuvat tekemisiin mekaniikan ja lujuusopin
ongelmien kanssa. Uutena aiheena tdlld kerralla on mukaan otettu teknillisen
mekaniikan opetus, jolle on varattu oma istunto.

Jirjestelytoimikunta esittdd ldmpimét kiitoksensa kaikille esitelmijditsijoille
sekd artikkelien tekij6ille, kuten myds niille lukuisille henkilsille, jotka ovat
osallistuneet mekaniikkapdivien jérjestelyty6hon.

Juhani Koski ja Simo Virtanen
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A BRIEF HISTORY OF MULTICRITERIA OPTIMIZATION
AND ITS

APPLICATIONS IN MECHANICS

W. Stadler
School of Engineering
San Francisco State University
1600 Holloway Avenue
San Francisco, CA 94132, USA

ABSTRACT

We provide a brief history of multicriteria optimization, including applications in
Mechanics. We begin with the origins of optimization, provide a basic optimization
problem formulation, discuss some of the initiators of multicriteria optimization, show that
a classical principle in Mechanics has a multicriteria formulation and trace the evolution of
an optimization problem from its beginnings in antiquity to wide present application.

1. INTRODUCTION

Mechanics and Engineering Science may be defined as areas of instruction whose purpose
it is, at least in part, to bring new methods and concepts in the sciences and mathematics to
fruition by applying them in the solution of problems. Unfortunately, Mechancis has been
slow to adapt and continues to maintain a traditional offering rather than innovating with
courses in controls, mechatronics, multidisciplinary analysis, fuzzy systems and
optimization, to name only a few. In particular, optimization as a broad design tool, has
been, for the most part, ignored in the US.

In every book treating engineering design, the student is admonished to optimize his
designs with vague guidelines such as, ‘as strong as possible’, ‘as light as possible , ‘as
flexible as possible’, and so on, with little or no guidelines as to just how this is to be
accomplished. In part, this is due to the fact that the concept of design itself is separated
into two relatively disjoint approaches: One almost artful approach based on the
refinement of anything that works and satisfies the constraints, making virtually no use of
analysis, and a second approach which relies on detailed mathematical modeling, analysis
and concepts from decision making and optimization. When one has well-accepted and
tried mathematical models and computational methods for the area in which design is to be
carried out, it makes no sense not to use them to obtain optimal designs. Both approaches
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go back to antiquity. Not surprisingly, we know more about the origin of the analytical
approach.

As far as it was possible to determine, Dido’s problem is the first example of the practical
use of an optimality statement. We shall first tell the story as it is told now and then
indicate how it was pieced together from the historical fragments of Greek and Roman
historians.

Dido’s Problem. Mutto, the king of Tyre had two children, a son Pygmalion and a
daughter Elissa. Upon Mutto’s death, Pygmalion became king and Elissa married her
uncle Sicharbas, the priest of Heracles. Pygmalion had Sicharbas assassinated to seize the
priest’s treasure. Elissa, appalled at her brother’s action, had the treasure secretly loaded
onto boats and fled with some of the nobility partial to her plight. After a stop in Cyprus,
they continued westward along the northern coast of Africa, where they were welcomed by
the local inhabitants. They called Elissa, Deido (wanderer), because of her many
wanderings. She encountered a local ruler, King Iarbas of Numidia, whom she asked for
some land where she and her retinue could settle. He allowed her to take as much as she
could enclose in the hide of an ox. Dido had the hide cut into strips and then used these
strips to enclose a sizable piece of land. The inhabitants kept their promise and gave her
the land on which Dido eventually founded Carthage. Some time thereafter, the Lybian
king wished to marry her, but she refused. On the pretext of carrying out a rite to release
her from an oath not to marry, she constructed a large pyre near her chambers from which
she threw herself on the pyre afer it had been lighted.

This story is an amalgamation of at least three different references to Greek mythology and
history.

The earliest mention of the story dealing with Elissa and her escape from Tyre is due to
Timaeus (of Tarominium a Greek colony in Italy), who was exiled to Athens by
Agathocles, the local tyrant. Timaeus lived from about 356 B.C. to 260 B.C. and he is
considered to be the foremost third century historian whose fragments have survived in
sufficient bulk to make a good assessment of his contribution. He also seems to be the
originator of the myth that both Carthage and Rome were founded in the 38" year of the
Olympiad or about 814-813 B.C., the generally accepted date for the founding of Carthage.

The part of the story dealing with “as much land as she might enclose with an ox hide” was
penned by Publius Virgilius Marro (70-19 B.C.) in his epic tying the founding of Rome
into Greek mythology at the request of Augustus, who commissioned him. In this story,
she commits suicide because Aeneas leaves her. If nothing else, we now have to resolve
the difficult undertaking of having committed suicide twice. One resolution is to assign the
name Dido to all of the Punic queens. That is, they take on the name Dido upon becoming
Queen of Carthage.

Justinius, another Roman historian, provided the additional detail of cutting the hide into
strips in his book Historiae Phillippicae written in the second or third century A.D.
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The attendant geography is somewhat more deterministic. ~Tyre is a city in today’s
Lebanon and Carthage (or rather what remains of it) is located on a peninsula (an easily
defended location) in Libya, on the Bay of Tunis, just northeast of modern Tunis.

The earliest archeological evidence of Carthage dates from the eighth century B.C., so that
the city thrived for more than 500 years until its recorded destruction by Rome at the end
of the Third Punic War in 146 B.C. This is slightly at odds with Timaeus placement of the
founding of Carthage in the 9™ century B.C. Virgil places the mythiological founding of
Rome by Aeneas, a refugee from Troy, at about 1100 B.C.

According to Ref. 2, Zenodorus provided the first proof of the isoperimetric property of the
circle sometime between 340-212 B.C. The proof apparently contained a gap, which was
not removed until the 19 century by Karl Weierstrass (1815-1897) in his lectures at the
University of Berlin.

We may assume that Dido was aware of the isoperimetric property of the circle. Again,
according to Ref. 2, cutting the hide into 1/ 10" inch strips would yield about 1000-2000
yards of strips with which she could have enclosed about 16-65 acres of land for a
complete circle and considerably more, if taken as a semicircle along the ocean. Since
Carthage was located on a peninsula, she must have done well indeed.

Figure 1. Dido purchases land for the foundation of Carthage. Engraving
by Matthaus Merian the Elder, in Historische Chronika, Frankfurt a.M.,
Germany, 1630. (Ref. 2).
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Dido’s problem is and will probably remain the most celebrated optimal design problem.
Thanks to its mythological setting, it can be celebrated on several levels as shown in
Figures 1 and 2. Figure 3 shows that the civil engineers of the middle ages were quite
aware of this result in optimal design and put it to good use.

B s

B s,

Figure 2. J.M.W. Turner. Dido building Carthage.

Thus was born the isoperimetric problem: Among all closed plane curves of a given length
to find the one that encloses the largest area.

Virtually all of the early optimization problems concerned maximization or minimization
in geometric problems; there were no common methods and each problem thus was
individually dealt with. However, what was found, was proven to be the optimum and thus
was accepted as fact. Thus, Aristotle in the 4™ century B.C. already took it for granted that
the circle enclosed the largest area for a given perimeter with a similar conclusion for the
sphere as enclosing the largest volume for a given surface area.

The first optimization problem involving a physical phenomenon appears to have been
Heron of Alexandria’s probes concerning the reflection of light rays in a mirror posed in
his work on Catoptics (reflection) in 75 A.D. (According to Ref. 3, the law of reflection
had been known to Euclid, Aristotle and, probably, to Plato):

Determine the location of the point D so that the sum of the distances AD + BD is a
minimum (see Figure 4).



Figure 3. Medieval map of Paris.

B ]

D
Figure 4. Heron’s Problem

Eventually, this problem gave rise to the investigation of the law of refraction by Snell
(1591-1626) from an experimental viewpoint and by Pierre de Fermat (1608-1665) from a
theoretical point of view, concluding that light travels the minimum time path. As we shall
see, this problem is the beginning of a formulation with a wide range of applications.

In reading the scientific literature from the seventeenth to the nineteenth century, we get
the clear implication that nature “operates” optimally in optics, in mechanics, in
thermodynamics, in fact, everywhere, much in line with the Aristotelian principle that
“nature does nothing the hard way”. Courant and Robbins, in their classic book What is
Mathematics? summarize (Ref. 4): “It was observed long ago that natural phenomena
often follow some pattern of maxima and minima.” Leanhard Euler puts these sentiments
into a metaphysical context, in line with his religious beliefs, when he writes (Ref. 5):
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«_..For since the fabric of the universe is most perfect and is the work of a most wise
Creator, nothing whatsoever takes place in the universe in which some relation of
maximum and minimum does not appear. Wherefore there is absolutely no doubt that
every effect in the universe can be explained as satisfactorily from final causes, by the aid
of the method of maxima and minima, as it can from the effective causes themselves.”

This postulated optimality of the universe may seem to derive from religious belief but
those who held with this postulate ranged widely from the very religious Euler to those
who arrived at the conclusion from their own reasoning and observation. The fact is that
the extremum and minimum principles that we now so routinely employ, derive from such
deeply held convictions about the efficiency of natural law. We list only a few such
statements here:

Fermat’s Principle of Geometric Optics. In an inhomogeneous medium a light ray
traveling between two points follows a path along which the time taken is a minimum with
respect to all paths joining the two points.

Principle of Minimum Potential Energy. An equilibrium of a mechanical system is
stable if and only if the potential energy is a minimum.

Hamilton’s Principle. The Irish mathematician W.R. Hamilton (1805-1865) proposed the
following generalization of the principle of virtual work. Consider a system of n particles,
assume that the external forces are conservative and the possible motions holonomic. Let
T(¢) be the instantaneous kinetic energy of the system and let V(f) be the potential energy
of the external forces (we suppress the dependence on x and x). A motion x(f) of the
system is possible if and only if

t

1
S| (T - V(r)dr=0.

to
We have cited Fermat’s Principle to show what could be deduced from the simple problem
that Heron posed. We shall show subsequently that the problem has continued to evolve
far beyond its initial statement to the point where it now has evident applications in
electrical, civil and mechanical engineering. The principle of potential energy is one of the
oldest minimum principles and we have stated Hamilton’s Principle as a classical principle
which can be given a multicriteria formulation.

From statements such as “nature does nothing the hard way”, it is easy to infer that any
possible way of doing something is either the easiest way or we may find a way which is
easier. If there is only one way, it becomes easiest by default. The inference from the
previously stated “natural “ principles is that nature does it the easiest way; that is, nature
achieves an optimum. Collectively, we thus atrive at the common problem formulation:

A quantity is to be maximized or minimized by making a suitable choice from some set of
allowed choices. More concisely: Minimize g(d) subject to d € D.



15

Note that this statement implicitly includes the possibility of comparing two different
designs d,,d, € D with

d, $d, iff g(d)) = g(d2)

2. THE MULTICRITERIA PROBLEM

The vector optimization problem or multicriteria problem may also be succinctly stated in
the form: “Optimize” g(d) subject to d € D, where the criterion g(d) now is given by the
criterion vector

g(d) = (g1(d),g(d),....gn(d))

Since we are no longer simply maximizing or minimizing a single criterion function, we
must give meaning to the optimization of a vector.

In order to gain a good understanding of the multicriteria problem, it is worthwhile to
dissect the whole idea of an optimization problem into its basic issues and concepts. In
virtually all optimal design endeavors, it is the optimal design which is of interest and not
the optimal value of some criterion function. The optimal design problem is best viewed in
this light:

(1) There exists a set D of possible designs. A design d € D may be characterized in a
variety of ways, by a single variable or function, vectors of these or by a mix thereof.
We shall present a design simply by d.

(2) There must be a way of comparing at least two designs d; and d, in D. This is usually

accomplished by introducing a relation < on D such that d, X d, (d; is preferred to

(<) or equivalent to (~ ) dy). For obvious reasons, we call such a relation a preference
relation. It may be that not all designs may be comparable to each other.

(3) There must be some notion of what constitutes a best design. Once one has achieved a
comparison of different designs, it is natural to attempt to isolate a design d* € D
which is better than at least a collection of other designs. Usually, this is done within

the context of the preference relation < ; e.g. d* Sdforalld € Dy Cc D.

Example 2.1. Suppose our design set is D = {x €R': x €[0,2]}. The usual preference
relation then is the complete or linear order < on R' restricted to the interval D. A

minimum with respect to < is given by x* = 0 with 0 < x for every x € D.

Rather than ordering the design set itself, suppose we have a mapping of the design set D
into the reals, $(-): D »R'. We may then use the usual order < on R' to induce a

preference < on the set D with

d] ,S d2 lff ¢(dl) < d)(dz)



16

with the obvious correlation for the optimal design. This is, of course, the concept of a
utility function in economics.

Example 2.2. Let D= {x €R": x € [0,4]} and consider the mapping g(*): D - R' given
by

gx) =1+ (x-2)

The use of the previously described approach produces

x1 X xp iff g(xl) < (x2)
as illustrated in Figure 5.

L L ] 5 i
R A) X3 X44 5 X
Figure 5. The imposed preference

Note that x; ~ x4 and x, ~ x3 and that x; < x; as well as x, < x4, etc. With minimization as
the basic objective, the optimal design is given by x* =2 with x* X x for every x € D.

We emphasize again that the criterion values themselves are generally of lesser importance
than their use in comparing different designs in design space.

The same overall approach is used in the multicriteria problem. The only difference is that
the mapping now is a vector-valued map

g(): D~ R"
with g(d) = (gi(d),g2(d)....,gn(d)) as the criterion vector. A preference <y is introduced on
R" and is then used to induce a preference <p on D with
d; 3pd, iff g(d;) Ing(dy)

We shall trace the historical development of this problem along with its most prevalent
solution concept in the next section.
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3. INITIATORS OF MULTICRITERIA OPTIMIZATION

The relatively late appearance of the consideration of several criteria stems from the fact
that it is much harder to imagine an optimal choice, given the engrained view of the single
criterion problem where the ideas of maximum and minimum evolved together with the
usual number system and its ordering. Having grasped this concept, basic computation
generally is no more difficult than that for the single criterion case.

The development of economic theory provided the impetus for the multicriteria problem.
Such problems were first considered in economic utility theory and welfare theory. The
subsequent inception of game theory provided further insight and the more or less
simultaneous evolution of the mathematics of orderings on sets eventually put all of the
concepts on solid mathematical footing.

Formally, we take the beginning of economic theory to be the Wealth of Nations written by
Adam Smith, and his contemporary view of society expressed in: “A vile maxim of the
masters of mankind ... All for ourselves and nothing for other people.” One of the early

ideas was that of a utility function g(-): D » R? for each consumer, indicating which goods
or choices he preferred and it was assumed that individual choices were made in harmony
with his utility function; i.e.,

d; X &, iff g(d,) <g(d2)

The collective good or simultaneous consideration of the previously individually active
consumers is the basic idea of welfare theory and the first realization of the vector
maximum problem. That is, we wish to obtain an optimal decision d* € D which
optimizes all of the criteria simultaneously or, equivalently, provides for the optimum of
the vector g(d).

Francis Ysidro Edgeworth (1845 — 1926). He was the first to consider individuals with
competing preferences, more precisely, competing utilities. He generally visualized a
situation between two individuals and then extrapolated the results to groups of individuals
in his book Mathematical Psychics (Ref. 6). The two person situation is often illustrated
with the “Edgeworth Box”, an illustration first used by the statistician Arthur Lyon Bowley
(1869 — 1957).

Suppose we consider two economic agents A; and A; with convex utilities g;(x,y) and
22(x,y) which they seek to maximize by trading the commodities (x,y) with a total
endowment (a,b); thatis, 0 < x <a, 0 <y <b. Their consumption set thus is the quadrant
bounded by (a,b). The quadrant is arranged in such a way that A, reaches his total
endowment at (a,b) and A, reaches it at (0,0). In terms of the distribution of goods at a
point (x,y), A receives the amount (x,y) while A, gets (a — x, b — y). The situation is
illustrated in Figure 6.

In the sketch, the level curves of A, are the solid arcs emanating from g;(0,0) and those of
agent A, are dashed and emanate at g»(0,0) taken to coincide with (a,b). The arcs are the



lines of indifference for each agent, indicating that the agent is indifferent for all
allocations of goods associated with a given indifference set. Edgeworth then defines an
equilibrium point for the economy (defines optimality) in the following manner:

¥(0.0)

X(0.9)

Figure 6. The Edgeworth Box and the Core (of a cooperative game)

“It is required to find a point (x*,y*) such that in whatever direction we take an infinitely
small step, gi1(*) and g»(-) do not increase together but that while one increases the other
decreases.”

With this in mind, he arrives at what he terms the contract curve traced out by points at
which the gradients of g;(x,y) and g,(x,y) have the same direction. Furthermore, if we
take a small step away from a point on the contract curve, e.g., we move into the upper
cusped region, then 0g,/0x < 0 and 0Jgy/ dx > 0 as required by the definition. He
discusses many relevant implications and extensions of the basic definition, most of which
are mentioned in Ref. 6.

Vilfredo Federico Damaso Pareto (1848 — 1923). His parents were from Genoa and had
moved into exile in France for political reasons. When Vilfredo was born in 1848, they
first named him Fritz Wilfried, perhaps because of some admiration for the German
democrats, and only later did they turn this into Vilfredo.

Vilfredo was trained as and initially worked as a civil engineer. He held strong political
views and his socialist leanings eventually made him one of the founders of fascism.
Anecdotal lore has it that Mussolini attended some of his lectures in Political Economy at
Lausanne, where Pareto had accepted Leon Walrus’ position.

Pareto was a Greek and Latin scholar who developed an abiding interest in economics
through his close friendship with the economist Maffeo Pantaleoni. Vilfredo’s early
training in mathematics quickly placed him at the forefront of mathematical economics
where he was the first to use variational methods in deducing necessary conditions for
economic equilibrium. He was well aware of Edgeworth’s work and he particularly
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prided himself in making use only of the level curves in his analysis rather than assuming
the existence of utility functions. His somewhat rambling definition of the “maximum
ophelimity” of a collectivity (Ref. 7) and his associated variational necessary conditions
have evolved somewhat in what we now take to be the definition of a Pareto optimum.
Indeed this optimum should more appropriately be termed an Edgeworth-Pareto optimum
or EP-optimum in a more abbreviated form. We write the Edgeworth - Pareto definition
in the now accepted mathematical form:

Definition. Edgeworth-Pareto Optimality. Let d* € D. Then d* is an EP-optimal
decision iff

g(d) <gd*) = g(d)=g(d*)

for all d*-comparable d € D.

Here < is the so-called natural order on R"; the d*-comparable requirement is added to
the definition because < is a partial order, implying that not all of the criteria values may
be comparable to each other. Minimization of the individual criteria was taken to be the
basic desideratum in this definition.

Even in this succinct mathematical form, it isn’t all that clear what is meant by an EP-
optimum. Some more or less converse statements do provide some insight.

Perhaps the most obvious and useful from a computational point of view is that a criterion
value g(d) cannot be EP-optimal if there exists a gy € 4 = g(D) such that go; < gi(d) for i=
1,2,...,N, when minimization of each gi(*) is taken as the basic objective. Similarly, we
are at an EP-optimal point if we cannot deviate from it, even minutely, without increasing
at least one of the criteria. The EP-optimal set of designs is that set where we truly need to
compromise in moving from one design to another in that a further decrease in one
component would require an increase in at least one of the other components. To some
extent the value of multicriteria optimization thus lies in all of the bad designs that are
eliminated rather than in the particular attributes of the EP-optimal designs themselves.

Georg Cantor (1845 — 1918). The concepts of Edgeworth and Pareto grew out of the
socioeconomic viewpoint of what constituted an economic equilibrium; in essence, the
search for a point at which the consumers and the producers would be satisfied with what
they got. Indeed, it was shown later that subject to some convexity assumptions on
preferences, and on production costs and profits, that there exists an EP-optimal point at
which the producers maximize their profit — all in all not a bad economic situation if
realizable in practice.

The mathematical background for such statements was provided by Cantor in his work on
ordered sets (Ref. 8). (Recall that ordering the design set D to be able to compare designs
is our basic objective). In this context, EP-optimality is only one optimality concept
among an infinity of possible ones. As we shall see, however, there does seem to be
something natural about the concept of EP-optimality in that it is possible to cast some
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classical extremum principles in mechanics within this multicriteria framework.
Furthermore, natural structures appear to be optima for suitably chosen criteria.

Orderings come in a variety of colors and guises ranging from partial to complete preorders
to partial and linear orders; they can be smooth and connected or not, be imposed on

arbitrary spaces or on R", thus serving as a device for comparing virtually anything.

Within the economic context, the so-called natural order on R is of greatest interest since
it provides the partial order on the criteria values on which we have based the
mathematical concept of EP-optimality. (The word “partial” refers to the fact that not all

points are comparable to one another). The natural order on RN is defined in terms of the

usual order on the reals with x,y € R and

x<y iff x; <yi foreveryieI={1,2,....N}
x<y iff xi<y, x 2y, for iel

Xy iff xi<y,, foreveryiel

We can easily get a geometric view of this situation. As before, we take minimization as
the basic objective. At any given point x, we imagine a cone with vertex at x and with the

cone being a translate of the positive orthant of RN. The vertex x then is better than all of
the points y in the cone; that is, x <y. Points outside the cone are not comparable to x;
e.g., the point z Points x* on the dark border are the EP-optimal criteria values for the set

A. We have depicted the situation in the criteria space R". The ordering on R" is thus
used to induce an ordering in the design space D with d* given by g(d*) = x*, for example.
The situation is depicted in Figure 7.

&2

0 g1
Figure 7. EP-optimality on R™

Here, the economic definition of the optimum was probably given without an awareness of
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the ordering. Otherwise, it is common to define optimality relative to the ordering that has
been imposed.

Classical mathematics has led us to view < on R' as the only plausible or natural ordering
with the consideration of a single criterion and its maximum or minimum as a conse-
quence. It is gradually becoming apparent that the use of a single criterion is a straight-
jacket which tends to distort actual decision making where compromises between
conflicting choices are the norm. As a consequence, there also has been no use of
multicriteria models to describe natural phenomena.

Emile Borel (1871 — 1956). A third and final area contributing to the solution of the
vector maximum problem is provided by game theory. Not games of chance which have
an ancient history eminently traced by Florence David in her book Gods, Games and
Gambling, but games where the psychology of the player and his choices may affect the
outcome. Borel writes (Ref. 9): “We will consider a game where the winning depends
simultaneously on chance and on the skill of the player.”

The minimax theorem incorporates the first definition of an optimal strategy for a game.
Von Neumann laid claim to the founding of game theory by virtue of being the first to
provide a general proof of the theorem in 1929 (Ref. 10), even though Borel had
demonstrated the validity of the theorem for n = 3 and n = 5 as early as 1923. Von
Neumann was aware of the work of Borel, but he never cited it; indeed, he only cites
Borel’s text on probability theory.

The minmax theorem deals with the existence of a saddle point for the payoff matrix of a
rectangular game. A little insight into matrix games helps to appreciate the power of the
theorem. Consider the payoff matrix

[6 -2 -1 0]
|4 3 -1 3]
3 4 1 2]
[2-3 -2 -1]

and suppose a play of the game consists of P, choosing a row and P, choosing a column
with neither having prior knowledge of the others choice. After they choose, player P,
pays player P, the amount listed in the matrix. For example, if Py plays r2 and P, plays c2,
then P, pays P; 3 units of whatever the payoff consists of. A minus sign means that P, has
to pay P,

With this in mind, it is clear that P, would never play r4, since he can do better by playing
r1, r2 or r3 no matter what P, plays. We say that r4 is dominated by the other rows; that is,
(2,-3,-2,-1) < (4,3,-1,3).

Suppose now that we think of a; = f(i,j), a real-valued function defined on the matrix
element locations. A saddle point of the matrix game is a location (io,jo) such that

Ajjo £ Aiojo < Bioj
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or, equivalently,

ajojo = MAax min a;; = min max a;;
i j jooi

Put another way, there is a selection (ig,jo) and an ajgj, such that ajy is at once the minimum
of its row and the maximum of its column.

The desirability of playing this saddle point lies in the fact that by choosing 13, P; will
receive at least 1 and by choosing ¢3, P, can keep P from getting more than 1. This
reasoning forms the basis for calling this choice the optimal choice for the game and the
corresponding payoff the value of the game.

If every game had such a saddle point, then we would be done. Unfortunately, this is not
the case.

As usual, we may expand our horizons and raise our expectations when we settle for
probably rather than definitely. Suppose we are given an m X n game matrix A and we
assume that P; plays row i with probability x; and P, plays column j with probability y;.
This gives rise to the ordered tuples x = (X1,%2,...,Xm) and ¥y = (y1,¥2,...,y») Which we
constrain to belong to the simplexes Sm={Xx: i+ X + ...+ xm=1} and S,={y: y1+y2
+ ...+ ya=1}. Clearly, x; and y; may also be thought of as the frequencies with which P,
chooses row i and P, chooses column j, respectively.

Weterm x € Sy and y € S, mixed strategies for P, and P», respectively. If both players
play these mixed strategies, then the expectation of player P, is given by

E(x,y) = i. >_'ZT a4X;yj

Again, we look for the saddle point as an ideal solution to such a game. That is, if there
exists a pair (x*,y*) such that

E(x.y*) < E(x*y*) <E(x*.y)

then we term (x*,y*) an optimal mixed strategy for P; and P, and E(x*,y*) the value of the
game to P.

Minmax Theorem. Let A be a given game matrix and let E(x,y) be the expectation with
X€Spandy €8S,. Then
max min E(x,y)
x€S,, ye€S§,
and
min max E(x,y)
y€S, x€S,
both exist and are equal.
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