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Preface

These proceedings contain the papers presented at the Sixth Finnish Mechanics Days
held in Oulu, Finland, 5-6 September 1997. The First Finnish Mechanics Days were
held in Oulu in 1982, the Second in Tampere in 1985, the Third in Espoo in 1988,
the Fourth in Lappeenranta in 1991 and the Fifth in Jyvaskyla in 1994.

The purpose of the Finnish Mechanics Days is to bring together researchers, post-
graduate students, teachers and practising engineers, whose interest lies in the field of
mechanics and computational methods. Although the invited lectures of the Finnish
Mechanics Days have mainly been given by foreign researchers, the organizers decided
this time to invite four prominent finnish experts M. Mikkola, M. A. Ranta, J. Koski,
and R. Stenberg as invited speakers. In addition to these 29 contributed papers were
presented.

The Organizing Committee wishes to express its sincere gratitude to all the authors
for their hard and successfull work in preparing their contributions. The economical
support of Tauno Tdonning foundation for publishing this volume is also gratefully
acknowledged.

Jukka Aalto and Tapio Salmi
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THERMOMECHANICAL MODEL OF FREEZING SOIL

BY USE OF THE THEORY OF MIXTURES

J.Hartikainen & M.Mikkola
Laboratory of Structural Mechanics
Helsinki University of Technology
P.0.Box 2100, FIN-02015 HUT, FINLAND

ABSTRACT

A thermomechanical theory for arbitrary mixtures based on the theory of mixtures, the
principles of continuum mechanics and the macroscopic thermodynamics is introduced.
A thermomechanical model of the freezing of saturated soil is established by applying
the general theory. The saturated soil is considered as a mixture of skeleton, water
and ice. The proposed model is capable of describing the thermal, hydraulic and
mechanical features of the frost phenomenon. The complete system is reduced to a
computationally convenient set of equations and the finite element implementation is
done in one-dimensional case. Numerical simulation of a soil freezing test is carried

out and the results are presented.

1 INTRODUCTION

During the last few decades, comprehensive research has been in progress to improve
the understanding of physical nature of freezing soil. A well established feature is that
water in fine-grained soil freezes over a temperature range, see Fig. 1, [1], [17], [24],
[32]. This leads to the so-called frozen fringe, a “mushy” region, in which water coexists
in solid, liquid and gaseous phases. Under certain conditions the frost phenomenon

is initiated. It is a rather complicated combination of several interactive physical



processes: freezing of water in soil under temperature gradient creates a cryogenic
suction, a driving force, which induces migration of water from the unfrozen soil to the
frozen fringe; on one hand the ice formation expands pores of the soil causing the frost
heave, but on the other hand the negative pore-water pressure may induce consolidation
of the unfrozen soil; in transient freezing, the frozen fringe advances continuously. The
characteristics of the frost phenomenon depend mainly on soil type, applied loads and

freezing conditions.
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Figure 1: Typical unfrozen water content-temperature relationships in frozen soils [1].

As a result of the research several models, well summarized by [19] and by [25],
[26], have been developed to predict the outcome of a particular frost process produced
by certain conditions as an input. Kujala [25], [26] has classified them as empirical,
semi-empirical, hydrodynamic, rigid-ice and thermomechanical models. The empirical
models, e.g. [2], are based on purely empirical observations using field observations
and frost heave tests. In semi-empirical models the physical nature of frost heave is
also used as a basis, e.g. [5]. Hydrodynamical models, e.g. [16], [11], [14], [15], couple
heat and mass transfer in freezing soil based on an analogy between water transport in
unsaturated soils and water transport in partially frozen soil. The rigid-ice model, e.g.
[13], [27], [28], is based on the theory of secondary frost heave. The segregation potential
concept is defined as the ratio of the water migration rate to the overall gradient in
the frozen fringe, e.g. {21], [22]. The most advanced models are the thermomechanical
ones, e.g. [7], [9], which are based on the theory of mixtures, continuum mechanics
and macroscopic thermodynamics. They take into account thermal, hydraulic and

mechanical aspects being able to describe heat transfer, freezing, suction and migration



of water, and deformations of skeleton.

This work is a direct continuation to the work of Frémond and Mikkola [9]. The
thermomechanical theory is extended and verified to arbitrary mixtures. It is shown
that not only the conservation laws but also the constitutive relations can be established
in a general form without specifying the material beforehand. With the aim of the
application of the general theory to freezing of saturated soil, the physicochemical
structure of the soil is described and the nature of corresponding material parameters
is explained. The resulting model is capable of describing the relevant processes of
the frost phenomenon. The model is reduced to a computationally convenient set
of equations and the finite element implementation is done in one-dimensional case.

Numerial simulation of a soil freezing test is carried out and the results are presented.

2 THERMOMECHANICAL THEORY

The key idea in the application of continuum mechanics to heterogeneous media like a
mixture of several constituents is to extend the conventional definition of continuum.
The discrete structure of matter is disregarded and each constituent is assumed to be
spread over the spatial domain in a continuous manner. Hence, all the constituents
are able to coexist at any point of the region. As a consequence of the smoothing the
variables and functions are continuous and differentiable describing the state of the

medium in some average sense.

The volume fraction 8% of constituent k is defined as the relation of the apparent

density p* and a constant reference (bulk) density 7*:

p=5 M
In addition, the volume fractions satisfy the obvious conditions

Y p=1, 8 >0 (2)
k

2.1 Basic concepts of kinematics

The state of motion of a constituent k at an arbitrary instant of time ¢ is described by a
velocity field U* (Z,t). For a constituent 7 of solid type, it is more convenient to describe

the motion by its displacement field @ (&,t); the velocity U’(&,t) is obviously the



material time derivative %ﬁ" Because constituents have in general different velocities
at the same macroscopic point of the mixture, a reference velocity field U~ (Z,t) is
introduced in order to establish the fundamental principles for the mixture. In the
classical mixture theory [30], the barycentric velocity is used as a reference while in the
models based on Biot’s theory [3], the movement of the solid is taken as the reference
movement. The approach chosen in this paper, allows the reference movement to be

arbitrary and independent of the motion of the material.

The deformations are described either by the rate of deformation

3 [VO* + (VT*)7] (3)
or by the strain

g = Vi + (V)T (4)

The material time derivative of a quantity following the movement of constituent

k is determined by the operator

& =50k (5)

When the material time derivative with respect to the reference movement is intro-
duced, eq. (5) is replaced by

& — & 7y, 6)
where V** is the relative velocity of the constituent k& with respect to the reference
velocity: V¥ = U* — U'*.

The material time derivative of a quantity defined by a volume integral [ QFdV
is established next. Consider a control volume CV bounded by a control sﬁi(ft;ce CS,

which encloses the moving material region V*(t) at an arbitrary time ¢. Using the
Eulerian approach the definition of material time derivative of such a quantity can

then be expressed by
B / Q’“dV=/%D’°dV+/Q"U”°-ﬁdS. (7)
VE(t) cy
When the control volume is following the reference movement eq. (7) takes the form

Q%/s:z%v:% / Q"dV+/Q’°V"*-ﬁdS, (8)

V(t) cv(t) Cs(t)



which can be considered as an Arbitrary Lagrangian-Eulerian (ALE) description of the

material time derivative of a quantity defined as a volume integral.

2.2 Conservation laws and entropy inequality

The general conservation law for a constituent &
%—:/dev=—/3k-ﬁds+/£3’°dv+/e:kdv (9)
VE(t) Sk() VE(t) V(1)

states that the rate of change of a quantity QF within a material domain V* is the
sum of the external supply given by the flux J* through the material surface S* and of
the external supply 8% within the material domain V¥, and of the rate of production
¢* due to interaction of different constituents. Employing eq. (7) and applying the

Gauss’s theorem to the surface integrals, eq. (9) can be brought into the form

/ ¢ty = / [%D’“ + V- (QFTF) + V- k- %k] av. (10)
cy cy

Its local form is directly
¢t = 2ok + V. (Q0F) + V- 3F — B~ (11)

The corresponding conservation law for the mixture is obtained simply by adding the
contributions of different constituents and demanding that the sum of rate of produc-

tions @* vanishes:
> et =o. (12)
k

Introducing the density o* and applying eq. (11) the rate of production of mass of

constituent k£ is obtained
k_ 8 k kytk
0" = Zp* + V- (o*U*), (13)
while the conservation law of mass for the mixture is

> E=o0. (14)
k



It is convenient to introduce a specific quantity g% = ’3—:, and on account of (13) to
rewrite the local conservation law (11) into the form
k
¢ = pFdg + ¢hgk + V. JF — B, (15)
The rate of production of the linear momentum of constituent & is obtained by appli-
cation of (15)
k o - —k
= LR 4 g% — .ok —F (16)

=k
where oF is the stress tensor andf the body force. The balance of linear momentum

for the mixture is
D omk=0. (17)
k

Similary, introducing the specific internal energy e*, the heat flux ¢* and the exter-
nal heat supply r* and making use of (15) the rate of production of energy of constituent

k becomes
k — - — —
O = prdoeh 4 (e — LOMUY)6F — oF VO + A T* + Vg — ok, (18)
and the corresponding balance law of energy for the mixture reads

> =0 (19)

Analogous to the establishment of conservation laws, the second principle of ther-
modynamics is stated. Hence, the rate of production of entropy of constituent k is
~k k
k_ kd® k| kpk A
Vv =p s +5°0 +V.<T) T (20)
where s is the specific entropy and T the thermodynamic temperature. Taking into

account egs. (16) and (18) and introducing the specific free energy ¢*, defined by

Pk =eF — T (21)
the rate of production of entropy (20) can be brought into the form
p ¢ . = eme VT
To* = o*: VO — g (Logpk — £ LT — (yF — 1OF.T*)6% — .0 — 7 (22

The second principle for a set of constituents postulates that the total rate of entropy

production must be non-negative:
>0 (23)
k

If the process is reversible the equality in (23) holds, otherwise the process is irreversible
and the left hand side of (23) is strictly positive.



2.3 Constitutive relations

The fundamental laws established so far are valid for a mixture of any number of arbi-
trary constituents. In order to characterize the physical behaviour of the material and
to treat specific problems, so-called constitutive relations are needed. These equations
describing the response of the material are determined by the variables defining the
state and the dissipative properties of the material and by the expressions of specific
free energy and dissipation functions of the constituents. Here, the thermodynamic
temperature T and the strains ¢* and the volume fractions 5% of constituents are cho-
sen as the state variables. They are suitable for defining the state of a mixture of
liquids and solids whereas in mixtures of gases it is more convenient to replace the

strain by a density and the volume fraction by a mass fraction.

The specific free energy ¥* of a constituent & is a function of the state variables
W* = * (T, 7). (24)

containing all the information wanted of the nondissipative behaviour of the material.
Especially, the influence of different constituents on the behaviour of constituent & is

taken into account by the volume fractions.

The volume fractions, however, are not independent state variables but constrained
by the conditions (2). These constraints are taken into account by including the indi-

cator function Z(4%,..., ") into the free energy of the mixture
S ooyt =" pEE+ TI(BY, .., B, (25)
k k
Hence, the specific free energy * of constituent k is represented by

oF = 4F + (6., B7), (26)

where 9* is the specific free energy of constituent £ without the contribution due to the
constraint (2). The indicator function Z is multiplied byt the temperature in order to
have the specific internal energy e which does not contain Z. The indicator function
is a function R* to R = R U {+oo} [8], [10],

: 1 i)
I, p) = 0 if (6',...,8™) €C, @)

400 otherwise.



The set C C R” is a convex set defined by the internal constraints (2)

C={(B,...,0") eR}>, B =1, BF>0}. (28)

By means of the indicator function the free energy is forced to take only the values

which comply with the constraints.

The essential variables to describe the dissipative behaviour of the material are
the heat flow vectors ¢*, the rates of deformation DF, the rates of production of mass
0% and the relative velocities V** of constituents. The corresponding function is the

dissipation function per unite volume
@ = @ (¢, D8, 0, 7, T,e5, ), (29)

which can also depend on the state variables.

The second principle (23) does not directly give any constitutive laws but rather is
a condition to be satisfied in admissible evolutions of the process. There are two main
approaches to derive them: the one, introduced by Germain [12] and applied in the
previous work of Frémond and Mikkola [9], is based on the theory of pseudo-potentials;
the other ome, introduced by Ziegler [33] and applied in this work, makes use of the

principle of maximal rate of entropy production.

To begin with, the stress tensors are devided into deviatoric and spherical parts

oF =" p", pF= —tuwo®. (30)

On account of the conservation law of mass (13) and the definition (3), the material

time derivative of volume fraction is represented by

ke gk
L gk = %~ B*uDE, (31)

For the nonsmooth indicator function the concepts of subgradient and subdifferential

are employed (see [10])
(B',...,B") e dz(8,...,8"), (32)

i.e. the subgradient defined by the set (B, ..., B") is an element of the subdifferential
oZ.



Making use of (6), (31) and (32) the sum of the material time derivates %wk is

developed with respect to the state variables into the form
k d" » O d k 311; LN P 811)* k[ pk k
Zp Z{p -a?gt-Tﬂ; ok Dy S —B*( BF+ ijaﬁk trD

vk - -
(Bk“LZ”’aﬁ*) +Z[(ﬁkB’+" i >Vﬁ]“(ﬂJBk“”aﬁ*)Vﬁk]'Vk*}
(33)

It follows that the free energy 1* represents a potential: its partial derivatives with
respect to the state variables are forces and its material time derivative are the products
of those forces and the corresponding velocities. The dissipation function ® plays the

role of a potential as well. Introducing the definition
=N (34)
k

its development with respect to the essential dissipative variables according to Ziegler
[33], [34] states

L L P, SR
d = Vﬂq + v W :D 6ertrD +v 39'1‘9 +

o -

>0,  (35)

where

_o (9%, O ok, 0D L, 0D, 0D A
@(aq 't oD D o6t e 1% . (36)

Finally, on account of (22), (33), (34) and (35) eq. (23) obtains the form
S{(- o) ="
[p e aiﬁ:f») e "ﬂk(BkJ"Z’,’ig%i)]”Dk
(o)t (o) e
_ [mk + Xj:(ﬂké" + pkgi;) \vji - ;(511# + pjagk)v,ﬁk 6‘:1;*] N

. Bk p73‘l/;-"" =7 = od
k } : k 77k
_(d; +Tk-+ . __k___]:_%ll.u +v gk)ek} 0
J
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It is required that (37) is satisfied for any real evolution, i.e. for any independent
velocities g%, D', t'DF, 6% and V**. This yields the relationships

1k = ka_wk 0%

v (38)

p*=—p* 351?;5;) —v aiik + (39)
ph= (B4 O dy (40)
st = —%i—f (41)

- = ng% (42)

B . 61};;‘ . 0P

The last equation cannot be written conventionally since the velocities 6% are not
independent but related according to (14). This problem is clarified by an example.

Consider a case, in which e.g. a phase change occurs between the constituents pand g

so that 89 = —6P. The corresponding constitutive equation reads then
- p'?’, i pp L 6(I>
¢4 Zth _ 177e, [} P4 _1 p) _ Y

Considering the equations above some remarks are made:

e The third term on the right hand side in (39) indicates the reaction due to

differences between potentials of constituents.

e The equation (43) can be regarded as a generalization of various diffusion laws

as e.g. the Fick’s law of diffusion and the law of Darcy.

e The equation (44) can be considered as a generalization of the Clausius-Clapeyron
equation, respectively. What is interesting in this equation is that it contains
also the contribution of kinetic energies, which cannot be neglected in defining
the state, if constituents have significant velocities, e.g. high speed flows in

aerodynamics.
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aerobisessa prosessissa syntyy maitohappoa, jota vain aerobinen prosessi voi hajottaa.
Koska visymyksen tunne voimistuu veren maitohappopitoisuuden lisdéntyessd, asettaa
timi rajan anaerobisen energian kehittdmisprosessin kestolle. Ihminen ei my&skéin ky-
kene jatkuvasti ponnistelemaan maksimaalisella aerobisella teholla. Lihasrakenteesta ja
harjoituksesta riippuen suurin mahdollinen jatkuva teho eli metabolinen teho on 40-80%
maksimaalisesta aerobisesta tehosta.

Koska aerobinen teho tuotetaan hapen avulla, on se suorassa suhteessa kiytettyyn happeen.
Kiytetty happiméiri eli hapenottokyky on taas helppo médrittdd sisdédn- ja uloshengitys-
ilman happipitoisuuksien erosta. Jotta vield ruumiin koko otettaisiin huomioon ja saataisiin
vertailukelpoisia arvoja, ilmoitetaan hapenottokyky aikayksikossd kédytettynd happimééri-
ni ruumiin massayksikk6d kohden. Tavallisin yksikké on O, —mi/kg min Suurimmat ha-
penottokyvyn arvot ovat parhailla hiihtdjilld. Ne ovat suuruuusluokkaa 100 ml/kg min.
Tavallisilla ihmisill4 hapenottokyky on vain noin puolet edellisesti eli 40-50 g min.

Ottamalla huomioon eri ravintoaineiden kehittdimé energiamdira kaytettyd happimédria
kohti saadaan, jos hapenottokyky on 100 ml/kg min, seuraavat tehoarvot ko. urheilijalle

¢ hiilihydraateista 35,31 W/kg (teho/ruumiin massayksikkd)

® rasvoista 32,80 " "

* valkuaisaineista 31,05 " "

Koska arvojen erot ovat néinkin pienet, ei ole yllattidvéd, ettd maksimaalinen hapenottoky-
ky korreloi vahvasti kilpailumenestyksen kanssa kestivyyslajeissa. Joskus onkin ehdotettu,
ettd palkinnot jaettaisiin laboratoriokokeiden perusteella. Miten kévisi katsojien télloin?

Energiantuoton matemaattinen malli ([8], [9] ja [10])

Edelli olleen varsin suppean energiantuottoa koskevan esityksen perusteella voidaan asia

pelkistédd seuraavasti:

* Thmiselld on ennen urheilusuoritusta elimistdssidén latenttina tietty energiamiérd E,,
jota ei voida ylittad

* Urheilusuorituksen aikana hidn ponnistellessaan voimalla F<F_, kuluttaa
energiavarastoaan teholla F - v

* Urheilusuorituksen aikana aerobinen prosessi tdydentdd energiavarastoa korkeintaan
maksimaalisella vakioteholla X.

Energiatasapaino antaa tehoyhtélon

£ s Fv )
dt

Energian E(z) on toteutettava alkuehto
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E(0)=E, .

Integroimalia tehoyhtilo (2) voidaan energian rajoitusehto Kirjoittaa muotoon

t
Ey 2 E(f)=Ey+Xt- [F-vdt20 . 3)
0

NEUROMUSKULAARINEN TOIMINTA
Voima ([1] ja [14])

Lihassiie jannittyy supistuessaan ja synnyttdd voiman F, joka on jdnnityksen © ja lihas-
sdikeen poikkipinta-alan A tulo

F=cA .

Jos yksinkertaisuuden vuoksi piddmme lihassdiettd tai jopa koko lihasta prismana, jonka
pituus L, poikkipinta-ala A jatiheys p ovat vakioita, saamme lihaksen massaksi m

m=pLA

Eliminoidaan niistd A, jolloin voimalle F' seuraa kaava

F= @

©|a
3

Koska lihaksen pituus ei tdysikasvuisella endd muutu, voidaan voimaa lisidtd vain
* parantamalla harjoituksella lihaksen kvaliteettia 6/p
* lisiamallid lihasmassaa poikkipinta-alaa kasvattamalla.

Kaavassa (4) kéytetddn usein massan m tilalla lihaksen painoa G =mg, jolloin kaava
kuuluu

F=—"2 . &)

Useissa tapauksissa on helppo 16ytdd sopiva referenssipituus R, jonka avulla voidaan
midritelld pituusparametri p = L/R. Tétd kdyttden voidaan kaavan (5) perusteella mia-
ritelld dimensioton lihasvoiman kvaliteettifunktio k
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8]
k=——o |=—=]|. 6
G/p [ PgR) ©

Kaava (6) johdettiin yksittéiselle lihakselle tai oikeastaan lihassédikeelle. Sitd voidaan kui-
tenkin soveltaa useampien lihasten yhteisvaikutukseen eli urheilijaan kokonaisuutena.
Kvaliteetin k avulla voidaan keskenién vertailla eri kokoisten ja painoisten henkildiden
lihasvoimaa samassa urheilusuorituksessa.

Saman urheilulajin harrastajille pitee kokemuksen mukaan ([11] ja [14]) varsin tarkasti
yksinkertaistava otaksuma, ettd erikokoiset harrastajat ovat yhdenmuotoiset. Télldin
saadaan seuraavat verrannollisuudet

3

Gep eli  peGP

F < p? ei =~ FeG¥.

Voima ja nopeus ([1])
Jokapdiviisissd askareissa ihminen voi tietyissd rajoissa vapaasti valita kidyttdménsd voi-
man ja liikkeidensd nopeuden. Kun urheilusuorituksissa toimitaan suorituskyvyn &éari-
rajoilla, ei enédd voida vapaasti valita voimaa ja nopeutta vaan ne kytkeytyvét toisiinsa. -
Jotta liike olisi mahdollinen taytyy lihaksen voittaa ns. sisdinen kitkavoima a. Jos F on
kitkavoiman ylittivi osa lihasvoimaa ja lihaksen supistumisnopeus on v, kehittidd lihas
tehon

P=(F+a)v .

Jos F,,, on lihaksen isometrisesti (ilman liikettd) kehittdmd maksimivoima, on iso-
toonisissa (liike mukana) kokeissa todettu seuraavan tehoyhtéloén olevan voimassa

P=b(Fp - F) »
jossa b on kokeellinen vakio. Yhdistamalld nimé kaksi tehoyhtdl6d saadaan
(F+a)(v+b)=(Fpax +a)b =Py > (7

jonka mukaan lihaksen maksimaalinen (kokonais)teho on vakio F,,.
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|_ ________ ¥ = -
('b7'a)

Kuva 1. Lihasvoiman ja liikkenopeuden vilinen skemaattinen yhteys

Yhtilo (7) esittdd hyperbelid, joka leikkaa F-akselin pisteessd Fy,, ja v-akselin pisteessd
Vmax = Fnax?/a ja jolla on asymptootit F=—a ja v=—b.

Ratkaistaan yhtil6 (7) vield voiman suhteen

F=ffjr—a;-a . (8)

Yht#ld (8) on johdettu yksittdiselle lihakselle, mutta sitd voitaneen soveltaa laajemminkin.
Todetaan vield, ettd yhdenmuotoisuusotaksuma johtaa verrannollisuuksiin

Py , aoc<I? ja beL .
PSYKOLOGISET TEKIJAT

Kilpaurheilun motivaatiota on pyritty kaikin tavoin parantamaan. Taloudellisten etujen li-
sddminen kuten hyvipalkkaiset toimet, erilaiset stipendit ja runsaat palkkiorahat sekid muut
etuudet vaikuttavat omalta osaltaan. T4rkein motivaatio ja uran alussa ainoa on kunnian-

voittajalle osoitettua huomiota. Myos suggestiota ja hypnoosia voidaan kdyttdd apuna.
URHEILUSUORITUSTEN TEKNIIKKA

Paitsi ettd valmennusmenetelmiit ovat kehittyneet, on my®ds itse urheilusuoritusten tekniik-
ka kehittynyt. T4std muutamia esimerkkejé:

* painonnostossa kyykkytyyli on paljolti sivuuttanut saksityylin

* korkeushypyssi ei endd harrasteta muuta kuin ns. Floppaus-tyylié (yli selké rimaan péin)
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* heittolajeissa (kuulantyonnossd) pyorahdystyyli on voittamassa alaa; keihddnheitossa se
kiellettiin.
¢ mikihypyssi ns. V-tyyli on syrjayttinyt tdysin kaikki muut hyppytyylit [20].

KILPAILUTAKTIIKKA JA SUORITUKSEN OPTIMOINTI

Kilpailussa noudatettavaa taktiikkaa on tutkittu niin psykologiselta kuin myds fyysiseltd
kannalta. Jos urheilusuoritukselle voidaan rakentaa toimiva matemaattinen malli, niin sen
optimoiminen antamalla tiettyjen parametrien eli ohjailusuureiden muuntua johtaa
luonnostaan parhaaseen suoritukseen niin taktiselta kuin fyysiseltdkin kannalta.

Tasta esimerkkejd ovat

¢ oikea voimien ja vauhdin jako hiihdossa, juoksussa [9] ja uinnissa [12]

° sopivat aloituspainot ja lisdykset painonnostossa [13]

URHEILUVALINEIDEN KEHITTAMINEN

On urheilusuorituksia, joissa vélineiden kehittiminen on ollut tuloksen parantumisen kan-
nalta ratkaisevaa. Tédstd muutamia esimerkkejé:

Keihdinheitossa ([11] ja [21]) on itse keihds tehty liitivimmaéksi lisddmé&lld sen paksuutta
ja muuttamalla sen painon jakaumaa. Koska télloin painopisteen ja aerodynaamisten voi-
vakavuus huonontunut. Ti4stéd taas on seurannut, ettd keihds putoaa entistd useammin lap-
peelleen.

Moukarinheitossa on kokeiltu terdspallon painopisteen siirtimistd geometrisestd keskiostd
kiinnityspisteen vastakkaiselle puolelle pain. Niin on saatu moukarin painopisteen pyorih-

Seivdshypysséd tulokset paranivat oleellisesti, kun seipdén materiaalia vaihdettiin:
bambu —teris — lasikuitu —hiilikuituvahviste. Samalla on lisdéintynyt seipédén kyky absor-
boida vauhdista saatavaa liike-energiaa ja muuttaa se hyppééjén potentiaalienergiaksi [3].
Hiihdossa ja mienlaskussa on suksien muoto kehittynyt ja materiaali muuttunut puusta eri-
laisiin kuituvahvisteisiin muoveihin. T#ll6in on lumen hankauskitka pienentynyt ja pitoa
ponnistuksessa on voiteilla parannettava ([3] ja [19]). Oman lisénsd tuloksiin antavat
kevyet pienen ilmanvastuksen omaavat siledkankaiset urheiluvaatteet sekd kengit ja
sauvat. Mikisuksien aecrodynaamiset ominaisuudet ovat myods muotoilulla parantuneet.
Laskijan ruumiin koolla on my&s vaikutusta tulokseen ([17] ja [18]).
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Kilpailu urhejluvilineiden kehittdmisessd on ollut kovaa ja alati lisddntyvdd. Monessa
lajissa on tdytynyt tarkistaa sdéntdja, jotta tilanne pysyisi hallinnassa.

ULKOISTEN OLOSUHTEIDEN VAIKUTUS URHEILUSUORITUKSIIN

On selvii, ettd ulkoiset olosuhteet vaikuttavat urheilutuloksiin. Yleens#d pitdd pyrkid
harjoittelemaan kilpailutilannetta vastaavissa olosuhteissa riittdvan kauan ennen kilpailuja
(ns. akklimatisoitumisefekti). Seuraavassa esitetdén erditd padpiirteitd ulkoisten olosuhtei-
den vaikutuksesta:

Painovoiman pienentyminen liséi heittojen pituutta sekd hyppyjen pituutta tai korkeutta.
Ilman tiheyden pienentyminen pienenti ilmanvastusta ja parantaa anaerobisten suoritus-
ten tulosta. Tami koskee erityisesti pikajuoksua ja pituushyppyé, miksei my6s kolmiloik-
kaa, kuulanty6nto4 ja moukarinheittoa. Kiekon- ja keihédénheitossa pienenee samassa suh-
teessa myos ilman nosto, joten vilineen liitokyky (nosto/vastus) sidilyy ennallaan. Aerobi-
sissa suorituksissa hapensaannin pienentyminen vaikuttaa voimakkaammin kuin vastuksen
pienentyminen. Kestdvyyslajeissa siis tulokset huonontuvat.

Koska ilmanpaineen alentuminen limpétilan siilyessd vakiona pienentdd ilman tiheyttd,
pitee edelld sanottu suoraan ilmanpaineen vaihteluihin esimerkiksi tapauksissa, jolloin
kilpailuja suoritetaan huomattavan korkealla merenpinnasta.

Ilmankosteus lienee urheilijoiden kannalta edullisin, kun suhteellinen kosteus on 50-60%.
Ilmankosteudella on merkitystd ennenkaikkea kestdvyyslajeissa, joissa jadhdytysjdrjestel-
mé ja hapenottokyky joutuvat kovalle rasitukselle. Suuret poikkeamat edullisimmasta kos-
teudesta huonontavat tuloksia kestidvyyslajeissa.

Ilman limpétilalla on myds urheilijoiden kannalta optimiarvonsa [22]. Anaerobisissa
suorituksissa suotuisin lampétila lienee

* suomalaisille urheilijoille 22-24 °C

* Eteld-Euroopan urheilijoille  25-27 °C

* tropiikin maiden urheilijoille 28-30 °C.

Aerobisissa suorituksissa optimilampétila lienee muutamia asteita alempi. Poikkeamat mo-
lempiin suuntiin huonontavat tulosta. Tuuli vaikuttaa padasiassa mekaanisesti. Vastatuuli

vaikuttaa siten kuin lampétilan lasku.
SOVELLUTUSESIMERKKEJA MATEMAATTISISTA MALLEISTA

Edelld olleita perusmalleja voidaan soveltaa hyvinkin erityyppisiin urheilusuorituksiin
[23]. Yksinkertainen malli riittdd usein kuvaamaan urheilusuoritusta ylldttdvén hyvin.
Seuraavassa muutamia esimerkkeja.
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KILPAJUOKSU ([8], [9] ja [23]...[27D)

Prof. Keller on julkaisuissaan ([8], [9] ja [10]) kisitellyt kilpajuoksua ja ratkaissut periaat-
teessa optimaalisen vauhdinjaon eripituisilla juoksumatkoilla. Hén on kéyttinyt liikeyhta-
16ss4 (1) lineaarista vastusmallia. Analyysissdin Keller totesi, ettd jos juostava matka on
ns. kriittistd matkaa pidempi, on optimaalinen juoksustrategia seuraava:

* Juostavan matkan pituudesta riippuen heti 1dhdén jidlkeen n. 1-2 s kiihdytysvaiheen
aikana vauhti kiihdytetidsn maksimivoimalla matkanopeuteen ,

* joka valitaan niin, ettd energiavarasto on vakionopeusvaiheen jélkeen tyhjd eli e=0
juostavan matkan pituudesta riippuen 1-5 s ennen maaliintuloa.

* Viimeiset metrit eli hidastusvaihe juostaan vakioteholla fv =0 siten, etti e=0.
Till6in vauhti hidastuu melkoisesti kohden metabolista nopeutta.

Tutkimuksissa [25] ja [26] on taas kdytetty neliollistd vastusmallia. Vastusmalli ei vaikuta
nopeimpaan loppuaikaan téhtddvain juoksustrategiaan eli vauhdinjaon optimointiin, aino-
astaan numeeriset yksityiskohdat hieman muuttuvat. Lihtoyhtéldiksi voidaan ottaa liike-

fO=Ft)/m< frx » €2et)=E(l)m20 , o=Z/m

ja oletetaan vastuksen olevan muotoa
D
—_— kRv2 + kD(V - V,)Z N
m

missid kp on jalkojen edestakaisesta liikuttamisesta (rotaatiosta) tuleva vastusosuus ja kp,
on ilmanvastuksen osuus. Myotdtuuli on positiivinen eli v, > 0. Lihteessé [26] esitetddn
kertoimille arviot kg =0.0464m™"! ja kp= 0.0033m™%, joten jalkojen rotaatiovastus on
tyynelld sd4lld ilmanvastukseen ndhden yli kymmenkertainen. Liikeyhtilo (1) kuuluu nyt

dv

—=f- kev? —kp(v=v,)> . w0)=0 )
ja energiayhtld (2)

de

gt-=o'—-fv , e(0)=¢y2e(t)20. (10)

Liikeyhtilon (9) integrointi (vertaa [27]) onnistuu analyyttisesti vain jos f on vakio, joten
on parasta turvautua numeeriseen integrointiin.
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Tyynelld sddlld on v, =0, jolloin liikeyhtdl yksinkertaistuu muotoon (k=kg+kp)
muotoon
(11)

dv 2
—+kvi=f .
dt f

Liikeyhtilo (11) voidaan integroida analyyttisesti, kun f = f,.,, on vakio, jolloin saadaan
(12)

orant(5 )
t=—artanh| — | ,
kV \%

2
x= —iln 1- (1)
2k Vv
missd V on médritelty yhtdlossd (15). Yhtdloistd (10) ja (11) seuraa eliminoimalla voima f

(massaa kohti) uusi tehoyhtilo

Incosh(kVt) = Vit - %an , (13)

N
k

L2 )mcmb? @

Suurin mahdollinen nopeus
15)

12
V= (f max/ k) /
suoralla radalla saavutetaan raja-arvona yhtilostd (11), kun f = f,,. . Suurin mahdollinen

jatkuva nopeus eli metabolinen nopeus
(16)

U =(o/k)"

saadaan raja-arvona yhtilostd (14). Edelld kuvattu juoksumalli siséltdé neljd parametria:

k yhdistetty vastus
V tai f,,,, ddrimmdiinen lyhytaikainen suorituskyky
e perusenergiavarasto.
Pisin pikajuoksumatka eli kriittinen matka
Tarkastellaan seuraavaa kysymysté: kuinka pitkén ajan T, eli miten pitkéin matkan D,

juoksija kykenee juoksemaan maksimaalisella voimalla ennenkuin energiavarasto on
tyhjd? Oletetaan yksinkertaisuuden vuoksi, ettd juoksu tapahtuu suoralla radalla.
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Integroidaan energiayhtils (10), jolloin kaavojen (13)-(16) avulla voidaan johtaa
likimadrdinen mutta hyvin tarkka energiayhtil probleeman ratkaisemiseksi:

e(T,) = eq +oT, —fmax%Incosh(kVTc) =eo +V2In2- KV’ -U*)T, =0 .

Téstd seuraa kriittinen aika

2
€0+V In2
_ 17
= 17)

ja vastaava kriittinen matka

_ 30V+U3In2

A —W (18)

Laskut osoittavat, etti 25 s < T, <30 s ja 250 m < D, <300 m.
Juoksu kaarteisella radalla

Vain sadan metrin juoksussa koko matka juostaan suoraan. Muita matkoja pituudeltaan D
juostaan niin, ettd maali on aina viimeisen 100 m suoran pddssd. Tdlldin matkan pituudesta
riippuen lihdetidn joko kaarteeseen tai suoralle. Koska radan pituus on 400 m ja kaarteita
on kaksi, on kaikilla 200 m:114 jaollisilla matkoilla 1iht$ kaarteeseen. Toisin sanoen, jos
D/100m on parillinen kokonaistuku, tapahtuu l:hto kaarteesta. Jos taas D/100m on pari-
ton kokonaisluku, tapahtuu 14hts suoralta. Tavallisimmista kilpailumatkoista vain 300 m ja
1500 m ldhtevit suoralle. Mailimatkoja ei téiss4 tarkastella.

Jos radat numeroidaan sisiradalta alkaen, on normaalikokoisen urheilukentiin radan n
kaarevuusside R(n) metreini

R=R(n)=100/m+1.22(n—1) .

Liahteen [24] mukaan kaarrejuoksussa tulee liikeyht&l6ssd (11) voima f korvata voimalla

fi=\1? = (*/R)",

joka ottaa huomioon kaarrejuoksussa syntyvén keskipakoisvoiman kompensoimisen
lihasvoimalla. Tarkastelu kannattaa aloittaa 400 m juoksulla, jossa matka voidaan jakaa
kuuteen eri vaiheeseen. Tilayhtilot ovat optimivauhdinjaon mukaan seuraavat:
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1.1 Kiihdytysvaihe ensimmadisessi kaarteessa (0 <7< 1)

2
d 2|2 (7 _
dt+kv =_| fmax [R] ; v(0)=0 (19a)
tai
2 2\2

%%+kv2= flﬁu—[%] : v(0)=0 (19b)
dx

Z—v , x(0)=0 20)
e(t) = e, + GOt — frax X(£) » e(0)=¢y . 21

Liikeyhtdlod (19a) ei voida analyyttisest integroida, vaan tdytyy tyytyd numeeriseen
ratkaisuun. Liikeyhtilon (19b) alkuehtoihin v(0) =0 ja x(0) = 0 sovitettu ratkaisu — matka
nopeuden funktiona — saadaan muotoon

2 2Y?
1 iarcsin(—-—(v{,;? }—ln 1-[—@} —(1]2 . (22)

T 2K 1+ (VkR)? | | KR kR v

Kiihdytysmatkan pituus x, saadaan matkanopeusehdosta (johdetaan mydhemmin)
v=u=Vis , (23)

miki antaa

xo(s) = m{é—e arcsin(é) - ln[ 1- (i)z - s:l} . 24

Tissd s on parametri, joka kuvaa voiman kéyttod suoralla. My6hemmin esiintyvéd r on
vastaava parametri kaarteessa.

1.2 Vakionopeusvaihe u = v(ty) ensimmiisessi kaarteessa (fp <7< H)

T4ll6in on voimassa dv/dt =0, u=v(ty), 7 = fraarre/ fmax = vakio, jolloin
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2 2

i e | fi{ )
x(8)=x(ty) +(t—to)u

e(t) = e(ty) + (t — t9)0 —[x(2) = x(t0) |7 frnax -

2. Vakionopeus u ensimmiiiselld suoralla (4, <1<1,)

Tlldin on voimassa dv/dt =0, s = f,,re/ fmax = vakio, jolloin
ku® =s Jmax
x()=x(t))+@—Hu
e(t) = e(t))+ (t — 1)) = [x() = x(1})]$ fnax -
3. Vakionopeus u toisessa kaarteessa (t, <7 <13)

Nyton dv/dt=0, r = fizare/ fmax = vakio, jolloin

2 2
2 2 02 u
ku® = _|r ==
Jrax [R}

x(1) = x(1) +(t —tp)u
e(t) = e(ty) + (t — 1)0 = [X(t) = x(82)] frmax -
4.1 Vakionopeus u toisella suoralla (#; <?<?,)
T4ll6in on taas dv/dt =0, § = fupra/ fmax = vakio, jolloin
k® = § frmax
x()=x(t3) +(t—13)u
e(t) = e(t3) + (t — 13)6 = [x(t) — x(83)]5 fnax -

Yhtiloistd (28) tai (34) saadaan yhtildn (15) avulla matkanopeus

(25)

(26)

27

(28)
(29)

(30)

(31

(32)

(33)

(34)
(35)

(36)
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u=VAs | (37)

Voima r f,,, kaarteessa verrattuna voimaan s f,;,, suoralla eli suhde r/s, jotta nopeus
pysyisi vakiona, saadaan yhtéloistd (25) tai (31) yht&lon (37) avulla. Sen suuruus vaihtelee

1.120 > /s =1+ (I/kR)> 21.076 (38)
n=1 n=8

Tatd (tai sen nelidjuurta) voidaan pitdd kaarteen haitta- tai rasituskertoimena suoraan
rataan verrattuna.

Aika ja matka ennen hidastusvaihetta

Juoksuradan D =400 m geometriasta voidaan p#telld matkat

X =x(4) =1D-R(n)r (39)
X —x =x(t))—x(t) =% D (40)
x3 —xy =x(t3)— x{(t,) = R(n)n 41
x5 =x(t3) =3D . (42)

Laskemalla yhteen energiayhtdlot (21), (27), (30), (33) ja (36) hidastumisvaiheen alussa,
kun t =14, saadaan energia

e(ty) =€, + Oty — froax[(1=P)xg + 5%y +(r—5)3D]=0 . (43)
Samalla tavalla laskemalla yhteen matkayht&lot (26), (29), (32) ja (35) saadaan matka

x4 =x(14) = x0+(t4 —10)Vs . (44)
Koska ehto hidastusvaibeen alkamiselle on e(t4) = 0, seuraa yhtiloistd (43) ja (44) aika

e, +kV2[Vs*' 2ty — (1= r + )%~ (r—5)1 D

k[(V«/E)B - 03] (45)

t4(s)=

Vaikka teoria on johdettu 400 m juoksulle, pitee yhtilo (45) sisédrataa pitkin kaikille pi-
demmille matkoille, jotka ovat 200 m:lla jaollisia. L#ht6 on kaarteeseen ja x saadaan
yhtélostd (24), mutta #, tdytyy ratkaista yhtilostd (19a) numeerisesti.
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Jos suure D/100 m on pariton kokonaisluku, tulee yhtilo (45) korvata yht#lslld

e+ kV2[Vs*' 1y — xq — (r— 5)3(D~ 100 m)]

ty(s)= (46)
] (v45)' -0
ja 1dhtd on suoralle, jolloin #, ja xy saadaan yhtél6istd (12) ja (13)
to(s)= %artanh\/; )
xo(s)=——In(1—s) . 8)
2k

Kaikissa tapauksissa yhtlo (44) antaa hidastusvaiheen alkuun juostun matkan x4(s).
4.2 Hidastusvaihe suoralla (14 <:<T)

Koska e(t) =0 hidastusvaiheessa, tehoyhtildstd (14) seuraa kaksi samanarvoista liike-
yhtdlod

1dv 3

—+kv’ =0 4
34 (492)
1dv2 3

—tkv =0 49b
2 dt (490)

Liikeyhtilostd (49a) voidaan alkuehtoon v(x,)=u=V+/s sovittaen integroida nopeus
matkan funktiona. Tulos on

3 1/3
v(x,8) = U{l + [(_g) 2 _ 1] e—3k[x—x4(:)]} ) (50)

Liikeyhtilon (49b) integraalifunktio, aika nopeuden funktiona, on

(1)

=L 1, V2 +w+U? 1 2v+U
kU6 (v-UP 3 U3 |-

Matkan x — x,(s) juoksemiseen kiytetty aika on nopeuksien avulla lausuttuna

t—1,(s) = [w(x.9)]— V5] . (52)



42

Voimaparametrin s méidrittiminen ja nopein loppuaika T
Kun juoksija ajan T kuluttua on maalissa ja juossut matkan D, tulee olla
D=x(T) ,
jolloin vastaava loppuaika voimaparametrin s funktiona seuraa kaavasta (52)
T(s)=t,(s) + (D,5)] - { V5] . (53)

Loppuaika tulee sitten minimoida suureen s suhteen. Hyvinid alkuarvauksena voima-
parametrille voidaan pitd4 (katso (44)) yhtdlon

x4(8) = x0(8) +[14(S) - 1,(S)]VS =D (54)

juurta S eli ettd energiavarasto olisi tyhjd juuri maaliviivalla. Optimaalisen juoksun loppu-
aika T seki vastaava arvo s optimaaliselle voimankaytolle s f,,, matkajuoksun suoralla
osalla saadaan ehdosta

T =minT(s) . (55)

5>8
Kaarteissa saman vauhdin ylldpitdmiseksi tarvitaan kaavan (38) mukaan hieman
suurempaa voimankiyttéd rf,. . Mitd suorempi rata on, sitd vihemmin lisivoimaa tar-

vitaan kaarteissa. Ulkorata olisi siis nopein, mutta sieltd ei ole helppoa seurata muiden
juoksijoiden matkantekoa.

Maailmanenniitystilastoon sovittaminen

Sovitettaessa mallia maailmanennitystilastoon oletetaan, etti kriittistd matkaa lyhyemmiit
matkat juostaan tiydelld voimalla ja sitd pidemmit optimivauhdin jaolla. Parametrit k ja V
médradvit ajan kriittistd matkaa lyhyemmilld matkoilla. Jos maailmanennitystilasto valilld
50yd (45.72 m) ja 220 yd (201.168 m) puhdistetaan tuulen ja kaarteen vaikutuksesta ja
k#ytetidéin pienimméin neliosumman menetelméid, saadaan parametreille arvot

k=0.0621609 m™!
V=11.1587 m/s
Fnax = 774002 N/kg .

Matkojen 400 - 10000 m maailmanennityksistd on samoin pienimmin nelidsumman
menetelméilld saatu
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e =1740.0 J/kg
U=6.33m/s
0 =15.7663 Wikg .

Kaavoista (17) ja (18) seuraa kriittiselle matkalle

T,=25.89s
D,=277.50m .

Kellerin laskema ([8]-[10]) kriittinen aika oli 27.36 s ja matka 291 m. Vaikka eroa on
jonkin verran, se ei hiiritse tilastoon sovittamista.

Taulukot 1 ja 2 on laskettu edelld esitetyn kvadraattiseen vastuslakiin perustuvan teorian
perusteella. 100 m juoksussa on otaksuttu 2 m/s my&tédtuulta, 200 m matkalla on kiytetty
3. rataa, jota yleisesti pidetdin mieluisimpana ja 400 m matkalla on kiytetty 1. rataa, joka
on hitain. Jos juostava matka on pidempi kuin 400 m, ajatellaan koko matka juostavan
sisérataa eli 1. rataa.

TAULUKKO 1. Maailmanennitysajat eri matkoilla verrattuna teorian mukaan laskettuihin
optimaalisiin aikoihin

Matka D T-ennitys T-teoria §-arvo g;-virhe
(m) (min:sek) (min:sek) (%) (%)
100 9.84 9.87 160.0 -0.334462
200 19.32 19.34 100.0 -0.113972
400 43.29 42.58 73.8653 +1.66373
800 1:41.73 1:41.31 50.7773 +0.416961
1000 2:12.18 2:12.07 46.5051 +0.0800151
1500 3:27.27 3:30.21 41.1318 -1.39687
2000 4:50.81 4:49.87 38.3833 +0.324153
3000 7:25.11 7:29.74 35.8217 -1.02858
5000 12:44.40 12:50.89 33.8287 -0.841429
10000 25:38.09 26:15.53 32.3720 +1.43192

Neliésummana on kiytetty virhealkioiden

( Tenndrys - T;ean‘a
8= | e

I;eon‘

J -100%
i
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1
summaa &2 = Vo1 £,-2
T ri=l
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Virhejakauman keskiarvo on —0.022823 ja hajonta 0.950326 sekd nelidllinen keskiarvo
0.789985 ja vastaava hajonta 0.833517.

TAULUKKO 2. Juoksun eri vaiheiden kesto, pituus ja nopeus

Matka | Kiihdytysvaihe Matkavaihe Hidastumisvaihe
D Iy Xg ty =1 X4—Xg U T-t4, D-x4 W)
(m) (s) (m) (s) (m) (m/s) (s) (m)  (m/s)
400 1.989 11.911 39.670 380.446 9.59 0922 7.643 7.40
800 1.306 5.833 98.734 785.078 7.95 1.268 9.089 6.69
1000 1.214 5.121 129.462 985.153 7.61 1.399 9.726 6.57

1500 1.096 4.262 207.468 1484.750 7.16 1.642 10993 6.45
2000 1.0s1 3.935 287.008 1984.170 6.91 1.811 11.899 6.40
3000 1.001 3.598 446.464 2981.760 6.68 2270 14.646 6.35
5000 | 0.963 3.346 767.442 4980.820 6.49 2481 15.834 6.34
10000 | 0.935 3.167 1569.480 9964470 6.35 5.110 32.365 6.33

Nopeimpaan aikaan tihtd4va juoksustrategia edellyttid suurimmalla osalla matkaa tasaista
vauhtia u, jonka yllidpitdmiseen vaadittava voima on suoralla s ja kaarteessa r =1.12 s
maksimaalisesta voimasta (Taulukko 1). Téma4 tiedetédn jo ennestddn kokemuksesta. Y1lit-
tdvdmpii sen sijaan voi olla, ettd lopussa ei otetakaan nopeaa kirid, kuten useimmiten nih-
ddfin , vaan tapahtuu maitohapoille meno eli kangistuminen tai jopa "sammuminen". Lop-
pukiri merkitsee, ettd matkalla ei ole haluttu tai tarvinnut kdyttd4 koko kapasiteettia. Taulu-
kosta 2 nihdéin, ettd hidastumisvaihe on lyhyt koko matkaan verrattuna. Jos se péfisee pie-
nenkin virhearvioinnin takia alkamaan liian aikaisin, voi koko juoksu menni piloille. Las-
kennallisesti voidaan tutkia, millaiseksi loppuaika muodostuu, jos energiavarasto tyhjenee
vasta maaliviivalla: 400 m:1l4 on aika 0.11 s huonopi, 5000 m:114 0.01s huonompi ja 10000
m:1l4 ei eroa endéd huomaa.

KILPAUINTI ([12])

Liike- ja energiayhtilst ovat samanlaiset kuin juoksussa, vastuskerroin on kuitenkin eri.
Juoksun kiihdytysvaiheen tilalle tulee uinnissa joko veden yldpuolella olevalta ldht&jalus-
talta alkava ilmalento ja siti seuraava linkuvaihe vedessi tai vedessi tapahtuvassa 1dhdodssd
vain ponnistusta seuraava liukuvaihe. Lisiksi voidaan ottaa huomioon kéd4nnokset altaan
péissid. Muuten voidaan laskea kuin juoksussa.

Seuraavat tulokset on syytd huomioida:

* miehilld energiavaraston alkuarvo e, on sama kuin juoksussa
® naisilla ey on 67% miesten arvosta
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* miehilli energiavaraston tdydennysnopeus ¢ on 83% juoksijoiden arvosta
* naisilla ¢ on 95% miesten arvosta

PAINONNOSTO ([10], [111, [13]-[16])

Koska painonnostossa on kyseessd lyhytaikainen maksimaalinen ponnistus, tuotetaan
energia tdysin anaerobisesti. Aerobinen prosessi hoitaa vain nostajan palautumisen uuteen
yritykseen. Jos arvostellaan vain nostotulosta eikd nostoa kokonaisuudessan dynaamisena
tapahtumana, voidaan eri nostajien saman nostomuodon (tempaus tai tyontd) tuloksia
vertaillessa kiyttad kaavassa (6) méadriteltya kvaliteettifunktiota k.

k=——o . (6)

Luonteva kaikille sama referenssipituus on tangon suurimman levyn side R = 22.5 cm,
joka ilmoittaa milla korkeudella nostotangon painopiste on alkujaan lavasta. Jos kaavaan
(6) sijoitetaan F = Mg eli tangon paino ja G = mg eli nostajan paino, saadaan kvaliteet-
tifunktio ilmaistua ns. Riegert'in lukuna eli Ri-lukuna

ri=pM (56)
m

Aikaisemmin mainittu yhdenmuotoisuusotaksuma pitee erityisen hyvin painonnostajiin.
Nostajan massan m ja pituuden L = pR vililla vallitsee tilastollisesti likimd4rdinen yhteys

m=02-p° [ke] (57)
Riegert'in luvun vaihteluvili on tempauksessa 14 < Ri <16 ja tydnndssd 17 < Ri <19.
Painonnoston dynaaminen malli ([15] ja [16])

Painonnoston dynaaminen malli voidaan helpoiten johtaa energiaperiaatteella. Tangon
nostamisessa tehty tyd muuttuu lopulta sen potentiaalienergiaksi.

Jos h on tarvittava korkeus lavan pinnasta, jotta L-pituinen nostaja paasisi tangon alle,
madritelladn nostotekniikkaa kuvaava parametri 0.4 <m=h/L<0.6. Jos nostaja tangon
alle syoksyessidn siirtdd painopistettiddn alaspdin matkan { keskimidrdiselld nopeudelia
V, voidaan vield miiritelld toinen tekniikkaparametri 0.3 <A =£/L<0.5 sekd nopeus-
parametri 1<u=V/[gR/2 <3. Vield mdiritellddn yhdistetty parametri g = (l/u]z.
Niiden lisiksi nostajan voimaa kuvaa suhteellinen voima f (z), joka suhteellisen
korkeuden 0.1<z=y/L<0.7 funktiona on 15< f(z)=F(y)p/mg <30. Tissi F(y) on
nostajan todellinen nostovoima, kun tanko on korkeudella y.
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Tiamin jilkeen voidaan méiritelld uusi dynaamisen noston hyvyysluku eli ns. perfor-
manssi-indeksi PI (= tehty tyd/nostajan massa). Sille voidaan johtaa nostotuloksesta M
lauseke

PI=(np- 1)% (58)

tai suhteellisesta voimasta f(z) integraalilauseke

n-qp
PI= [f(z)dz . (59)
i/p

Performanssi-indeksin vaihteluvdli on tempauksessa 5.8<PI<7.1 ja tydonndssid
59<PI<7.0. Sen avulla voidaan verrata tempaus- ja tyontotuloksia toisiinsa.
Performanssi-indeksi riippuu néet periaatteesa vain voimasta ja nostotekniikan hallinnasta.
Malli kuvaa todellisuutta yli 96.5% tarkkuudella. Mallin avulla voidaan spekuloida
kaavoista (57) ja (59) ihmisen koon rajat [16]

pienin koko: pituus 0.5 m ja massa 2 kg
suurin koko: pituus 6 m ja massa 4 tonnia.

Pienin koko muistuttaa himmistyttédvisti vastasyntyneen lapsen kokoa. Suurin koko taas
on ldhinné suurimpien nisdkkiiden suuruusluokkaa.

KUULANTYONTO ([1], [2], [23] ja [28])

Kuulantyénnostd on julkaistu paljon. Julkaisut pohjautuvat p##asiassa tunnettuihin
kaavoihin "heittoliike tyhjiossd". Niisséd optimoidaan kuulakaaren pituus ldhtokulman o
suhteen pitimalld kuulan irtoamispistettd kédestd tunnettuna.

Niitd ajatuksia mukaellen voidaan seki klassilliselle tyontotyylille ettd pyoriahdystyylille
esittdd samantapainen malli. Ajatellaan, ettd tyontdji vie kuulaa olkapiilldan korkeudella
h vaakasuoralla nopeudella n,. Vartaloaan ja jalkojaan oikaisemalla tyontdjd kohottaa
olkapddnsd korkeudelle H ja antaa samalla kuulalle pystysuoran nopeuskomponentin n,
sekil ojentaa [-pituisen kisivartensa suuntaan [ (vaakatasosta) voimalla F kiihdyttden
kuulan ldhténopeuteen N, lisinopeuden K(PB) avulla. Merkitiiin ng =n§ +n12,, jossa n,
on resultoiva suuntaan ¢ = Arctan(np /n‘,) osoittava kuulan kuljetusnopeusvektori n,
ennen kdden oikaisemista. Mallissa [28] on siis kaksi kulmaa, olkanivelen nousukulma ¢
ja kisivarren tyontdkulma B, joille kummallekin voidaan loytdd optimaalinen arvo
tyonnon pituuden maksimoimiseksi pitden olkanivelen sijaintia tunnettuna mutta kuulan
irtoamispiste sijaitsee ympyrén, jonka sidde on kisivarren pituinen, kehilld. Tilannetta
selventdvit kuvat 2 ja 3.
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Kuva 2. Tyontijin skemaattinen malli seké lahtSkulma oy, tyontokulma B ja vartalo-
kulma v.

Kuva 3. Kuljetusnopeuden ng ja lisinopeuden K(B) vektoraalinen yhteenlasku.
Kantaman optimointi tyént6kulman suhteen ([28])

Lzhdetiiin yleisestd kantaman lausekkeesta tyhjiossd ja kirjoitetaan se muotoon

il(f_) = -J-CEP(IE)- + 2S(ﬁ)[sin a,(B)+ J sin® o, (B) + is%/)ﬁ :|°05 0,(B) (60)

seki kirjoitetaan vield sen rinnalle tarvittavat lisdyhtélot:
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lahtopisteen koordinaatit

xo(B)=( _1) i

& 1 = cosy+Hcosﬁ (61)
z,B) _a. . . 1.

T —H(l s1ny)+s1ny+HsmB , (62)

korkeusparametri S ([3)

I ML
(ﬁ)—2 o E[——I‘—SI ﬁ] (63)

kuulan effektiivinen kiihdytysmatka A = L/!

+%(1—£)sm[3 Jg—f;?;W 2m£( —%sinﬁ)cos(ﬁ—(p) , (64

kyynirkulman & vaikutus
L d
Z=1-sin—|, 65
] sm(2) (65)

kisivarren oikaisusta kuulan saama lisénopeus K (|3)

K(B) =+[2gH(¢/1)(/H)(M/m~sinp) (66)
= \/(np sinfi+n, cos|3)2 + 2gH(;I)[—;L—% - s1nB} (np sinp+n, cosB) 67)

seki kuulan l#htékulma o,

- ny, + K(B)cosp
a,(B)=Arc cot[ n. + K(B)sin Bi‘ g (68)

Niistd ilmenee eri suureiden riippuvuus tyontokulmasta B. Tamin yhtdlosysteemin
optimointi on parasta suorittaa numeerisesti ottaen huomioon ty6ntéjén ruumiinrakenteesta
riippuvat parametrit eli ruumiin osien pituudet a, H ja I sekd kyyndrkulman 8. M on
tyontdjin tyontokdden punnerrusvoima.
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Tyontokulman suhteen optimoidun mallin soveltaminen ([28])

Tarkastellaan tyont#jad, jonka hartian korkeus on H = 1.75 m, kisivarren pituus ! = 0.75 m
(n=1I/H =0.43), jalan pituus ¢ = 1.05 m, alkukyynirkulma 6 = 40°, vartalokulma
y=80° ja yhdenkiden punnerrustulos M =433 kg. Vauhdinoton lopulla kuulan
kuljetusnopeus olkoon n, = 6.15 ms~! ja suunta saakoon arvot ¢ = 0.0°, 30°, Popr = 43.0°
ja 50°. Tulokset on esitetty Taulukossa 3.

Taulukosta nihdiin, ettd jos kuljetusnopeuden suuruus 7, on vakio, sen suunnalla on
erittdin suuri merkitys. Optimisuunta ¢, lienee helpompi toteuttaa klassillisella
tyontotyylilld kuin pydrahdystyylilld. Pyordhdystyylilld tydnnettdessd kuljetusnopeus-
vektori ny niyttdd olevan ldhempéna vaakatasoa, mutta itse nopeus on suurempi kuin
klassillisessa tyylissd.

TAULUKKO 3. Tyontokulman suhteen optimoitu tyonto eri kulman ¢ arvoilla tyhjidssa.

Kuljetusnopeuden suunta ¢

Suure Symboli 0.0° 30° Popr = 43.0° 50°
Optimityontskulma | Bop (©) 48.37 42.12 38.81 36.95
Liahtokulma a, © 26.05 36.52 40.74 42.95
Lambda A 1.36 1.68 1.70 1.68
Irtoamispisteen x, (m) 0.62 0.68 0.71 0.72
koordinaatit Z, (m) 2.30 224 221 2.19
Lihtonopeus N, (ms) 12.10 13.24 13.33 13.27
Nopeudenlisiys K (ms) 7.11 7.16 7.19 7.21
Kantama tyhjossa | X (m) 16.01 20.40 2091 20.75

Ilmanvastus ja tuuli

Optimisektori, johon tydntdsuunnan tulee langeta, on korkeudeltaan pari astetta eli
B,p: £ 1°. Iimanvastus véhentdd tuulettomassa sddssa noin 0.5% edelld laskettuja tyhjio-

tyontotuloksia, ja Bop, on noin asteen pienempi kuin tyhjiossd. Myotituuleen 10 m/s
tyonnettiessd kasvaa f3,, noin puoli astetta ja vastatuuleen 10m/s vihenee vastaavasti
saman verran. Sivutuuli 10 m/s ei vaikuta kulmaan §,,,, mutta lyhentdd edelleen tyénnon
pituutta hieman.
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LOPPUSANAT

Biomekaniikka ja erityisesti urheilun biomekaniikka tarjoavat kiintoisan tutkimuskentéin
alasta kiinnostuneille mekaniikan harrastajille. Kaikki urheilusuoritukset ovat mekaniikan
lakien alaisia. Usein jo varsin yksinkertainenkin malli kuvaa suoritusta yll4ttédvén hyvin.
Mekaniikan ja matematiikan taitajien tulisi muodostaa tutkimusryhmii yhdessi urheilun ja
fysiologian asiantuntijoiden kanssa. Téten voitaisiin laatia kehittyneempiéd malleja, joista
varmasti saataisiin irti myos enemmin tietoa. Unohtaa ei sovi myoskéén, ettd urheilututki-
muksissa tarvitaan aina suoritusten analysoitia varten erilaisia mittauksia ja rekisterdintej.
Se edellyttdd myos tarvittavien laitteiden kehittdmistd ja rakentamista, ellei niitd ole val-
miina saatavilla.

Biomekaniikan alalla on vuodesta 1967 jirjestetty joka toinen vuosi kansainvélinen
kongressi. Vuosina 1975 ja 1995 tdmd kongressi oli Jyviskyldssd. Urheilun ja
biomekaniikan tutkimus onkin Suomessa keskittynyt juuri Jyvéskylddn. Sielld on
yliopistossa liikuntatieteellinen tiedekunta sekd sen ulkopuolella itsendinen Kilpaurheilun
Tutkimuskeskus (KIHU). Myds muiden yliopistojen lddketieteellisissé tiedekunnissa
harrastetaan urheilua tukevaa tutkimusta. Lisdksi maassamme on olemassa muitakin
tutkimuslaitoksia, joiden tutkimusohjelmassa urheilu on mukana tavalla tai toisella.

Suomen Olympiakomitealla on apunaan mm.
¢ teknis-luonnontieteellinen asiantuntijaryhmé
* urheilulddketieteellinen asiantuntijaryhmi

¢ urheilupsykologinen asiantuntijaryhma

¢ valmennuksen johtoryhma.

Niiden ryhmien tavoitteena on varmistaa Suomen kansainvélisen huippu-urheilun menes-
tys. Sen toteuttamiseksi ryhmit kisittelevit valmennuksen kehittdmismédrdraha-anomuk-
sia ja antavat lausuntoja erilaisista tutkimussuunnitelmista seki jéarjestivit tutkijaseminaa-
reja ja osallistuvat muiden jérjestdmiin urheilututkimukseen liittyviin tilaisuuksiin. Asian-
tuntijaryhmis voitaisiin kéyttd4 nidkyvimmin yleisen mielipiteen muokkaukseen, jotta ur-
heilun tutkimiselle painopistealoilla mydnnettdisiin enemmén varoja.

Biomekaniikan ja urheilun niinkuin minki tahansa alan tutkimuksessa poikkitieteellisyys
ja kansainvilisyys ovat tirkeitd ndkokohtia. Erds mahdollinen ulkomainen yhteistyskump-
pani t&lld alalla olisi Tallinnan teknillinen korkeakoulu, jossa on jo aloitettu biomekaniikan
opetus ([25]) insinéorikoulutuksen yhteydessd. Vastaavanlaista koulutusta kannattaisi
harkita my6s meilld Suomessa.
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ABSTRACT

Structural optimization problem with several conflicting and noncommensurable
criteria is considered. A motivation for the multicriteria approach is discussed
and the corresponding vector optimization problem is formulated. Pareto opti-
mal solutions in the design space and minimal solutions in the criteria space are
defined. The basic techniques to generate Pareto optima are briefly described. A
special attention is paid to the concept of conflict and its consequences in mul-
ticriteria optimization. Both local and global conflict in the case of two criteria
are introduced and illustrated.

1. INTRODUCTION

Usually a scalar objective function, which in most cases is the weight of the
structure, is optimized in the feasible set defined by the equality and inequality
constraints. In practical applications, however, the weight rarely represents the
only measure of the performance of a structure. In fact, several conflicting and
noncommensurable criteria usually exist in real-life design problems. This situa-
tion forces the designer to look for a good compromise design by performing
trade-off studies between the conflicting requirements. Consequently, he must
take a decision-maker’s role in an interactive design process where generally
several optimization problems must be solved. Multicriteria optimization offers
one flexible approach for the designer to treat this overall decision-making
problem in a systematic way.

Multicriteria (multicriterion, multiobjective, Pareto, vector) optimization has
recently achieved an established position also in structural design. One reason
for the introduction of this approach is its natural property of allowing partici-
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pation in the design process after the formulation of the optimization problem.
It is generally considered that multicriteria optimization in its present sense
originated towards the end of the last century when Pareto (1848 - 1923) pre-
sented a qualitative definition for the optimality concept in economic problems
with several competing criteria [1]. Some other even earlier contributors have
been discussed for example by Stadler [2]. A wider interest in this subject con-
cerning the fields of optimization theory, operations research and control theory
was aroused at the end of the 1960s and since then the research has been very
intensive also in engineering design [3, 4, 5]. Especially in structural optimiza-
tion, the first applications in the English-language literature appeared in the late
1970s [6 - 10] giving an impetus to emphasizing the decision-maker’s viewpoint
also in the design of load-supporting structures.

The purpose of this article is to introduce the basic concepts and methods used
in multicriteria structural optimization. Special attention has been paid to those
fundamental matters which are common to most of the published applications.
These general ideas have been illustrated by an example problem where the em-
phasis is rather on the multicriteria view than on the numerical solution tech-
niques. Specifically, the multicriteria problem formulation and the generation of
Pareto optima as well as the concept of conflict are considered. The decision-
making process for finding the best Pareto optimal design is also briefly dis-
cussed.

2. CRITERIA AND CONFLICT

In structural optimization one is faced by the question of which criteria are
suitable for measuring the economy and performance of a structure. Such a
quantity that has a tendency to improve or deteriorate is actually a criterion in
nature. On the other hand, those quantities which must only satisfy some im-
posed requirements are not criteria but they can be treated as constraints. Most
of the commonly used design quantities have a criterion nature rather than a
constraint nature because in the designer’s mind they usually have better or
worse values. As an example of a strict constraint the structural analysis equa-
tions or any physical laws governing the system can be mentioned. They repre-
sent equality constraints whereas different official regulations and norms gen-
erally impose inequality constraints. For example such matters as space limita-
tions, strength and manufacturing requirements are often treated as inequality
constraints. One difficulty appears in choosing the allowable constraint limits
which may be rather fuzzy in real-life problems. If these allowable values cannot
be determined it seems reasonable to treat the quantity in question as a crite-
rion.

An important basic property in the multicriteria problem statement is a conflict
between the criteria. Only those quantities which are competing should be
treated as criteria whereas the others can be combined as a single criterion or
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one of them may represent the whole group. In the literature the concept of the
conflict has deserved only a little attention while on the contrary the solution
procedures have been studied to a great extent. In the problem formulation,
however, it is useful to consider the conflict properties because it helps to cre-
ate a good optimization model. For example in [11] this topic is discussed in
general terms and in [12], where truss design is studied, the concepts of a local
and global conflict have been proposed. According to the latter presentation the
local conflict between two criteria can be defined as follows. Functions f; and

Jf; are called collinear with no conflict at point x if there exists ¢>0 such that
Vf(x)=cVf,(x). Otherwise, the functions are called locally conflicting at x.

Consequently, any two criteria are locally conflicting at a point in the design
space if their maximum improvements are achieved in different directions. The
angle between the gradients can be used as a natural measure of the local con-
flict. Even if two criteria are locally conflicting almost everywhere in the design
space they still can achieve their optimum value at the same point. Thus it
seems necessary to consider separately the concept of the global conflict where
also the feasible set is involved. Functions f; and f; are called globally con-

flicting in Q if the optimization problems migf,-(x) and mig J;(x) have different
Xe Xe

solutions.

These concepts have been illustrated in Figure 1 where the relevant situations in
the design space are shown. In structural optimization, usually the weight and
any chosen displacement are both locally and globally strongly conflicting
quantities. Displacements often achieve their minima at the same point but still
they may be locally conflicting in that part of £ where the best design locates.

3. MULTICRITERIA PROBLEM AND PARETO OPTIMALITY

The choice of the design variables, criteria and constraints certainly represents
the most important decisions in structural optimization because the designs
which will be available in the continuation are fixed at this very early stage. For
example in scalar optimization the minimization of a single criterion in the fea-
sible set usually results in one optimal solution only. Certainly numerical com-
putations are needed to get that optimum design but, as a matter of fact, all the
decisions have been made already in the problem formulation.

The multicriteria problem inherently offers a possibility to perform a systematic
sensitivity analysis for the chosen criteria. The difference between criteria and
constraints is that the designer wants to improve the value of a criterion
whereas this kind of desire is not associated with the constraints. As a natural
consequence of the separation of the criteria f;, I = 1,2,...,m, and the con-
straints the following multicriteria problem is obtained:
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FIGURE 1: Conflict of criteria: (a) no conflict; (b) local complete conflict; (c)
local conflict; (d) global conflict in the case of two design variables. Points
X, and X, represent the individual minima of the criteria f; and f; in Q,

i min

respectively.

r;éig[]ﬁ(x) L) S T (1)

Here x=[x1x2-~-x,,]T represents a design variable vector and Q is the feasible

set in design space R". 1t is defined by inequality and equality constraints in the
form

Q={xeR"g(x)< 0, h(x)=0}. 2)

By using the notation f(x) = [f1(x) So(x) .. f,(x) ]T for the vector objective
function, which contains the m conflicting and possibly noncommensurable cri-
teria as the components, the image of the feasible set in criteria space R™ is
expressed as

A={zeR"z = f(x), xeQ}. 3)

This is called the attainable set and apparently it is more interesting for the de-
cision-maker than the feasible set. Usually there exists no unique point which
would give an optimum for all m criteria simultaneously. Thus the common op-
timality concept used in scalar optimization must be replaced by a new one, es-
pecially adapted to the multicriteria problem.
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Only a partial order exists in criteria space R™ and thus the concept of Pareto
optimality offers the most natural solution in this context. A vector x*e Q is
Pareto optimal for problem (1) if and only if there exists no xe Q such that
fi(x) £ fi(x*) fori=1,2,...,m with f;(x) < f;(x*) for at least one .

This definition states that x* is Pareto optimal if there exists no feasible vector
x which would decrease some criterion without causing a simultaneous increase
in at least one other criterion. In the literature also some other terms have been
used instead of the Pareto optimality. For example words such as nondomi-
nated, noninferior, efficient, functional-efficient and EP-optimal solution have
the same meaning. Here only the mathematical programming problem has been
shown and applied but the corresponding control theory formulation can be
found for example in [4, 5].

Two different spaces R" and R™, called the design and the criteria space, appear
in a multicriteria problem. In order to avoid any confusion it is necessary to
distinguish the optimal solutions in these separate spaces. Consequently, the
vector z*= f(x*), which represents the image of the Pareto optimum x* in the
criteria space, is called the minimal solution. Optimality concepts in both
spaces have been illustrated in Figure 2 where the bicriteria case has been con-
sidered. So-called weak solutions, which are also shown in the figure, and their
existence in structural optimization have been discussed in [13]. In scalar opti-
mization, one optimal solution is usually characteristic of the problem, whereas
there generally exists a set of Pareto optima as a solution to the multicriteria
problem. Mathematically, problem (1) can be regarded as solved immediately

2 Pareto L Zymin :n?r? iknil‘\;l
optima solutions

fix

—_— minimal
curve

Z2min

X Z
(a) (b)
FIGURE 2: Pareto optimal and minimal solutions in bicriteria case with two

design variables: (a) feasible set and Pareto optimal curve; (b) attainable set and
minimal curve. Points x,,;, and x,_, in the design space correspond to points

Zimin a0d Z,, in the criteria space.
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after the Pareto optimal set has been determined. In practical applications, how-
ever, it is necessary to order this set further because only one final solution is
wanted by the designer. Thus he must take a decision-maker’s role and intro-
duce his own preferences to find the best compromise solution among Pareto
optima.

4. WHY MULTICRITERIA APPROACH?

The formulation of a vector optimization problem, where several competing
criteria are minimized simultaneously, may arouse confusion and criticism be-
cause a set of Pareto optima rather than one optimal design is obtained as a so-
lution to problem (1). Questions concerning the advantages of the multicriteria
approach compared with the traditional single criterion or scalar optimization
can spring up in different contexts. Next some major drawbacks of the scalar
approach are introduced by using a simple two-bar truss example.

The truss, loading and numerical design data are given in Figure 3a. Two com-
peting criteria, the material volume ¥ of the truss and the vertical nodal dis-
placement A of the loaded node, are chosen for minimization. They are most
evidently conflicting because a light structure is obtained by using small member
areas and a stiff structure by using large member areas. These cross-sectional or
member areas 41 and A, are the design variables, ie the components of the de-

sign variable vector x=[4,4,]". Stress constraints, where ¢" is the upper and

o’ the lower limit for stresses, are imposed. Upper limits 4" for the member
areas are given for convenience, just to make the feasible set compact. The
bicriteria problem is

min[V'(x) Ax)]" (4n
subject to
o'<o,(x) <o,

A<4', i=12. (4)2
The feasible set Q, which in this isostatic case is the rectangle ABCD shown in
Figure 3b, consists of those member area combinations which do not violate the
above constraints. Point A corresponds to the minimum material volume solu-
tion and point C to the minimum of displacement A in the feasible set. These
criteria are both locally and globally strongly conflicting achieving their minima
at the extreme vertices of the feasible set.

Pareto optima of problem (4) consist of the polygonal line AEC depicted in
Figure 3b and the corresponding minimal curve shown in Figure 3¢ lies on the
front boundary of the attainable set A. These solutions offer large flexibility for
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FIGURE 3: Bicriteria truss example: (a) Structure, loading, and displacement
criterion A; (b) feasible set Q in design space and Pareto optimal polygonal line
AEC; (c) attainable set A in criteria space and minimal curve AEC. The broken
line inside A corresponds to part ADE on the boundary of Q. Design data for
the problem, given in kN and centimeters: F = 10 kN, ¢* = 10 kN/cm? 4* =2
cm? L =200 cm, ¢’ = -10 kN/cm?, E = 2-10* kN/cm”.

a designer who is looking for the best compromise solution among Pareto op-
tima. It should be noticed that every attainable solution inside A or on the
boundary ABC is dominated by (ie. is worse than) some of the minimal solu-
tions. At this stage of the design process it is also possible to consider other
aspects, say aesthetics or manufacturing cost for example, which were not in-
cluded in the optimization problem.

If the truss design problem at hand were treated by scalar optimization, proba-
bly one of the two commonest approaches discussed in the sequel would be
applied. The first approach is to combine both the criteria linearly into one ob-
jective function and solve the scalar problem

min AV(x)+ (1-M)A(), 0<A<1, (5)

where a fixed weighting factor is used. It is obvious that the optimal solution of
problem (5) strongly depends on the value of parameter A, varying from the
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minimum material volume solution (point A in Figure 3, obtained by A = 1) to
the minimum displacement solution (point C in Figure 3, obtained by A = 0).
The first thing that goes wrong is the evaluation of correct weights. The nu-
merical values of the material volume and the nodal displacement have different
magnitudes and for example a choice A = 0.5 gives almost the minimum mate-
rial volume solution if cm units are used. Different normalizations like

fix)="t—=, i=12,..m, (6)

can be used to alleviate this difficulty. Here f,;, represents the minimum value
of criterion f,(x) in Q. Even if some normalization is applied, this approach
may give poor results because weights A, actually are parameters, which also
have better or worse values, in the overall decision-making process. Multicrite-
ria optimization treats them as parameters which the designer should choose in
an optimal way. In addition, it is extremely difficult to recognize a possible
duality gap in some nonconvex problems by just applying formula (5). Only the
multicriteria approach reveals the conditions under which Pareto optima may be
lost by solving scalar problem (5), no matter what weights are used.

Another frequently used scalar approach in the case of several criteria is to
choose one criterion into the objective function and to remove the others into
constraints. Usually a criterion which is considered as the most important, is
chosen as a scalar objective function. In the truss example the material volume
of the structure could be a single criterion to be minimized and the nodal dis-
placement A is restricted by some chosen upper limit €. Then the scalar optimi-
zation problem

mig V(x) ("
subject to
A(x)<e, (7)2

where Q2 represents the original feasible set defined by stress and member area
constraints (4,), is formulated. Again the optimal solution totally depends on
the chosen allowable value €. Often in practical design the value of € is rather
fuzzy and difficult to fix in advance. More freedom is obtained if it is used as a
parameter, which also has some optimal value, in the design process like the
multicriteria approach does.

As this bicriteria truss example shows, the traditional single criterion approach
may give poor results in the case where two or more conflicting criteria exist.
No matter what scalar optimization formulation is used, there always appear
parameters which should be fixed before optimization. If they are used as pa-
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rameters and varied heuristically during optimization, the scalar method do not
offer any systematic procedure to find good values for these parameters. The
Pareto optimality concept offers a collection of optimal designs which should be
pursued by any chosen method. The multicriteria decision-making based on the
vector optimization problem evidently gives a systematic approach to rationally
search for good designs. Moreover, it should be stressed here that if the number
of the criteria increases (m > 2) then the choice of a correctly working scalar
problem for optimization becomes more difficult than in this bicriteria truss
problem. The graphical reasoning cannot be applied to verify if the used scalar
approach produces Pareto optima or somethig else.

5. GENERATION OF PARETO OPTIMAL SOLUTIONS
5.1 Linear weighting method

Several methods for generating Pareto optima to a multicriteria optimization
problem have been developed. Usually their application leads to the solution of
several scalar problems which include certain parameters. Typically, each pa-
rameter combination corresponds to one Pareto optimum and by varying their
values it is possible to generate the Pareto optimal set or its part. In the sequel
those fundamental methods, which have been applied repeatedly in the struc-
tural optimization literature, are briefly described. They are also illustrated
graphically in the criteria space in order to show the reasons for their different
potential to cover the Pareto optimal set.

The linear weighting method combines all the criteria into one scalar objective
function by using the weighted sum of the criteria. If the weighting coefficients
are denoted by w,, i = 1,2,...,m, this scalar optimization problem takes the form

m
min » w, f,(x 8
921  £i(%) (8)
where the normalization

w,=1 %9

can be used without losing generality. By varying these weights it is now pos-
sible to generate Pareto optima for problem (1). The main disadvantage of this
method is the fact that only in convex problems it can be guaranteed to generate
the whole Pareto optimal set. According to the author’s experience, such non-
convex cases where the weighting method fails to generate all Pareto optima are
not typical of structural optimization. Some simple truss examples, which dem-
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onstrate that this phenomenon really exists in applications, have been reported
in the literature [14]. The geometrical interpretation of the weighting method in
a bicriteria problem is shown in Figure 4a where it corresponds to the case p =
1. It is interesting to notice that problem (8) expressed in the criteria space has
the form

m

inSw z 10
ggg;w, Z, (10)

where z, = f,(x) for i=1,2,...,m. Thus a linear objective function is minimized
in the attainable set.

5.2 Constraint method
One natural technique is to replace the original multicriteria problem by a scalar
problem where one criterion f, is chosen as the objective function and all the

other criteria are removed into the comstraints. By introducing parameters g,
into these new constraints an additional feasible set

Q) = {xeR"fi(¥)<e, i=12,..,m, ik} (11)

2 minimal
curve

minimal
curve

zid |:;=lc::I \p=1

z, z,

(@ (b)

FIGURE 4: Geometrical interpretation of norm and constraint methods in
bicriteria case: (a) linear weighting method (p = 1), weighted quadratic (p = 2)
and minimax (p = oo ) methods illustrated in the criteria space; (b) constraint
method where f,(x) is chosen as the scalar objective function and f,(x) is re-
moved into the constraints.
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is obtained. If the resulting feasible set is denoted by §k=Qka, the
parametrized scalar problem can be expressed as

min £, (x). (12)

Here each parameter combination yields a separate problem usually correspond-
ing to one Pareto optimum. This technique, called the constraint method, can
generate the whole Pareto optimal set also in nonconvex cases and it has been
applied to some extent in structural optimization. If so-called weak solutions
[13] shown in Figure 2 exist, the constraint method can be modified to cover
that case as well but then equality constraints appear and several new scalar
problems must be solved for just one Pareto optimum. The geometric interpre-
tation of the method is given in Figure 4b where z; is minimized in the set A,

which is the image of the set Q,.

5.3 Norm methods
Norm methods are based on the minimization of the distance between the at-
tainable set and some chosen reference point in the criteria space. In the litera-
ture they have also been called metric, distance, and global criterion methods.
The scalar problem is

min d,(x) (13)

where the distance function
" Ve
d,(x) = {Zw,»[ff(x)—ff]"} (14)
i=1

has been widely used in structural optimization. The reference point < R™ may
be chosen by the designer and often the so-called ideal or utopia point

= [f1mm 2 nin "'fmmin]T (15)

can be found in the applications. This ideal vector contains all the individual
minima of the criteria in Q as components. Thus it is necessary to solve m sca-
lar optimization problems

min fi(x), i=12,.m (16)
xeQ



64

if % is used as a reference point . The normalization given in equation (9) is
also applicable for the weights w; here. Usually Z and p are fixed and w, are the
only parameters but also other possibilities exist [13]. If the origin is used as a
reference point, i.e. £=0, then the extreme case p=-c in equation (14) corre-
sponds to the weighted minimax problem

rnlg max[w,.f,.(x)], i=12,..m an
XxXe I

which is capable of generating all Pareto optima also in nonconvex problems.
The other extreme case p = 1 can be interpreted as the linear weighting method.
Correspondingly, the case p = 2 might be called as a weighted quadratic
method. All these three cases have been illustrated together in Figure 4a. In
practical applications, where the numerical values of the noncommensurable
criteria may have huge variations with respect to each other, it is useful to nor-
malize all the criteria before computations. One possibility is to use the formula

= e @

where all the nondimensional criteria are limited to an equal range, i.e.
fi(x)e[0,1], i=1,2,...,m. The quadratic case p = 2 seems to be the most popu-
lar choice in the literature but also both of the extreme cases have been used
frequently in structural design applications.

6. CONCLUSION

The vector optimization problem and the Pareto optimality concept offer a clear
and sound basis for any further development in the multicriteria optimum design
theory. The proper control of the decision-making process becomes possible in
this way because then the choice can be restricted to designs which are optimal
in an undisputed mathematical sense. Also, the comparison of different methods
is facilitated by these concepts. For example the question of which technique
should be applied in a certain problem to generate good designs, may be often
answered by comparing how many Pareto optima different methods can achieve.
Whatever method the designer may choose, he should check whether it com-
putes Pareto optima or something else. In the latter case the method is useless,
and in the former case it should be able to generate as many Pareto optima as
possible. If the designer wants to generate good points by just varying the con-
straint limits in a scalar problem, he has several possibilities. Both equality and
inequality constraints can be applied in many different ways. The choice among
these alternative methods can be made reliably only by checking which tech-
nique gives Pareto optima. The choice of the method by intuition may lead to
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undesired designs. Sometimes it has been suspected that the solution of a mul-
ticriteria problem depends on the chosen decision-making procedure. This is
true in the sense that usually experience is being acquired by the decision-maker
during the design process. If the decision-maker’s preferences remain un-
changed during the process and the Pareto optimality concept is used, then any
available procedure should give the same result provided that the designer
makes consistent decisions. The natural requirement is that the chosen method
must be able to generate also the best compromise solution. Thus in the case of
unchanged preferences the result can be regarded as a function of the person
making decisions rather than a function of the design procedure.

The future of the multicriteria approach looks promising also in structural op-
timization where it has recently reached industrial applications. A multicriteria
module, which generates Pareto optimal solutions, can be expected to be an es-
sential part in any new optimization-oriented finite element package. The com-
putation of a covering collection of Pareto optima may be expensive for large
scale problems because several structural and sensitivity analyses must be per-
formed for each solution. This matter together with the graphic or numerical
representation of the results, which should be modified into a form that is suit-
able for the decision making, will be one challenge in the field.
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Abstract

Three new families of finite element methods for the Reissner-Mindlin plate
bending model are described. The methods are based on a combination of the
stabilized formulation presented in [29] and the MITC reduction technique [7).
The families use identical basis functions for the deflection and the rotation.
Optimal order of convergence, independent of the plate thickness, is proved.

1 Introduction

The purpose of this paper is to present an error analysis of our stabilized MITC plate
bending elements. In earlier communications (22, 21] we have presented results of
numerical calculations with these elements.

In the methods we combine the shear projection technique of the original MITC
elements [7, 5] with recent stabilized formulations [17, 29]. The advantage of this,
compared to both the MITC elements and the previous stabilized formulations, is
that identical shape functions can be used for all unknows. Compared to more tradi-
tional methods, a stabilized formulation gives a more well conditioned stiffness matrix.



68

Another big advantage of these new families of methods is that they include convergent
triangular linear and quadrilateral bilinear elements. These lowest order elements were
introduced in [10] in connection with a general analysis of the MITC elements. In that
context, the modification is in the spirit of the ”trick” introduced by Fried and Yang
already in 1973 [14], and more recently analyzed by Pitkaranta [27]. This is, however,
not more the case when the methods are viewed as a stabilized formulations. Then,
they arise from a very systematic approach, cf. [17, ?, 22] and the presentation below.
Recentely we have used the same approach for designing methods for the Naghdi shell
modell in a bending dominated state [12].

We have also been given the opportunity to implement our methods in the
SHIPFEM code of the Ship Laboratory, Technical Research Center of Finland (cf.
(23, 25]), which is greatfully acknowledged.

Recently, Lyly has observed [20] that our linear triangular element is equivalent
to an ealier formulation (which from the outset looks different) given by Tessler and
Hughes [31]. Later the formulation of Hughes and Taylor has been rediscovered by Xu,
Aurichhio and Taylor [33, 30, 4] (in a form that is quite easily seen to be equivalent to
that of Tessler and Hughes). The equivalent of the linear stabilized method and that
of Xu et al. has independently been proved by Lovadina [19]. Due to this equivalence
the analysis of [10, 20, 19] justifies these other metods.

In this paper we will first recall our methods and then derive the basic error es-
timates, which show that the methods converge optimally and independently of the
relative thickness of the plate. In an engineering vocabulary we show that the elements
are completely free from locking.

2 Notation and preliminaries

We consider the Reissner-Mindlin plate bending model and assume that the plate
is clamped along its boundary. Denoting the midsurface of the plate by @ C RR2,
the variational problem is: find the deflection w € H(Q) and the rotation vector
B € [HE(Q)]? such that

Gt’a(B,n) + Gri(Vw — B, Vv —m) = (f,v)  V(v,n) € [H(Q)F. (2.1)

Here G is the shear modulus and « denotes the shear correction factor. f is the
transverse load and ¢ is the thickness of the plate. The bilinear form a is defined as

a(B,m) = §{(=(8), () + (—)(div B, div )}, (22)

where () is the small strain tensor and v is the Poisson ratio. As usual, the L,-inner
products are denoted by (-,-)p and the corresponding norms by || - ||o.p, with the
subscript D dropped when D = §).

The shear force @ and bending moment M are obtained from

Q = Grt(Vw — B8) (2.3)
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and o
=B + (1=

M= )div 8 I}, (2.4)

1—-v
respectively.

For the theoretical analysis one assumes that the load is proportional to the third
power of the plate thickness, i.e. f = Gt°¢ with g fixed independent of ¢. With this
assumption the problem (2.1) has a finite and non-trivial solution in limit when ¢ — 0

(cf. [9]). Hence, the problem becomes: find (w, 8) € [H3(Q)]® such that
a(B,m) + k2 (Vw — B, Vv —q) = (g,v)  V(v,m) € [H(Q)P"- (2.5)
Introducing the scaled shear force
g = st (Vw - B) (2.6)

as an independent unknown, the mixed form of (2.5) is: find (w, 8,q) € [H3(Q))® x
[L2()]? such that

a(B,m) + (¢, Vo —n)=(g,v)  Y(v,m) € [H;(Q (2.7)
£ 1%(q,s) — (Vw—B3,5) =0 Vs € [Lo(Q)].

The strong form corresponding to this system is obtained by integrating by parts:

LB+q = 0 4, (2.8)
—divg = ¢ inQ, (2.9)
-k 2q+Vw—-B8 = 0 inQ, (2.10)
w = 0 ondf, (2.11)
B 0 on 0N (2.12)
Above the differential operator L is defined through
1
Ln = 2 div{e(m) + (3 - —)diva I}, (2.13)

where div stands for the divergence of second order tensors and I is the unit tensor.

3 The finite element methods

We let Cj, be the finite element partitioning of { into triangles or convex quadrilaterals
and define the finite element subspaces for the deflection and rotation vector with the
index kK > 1 as

Wi = {ve HXQ) | vk € Re(K), VK €Ch}, (3.1)
Vi = {ne[Hy QP | nk € [Re(K)P, VK € Ch}, (32)
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where R;(K) is a space of polynomials of degree < k defined on K. We point out that
this means that equal basis functions are used for the deflection and both components
of the rotation.

The shear energy will be modified by interpolating with the MITC technique.
For an element K € Cj an auxiliary space Ix(K) and an MITC reduction operator
Ry, : [HY(K)]* — I'y(K) are introduced.

The finite element methods for the problem (2.1) are then defined as follows: find
(wr, Br) € Wy, x V', such that

Bh(wh»ﬂh;van) = (fav) V(‘U, Tl) € Wi x V. (33)
The bilinear form By, is defined as
Bh(w,ﬁ;v,ﬂ) = Gt3a(ﬁ»7l) -« Z h?{(LﬂaL'ﬂ)K (34)
KeCy,
+3 (Lﬁ) (Vw — RyB — ahk LB, Vv — Ryn — ahk L)k
g t2 + mah%- h K ’ K 5

Here hg denotes the diameter of the element K € Cj, and « is a positive constant for
which an upper bound will be defined below.

The different methods will then be defined by specifying the spaces Rj(K) and
I';(K) together with the reduction operator Ry,.

From the solution (ws,B) to (3.3), the approximations for the shear force and
bending moment are obtained from

Grt?
Quk = (Euz—ah}{)(vw" — RyB, — ak%LBy)x VK €C, (3.5)
and o
M = =—{e(Br) + (5 f —)div B 1}, (3.6)

respectively. An alternative way to determine the approximate shear force is to calcu-
late it through the equilibrium equation

Qux = =G’ LBuyk, YK €Ch. (3.7)

This is, of course, reasonable only when &k > 2.
Next, let us define the different methods.

Method I
We let K be a triangle, Ry(K) = P(K) with k£ > 1 and denote by

Iy(K) = [Pies(K)] © (y, —2) Pe-a(K), (3.8)

the rotated Raviart-Thomas space [28]. Here Py_;(K) is the space of homogeneous
polynomials of degree k¥ — 1. The reduction operator is defined through the conditions

/;[(Rhn —1n) Tlvds =0, Vv € P,_y(E), for every edge F of K, (3.9)
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and for k > 2
/K(Rhﬂ —m)-rdzdy=0, Vre [Pi_s(K)]2. (3.10)

Above 7 is the tangent to the edge E.

Remark 3.1 For linear elements with £ = 1 it holds
Lyg =0, VK €C,, VeV, (3.11)

and so the bilinear form B}, reduces to

Gxt®

m) (Vw - Rhﬂ, Vv — Rh'f])K. (3.12)

Bi(w,B;v,m) = Gta(B,n) + Y (

KeCy

This gives our linear element (introduced in [10]), which is equivalent to the elements
of Tessler-Hughes [31] and Xu et al. [33, 30, 4]. Taking o = 0 we get an unstable
element introduced by Hughes and Taylor [18]. In the above mentioned papers we
have not found any remark showing the near relationship between this element and
the elements later considered by the same authors. =

Remark 3.2 The MITC7 element [6] is obtained from Method I by choosing a = 0,
k = 2, and taking R,(K) = P,(K) @ span{A;A2)s} in the rotation space V.. Here
X, 7 =1,2,3, denote the barycentric coordinates of K. m

Remark 3.3 With a = 0 and ¥ = 2 one obtains an element proposed in [26]. The
element is unfortunately not optimally convergent. m

Method II

Now K is a quadrilateral and Re(K) = Qu(K) with k > 1. We let Jx be the Jacobian

matrix of the mapping Fx : K — K (K is the unit square with coordinates ¢ and 1)

and define .
I(K)={n|n=Jg"noFg', 7 € I\(K)}, (3.13)

where Jx7T is the transpose of Ji', and
Tu(R) = Pic1i(K) x Pega(K). (3.14)

This is the rectangular rotated Raviart-Thomas space with

Prun(K) = {v | v=>Y3 a;&'n for some a;; € R}. (3.15)

=0 j=0
The reduction operator Ry, : [HY(K)]* — I't(K) is now defined through

Run = JgT Ry Ik, (3.16)
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where Ry : [H'(K)]> — I(K) is an operator satisfying the conditions
/E[(Rk'f; —#)-Tlvds =0, Vv € P_y(E), for every edge Eof K, (38.17)

and in the case if k£ > 2

A ~

/R (Rpiy — @) -7 dedn =0, ¥r € Pyoypa(K) x Pugp1(K). (3.18)

Remark 3.4 If k£ = 1 it is possible use the reduced bilinear form (3.12). By doing
this we get the stabilized MITC4 element [24], and if we further choose a = 0 we
obtain the original MITC4 element of Bathe and Dvorkin [8]. =

Method IIT
Again, K is a quadrilateral but now we choose Ry(K) = Q%(K) = Qx(K) N Pry1(K)
(isoparametric) with k& > 1. For this method we define

Li(K) = [P(K)* \ span{(€*,0), (0,7%)}, (3.19)

which is the rotated rectangular Brezzi-Douglas-Fortin-Marini (BDFM) space [11].
The operator Ry, is defined as in (3.16) with Ry satisfying

./E[(Rkﬁ ~f)-Tlvds =0, Yo € P_y(E) for every edge E of K, (3.20)
and for k > 2
/K (Rgiy — ) - v dédy = 0, Vr € [Pu_y( K. (3.21)
Remark 3.5 The MITC9 element [6] is obtained from Method III by taking & = 0,
k =2 and R,(K) = Q(K) in the rotation space V;. =
Remark 3.6 For all three methods it holds
Rth = V’U, Yv € Wh.

This property is used in analysis below. =
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4 Error analysis

As mentioned the error analysis should be done for the scaled problem (2.5). Without
any loss of generality we can also choose « = 1. Therefore we consider the scaled finite
element formulation: find (wp, Br) € Wi x V', such that

Si(wh, Br;v,m) = (9,v), Y(v,m) € Wi X Vi, 4.1)
with
Sn(w,B;v,m) = a(B,n)— aKZGE hi(LB, Ln)k (4.2)
+ 3 (@ +ah) " (Vw - Rh,Bh— ah% LB, Vv — Rynp — abkLn)k.

KeCy

The approximation to the scaled shear force (2.6) is then defined by
Gk = (£ + akf) " (Vwn — RuBh — ahi LBh) k- (4.3)

The aim is now to derive error estimates which are independent of the plate thick-
ness. To this end C we will denote various positive constants which do not depend on
the thickness ¢ or the global mesh parameter

We will use standard finite element notation with |- |,,p and || - ||m,p denoting the
seminorms and norms in H™(D) and [H™(D)J*. Again, the subscript D is dropped
when D = Q.

Under some (minor) restrictive assumptions on the mesh (see [32]) we have the
following result which states that the operator R), has optimal interpolation properties.

Lemma 4.1 [28, 9] There exist a positive constant C such that for 1 < m < k and
n € [H™(K)]? it holds

lin — Runllox < ChE|nlmx, YK €Ch. m

We will also make use of the following inverse estimate which is valid since the
space V), consists of piecewise polynomials (cf. e.g. [15]).

Lemma 4.2 There exists a constant C; > 0 such that

Cr Y. hxllLnlik <a(n,m), VREV: m
KeCy

Remark 4.1 The constant Cf of Lemma 4.2 plays an important role, not only in the
analysis of the methods, but also in numerical calculations. Hence, we refer to [16]
where numerical techniques for estimating constants like C; have been considered. m
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The stability will be formulated using the following mesh dependent seminorm and
norm:

_ 1/2
(o, m)lh = (30 (22 + ahd)HIRU(VY — ) 3k) (4.5)
Kecy,
Ml = [0l + 1l + (v, m)]5- (4.6)
We also define
lgll-1a = (X RXllalid )2, (4.7)
Kec,

and note that the following equivalence holds.

Lemma 4.3 There exists a positive constant C such that

Cllite,mlle < llmllx + 1(o, s < (v, Mlla,  Y(vs1) € Wh X Vi

Proof: The Poincaré inequality, Remark 3.6, Lemma 4.1 (with m = 1), and the
inequality (t* + ah%) < C give

loll} < ClIVvllg = CllR:Vvl[g
C(IIRx(Vv = m)ll + | Ranll5)
C(IRA(Vv —m)l5 + lImll3)

C( Y (#+ ahi) [ Ba(Ve = g « + [IIl5),
KeCy

IA N IA A

which proves the claim. m

With the aid of the previous auxiliary results we are now ready to prove that the
methods are stable with respect to the norm |{] - |||5.

Lemma 4.4 There exists a constant C > 0 such that for 0 < a < Ct it holds
Su(v,mv,m) 2 Clli(v, M, V(o) € Wh X Vi

Proof: Using the inverse estimate of Lemma 4.2 and the Korn inequality we get

Si(v,mv,m) =a(n,n) —a >, bk|L|;x (4.8)
KecCy,
+ 3 @+ abk) M| Ru(Vo — 1) — eb Ly}«
Kecy,
> (1—aCrha(mmn)+ Y (* + abk) HIRa(Vo — ) — ahi L5
Kec,
> Cml} + 3 (£ + akk) HIRu(Vv — 1) — ahik L} k).

KeCp
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The same inverse estimate and the boundedness of the bilinear form a also give

(Ml = Y ( + ahk) I BA(Vv — )llo x (4.9)
KeCy,

< O(Y ( +ahl) | Ru(Vo — m) — abkLallox + o Y hklILnliix)
Kecy, KeCy

< C(Y (8 + ahk) IRV — ) — ahi Lals x + a(n,m))
KeCp

< C(Y (2 + ahi) | Ra(Vo — 1) — b Lall} x + [InllD)-
KeCy,

Combining (4.8), (4.9), and using Lemma 4.3 gives the desired result. =

Next, we note that in the bilinear form Sj, is not consistent with the exact energy.
In order to characterize the consistency error we define

En(s;v,m) = (s, (Rn — I)(Vo —m)) (4.10)
+£2 3 (£ + ahk) " (Ris — s, Ry (Vo — 1) — ahiLn)k.
KecCy,
We then have

Lemma 4.5 The solution (w, 3) to (2.5) satisfies
Si(w, B;v,m) = (9,0) + Exl(gsv,m),  Y(v,m) € Hy(Q) x [Ho (W]

Proof: Using the constitutive relation (2.10) and the equilibrium equation (2.8), we
get

‘sh(w7ﬂ;v’n) = a(ﬁﬂl) -« E h.%((L:BaLn)K

KeCy
+ 3 (8 + ahk) " (B(Vw - B) — ahk LB, Ry(Vv —n) — ahk L)k
Kech,
= a(B,m)+a ) hi(q,Ln)k
KecCy,
+ Y (2 + abk) (" Rag + ahiq, Ri(Vv — n) — ahi Ln)k
KeCp
= a8 +ea Y (g, Imx+ Y (g, Ru(Vv—n)— ahkLn)k
KeCy, KeCy,
+82 3 (¢ + abk) ' (Rig — ¢, Ru(Vo — ) — bk L)k
KeCy
= aB,m)+ Y (¢, R(Vv—1n))k
KeCy
+2 37 (82 + ob)) ' (Ruq — ¢, Ri(Vv — ) — ahi L)k
KeCy

= a(B8,n)+(q,Vo—n)+ (¢, (Ry — I)(Vv—n))
+2 Y (2 + ahk) T (Rug — ¢, Ru(Vo — n) — ahk L)k

Kec),
= (g,v) +&(g;v,m). m
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Remark 4.2 Note that if we choose R, = I, we get a pure consistent formulation:
Su(w, B;v,m) = (9,v), V(v,m) € Hy(Q) x [Hs ()", (4.11)

A family of methods of this kind has been introduced and analyzed in [29]. The
only drawback of these consistent methods is that higher degree (i.e. k 4 1) shape
functions must be used for the deflection in order to obtain the right balance between
the approximation properties of W, and V.. =

The following auxiliary result is needed in estimating the consistency error.
Lemma 4.6 For s € [H*"1(0)}? it holds
|(s,m — Ram)] < Ch*[[slli-allnll, ¥n € [HH(Q)

Proof: If k = 1 the result follow directly from the Schwartz inequality and Lemma
4.1.
For k > 2, we let Px : [L2(K)]? - [L*(K)]? be the Piola transformation defined
through [9, page 97] i
Pis = IJKl-IJK§, s¢ [L2(K)]2, (4.12)
and define the space S(K) by

S(K) = [Py—a(K)]* for Methods I and IIL,
N Pk_ll;;_g(K) X Pk-g.j,;..](f{) for Method II,

Using the definition of the operator Ry and the properties (3.10), (3.18) and (3.21)
we then get

(4.13)

(Px3,m— Run)k
= [ (Pxd)(,9)- (n(z,y) - Run(z,v))dzdy

J Kl Tics(6,m) - (86, ) — TE Ry JRa(€ m) | Tilddn (414)
= [ 36 (Ta(E ) — ReJRa(E,n)dedn
=0, VieS(K).

Next, we let ITy : [L2(IA{)]2 — S(K) be the L,-projection and define the mapping ITk
through

Iy = PxIT; PR (4.15)
By using standard techniques [13, 9] for deriving interpolation estimate we get
s — Mxsllox < Chcllslli-r v (4.16)

Using (4.14) we then have

(s,m— Run)k = (s — IIxs,n — Run)k (4.17)
< |ls — Hxsllox|n — Ranllox < CRi||s|lk-1,xlInll1x-

The desired result follows from (4.17) by summing over the elements K € C;. =
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For the consistency error we now have the following result.

Lemma 4.7 Suppose that the exact shear force satisfies q € [H*-1(Q)]? and tq €
[HE(Q)]2. Then it holds

1Ex(g; vsm)| < Ch*(llglle-1 + tlglle) N1(o, M, (v, 1) € Wi X V.

Proof: We first note that the boundedness of the bilinear form a together with Lemmas
4.2 and 4.1 imply

(3 (8 + abk) M| Ra(Vv — n) — ek Ln5 )" (4.18)
KeCy
< C(Y (8 + ahk) [Ra(Vo - )ik + o > Bxl Ll )"
KeCp Kecy

< C((v, )} + oCa(m,m)* < C(I(v, )3 + D).

Hence, we get (using Lemmas 4.6 and 4.1)

En(g;v,m) = (¢, (Ry — I)(Vv —n)) (4.19)
+t2 3 (8 + akk) " (Rrg — ¢, Ri(Vv—1) — ahiLn)k
KeCy
=(g,n— Rwm) + 2 3 (82 + abk) ' (Ruq — ¢, Ri(Vv — n) — ahik L)k
KeCy,
< (g,m— Rpn) + C2( Y (£ + ahk) 7 lg — Rug|2 ) (1(v, )3 + B
Kecy,

< (g, — Run) + Ct|lq — Ragllo(|(v, m)[Z + ||ml$)*/?
< Ch¥(|lq]lk-1 + tllall)l (o, 2[5 =

For the rest of the error analysis we will next define a special interpolation operator
I, : H3(Q)) — W, through the following three conditions:

((v — Iyv) o Fx)(p) = 0, V vertices p of K, (4.20)

/1:; (v = Iw) 0 F)# dé = 0, Vi € Pe_o(E), V edges E of K, (4.21)
and

. V3 € Pi_g(K), for the Methods I and III
— F dédn = 2 ) .
/x((” Iw)o Fi)$ dédn =0, {vs € Qr_ao(K), for the Method II, (422)

for every element K € C,.
The operator I, has optimal interpolation properties:

Lemma 4.8 There ezists a positive constant C such that for v € H™(Q) and 1 <
m<k+1 it holds
|lv — Iyolls < CR™*||v)jm, s =0,1.

Proof: Clearly I, is a polynomial preserving operator in the sense that Irv = v, Vv €
W,. Hence, we can deduce the asserted estimate from [13, Sections 15 and 16]. =
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The reason for introducing the operator I, is the following technical result.
Lemma 4.9 For v € Hy(Q) it holds
R,V(v— Iv)=0.
Proof: On each element K € C;, we have (using (4.20) and (4.21))

. f A g 9 Ry
/;V((v—Ihv)oFK)-frds=[E£(v—Ihv)oFK)rds
or

= /a (v = Lww) o Fi)f /E (v = Inw) 0 i)z d8 =0, (4.23)
for every edge EofKifre Pk—l(E) and (using (4.21) and (4.22))

/}j((v _Lw)oFy)- 5 dédy = /ak((v — Liw)o Fy)é - 1 ds
- /K (v — Iw) o Fy) divs dedy =0, (4.24)
if k> 2 and 3 € S(K). (See Lemma 4.6 for the definition of the space S(K)). Here
V and div stand for the gradient and divergence operators with respect to the { and

n variables of K and  is the unit outward normal to dK.
Hence, using (4.23), (4.24), and recalling the definition of the operator Ry, we get

R;V((v — Iyv) 0 Fx) = 0, VK € Cy, (4.25)
and since it holds Jg!(Vv o Fx) = V(v 0 Fx), YK € Cy, we conclude that

R V(v - Iw)x = JERzIZV((v—Iw)o Fx)
JFRyV((v—Iw)o Fx) =0, YK € Ch. m  (4.26)

We will next state our main result.

Theorem 4.1 Suppose that the solution to the problem (2.5) satisfies w € H*1(Q),
tB € [H*2(Q)]? and B € [H1(D)]2. For 0 < o < Cy it then holds

lfw—walls +118~Bills + lg — gall-14 +tllg — gullo < CR*(lwllerr + 2l Bllksz+ 1Bl ksa)-

Proof: Let 8 € V, be the usual Lagrange interpolant to 8 and @ = Iyw € W, the
interpolant to w. From Lemmas 4.4 and 4.5, there exists a pair (v,n) € W), X V} such
that

(o, mllls < C, (4.27)

and

Ill(wh_ﬁ)aﬂh_ﬁ)”lh S Sh(wh_ﬁ),ﬂht:é;van)
= Sp(w—0,8 - Bv,n) —En(g;v,m).  (4.28)
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For the consistency error term in (4.28) we directly obtain (using (4.27), (2.8) and
Lemma 4.7)

|En(g;v,m)| < CR¥(liglle— + tllalle) < CRE(IBllk+r + tl|Bllk+2)- (4.29)

Next, let us write out the bilinear form S, on the the right hand side of (4.28). Due
to the definition of @ we have (using Lemma 4.9)

Si(w—1,8-Fo,m)=aB-Bm)—a Y K(LB-B),Lnx  (430)

KeCy,
£ Y (2 + ) (Ra(B - B) — e L(B — B), Ra(Vo — n) — ah% L)
Kec),
From (4.27) and Lemma 4.2 it follows that
(X hxlLalge)” < C, (4.31)
KecC),
and
(3 (# + ahd) | Ra(Vo — 1) - bk Lnll3)" < C. (4.32)

Kecy

Hence, for the first and second terms in (4.30) we get (using (4.31), Lemma 4.2 and
continuity of the bilinear form a)

o(B - B,n) < C|18 — Bl < CH*|Bllk+1, (4.33)
and
> RA(L(B - B), Lmx < C( Y hKILB - B)ls k)" < CR¥|IBllerr.  (4.34)
KeCp KeCy,

Using the same estimates and (4.32) we obtain for the third term

> (8 + ahl) T (Ra(B ~ B) — ahi L(B — B), Ru(Vv — 1) — ehi Ln)x
KeCy

< C(Y (#* + ah}) M| Ra(B — B) + ok L(B - B)ll3 x)*

Kecy

<C( Y (+abk) R(B - Bligx + o 1 BklL(B - B)II5 )"

KecCy KecC,

< (Y (22 +ehd) (I - Ra)(B - Bl x + 18 — Blisx) + 118 - BIDY*

KeCyp

< O( Y (@ + abk) (kB — Bl x + 18 = Blis <) + 18 = BID)

KeCy,
< CR*||Ble+1- (4.35)

The estimate

ll(w — i, B = Bullln < CHF(lwllksr + tlBllesz + 1B11k+2) (4.36)
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follows now by combining (4.29), (4.33)-(4.35), using the triangle inequality and the
interpolation estimate (here we need Lemma 4.9)

l(w = @,8 = B)lIln < CR (wllker + 18llks+1)- (4.37)
After this, the H'-estimates for the errors w — wy and 8 — B, follow directly from
(4.36) and from the definition of the norm ||| - |||

Next, let us derive the asserted estimates for the shear. Recalling the definitions
(2.6) and (4.3) of the quantities g and g, we get

(¢ — qn)ix = (2 + ahi) ™ (Ra(V(w — wi) = (8 = Ba))
—ahiL(B — B;) + t*(q — Rinq)) x> VK € Ch. (4.38)

From this it follows that

(Y (#+ahk)llg - ‘1h|[(2>,1()1/2
Kecn

< O(|(w = wh, 8 = Br)ln + | L(B — Br)ll-1n + tllg — Ragllo).  (4.39)

Now, since an inverse estimate, an interpolation estimate and the estimate for |||(w —
wh, B — B1)|||» imply that

IZ(B = Bu)ll-1n < CH*(l[wllisr + tlIBlks2 + 1Bllk+1), (4.40)

both estimates for the shear follow from (4.39) and Lemma 4.1. m

For a quasiuniform mesh we get the following estimates for the shear approxima-
tions.

Corollary 4.1 Suppose that the mesh is quasiuniform, i.e. such that kg > Ch, VK €
Ch. Then it follows from Theorem 4.1 that

llg — gullo + llg = gillo < CR 7 (llwlliss + tlIBllksz + 1Bllksr)- m (4.41)

Let us close the paper with a final comment. The regularity assumptions stated
in our theorems are almost never satisfied in practice as it is well known that the
Reissner-Mindlin model give rise to strong boundary layers in the solution, cf. [1, 2,
3]. Our estimates show, however, that the methods converge optimally in the sense
that the error in the finite element solution is of the same order of magnitude as the
interpolation error.
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ABSTRACT

This paper addresses problems of ice load determination in conditions where an ice floe
acts on an offshore structure. The ice sheet is assumed to fail by crushing and flaking.
Results of several test series are first used to get a new insight to the flaking failure of an
ice sheet. Horizontal cracks emanating form the ice edge appear to be a central
phenomenon to be considered. Tests have also revealed that a large amount of energy
dissipates at the ice edge during a short period within the loading process. This
phenomenon explains the rapid decay of the transient vibration, which has been seen both
in laboratory and in full scale. To consider this phenomenon, a new layered flaking model
is derived.

1. INTRODUCTION AND OBJECTIVES

The dynamic forces due to level ice action pose two kind of problems for the design of
offshore structures. First, a steady state vibration of the structure may arise. In this case the
effects of the exiting force are magnified within the structure. Second, experimental data
shows that the exiting global ice force increases with the structural compliance. This
phenomenon is associated with changes in the ice failure mode and can be seen as an
increase in the correlation between the local forces.

Simple design rules do not provide reliable predictions of the ice effects in dynamic
interaction conditions. Therefore, Miittinen [22] made theoretical and experimental
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studies and presented a numerical interaction model for narrow structures. Based on further
measurements of steady state vibrations, Karnd & Turunen developed another model for
narrow structures [12]. They proved [13] that if a steady state vibration arises, the velocity
amplitude of the structure at the waterline is approximately the same as the ice velocity.
Eranti [2] and Kémi et al. [15, 18] developed a nonlinear numerical interaction model
“PSSII” for compliant wide structures. Kajaste-Rudnitski [8] used a linear stochastic
approach to study how the global load is influenced by the correlation of the local forces.

New series of laboratory and field tests have been conducted during the last ten years. The
new experimental information is used in this report to derive an updated formulation for
the PSSII program. The paper considers wide and compliant structures with a vertical wall
against the ice edge. Ice failure mode at any cross section of the ice edge is assumed to be
flaking with ice crushing. This failure mode yields the largest global ice loads. Experiments
have shown that ice failure occurs sometimes nonsimultaneously and sometimes
simultaneously at different points of the ice edge. The change in the failure mode seems to
depend on the velocity of the ice floe and on the compliance of the structure. Our objective
is to show that an appropriate simulation of the ice failure process yields an interaction
model, which predicts the observed change from nonsimultaneous to simultaneous ice
failure.

2. EXPERIMENTAL BACKGROUND

2.1 Ice failure

Miittinen [22, 23] measured ice-induced vibrations of narrow structures both in the field
and in laboratory. Further field data on this phenomenon was collected by Nordlund et al.
[24]. Jeffereys & Wright [5] reported on severe dynamic interactions between a wide
offshore structure and drifting ice floes. In this case a typical interaction cycle contained a
quasi-static loading phase that was followed by transient vibration of the structure. This is
the most common dynamic interaction phenomenon and it has been tested extensively in
laboratory [9, 14, 21, 26].

Dynamic ice-structure interaction phenomena occur in conditions where the rate of
interaction is sufficiently high to cause a brittle ice failure by crushing and flaking. In this
failure mode the ice edge has a stepwise wedge shape. Horizontal splits emanating from the
ice edge have an essential effect on the ice failure process (Fig. 1). Taylor [27] conducted
indentation tests on lake ice with a thickness of 0.5 m. The rate of indentation varied from
1 mm/s to 7 mmy/s. This is the transitional region for ductile and brittle ice fracture. Under
these conditions, series of horizontal splits developed in the ice sheet. As a result of the ice
failure, the ice edge had a stepwise wedge shape. Field tests reported by Fransson [4] and
Kawamura et al. [11] yielded similar failure modes at higher rates of indentation.
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Indentation test made in laboratory [3, 6, 10, 14, 17, 21] have shown that the horizontal
splits tend to grow parallel to the ice surface. An analysis by Tuhkuri [28] suggests that this
is an essential feature of the crack growth in the condition considered here. The tests have
shown also that most of the force between the structure and the wedge shaped ice edge is
transmitted in the central layer of the ice sheet. Furthermore, the ice edge has a tendency to
maintain the wedge shape during the continuous flaking process.
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FIGURE 1: Near field zone with a wedge-shaped edge and horizontal splits.

2.2 Response of the structure

When a drifting ice flow acts on a structure, a continuous ice failure process may produce
different kind of dynamic response modes within the structure. The main categories of
structural response are: a quasi static response followed by transient vibration, steady state
vibration and the random response to wide-band stochastic excitation.

Quasi-static response with transient vibration

Fig. 2 shows a typical result of an indentation test where a compliant and narrow structure
was pushed into an ice sheet [18, 21]. A detail of the same test record is shown in Fig. 3.
This test result shows that the acceleration and the associated mass forces are very small
when the global ice force approaches its peak value during a major loading phase. A nearly
static equilibrium exists between the internal and external forces acting on the structures at
the events of maximum ice force. Therefore, we characterize the response as quasi-static.
When the ice fails, the structure moves forward against the ice edge. This occurs as a
transient vibration termed also as “spring-back”. The first part of this period with a
monotonously decreasing ice force is termed the unloading phase. If the structure is stiff
the spring-back phase is often practically the same as the unloading phase. However, a
compliant structure may continue its transient motion after a minimum load has been
reached. In this case the global ice force remains at a lowe level.
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An important feature of the transient is that it seems to stop abruptly after one or two
cycles. This basic feature can be seen also in other reported measurements on compliant
structures [5, 26]. Numerical simulations with a linear and proportional damping can not
predict this feature [2, 12, 15, 18]. Therefore, we can anticipate that the ice edge provides
an additional damping effect during the transient vibration. Indeed, Fig. 3 shows that a
hysteretic loop appears in the force vs. displacement function. A detailed study shows that
this hysteresis appears at the initial stage of a loading phase when the structure moves a
little away from the ice edge. Therefore, we conclude that the additional damping effect is
not related to the ice extrusion process, which takes place mainly during unloading.
Another explanation will be proposed subsequently.
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FIGURE 2: Quasi-static response with transient vibration [18,21].

Structural mass M =15000 kg Ice thickness h =100 mm
Spring stiffness Ks = 2.4 kN/mm Rate of indentation v =30 mm/s
Natural frequency f=2.0Hz Indentor width D =100 mm
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FIGURE 3: Details of the force and velocity signals for the test records shown in Fig. 2.

Other modes of response

The drifting ice field may occasionally induce steady state vibration in the structure. This
kind of response was measured frequently on two channel markers in the Baltic Sea [12,
24]. The measured acceleration data shows that the time signal is smooth and almost
sinusoidal. The effects of the ice force are magnified by the dynamics of the structure..

Kimi et al. [17] analysed a test condition where a very stiff concrete cylinder was pushed
against sea ice at high velocity. The measured time signal of the global force had a random
character. The amplitudes of the force fluctuation were small compared to the mean level
of the force. Similar results obtained by Sodhi [26] and Kamesaki et al, [9] suggest that
this kind of force pattern is typical in conditions where the relative velocity between the
structure and the ice edge is high. Tests with segmented indentors show that random global
forces occur in conditions where the local forces fluctuate nonsimultaneously in front of
the structure [4, 11, 26].

3. MODEL OF THE NEAR FIELD

3.1 Contact parameters

As depicted in Fig. 1, most of the damage at the ice edge occurs in the vicinity of the ice-
structure contact surface. Therefore, the ice sheet is divided into a far field and a near field
area (Fig. 4). The deformations of the far field are obtained from linear relationships [13,
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16] and only the nonlinear behavior of the near field is discussed here. The ice failure
process is controlled by the relative displacement and velocity between the ice sheet and
the structure. To consider this, the near field is divided into a set of elements E;, i =1, ...,
NS with awidth B, length L and thickness h. The displacement vector of the structure’s
boundary is defined as

w?=@f), i=1..,NS 1N

Similar definition applies for the displacements w; at the boundary between the far field
and the near field. The displacement of the ice field is denoted #* and @; is the direction
of the ice motion relative to the normal direction of the ice edge. The vector of the
compressive contact force is defined as F* = (F,-Z )

FIGURE 5: Model of the layered structure of the near field.

The preceding review of experimental data showed that brittle failure of the ice edge occurs
frequently by flaking, which is associated with horizontal splits in the ice sheet. Therefore,
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we will adopt a near field model] described in Fig. 5. The near field elements E; depicted
in Fig. 4 are divided into horizontal layers £ (i = 1,...,NS; k = 1,..., NDZ), which are
bounded by the horizontal splits.

The geometry of the wedge shaped ice edge is defined by the wedge angel ; and the
cavities d* between the structure and the layer. The wedge angle depends on the rate of
interaction. Experimental records (Fig. 1) show that the longest horizontal splits appear
close to the central plane of the ice sheet. Therefore, we assume that the length of the near
field element E; is the same as the length of the central layer £y and is given by

Ll =hcot v (2)

The other layers are assumed to be shorter as illustrated in Fig. 5. Details on the determi-
nation of the parameters Y and d ° are given in [20].

3.2 Major and secondary flaking

Ice flaking can be either symmetric or asymmetric. These two flaking modes are termed
here also as major and secondary flaking. We will now refer to the results of Saeki et al.
[25] and Jones et al. [7] to give a plausible physical explanation for the differences between
these flaking modes. These studies show that the coefficient of kinetic friction between ice
and other materials is small at high sliding velocities (v > 10 mm/s) and high at low
velocities (v < 0.1 mm/s).

)

LOW RATE

No sliding

FIGURE 6: (A) Major flaking at low rate of interaction
(B) Secondary flaking at high rate.

The condition of an incipient major flaking event is shown in Fig. 6A. The force acting on
the ice edge is usually eccentric. Due to the induced bending moment the ice sheet has a
tendency to slide vertically along the contact surface. The actual amount of sliding depends
on the friction forces at the ice-structure interface. At low rate of interaction the vertical
sliding velocity is also small. Therefore, the friction force at the contact surface is large and
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can prevent all sliding at the contact surface. High-speed photography of laboratory tests
[21] shows that the failure starts as a rapid expansion in the middle level of the ice sheet.
The flaking failure occurs symmetrically up and down.

At high rate of interaction the vertical sliding velocity is also high. Therefore, the frictional
forces at the contact surface remain low and the structure does not provide confining forces
to the ice edge and symmetric flaking is not likely to occur. As suggested in [1, 3, 6 and 28]
we assume that asymmetric flaking depicted in Fig. 6B takes place at high rate [20].

3.3 Strength distribution

In the present model we assume that each layer fails due to the compressive force applied
on it. The failure force of the layer Z is determined as

Ff =i 2o bl ©)
where pf" is the ice failure pressure at the near field element E;. This parameter is
obtained by adopting first a constant base value p™ in accordance with the nominal
contact area A;= h B. A random number generator is then used to obtain log-normal
distributed values for the failure pressure p¢". The parameters {; and c(z;) are used to
consider two kind of strength distributions. First, {; takes account for the differences
between the local ice failure forces. Experiments show [18] that the failure strength
assumes its lowest value in the middle of the structure. Second, the parameter c(zy) is used
to consider the vertical strength distribution within the near field element. The central
layers can sustain higher pressures than the outer layers. A simple cosine strength
distribution is assumed [20].

4. ICE FORCE
4.1 The interaction process

A central variable in the simulation of the dynamic ice-structure interaction is the compres-
sive displacement vector

wlt =(w;f(z), {i=_l ..... NS (4)

which incorporates the relative near field displacements of the layers. The incremental
updating equation for these displacement is

HA dz 1 d dz
wit = "wig +Awjy )
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AwE = A€ cos ; — Auf — Aw 6)

The initial condition is given by
Swig =-g/” )
where g, i=1,..,NS is an initial gap between the ice edge and the structure. The local

forces acting on the layers are determined as a function of the relative displacements,

FE =FEwi) ®)

The compressive local forces acting on the near field elements E; are calculated as
NDZ
Ff= 3 Fff ®
k=1

and the global force is obtained as

NS
F =3Ff 10)

i=

n

is the component of the local ice force in the direction of the ice motion.
n

where F?

4.2 Loading phases

An implicit time integration technique is used to evaluate the ice force as a function of the
relative displacement. Corresponding to the experimental findings, the interaction process
is simulated considering four different loading phases termed as loading, unloading, pure
crushing with extrusion and the hysteretic unloading.

Loading

A loading phase is defined as a period of ice-structure interaction where the ice force
increases. This condition prevails if the structure and the ice edge are in contact with each
other and are moving in opposite directions. In the previous versions of the PSSII
programme [15, 18] the ice force was assumed to increase as a linear function of the
compressive strain at the near field element. A nonlinear relationship derived by Kérnd and
Sippola [19] is used here with some modifications [20].

Unloading

The ordinary loading phase in a layer is followed by an unloading phase when a major or
secondary flaking occurs at the ice edge. Laboratory data shows that the drop from a peak
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load to the next minimum occurs within a time 7 that is typically 10% to 20% of the
preceding loading time. The first version of the PSSII model [16] assumed that after an
ice failure the ice force decreases as a linear function of time. A more accurate physical
model would take account of the extrusion of the crushed ice [18]. Considering the
difficulties posed by the edge geometry, a simplified version of the extrusion process is
adopted here.

Referring to basic characteristics of the unloading process, Kérni et al. [20] showed that
the unloading after a major flaking event can be simulated by the incremental force
function

2
AFF ()= 6 (F" - [L] —[ ’ ] — (1)

T ') T

where F is the peak load at the preceding event of ice failure and F* is the minimum
force level at the end of the unloading. A similar force vs. time function is used to describe
the unloading in the case of secondary flaking [20].

Pure crushing with extrusion

At the event of major flaking the near field element E; looses ice material from the whole
contact area [16]. Therefore, all the relative displacements w{,k=1,...,NDZ become
negative. This condition prevails during the unloading phase. Our simplified equation (11)
for the unloading phase is a function of time and not of the relative displacement.
Accordingly, the relative displacements w£ may remain negative after the minimum level
F# has been reached. Therefore, we define an intermittent phase of pure crushing with
extrusion, where the ice force remains at a constant level until the next loading phase.

To give a physical justification for this approach we recognize that crushed ice may exists
at the ice edge after the unloading phase. The crushed ice is capable of transmitting forces
between the structure and the ice edge and it is extruded from the contact area if the
structure moves against the ice edge. Furthermore, pure crushing at a low force level is
likely to occur at the uneven ice edge before a new loading phase begins.

Hysteretic unloading

A new loading phase at a layer begins when w& becomes positive. The loading phase
will continue as long as the incremental relative displacement Aw® remains positive but
can be interrupted before an ice failure. This happens if the relative displacement increment
Aw@  becomes negative. An intermittent drop in the contact force will occur in this
situation. This condition is related to the hysteretic phenomenon that was discussed in
Sect. 2.2.
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A plausible physical explanations for this hysteretic damping effect can be given by
considering the frictional forces associated with the layered near field model. Fig.7
depicts a condition where the central layer is loaded. Due to the compressive force the
central layer expands in vertical direction causing compressive vertical stresses on the
adjacent layers. At a load reversal the structure departures from the ice edge. Therefore, the
compressive force at the central layer is released. The friction acting on the layer surfaces
may prevent the sliding at the surfaces for a while. When the force is sufficiently low,
sliding occurs at the boundaries and the central layer rebounds towards the structure. After
a while the structure moves again against the ice edge due to its transient vibration. The
frictional forces on the boundaries of the central layer are also now opposing the sliding at
the horizontal boundaries of the layer.

ice

Au™ - cosyi —Awi Ay

" —

FIGURE 7: Damping mechanism at the near field.

Accordingly, we propose that the ice edge provides Coulomb damping which is sufficient
to cause a rapid stop of the transient vibration of the structure. Fig.7 illustrated this
damping mechanisms referring to the central layer of the near field. The other layers are
likely to provide damping in a similar way. In the numerical model we simulate the
Coulomb damping by a viscose model [20].

5. EXAMPLES
5.1 Quasi-static response with transient vibration
To verify the present formulation, some of the test conditions discussed in Sect. 2 were
simulated. The results of the computation were compared with measured response of test

structures. The test condition shown in Fig. 2 is considered first. Detailed information on
the test is given in the report [21].
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FIGURE 10: Simulated ice force and structural response in Test No 69 [Compare Fig. 2].

Figs. 8 and 9 show the measured and simulated ice force and response records for a test
where the model structure was compliant but very stiff. A comparison shows that the
simulated force and response signals are in good agreement with the measurements.
Correspondingly, Fig. 10 shows the simulated response of Test No 69 where a very
compliant structure was pushed against the ice sheet. The corresponding test results were
shown earlier in Fig. 2. Also here the simulation gives good results.
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It should be noticed that the earlier numerical models [2, 12,14, 18] did not predict two
interesting details that have been seen in many tests [5, 10, 11, 14, 21, 26]. First, the
transient vibration after a major peak force decays to a low level after one cycle. The
hysteretic unloading phase of the present model accounts for this effect. The second
interesting feature of this simulation is that the force signal F(u) shows a growing trend
during the transient spring-back phase (Figs. 2, 3 and 10). The secondary flaking process
on the wedge-shaped ice edge accounts for this effect.

Figs. 2, 3 and 10 show that the global ice force remains at a relatively low level during the
“spring-back” periods where the relative velocity is high. Nonsimultaneus secondary
flaking failure occurs at the near field elements during these periods. The events of large
peak forces occur in quasi-static conditions as simultaneous major flaking.

5.2 Steady state vibration

The channel marker described by Kdméi and Turunen [12] was used to simulate the ice-
induced vibration. An ice field with a thickness of 200 mm was assumed to drift at the
velocity of 100 mm/s against the structure. Fig. 11 shows the results of this simulation.
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FIGURE 11: Simulated ice force and structural response on a channel marker.
v =100 mm/s; h =200 mm.
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The simulated ice force has a similarity with the measured ice force in a tests condition
where ice-induced vibration occurred in laboratory [14: Test 48]. The structural response at
the water level is shown in Fig. 11. The velocity amplitude at the water level is
approximately the same as the ice velocity, as predicted in [13].

6. CONCLUSIONS

A new model was developed for the near field area of an ice sheet that experiences
dynamic interaction with an offshore structure. In this model, the ice volume close to the
structure is divided first into a set of near field elements. These elements are then divided
further into layers that are bounded by the horizontal cracks emanating form the ice edge
during the ice-structure interaction. Depending on the rate of interaction, the ice failure at
the near field elements occurs either by major flaking by secondary flaking. A hysteretic
damping phenomenon that has been seen in experiments is included in the model.

The new model is incorporated in an existing computer program for wide and compliant
structures. Simulation of a few test cases shows that the new model can predict the
observed changes from a nonsimultaneous ice failure into simultaneous failure.
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DETERMINATION OF THERMAL PROPERTIES
USING REGULARISED OUTPUT LEAST-SQUARES METHOD

Jukka Myllymaki & Djebar Baroudi
VTT BUILDING TECHNOLOGY/Fire Technology
P.O. Box 1803, FIN-02044 VTT

ABSTRACT

The process of analysis in structural fire design comprises three main components; determination
of the fire exposure, the thermal analysis and the structural analysis. The thermal analysis
requires well-defined input information on thermal material properties for determining the
transient temperature state of the fire-exposed structure.

Some applications of a systematic methodology to treat identification of temperature dependent
thermal properties and of other relevent quatities from tests are presented. This method is known
as the Regularized Output Least Squares Method (ROLS). Applications of the method to
identification of thermal properties in different cases are presented. For each case, the Direct
problem consists of a set of non-linear partial differential equations which are semi-discretized via
the variational form of the heat conduction problem. The solution of the Direct problem is obtained
by time-integrating the semi-discrete equations by mean of numerical quadrature. The problem of
identification of the parameters appearing in the formulation of the Direct problem is know as an
inverse problem.

INTRODUCTION

A common feature of inverse problems is the instability, that is, small changes in the data
may give rise to large changes in the solution. Small finite dimensional problems are
typically stable, however, as the discretization is refined, the number of variables increases
and the instability of the original problem increases. Therefore regularization is needed. Both
mesh coarsing and Tikhonov-regularization have been adopted in order to get a stabilised
solution. The available a priori known physical constraints on the parameters are taken into
account in the minimisation.

The distributed parameters are discretized, usually, the thermal properties are approximated
as piece-wise linear functions of temperature. The unknowns are found by minimising a
constrained and regularised functional which is the sum of the squares of residual norm of
the errors (data - model) plus the square of the norm of the second derivatives of the
properties with respect to the temperature. An appropriate balance between the need to
describe the measurements well and the need to achieve a stable solution is reached by
finding an optimal regularization parameter. Both Newton and conjugate gradient methods
have been used in the minimisation. The Morozov discrepancy principle is used to find a
reasonable value for the regularization parameter.
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FORMULATION OF THE DIRECT PROBLEM
(HEAT CONDUCTION PROBLEM)

The basic idea is to solve the temperature field T;(x,7) in a given material region. The field
equation

pc T(x,0)=V- (WT(;,:)) +r(%,T) 1)

is the diffusion equation with r(x,7) as an arbitrary source term. The Fourier heat conduction
constitutive relation is assumed. This equations is complemented with the appropriate initial-
boundary conditions to get a well-posed problem. The boundary conditions may be, for
example, a Dirichlet type or Neumann type as for instance normal heat flux
g, =HTYT-T,)+0 & (T*~T.) with convection and radiation parts. The boundary
terms as also the source terms if present will be included into the force vector of the
discritized heat conduction equation. This will be a clear and systematic way to treat
boundary and source terms.

SEMI-DISCRETIZATION OF THE FIELD EQUATIONS

Using the standard FE-approach ,[1], one obtain the variational form of the problem (1) as
[petv dQ+ [ f/T-§de=jQrde- [ g-divdr @)
Q Q 30,

with the temperature field approximated by 7°(x,?) = N°(x)T*(¢), where the test and the
basis functions N(x) (Galerkine) linear. For instance in the case of 1-D for a linear element
we have N, (E)=(1-€&)/2and N,(§)=(1+&)/2.

The semi-descretization of the heat conduction equation (2) produces the non-linear initial
value problem

Ct,T)T@®) =11, T)-K(T)T(),t>0 (3)
T(0)=TO, t=0,

where T(t) is the global vector of the unknown temperatures.

Equation (3) is a set of # x I- non-linear ordinary differential equation. Notice that the right
hand in the equation (2) corresponds to the force vector f(z,T), which contains the
boundary terms as also all possible source terms. Equation (3) is be complemented with
appropriate initial conditions. Natural boundary conditions are already included in the
variational form (2). The essential boundary conditions will be taken into account during
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the solution process of the initial value problem. The global matrices and vectors are
assembled using standard FE-assembling techniques. The elementary conductivity matrix

K; = [A(T(®) YN(x)-VN;(x) dQ, @)

the elementary capacity matrix
C; = [p(T(x)) e(T(x)) Ny(x) Ny(x) dQ 5)

and the elementary force vector

£ = [r(T@®) Ni(x) dQ- [ §-7N(x) df (6)
o 2,

are obtained. For instance, in 1-D cases these matrices look like:

K; =211 [ MTE®) Ny@N,, ) &, G =2 sT@)T@NGN,(©) d and

£ =S [ T @N@ dz-[g, V(@] respectvely.

The elementary matrices and vectors are integrated numerically using Gauss-Legend
integration scheme. The elementary matrices and vectors may depend on the unknown
temperature.

The above mentioned integration scheme leads to consistent capacity matrix, where the
non-diagonal terms C;, (i # j) are non-zero. In some cases it is practical to use diagonal

capacity matrix (C; (i# j)=0) especially when we use Dirichlet type of boundary

condition. Using Newton-Cote integration scheme where the nodal points are used as

1

integration points and the weights of the integration are calculated as w, = IMN,dx , We
[

always get a diagonal capacity matrix.

TIME-INTEGRATION OF THE ODE-SYSTEM
Depending on the integration scheme used in equation (3) we get explicit or implicit

methods. In the case of a heat conduction problem, the time-integration gives us the non-
linear system of equations

A(tn-l ’Tn—l )T(tn) . g(tn-] 9Tn_1) =0 (7)
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for which the solution T(t) is solved from equation (8) at each time step using the fixed
point iteration procedure. The matrix in equation (7) is calculated as

A@,,.T, ) =C¢,,,T, )+ ALK, ,,T,,) ®
and the vector
g,..T,)=C@,,. T, )T, )+ AL, . T,) ®

GENERAL FORMULATION OF THE INVERSE PROBLEM

Consider a coefficient determination problem, i.e. the problem of determining a non-constant
coefficient a(y) in an initial value problem (3) on the base of the existing data about the
solution y (y is the temperature). In (3) the unknown parameters entering the capacity
matrix C(T), the heat conductivity matrix K(T) and the force vector f(T) are gathered into
the vector a(y), where y=T . The non-linear inverse problem (10) is solved using the
regularised output least squares method (ROLS). We have to discretize the distributed
unknown parameter a(y)into a certain number of sub-intervals [y,,y,,,] of arbitrary
length y,,, —y; using linear basis functions. The goal is to find out the regularised least
square solution for the vector of the nodal values &, [2]. Therefore one seeks unknowns
a, such that
min,, ,[F(@ )~ | +a[Laf (10)

where the constraints set D is the set of physically admissible parameters and the notation
"F(Zi,. )-y ” =|T:(a)-T,,|| is used. Unfortunately the data vector 7is known (or
measured) only within a certain tolerance §. Only an approximation y° satisfying the
condition ||j)‘—y8 "sﬁ is known (for example due to the scatter/data errors in the

experimental measurements) and one therefore seeks an & minimising (10) using data
infected with noise. Here 3 is the vector of measured data. The minimisation problem is
non-linear. Here either Newton or Conjugate Gradient methods are used.

The overall procedure of determination of the thermal properties (and other relevant
parameters) may be condensed schematically as follow:

Discretize the unknown vector a with respect to the temperature (if necessary) using piece-wise
linear basis functions. Guess a ‘realistic’ initial value for a and choose a value for .. Then Solve a
from the minimisation problem

° mm'eD"TFE(a X38) = Ty (X, f)" +0t||L a" with respect to a,
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where the model is T, (a; X; 1) = N(X)T(t)

and the data is T}, (X;¢) with T(t) the solution of the initial value problem:

C(a(T)) T(t) = £(a(T))- K(a(T)) T(t) & BC and IC
e The unknown parameter vector is: 5(T) e (k(T ) cp(T) b ) with the vector

b= (e WT) Q. efc...) containing the remaining relevant additional parameters we want
to estimate. The norms (Euclidean) are taken with respect to the collocation points x at

2
collocation time f as ||f(5c’;l‘)||2 . ZZ'f(f,;tj)l (i, 1) e{ collocation index set} .Lisa
i J

regularization operator (depending on the degree of regularization we want), usually the
identity I matrix or a discrete version of the Laplacian with respect to the temperature.

Since the inverse problem is ill-posed it has to be regularised. Here, in the regularised
output least squares method (ROLS) the regularization of the problem is achieved by the
use of the penalised least squares method.. The last one can be regarded as Tikhonov
regularization of non-linear problems, [2], [3] and [4]. Mesh coarsing and the use of the
available a priori known physical constraints on the parameters is also used as
regularization. In penalised least squares method one seeks a minimum for the functional

[F@)-7[ +afraf (1D

where a(>0)is a small regularization parameter depending on the noise level of the data
and L =T or some other suitable differential operator ( D' or D = Laplacian) depending on
the needed regularity of the solution. The first term in Eqs. (10-11) enforces the
consistency of the solution when the second term enforces its stability. An appropriate
balance between the need to describe the measurements well and the need to achieve a
stable solution is reached by finding an optimal regularization parameter.

The use of the Morozov’s discrepancy principle and the L-curve.

In the equations (10-11) parameter a controls how much weight is given to minimisation
2
. The

problem considered here is the appropriate choose of the parameter oo so that we can
distinguish the real signal from the measurement errors, the noise.

of “L&""z relative to minimisation of the square of the residual norm Hﬁ(&") -y

Perhaps the simplest and clearest rule to choose the regularization parameter is to set the

residual norm equal to some upper bound for the norm HI? @)-y° ” of the errors, i.e. find
o such that, [2]
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||1?(a‘)— P|<rs (12)

i
where & is the measure of the error during the time considered & * = “ ) | *drand 8 is
0

the error at certain time. An appropriate value of coefficient is R ~1,6—1,7. In connection
with discrete ill-posed problems this is called the Morozov s discrepancy principle.

Another, more recent alternative is to base the regularization parameter on so-called L-
curve [3] and [5]. The L-curve is a parametric plot of the measure of the size of the
regularised solution and the corresponding residual. The underlying idea is that a good
method for choosing the regularization parameter for discrete ill-posed problems must
incorporate information about the solution size in addition to using information about the
residual size. Usually the L-curve has a distinct L-shaped corner located where the solution
changes in nature from being dominated by regularization errors to being dominated by the
errors in the right side. Corner of the L-curve corresponds to a good balance between
minimisation of the sizes, and the corresponding regularization parameter o is a good one,
[4] and [5]. In the calculation examples presented here, this corner is seldom seen,
therefore the Morozov discrepancy principle was preferred.

APPLICATION TO HEAT CONDUCTION PROBLEMS
OF FIRE ENGINEERING

Thermal diffusivity of a nickel wire

The thermal diffusivity k¥ (= AMpc) of a Nickel alloy (95 % Ni) was estimated using
temperature measurements. The problem is formulated by the /-D heat conduction

equation pcT —AAT = pr=20,,./ L, , where L, is the total length of elements 1 and 2. In
this example the FE-direct formulation was constructed using two linear elements.
Diagonal capacity matrix was used and this leads to the initial value problem
T, =-2BxT,+2¢ / L,(T, / L + T,/ L, )+ 20, / pcLy,, where B = (I/L; + I/L,)/L;; . The
index k in T represents the number of the thermocouple, Fig. 1b). T} and T; are the
measured temperatures (Direchlet BC).The energy conservation equation includes an
unknown loss term Q,,, Which is part of the parameters to be estimated. Q,,, takes into
account heat loses from the wire into the insulation. Thus the unknowns are 2 = (Qjq » X ).
The cylindrical wire is of diameter 0.5 mm and heated at one free end (TC1), Fig. 1b). The
wire was thermally insulated by a thick layer of mineral wool in order to get a 1-D
problem. The wire was initially at ambient temperature. The temperatures were recorded
using thermocouples at specified points, Fig. 1b). The whole temperature history was used
in the inverse problem.

The parameters were estimated as a = (Qy, =Vp T, k)= (-1.08 W, 2.133x10” m%/s). The
heat loses are over a length of the wire L;, = 4.7 cm. The thermal conductivity was then
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deduced as A = 80 W/m K. The density of the Ni-alloy was 8447 kg./m3 and its thermal
capacity ¢, was fixed to 444 J/kg K. The values presented in literature for the next Ni-alloy
(Ni 80 % and Cr 20%) are: A = 15 - 104 W/m K and ¢, = 460 - 500 J/kg K. These values
agree well with the value A = 80 W/m K calculated although the Ni-alloy we used in the
experiment was 95 % Ni 3 % Al and 2 % Mn. Hot point

Ni 95%-alloy: Test 20.5.1997 ROLS

TC3 TC2 TC1 / -
2 PPY a1
g
g <« — LY 0 i
: 1=
235 mm I >

-,

10

o 60 120 180 240
Time (s)

[o=TT—o—TR -7 —W_Fﬁm

Figure 1. a) Measured (markers) and calculated (continuous line) temperatures at
locations TC1, TC2 and TC3. b) A schematic view the Ni-wire and configuration of the
thermocouples TC1,TC2...TC5.

Heat capacity and thermal conductivity of gypsum board.

Cone calorimeter tests in horizontal configuration at a heat flux level of qcy,, = 25 kW/m®
were performed. The test specimen consisted of a 13 mm thick gypsum board (density 721
kg/m”) laying on a 30 mm thick layer of mineral wool (Fig. 2). The surface area exposed to
the heat flux was A;=100 mm x 100 mm. There was a 10 mm thick aluminium plate under
the gypsum board in one test. In an other test there was no aluminium plate present. The
first gypsum example presented uses data from the test without the aluminium plate. The
temperature of the upper surface of the gypsum board was measured using an infra-red
temperature measuring device The temperature profile inside the specimen as a function of
time was measured using thermocouples.

llllllllll*ﬂﬂwm

— IR--temperature measurement

<— Gypsum board
g\ <— Aluminium

™ Mineral wool

i ﬁ Thermocouples

1
q
i

Figure 2. A schematic representation of test arrangement in cone calorimeter test for
gypsum board.
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The problem is to estimate the heat capacity ¢, (T) and the thermal conductivity A(T) of a
given gypsum board from temperature measurement tests. Two tests was performed. In this
first example the specific heat of the gypsum board was calculated. The specific heat is
discretized using piece-wise linear basis function with respect to the temperature

o= z N;a;(T) . The conservation of energy in the gypsum board can be written as

[pcTdV =~ [G-@dl + [ prdV (13)
Vv ov vV

In the present example the source term in the equation is incorporated into the effective
specific heat. The equation (13) after semi-discretization reads as

(1) = = F(T(x:0.0), (14)

g A

qcane pc(?)y

where T(f)= l/dJ. T(x;t) dx. The ODE (14) is integrated numerically using the explicit
d

Euler scheme

Ixal

Tt =T+ [T @) ~T(t)+ F(T (@)t (15)

The specific heat c,(T) was the regularised solution of the constrained minimisation
problem

mln( T;esl (t) - iﬂlc.(a; t)

The solution of (16) is found from the domain of physically admissible functions which
takes into account the possible range of the unknown parameters a; The equation (16) is
non-linear for which a solution is found using Newton method. A reasonable degree of
regularization (the value of the regularization parameter o) is found using the Morozov’s

'zRS (R = 1.6 and a = 0.00001). The

‘2+a||L5||2), with a; & D(@) (16)

discrepancy principle ”TS - T‘c e (52 ")
accuracy of the temperature measurements in these tests was estimated to be
|75 6)-Tt)| <8 ~ [2°C et ~ 98°Cs.

tuo
The results of the calculations are shown on Fig. 3. The relative amount of humidity (mass
of water / total mass of gypsum) in the gypsum board was calculated from the peak of the
calculated specific heat was found to be equal to 21 %. Experiments show when drying the

gypsum boards that the water contents was about 18 % in the temperature range < 200 °C.
This is with agreement with the results of the calculation.
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Figure 3. a) cat'cufared specific heat of the gypsum board from cone calorimeter
experiment At 25 kW/m’. b) Measured surface temperature, bold lines, the calculated in

thin line.
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Figure 4. a) Calculated specific heat and therma! conductivity of the gypsum board from
cone calorimeter experiment at 25 kW/m’. Test data for the thermal conductivity after
Pettersson [5] is shown for comparison. b) Measured surface temperatures and the
temperature of the aluminium plate, bold lines, the calculated in dotted thin line.
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The second test the was similar to the first test except for the aluminium plate. Directly
under the gypsum board an aluminium 10 mm thick aluminium plate was present. The
temperature of the test specimen was recorded as in the first example. The temperature
distribution inside the gypsum board was approximated linearly and the aluminium
temperature as constant in the space dimension. Here both the specific heat c,(T) and the
thermal conductivity A(7) were the unknowns a = (.c,(T) , MT)). They were both
discritized using piece-wise linear basis functions in respect to the temperature. Figure 4
shows the results. Also the thermal conductivity of gypsum after Pettersson [5] is shown
for comparison.

Heat capacity of an aluminium bar

Let us consider a case were a uninsulated aluminium specimen, a bar, (2700 kg/m®) is
placed in an oven in order to be tested at high temperatures. The specimen is surrounded by
the oven, but the ends of the specimen are clamped into steel rods so part of the heat flow
escapes through the ends of the specimen. The heat conduction problem is dealt as one
dimensional where it bas been assumed that heat loss O, =q,4. /cyp 44, d, is

constant.

The inverse problem is - given the measured temperatures - to find the effective heat losses
Qyoss (from the aluminium specimen to the surrounding), the effective heat convection
coefficient # (between the specimen and the heater), the resultant emissivity & of the
aluminium alloy and the thermal capacity c,(7) of the aluminium alloy. This last one is
temperature depended (discretized with respect to the temperature by linear basis
functions). Therefore the unknown vector of parameters is a = (c,(7) , h, €, Qo5 ).,
where 4, is the sum of the areas of the ends of the specimen through which the heat
losses, to the surrounding, happen.

Tests have been conducted at Helsinki University of Technology in a project dealing with
the high temperature properties of aluminium [7]. Temperature of the oven is controlled in
certain way to obtain a constant temperature of the specimen during the test or specimen
temperature that has a certain rate, Fig. 5b) and 6.

The unknown parameter vector a have been solved fitting all the three tests (with
temperatures shown on figures 5a) and 6) were used simultaneously as data. It was found
that » = 10.4 W/m®> K, £ =0.11 and Oloss = -0.74 W. The calculated specific heat capacity
of the aluminium allow is shown in Fig 5a) as a function of the specimen temperature.
These calculated values seem to be reasonable (for pure Al values of ¢, = 900 J/kg K at 20
°C are given in literature). The measured temperatures of the oven and specimen and also
the calculated temperatures of the aluminium specimens are shown in the Figures 5a) - 6.
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Figure 5 a) Calculated heat capacity of the aluminium alloy. b) Measured and calculated
temperatures of aluminium specimen in heating oven, transient test. The upper curve
represents the temperature of the oven.
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Figure 6 a) and b) Measured and calculated temperatures of aluminium specimen in
heating oven in two different tests # 2 and # 3. The upper curves are the temperatures of
the oven. The lower curves, those of the aluminium specimen (calculated and measured).

Thermal conductivity of the mineral wool

The thermal conductivity as a function of the temperature is determined from ‘full scale’
fire tests. The heat loses are also estimated. Thus the problem is to estimate the thermal
conductivity and the ‘heat loses ‘ terms appearing in the energy conservation equation. The
heat loses , in the direction perpendicular to the cross section, are the terms Q,; (through
steel) and O, (Wool). These terms are due to the treatment of the original 3-D heat
conduction problem as of 1-D problem.
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Therefore, the inverse problem consists of estimating the thermal conductivity of the
thermal insulation (rock wool) as a function of the temperature using data (measured
temperatures) from ‘full scale’ fire tests of insulated steel structure, i.e. a=(AM(T) Q; O,).

Consider the case of an insulated steel structure, Figure 7. The direct problem is now dealt
as one dimensional problem using three elements. One element is used for the steel part
and two linear elements for the insulation part. For the steel part it is assumed that the
temperature is uniform (one basis function N, =1).

_ e
. d, | d2|d3
Steel section = . .
| Protection
\ rf
Tl :TS

| / Q
Temperature / p T3 :Tg

approximatio ——f

X

\_ Steel column sectri'on 50x50x5
Steel section 40 x 40 x 4 |

Figure 7. The cross section of the test columns and one dimensional idealisation of
insulated steel structure in fire, linear elements at the fire protection.

Fire resistance tests on steel columns were performed at the VIT Fire [8]. The columns
were rectangular hollow sections with the cross-sectional dimension (RHS 40x40x4 and
RHS 50x50x5). The length of the columns was 900 mm with the end plates. The columns
were protected with 20 mm thick rock wool (density 220 kgr‘ms). The specimen was
applied to the fire exposure of 15 °C/min during 65 min, Fig. 8b.

The temperatures of each column and of the furnace gas were measured at three cross-
sections using a total around 24 thermocouples.

In the first case only the temperature of the steel section was measured and in the second

case also temperature of the fire protection at the centre was measured (Fig. 7b). In both
cases the direct problem was formulated using two linear elements in the fire protection as

[Cll C]Z] (T;) +|:Kll KIZ:I (Tij =_[K13Tg +C]3jjgj (17)
C21 C22 T’2 K21 K22 T2 K23Tg + C23Tg

The system (17) of ODE’s was integrated using explicit Euler scheme.
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Integration of the heat conductivity matrix K° and of the force vector f° are performed
using one Gauss integration point at the centre of the elements. The element capacity
matrix C° was integrated using two-points Newton-Cotes integration (at the nodal points of
the element, & =-1 and £ = +/ in Eq. (17)) in order to get a diagonal matrix (Cij = 0, when
i different from j, i.e. C;, Cy3 C,3 and Cy; in Eq. (17) are all zero). In this way we avoid
unstable numerical differentiation of the 7, in Eq. (17), since the gas temperature is very
noisy as seen on Fig. 8b (the upper curve). With Dirichlet boundary condition 7, =T,

(surface temperature of the fire protection is same as gas temperature).

Following values of parameters were assumed in the calculation: density of the fire
protection p, =220 kg/m’ , specific heat of the protection ¢,=1000 J/kgK, density of steel

p,= 7850 kg/m® and specific heat of the steel ¢,=540 J/kgK. The mean of the measured

temperatures of the steel section and of the insulation (at the midpoint) at the centre of the
column were used as collocation points.

Thus, the effective thermal conductivity A(7") was found as the regularised solution of the
constrained minimisation problem

min(

where the operator Lis the central difference discretization of the second
derivativesd°A (T)/8 T* of the thermal conductivity. The accuracy measurements of the

j\'-;e.\'l’S (t) - Tc’alc.(a; t)

i +a||LxH2} with 1., < D(E) as)

<3~ [10°Cdt when applying the
t

®

temperature was estimated to be

7 (- Tr)

Morozov discrepancy principle.

The solution of the problem is presented in Fig. 8a) and compared with the values provided
by the producer of rock wool (the dashed line). For the heat loss one get (Q1,Q,) = (-2.2, -
0.4) W. The calculated temperature history (for one test) is compared to the experimental
one in Fig. 8b. Legends for Figure 8a:

o The balls (column: 40x40x4), calculated using two elements and two collocation
points (the steel and the mineral wool)

e The triangles (column: 40x40x4), shows the same as the balls but only one
collocation point was used (the steel temperature)

o The squares represent the case where two data tests were used simultaneously
(column 40x40x4 with two collocation points: the steel and the wool at the
midpoint and column 50x50x5 with one collocation point: the steel). The
temperature calculations were made using two elements for both columns.

e The dashed line shows values provide by the producer.
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Figure 8. a) Calculated thermal conductivity of mineral wool using different number of
elements and collocation points with test data (columns: 40x40x4 and 50x50x5). b) The
calculated temperatures (thick) and the measured ones (thin) for the case of 40x40x4
column (the temperature of the protection at the midpoint and of the steel). The upper
curve represents the gas temperature.
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MERIJAAN PURISTUSLUJUUDEN RIIPPUVUUS
KUORMITUSSUUNNASTA JA C-AKSELISTA

Eila Lehmus
VTT Rakennustekniikka
PL 18071, 02044 VTT

TIIVISTELMA

Tassd kirjoituksessa esitetdéin osa vuonna 1995 VTT Rakennustekniikassa tehtyjen
merijéin puristuslujuuskokeiden tuloksista. Koejérjestelyihin ja koekappaleiden
valmistukseen ja siilytykseen kiinnitettiin erityistd huomiota. Koesarjan tarkoituksena oli
selvittdda mm. jdakiteiden suuntautumisen (c-akselin) vaikutus puristuslyjuuteen. Kokeet
tehtiin vakiomuodonmuutosnopeudella 102 1/s lampétilassa - 10 °C. Tulosten lukum#ird
on liian pieni tarkan tilastollisen tarkastelun tekemiseksi. Tulosten perusteella voidaan
kuitenkin todeta, etti sekd kuormitussuunnalla ettd c-akselilla on merkitystd jdén

puristuslujuuteen.
1. JOHDANTO

J44n lujuusominaisuuksia on tutkittu paljon ja tiedetézn, ettd ne riippuvat monesta tekijésté.
Eriita merkittavimpia tekijoitd ovat 1ampétila, kuormitusnopeus ja jd4n rakenne. Lisiksi on
jo aikaisemmin tutkittu kuormitussuunnan vaikutusta jiin lujuuteen. Télldin kokeet on
kuitenkin tehty joko jdin kasvusuunnassa tai kohtisuorassa jéin kasvusuuntaa vastaan.
Jasssi olevat kiteet voivat tietyissd olosuhteissa suuntautua siten, ettd niiden c-akselit ovat
samansuuntaisia, jolloin kuormitussuuntaa tarkasteltaessa ei endd riitd nikokulmaksi jaan

kasvusuunta, vaan uutena asiana on otettava huomioon myds jédkiteiden suuntautuminen.
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Rakenteita vastaan liikkkuessaan jddkenttdi voi murtua monella tavalla. Kuormituksen
kasvaessa osa jddkentdstdi on puristuksen alaisena, jolloin kuormien arviointia ja
mallintamista ajatellen on hyvi tietds puristuslujuudet kolmessa suunnassa. Jidkentin

alemmissa kerroksissa jd4 on yleensi anisotrooppista ja pystykiteista.

Kirjallisuudessa on esitetty melko vihin vastaavan tyyppisid koetuloksia, koska suuri osa
tehdyistd kokeista on suoritettu laboratoriojaglle. Laboratorio-olosuhteissa jasdytetty jai ei
yleensd ole rakenteeltaan suuntautunutta. Joitakin tuloksia on kuitenkin saatavissa [1, 2 ja
3] ja vertailut osoittavat joitakin yhdenmukaisuuksia. Koemenetelmillda sekd jaan

sdilytyslampétiloilla nayttaisi olevan merkitystd tuloksiin.
2. KOEMENETELMAT

Jasindytteet Kairattiin maaliskuussa 1994 Elson Lagoonista Alaskasta laheltd Barrowia
(kuva 1.) Niytteet otettiin alueelta, jossa hieman syvempi kanava saa aikaan virtauksen.

JaAinalainen virtaus puolestaan aiheuttaa jakiteiden suuntautumista [4].

Kuva 1. Jadndytteiden kairauspaikka Elson Lagoonilla, ldhelld Barrowia Alaskassa.
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Niytteitd kairattiin sekd jdin kasvusuunnassa ettd kasvusuuntaa vastaan kohtisuoraan.
Niytteiden otto tapahtui -25 °C:een ldmpétilassa, jolloin suolaveden valumista pois
niytteestd ei pddssyt tapahtumaan. Naytteitd siilytettiin alle -23 °C:een ldmpétilassa.
Niytteet kuljetettiin lentokoneella Alaskasta Suomeen. My6s kuljetuksen aikana ldmpétila

pysyi huolellisen pakkaamisen ja hiilihappojdén avulla selvisti alle -23 °C:een.

Jaan suolapitoisuuden ja kiderakenteen sekd kiteiden suuntautumisen selvittdmiseksi
jokaisen niytteen p#istd sahattiin noin senttimetrin paksuinen kappale. Siitd hiottiin
mikrotomilla ohuthie (kuva 2.), josta polarisaatiolevyjen ja universaalipdydin avulla
madritettiin sekd kiteiden koko ettd niiden c-akselien suunnat. Kidendytteet valokuvattiin

myShempéi tarkastelua varten.

Kuva 2. Jddn ohuthie kiderakenteen ja c-akselin mddrittdmistd varten.

Puristuskoekappaleet valmistettiin -25 °C:een lémpdtilassa ja niiden halkaisija oli 70 mm
ja korkeus 150 mm. Koekappaleiden annettiin tasaantua koeldmpétilassa juuri sen verran,
etti kappaleiden lampotila oli tasaantunut. Téméin varmistamiseksi mitattiin

vertailukappaleen lampotilaa. Lampétilan muutos -10 °C:een koeldmpétilaan vei 2,5 tuntia.
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Lampétilan tarkan seurannan tarkoituksena oli estdd suolaveden aiheuttamat muutokset
jaan rakenteessa. Suolaveden aiheuttamia muutoksia jazhin (mm. mikrobalkeamien

syntymist#) on kuvattu tarkemmin l4hteessa [5].

Puristuskokeet tehtiin VTT Rakennustekniikan pakkashuoneessa. Tasaisen puristuksen
varmistamiseksi koekappaleiden pédt hiottiin yhdensuuntaisiksi. Pdiden tasaisuutta ja
yhdensuuntaisuutta mitattiin profilometrilld. Sallittu poikkeama oli £0,15 mm. Lisdksi
kappaleen piiden ja kuormitustelineen viliin asennettin 8 mmn kumilevyt ja
kuormitustelineen toinen pad nivelditiin. Kokeissa pyrittiin  saavuttamaan vakio
muodonmuutosnopeus 102 1/s ohjaamalla kuormituslaitteen siirtymaa. Siirtyméohjaukseen
kéytettiin kolmen siirtyméanturin keskiarvoa. Kuvassa 3 on esitetty koejérjestelyt. Kaikki
kokeet kuvattiin videolle, josta voitiin jilkikédteen tarkastaa ensimmaéisen murtuman luonne

ja ajankohta.

Kuva 3. Puristuskokeen koejdrjestelyt.
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3. KOETULOKSET
3.1. Kuormitus jifin kasvusuunnassa

Jé4in kasvusuunnassa otettujen naytteiden ylalaita alkoi 42 cm:n syvyydeltd ja&n pinnasta,
jossa jdin rakenne oli selvésti pystykiteistd. Kuormitussuunta oli kohtisuorassa jéin c-
akselia vastaan. Naytteiden suolapitoisuus vaihteli valilld 4 - 5,5 %o. Koesarja kasitti viisi
koekappaletta, jotka murtuivat halkeamalla lahinnd kiderajoiltaan. Murtumista vastaavat
puristuslujuudet on esitetty taulukossa 1. Taulukon arvoista laskettu keskiarvo on 7,97
MPa. Halkeilun jilkeen kappale kesti yleensd vield kuormitusta kunnes yksittdiset kiteet
murtuivat. Vaihtelu kiteiden lukumasrassi, koossa ja pituudessa aiheutti tuloksiin suuren

hajonnan.

Taulukko 1. Jicin kasvusuunnassa kuormitettujen koekappaleiden puristuslujuudet.

Koekappaleen | Suolapitoisuus Limpétila Puristuslujuus
numero [%o] [°Cl] [Mpa]
2 4 -10 6.75
4 5.5 -10 7.27
5 5 -10 10.39
6 5 -10 9.61
23 5 -10 5.84

3.2. Kuormitus horisontaalisesti jid{in kasvusuuntaa vastaan kohtisuoraan

Vertailun vuoksi tehtiin vastaavia kokeita myos jadn kasvusuuntaa vastaan kohtisuorassa
suunnassa. Koekappaleet otettiin 65 cm:n syvyydeltd jddn pinnasta. Jadn kasvusuunnassa
kuormitettujen  koekappaleiden keskikohta oli suunnilleen samalta syvyydeltd.
Vaakasuuntaiset koekappaleet valmistettiin siten, ettd kuormitussuunta oli joko c-akselin
suuntainen tai sitd vastaan kohtisuora. Tuloksia tarkasteltaessa puristuslujuudeksi valittiin

ensimmiiseen murtumaan liittyva arvo, vaikka se ei kaikissa tapauksissa ollut suurin.
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C-akselin suuntaisesti kuormitettiin viisi koekappaletta, joiden keskiarvoksi saatiin 7,27
MPa. Tulos vastaa hyvin lihteessd [5] esitettyjen 42 cm:n syvyydelti otettujen
koekappaleiden tulosten keskiarvoa, joka on 7,23 MPa. C-akselia vastaan kohtisuorassa
suunnassa tehtiin nelja koetta, joiden tulosten keskiarvo oli 5,84 MPa. Yksittdisten

kokeiden tulokset on esitetty taulukossa 2.

Wang [3] on saanut samantyyppiselle merijéille arvoiksi 8 MPa c-akselin suuntaisella
kuormituksella ja 6,5 MPa c-akselia vastaan kohtisuorassa kuormitussuunnassa. Lampétila

oli molemmissa koejéarjestelyissé sama.

Taulukko 2. Jddn kasvusuuntaa vastaan kohtisuorassa suunnassa kuormitettujen

koekappaleiden puristuslujuudet.

Koekappaleen | Suolapitoisuus | Kuormitus- | Puristuslujuus
numero [%o] suunta [Mpa]
68 5 c-akselin 8.83
suuntainen
71 5 c-akselin 727
suuntainen
77 4.5 c-akselin 8.05
suuntainen
80 5 c-akselin 5.45
suuntainen
82 5 c-akselin 6.75
suuntainen
86 5 kohtisuorassa c- 5.97
akselia vastaan
93 4.5 kohtisuorassa c- 4.42
akselia vastaan
96 5.5 kohtisuorassa c- 7.27
akselia vastaan
98 5 kohtisuorassa c- 5.71
akselia vastaan
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4. JOHTOPAATOKSET

Kuormitettaessa jaan kasvusuuntaan, c-akselia vastaan kohtisuorassa suunnassa,
puristuslujuuden keskiarvoksi saatiin 7,97 MPa, miké on paljon suurempi kuin vastaava
arvo jain kasvusuuntaa vastaan kohtisuorassa, 5,84 MPa. C-akselin suunnalla ei tdlla
tavoin paateltynd niyttdisi olevan merkitysté jé4n puristuslujuuteen, koska pystysuuntainen
arvo on 36 % suurempi kuin vaakasuuntainen arvo. Jdin anisotrooppisuudesta johtuen
puristuslujuuden suuriin eroihin on todennikéisesti olemassa muita syitd, joista ehkd
selkein on suolataskujen sijainti ja muoto. Lihteesséd [5] on kuvattu suolataskujen muodon
muuttumista lmmitys-/jasdytysvaiheiden aikana, jolloin suolataskujen reunoille saattaa
muodostua jannityskeskittymis, jotka vaikuttavat puristusiujuuden arvoihin enemmén kuin
c-akselin suunta. Vaakasuuntaisessa kuormituksessa ero on kuitenkin selvd, c-akselin
suuntainen kuormitus antaa arvoksi 7,27 MPa ja vastaava c-akselia vastaan kohtisuora vain

5,84. Eroa on siis 24 %.

Vaikka tehtyjen kokeiden mésrd on pieni voidaan niiden koetulosten perusteella todeta,
ettd jaan puristuslujuuden arvo riippuu paitsi kuormitussuunnasta mydos jdin c-akselista.
Merkitysta tilli on erityisesti silloin, kun tarkastellaan merirakenteille kohdistuvia
jaskuormia alueilla, joissa c-akselin suuntautumista on tapahtunut. Laboratoriojéglle

tehdyissa kokeissa c-akselin suuntautumista on ollut vaikea ottaa huomioon.
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ANALYSIS OF SANDWICH PLATES UNDERGOING LARGE DEFLECTIONS
FOR TAILORING

MARKKU LAITINEN, MIKA JURVAKAINEN, ANTTI PRAMILA
University of Oulu
Department of Mechanical Engineering
Engineering Mechanics Laboratory

ABSTRACT

The aim of this study was to develop a suitable solution algorithm for the bending problem
of a laterally loaded geometrically nonlinear sandwich plate for future implementation into the
LAMINV-program system which solves the problem by inverse technique. The sandwich
plate analysis includes the Reissner-Mindlin hypothesis with the von Karman displacement
field. The solution method for the nonlinear deflection of the sandwich plate is the Ritz
method with direct minimization of the total potential energy. Preliminary comparison with
existing FEM-solution indicates reasonable agreement

INTRODUCTION

The purpose of this study is to develop a solution algorithm to be used in the inverse method
in the design of sandwich plates undergoing large deflections. The geometrical nonlinearities
become significant, when deflection of the plate exceeds the half of the thickness of the plate.
The favorable stiffness and weight properties of composite materials are not fully utilized,
when a linear deflection theory is used.

The use of composite materials offers the designer many possibilities to tailor the response of
the structure. By changing the design variables, e.g., the ply orientations and/or thicknesses,
and the thickness of the core, different structural properties can be created for a sandwich
structure. When specific properties are to be created, the trial and error method is likely to fail.
In the solution of the inverse problem, the designer wishes to find the design variables so, that
the structure deforms in a specific way for given loads. The solution of the inverse problem
often leads to a minimization problem, where one minimizes the difference between the
desired value and the calculated value. Generally the solution of the inverse problem is not
unique; several design variable combinations can fulfill the demands.

Various plate theories are suggested for the analysis of sandwich plates. Among the most
widely used are the first order shear deformation theory (Reissner-Mindlin), higher order
theories and the discrete layer theory. When geometrical nonlinearities are to be taken into
account, each of these theories can be modified to include the von Karman type large
deflection assumptions. From the computational point of view, the Reissner-Mindlin theory
is of course the most easily applicable. The higher order theories and especially the discrete
layer theory are computationally expensive in practical cases.
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For a sandwich plate analytical closed form solutions are found only in few special cases and
numerical methods are to be used. The designer must choose the most efficient discretization
method in order to perform the solution of the inverse problem with resonable computational
effort. The most suitable discretization methods for sandwich structures are the finite element
method (FEM) and the traditional Ritz method. The advantage of the finite element method
is that more complex geometries can be analyzed and the disadvantage is, that the CPU-time
increses considerably, when more elements (more d.o.f.) are used. The advantage of the Ritz
method is that fewer degrees of freedom are needed, and the disadvantage is, that the method
is suitable only for simple geometries. Since the geometry of the structure investigated here
is very simple and the solution is required several times during the minimization, the Ritz
method is chosen for the discretization.

LAMINATE THEORY
Let us take a brief look at the classical laminate theory in order to illustrate the macro-

mechanical behaviour of some important types of laminates. The force-deformation equation
of a general laminate is

(N.] [4y 4, 4 By, By By £,
N, A4, A, Ay B, By By 83

) i | Ay Ay Ay B By By ) ng (1)
M [ B, B, Bg D, Dy, Dg||x, ,
M, B, B, By D, Dy Dy||x,

_M-ly, _Bl6 By, By Dy Dy Dss_ ury

where the A is the extensional stiffness matrix, B is bending-extension coupling and D is the
bending stiffness matrix. The presence of the B-matrix implies coupling between bending and
extension of a laminate. It is impossible to pull on a such laminate without at the same time
bending and/or twisting it. The stacking sequence of these laminates is unsymmetric with
respect the geometric mid-plane of the laminate. Usually, the symmetric stacking sequencies
are preferred for obvious reasons. For these laminates, the B-matrix vanishes and extension
and bending are decoupled. If the laminate has got an angle-ply stacking sequency, there still
exists at least the bending-twisting coupling, namely the terms D, and D (transversely
isotropic layers). This coupling still prevents the analytical closed form solution.

The simpliest case for orthotropic laminates is the specially orthotropic case. In that case, each
layer is stacked symmetrically with respect to the geometric mid-plane with 0° and 90°
orientation angles (additionally, there can also be isotropic layers in the laminate, typically the
core, provided, that the stacking sequence is still a symmetric one). For this type of laminate
the B-matrix and the coupling terms 44, 4,5 Dis, and I}; vanish. This type of laminate is
often used, since it is easily manufactured. The drawback is, that the designer has to give up
the possibility to use ply orientations as design variables.

When Reissner-Mindlin theory is used, shear force-strain relations are needed

{Qy} _ [ KA, kK, Aﬂ {vﬂ} @)
Qx kl kZ A45 kzz AES ‘Yﬂ



129

where k, and &, are the shear correction factors. These factors can be derived using energy
principles for constant and parabolic transverse stress distributions and imposing the equality
of these two, as is done in /1/, and /2/. With proper correction factors, sandwich plates can be
analyzed quite accurately.

PLATE THEORY USED

With the present day computer capabilities, the suitable sandwich plate theory is the Reissner-
Mindlin (or YNS) plate theory. In this theory, the planar sections remain straight, but are
allowed to rotate during deformation. Since this study is focused on the large deflection
analysis of composite plates, the following deformation kinematic relations include the von

Karman -type nonlinearity.

The Reissner-Mindlin-type (YNS) displacements in the plate can be written as, /3/,

ulx,y,z) =u’ (x,y) +z ¢, (x,y)

v(x,y,2) =v° (x,p) +2 9, (x,») 3)

wix,p,z) =wx,y),

where u, v, and w are the displacements anywhere in the plate; u° and 1° are the displacements
of the mid-plane, and s, and ¥, are the rotations.

Since we investigate the large deflection of laminated plates, the nonlinear strain-displace-
ment relations are used, /4/,

1(3% +2‘1+£&3ﬁ} @

eij=5 i

dx; dx, dx; dx,
For brevity we have used in the above equation the indicial notation in a standard way, ie.
X,;=X, X,;=Y, ... , uy=w. If the in-plane displacement remain small and the transverse displace-
ments (deflection) moderate, the in-plane rotations can be neglected and the usual von
Karman equations for large deflections are obtained.

Using equation (3), the final form of the strain-displacement relation is
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where engineering notation is used and w, is the initial deflection of the plate.

RITZ DISCRETIZATION
The principle of the minimum potential energy states: "Of all the admissible displacement

fields, the one that minimizes the total potential energy of the structure quarantees equilib-
rium." Mathematically the problem is formulated as follows

i “i

. (1
min“H=mmu(EI C,g¢e;dV- _[f,zgdS) ©)
where u denotes the displacement field and the first integral is the strain energy, the second

integral being the potential of the external load set.

Using all assumptions above, the strain energy of the plate can be expressed as a function of
the five unknowns «°, v°, w, U, and s, . The strain energy of plate is then

_1 T T T T X 7
U—E_[Q(e Ae+2¢"Bu+x"Dx+yT Ay)de, @

where Q denotes the mid-plane of the plate, the vector € contains the midplane strains, the k
contains the curvatures, the vector ¥ contains the transverse shear strains and the matrices
have their standard meanings (see eqgs. (1) and (2)).

The mid-plane strains can be separated into linear and nonlinear parts &, and €y,. Then, the

strain energy can be broken into following components, /5/, each having a specific meaning.
The in-plane stretching of the plate (linear membrane behavior)

=—I Agl t))

the geometric coupling between in-plane deformations and the deflection
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1
U, = Efsz (2¢7A¢,,)aQ,
the fourth order terms in the deflection w
U, = Z (81Tv1A Em)dg '
2 Je
the material coupling between in-plane deformations and the deflection
U, =1( (2¢Bx)ae,
2 Je
the material/geometric coupling between in-plane deformations and the deflection
_ [, (2ehBx)
U, = EIQ 27, Bx)dQ,
the bending stiffness of the plate
U, =+ («"Dx)a
s~ %) ’
and the transverse shear stiffness

U, =%fg(vfxv)d9-

©)

(10)

(11)

(12)

(13)

(14)

These strain energy equations are greatly simplified, when the stacking sequence of the
covering laminates is restricted to be symmetric with recpect to the midplane of the plate and

even more, when specially orthotropic laminates are considered.

The potential of the external load set is
— T .
W—prdQ+J.sN uds,

where p is the transverse pressure, and N7 is the in-plane loads.

(15)

Additionally several other terms are introduced from the initial imperfection w. These terms

are obtained by substituting w, for w in appropriate places.
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BOUNDARY CONDITIONS

The potential energy approach along the Ritz method is used here, so only the geometric
(essential) boundary conditions must be satisfied, although, if natural boundary conditions are
present, the convergence is more rapid if all the boundary conditions are satisfied. The
boundary conditions can be separated into two categories (» denotes normal, ¢ denotes
tangential)
1) Out-of-plane (w, Y, and ¥, ). Simply supported; w = 0; no restrictions on y,
and U, . Clamped; w =y, = w,=0.
2) In-plane (u,, u, ). Straight edge; u, constant or zero. Stress-free edge; u, and u,
can take arbitrary values. Uniformly loaded edge; u, and 4 can take arbitrary
values.

Further on the in-plane boundary conditions can be divided into three categories:
1) All edges straight (the stiffest case).
2) The lateral edges are free to deform and the loaded edges are kept straight.

3) All edges are free to deform.

DIRECT MINIMIZATION OF THE POTENTIAL ENERGY

Usually one would take the first variation of the total potential energy and equaling it to zero
to obtain a set of nonlinear partial-differential equations. Here we use the direct minimization
of the potential energy. First we use generalized coordinates g, to obtain a discrete expression
of the total potential energy. The expression is a fourth-order polynomial as follows, /5/,

F(g)=Fq".q".9))

=Zﬁq;”+lzzK,§q£"qf”

+Z;Zk:1<.§-k " q; 9 +Z§,§ZK,§’H 947 9 97 (16)
+Z;;<‘;q;q;+,z;1<g”q{q}

+ZZJZK5M a’q) ++Z;K5w a7 q;

where
f is the load vector due to lateral uniform pressure load,
K¢ is linear membrane stiffness matrix,
K® is nonlinear membrane stiffness matrix,
KZ? is nonlinear bending stiffness matrix,
K is linear bending stiffness matrix,

K& is linear rotation stiffness matrix (rotational d.o.f. only),
K#™ is linear rotation stiffness matrix (rotational/bending coupling),

K#"* is linear rotation stiffness matrix (bending d.o.f. only)

The last three matrices are related to the transverse shear stiffness of the plate.
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This function is then minimized using unconstrained minimization algorithm. This minimiza-
tion algorithm should not be confused with the constrained nonlinear minimization algorithm
used in the inverse problem solution. Here we wish find the unconstrained minimum of the
potential energy, which gives us the nonlinear displacements of the plate. The minimum of the
potential energy is found in three steps, /4/:

1) Find the descent direction for F(q)

VE s, <0, (17)

where VF, is the gradient of F' at q,..

2) Along the line defined by s,, find the absolute minimum of F(q). This opera-

tion is called the line search.

3) Increment the unknowns to that new point and start over again until con-

vergence is reached.

There exists many suitable algorithms for this procedure, for example, the conjugate gradient
method, the Newton-Raphson method and the variable metric method (quasi-Newton
method). Here we choose the Broyden-Fletcher-Goldfarb-Shanno (BFGS) version of the
variable metric method, /6/. The one obvious advantage of the direct minimization of the

potential energy is that no incremental loading is needed as would be the case with the finite
element method.

RITZ DISPLACEMENT MODES

Next we have to decide the which shape functions we use over the plate domain Q in order
to represent the displacements. With the Ritz method, the shape functions are usually taken
as double trigonometric series in which the variables (x and y) are separable. Here we choose

u () =3 D uE
v (.y) =3 > G H,
wiry) =3 > wE H, (18)
Y, @)= 5T H,

b, @) =X 2y, E

where the functions E,, G, and T, are trigonometric functions (series) depending on the x-coor-
dinate and F;, H,, and Z, are trigonometric functions (series) depending on the y-coordinate.
These shape functions must at least satisfy the geometric boundary conditions.
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NUMERICAL EXAMPLE

As a first numerical test example we have used the one found from reference /7/. The size of
the plate was 2 m * 3m. The material properties are the same as in the above reference.

The transverse displacement of the sandwich plate due to uniform transverse pressure load is
shown in figure 1. The reference solution of Hildebrandt and our solution have rather good
overall agreement. Our solution seems to be monotonic and quite fair up to 75 kPa loading.
The reference solution has more undulations and they start earlier. At first sight there is a
peculiarity that the nonlinear analysis with the direct minimization gives larger deflections
than the linear analysis with small loads. There is, however a physical explanation for it.

E-glass / BALSA sandwich plate: Central deflections
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Fig. 1. Simply supported sandwich plate: linear and non-linear central deflections.

CONCLUSIONS

Our aim was to develop an algorithm for analysing sandwich plates undergoing large
deflections by using the Ritz method and direct minimization of the total potential energy.
The algorithm implemented seems to work rather well.
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HARUSTETUN MASTORAKENTEEN OPTIMOINNISTA

Timo Turkkila
Tampereen teknillinen korkeakoulu/ Teknillinen mekaniikka
PL 589
33101 Tampere

TIIVISTELMA

Artikkelissa esitelliin harustetun mastorakenteen optimointia. Muodostettava optimointi-
tehtiivi on monitavoitteinen ja diskreetti. Monitavoitteinen tehtivi ratkaistaan rajoitus-
menetelmilld ja siind tarvittavat diskreetit tehtédvit branch and bound tai geneettiselld
algoritmilla. Rakenne analysoidaan elementtimenetelmélld kdyttéen lineaarista laskenta-

mallia.

JOHDANTO

Nykyaikainen tietoliikenne tarvitsee runsaasti erilaisia mastorakenteita. Niiden ana-
lysointi ja optimointi ovat haastavia mekaniikan ja matematiikan ongelmia. Tdma artik-
keli ’perustuu lisensiaatintyohon [1] ja tdssd yhteydessd keskitytddn suhteellisen matalien,
putkirunkoisten harustettujen mastorakenteiden optimointiin. Esitettdvid optimointi-
menetelmii voi soveltaa myos korkeampiin ristikkorakenteisiin mastoihin, jos maston
runkorakenne voidaan korvata esimerkiksi artikkelissa [2] esitetylld ekvivalenttisella
palkkielementilla.

Mastorakennetta optimoitaessa tehtdvin suunnittelumuuttujia voivat olla esimerkiksi

sekd mastoputken valinta. Suunnittelumuuttujana oleva harustasojen lukumaara tekee
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optimointitehtdvistd monimutkaisen, silld muiden suunnittelumuuttujien ja rajoitusehto-
meina kiytetddn branch and bound ja geneettisti algoritmia.

Mastorakenteesta muodostetaan monitavoitteinen optimointitehtidvd, joka ratkaistaan
rajoitusmenetelmad kayttden. Siind yksi kriteeri valitaan minimoitavaksi ja loput kriteerit
parametrisoidaan rajoitusehdoiksi. Rajoitusmenetelmad kdytetddin, koska se on osoittau-
tunut tehokkaammaksi kuin yleisesti kdytetty painokerroinmenetelmd, jossa kohdefunktio
muodostetaan eri kriteerien painotettuna summana. Monitavoitteista optimointia ja sen

eri ratkaisumenetelmid on esitelty tarkemmin esimerkiksi lahteessd [3].

DISKREETIT OPTIMOINTIALGORITMIT

Tissd artikkelissa kokeillaan kahta optimointialgoritmia: branch and bound ja geneettistd
algoritmia, joiden toimintaa esitelldsn lyhyesti tissi luvussa. Branch and bound algorit-
missa kiytetiin jatkuvia osatehtidvid, jotka ratkaistaan jollakin jatkuvan optimoin-
titehtdvin algoritmilla. Jos osatehtéivistd el saada diskreettii ratkaisua, siitdi muodoste-
taan kaksi uutta osatehtivid. Tassd yhteydessd edellisen osatehtdvin ei-diskreetti optimi-
piste jid seuraavien osatehtivien kdypien alueiden ulkopuolelle. Kéypid alueita pilkotaan
edelleen, kunnes osatehtivistd viimein saadaan diskreetti ratkaisu, kdypé alue kutistuu
pois tai osatehtivin kohdefunktion arvo on annettua yldrajaa suurempi. Yldrajana
kiytetisn parhaan tunnetun diskreetin ratkaisun kohdefunktion arvoa.

Koska suunnittelumuuttujien ja rajoitusehtojen lukumdiri ei ole vakio, branch and
bourd algoritmia ei voi kiyttdd suoraan. Toisaalta diskreetti optimointitehtdvd voidaan
ratkaista tdysin normaalisti, jos harustasojen lukumédré on vakio. Tdmd onnistuu, jos
ratkaistaan erikseen. Koska topologiamuuttujia on vain yksi, eri arvojen jarjestelméllinen
kokeileminen on kiyttdkelpoinen menetelmé. Tehdyssd ohjelmassa harustasojen luku-
miirille annetaan ala- ja yldraja. Tdmin jilkeen harustasojen lukuméérdd kasvatetaan
alarajalta lahtien. Jokaisella lukumidrimuuttujan arvolla ratkaistaan diskreetti optimoin-
titehtdvi, ja lukumidramuuttujan arvoa suurennetaan niin kauan, kun kohdefunktion arvo

paranee tai tullaan lukum#drdamuuttujan ylédrajalle.
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Geneettisen algoritmin idea on saatu luonnon evoluutioteoriasta. Siind seurataan tietyn
elilajin kehitystd sukupolvien kuluessa. Jokaisessa sukupolvessa parhailla yksil6illd on
heikompia yksil6itd suurempi todennikdisyys saada jilkeldisid, jolloin laji vihitellen
jalostuu. Yksildiden perimd on geeneissd, jotka muodostavat kromosomin. Uutta
sukupolvea luotaessa vanhempien kromosomit katkeavat ja liitryvit uuteen jdrjestykseen.
Samalla geeneille voi tapahtua myds mutaatioita.

Matemaattisessa optimointialgoritmissa suunnittelumuuttujavektori koodataan kro-
mosomiksi. Yleensd kiytetddn bindfrikoodausta, jolloin jokaista kromosomipaikkaa
tavoittelee kaksi kilpailevaa geenid 0 ja 1. Yksinkertaisuuden vuoksi yleensd kdytetéddn
vain yhti kromosomia yksilon perimén tallentamiseen. Risteytettdvit yksilot valitaan
tavallisesti kdyttden fimess-lukua, joka muodostetaan kohdefunktion ja rajoitusehtojen
arvojen avulla. Risteytyksesséd yksiléiden kromosomit katkaistaan yhdestd tai useammas-
ta kohdasta ja jollakin ennalta médréttavilld todenndkoisyydelld kromosomipalojen
paikkoja vaihdetaan. T4lldin esimerkiksi kromosomeista 11111 ja 10000 voi tulla uudet
kromosomit 11100 ja 10011. Mutaatiossa ennalta mééréttdvilld pienelld todennikdisyy-
delli geenin 1 paikalle vaihdetaan geeni O ja painvastoin.

Topologiamuuttujat voidaan kisitelld geneettisessd algoritmissa varaamalla riittdvin
pitkd kromosomi kdyttden topologiamuuttujien arvoina niiden ylérajoja. Jos topolo-
giamuuttujan arvo on pienempi, yliméadraiset geenit jaavat merkityksettomiksi. Tamén
menetelmin kiytostd saattaa syntyd ongelmia, jos kahdella risteytettdvilld yksilolld ei
ole sama harustasojen lukumard, jolloin jotkut geenit eivdt ole kaikille yksiloille
merkityksellisid.

Maston laskentamalli muodostetaan virittimalld harustasojen viliin elementtiverkko.
Tistd syystd kahta harustasoa ei saa kiinnittdd samaan kohtaan ja harustasot on oltava
kiinnityskorkeuksien mukaisessa jérjestyksessa. Risteytykset ja mutaatiot sekoittavat
hyvin tehokkaasti titd korkeusjirjestystd, joten sen sdilymisestd on huolehdittava.
Korkeusjirjestys siilytetddn vaihtamalla vadrassd jirjestyksessd olevien harustasojen
paikkoja yksilén kromosomivektorissa.

Branch and bound algoritmia on esitelty tarkemmin esimerkiksi ldhteessd [4] ja

geneettistd algoritmia lahteissd [5] ja [61.



140

ESIMERKKI

Esimerkkini on kuvassa 1 esitetty 30 m korkea mastorakenne, jonka yldpddssd on
antenni. Maston alap#d on niveltuettu ja harukset on kiinnitetty kolmeen maakiinnikkee-
seen, jotka sijaitsevat mastosta katsottuna 120 asteen vilein. Tuulikuormitus synnyttdd
mastoputkeen viivakuorman q ja antenniin pistevoiman F. Pistevoima on vakio, mutta
viivakuormitus riippuu tuulenpaineesta p ja mastoputken ulkohalkaisijasta D kaavalla

q = pD. Tissd yhteydessi tuulenpaine oletetaan vakioksi. Lisdksi antennin painosta

aiheutuu pistevoima P.

Ye

Kuva 1. Kuva optimoitavasta mastosta

Tehtivin suunnittelumuuttujia ovat harustasojen lukuméérd r, maakiinnikkeiden

etdisyydet x, harustasojen kiinnityskorkeudet y;, haruksien halkaisijat d; ja mastoputken
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ulkohalkaisija D. Néistd harustasojen kiinnityskorkeudet ja maakiinnikkeiden etdisyydet
ovat jatkuvia suunnittelumuuttujia ja harustasojen lukuméird, mastoputken seki haruk-
sien halkaisijat ovat diskreettejd. Suunnittelumuuttujien lukuméérd on 2r+3.
Optimointitehtdvin kohdefunktioina ovat materiaalikustannukset ¢, suurin vaakasiirty-
mi max O, alin ominaiskulmataajuus @, ja maston viantojaykkyys k,. Materiaalikustan-
nuksissa huomioidaan harusvaijereiden, mastoputken ja harustasokiinnikkeiden kustan-
nukset. Alin ominaiskulmataajuus saadaan taivutusvérdhtelyistd. Viaintojaykkyys kuvaa
antennin tuulikuormituksesta ja epikeskeisestd kiinnityksestd mastoon syntyvin vidinto-
momentin ja siitd maston yldpadhin aiheutuvan kiertyméan vilistd suhdeita. Ominaiskul-
mataajuutta ja vaantdjaykkyyd maksimoidaan, kun muita kriteerejd minimoidaan.
Tehtivin rajoitusehdoissa tutkitaan mastoputkeen taivutuksesta syntyvid normaalijdn-
nityksid o, haruksien normaalijinnityksid oy, , nurjahduskuormituskerrointa A seki

harustasojen keskindistd etdisyyttd ja jarjestystd y,, - Y Optimointitehtdvi on siis

min [ ¢ max § - -k I

max G, < O,

Vi = Yi 2% @

ref{1,2,3, 4}
d, € D
De D,
X, SxsX

T;ﬁtﬁvﬁn vakioarvot ovat: maston pituus L = 30 m, tuulenpaine p = 750 Pa, antennin
tqulikuorma F = 300 N, antennin paino P = 500 N, mastoputken kimmomoduuli £, =
210 GPa, haruksen kimmomoduuli E, = 105 GPa, putken ja haruksien tiheys p = 7800
kg/m®, Poissonin vakio v = 0,3, mastoputken suurin sallittu normaalijdnnitys ©, i, = 140
MPa, harusvaijerien suurin sallittu jinnitys Gy, s = 210 MPa, pienin sallittu nurjahdus-
kuormituskerroin A, = 3,5, vaakaetiisyyden alaraja x, = 5 m, vaakaetdisyyden ylédraja
xy = 25 m, tuentakorkeuden alaraja y, = 3 m, mentakorkeuden yliraja y, = 27 m,

harustasokiinnikkeen hinta k, = 500 mk, mastoputken kilohinta h, = 10 mk/kg ja
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harusvaijerin kilohinta 4, = 32 mk/kg. Harushalkaisijoille on diskreetti joukko D, = {2 4
6 8 10} mm ja mastoputket valitaan joukosta D, = {(26,7 2,6) (33,7 2,6) (42,4 3,2)
(48,3 3,2) (60,3 3,2) (76,1 4) (88,9 4) (101,6 4) (108 4) (114,3 4) (127 4) (139,7 5)})
mm [7)]. Jilkimmaisen joukon pisteissd ensimmiinen luku tarkoittaa putken ulkohal-
kaisijaa ja toinen seinimén paksuutta. Seindmin paksuuden ja ulkohalkaisijan vélinen
yhteys hoidetaan interpoloimalla splinikdyrilld sisi- ja ulkohalkaisijan vilistd suhdetta.
Masto analysoidaan tasomallia kiyttden. Tasomallinnusta voidaan kdyudd, silld
mastoputki on py6rihdyssymmetrinen ja lineaarista laskentaa kéytettdessd harustason
jiykkyys ei riipu kuormituksen suunnasta. Mastoputken mallinnukseen kidytetddn
palkkielementtejd ja harustaso korvataan yhdelld jousielementilld, jolla on harustason
jaykkyyttd vastaava jousivakio. Jokaisesta maakiinnikkeestd on harusvaijeri kahteen
samalla korkeudella olevaan putkikiinnikkeeseen. Maakiinnikkeestd samalle harustasolle
ldhtevit harukset voidaan suurta virhettd tekemértd olettaa samansuuntaisiksi. Jos maston
siirtymit ja kiertymdt oletetaan pieniksi, putkikiinnitys voidaan mallintaa kuvan 2.
mukaisella kiekolla. Kiekko on tuettu jousilla, joiden jousivoimia on merkitty symboleil-

la Fy, ... , Fe, ja sitd kuormitetaan ulkoisella voimalla O sekd vdidntomomentilla 7.

o]
i f, ~ —~
Kuva 2. Kiekko, jolla mallinnetaan harus- Kuva 3. Kiekon siirtyminen voiman

tason kiinnitystd vaikutuksesta
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Kiekon tuennassa kiytettdvit jousivakiot saadaan haruksen vaakasuuntaisesta jiykkyy-

destd

@

xi

EA.
= '}‘cosz(ai),

missi A, tarkoittaa harusvaijerin poikkipinta-alaa, /; haruksen pituutta sekd ¢; haruksen ja
maan vilistd kulmaa.
Kuvan 2. kiekon tasapainoehdot ovat
- [- (F,+F,) + (F5+F6)]cos[_g,J + Qcos(a) =0
T = (F,+F,) + (F +F,+F4+F)sin %J + Qsin(e) = 0 3)

(F,-F,+F,~F +F~F, )cos{..g. ry+T =0,

missd r, on kiinnityksen side. Jos kiekko siirtyy kuvan 3. mukaisesti akselinsa ympari

kiertymiittd pisteestd O pisteeseen O’, niin jousivoimien lausekkeiksi saadaan

~

=F =N + k.Scos.E+B
Xi 6

N + k,Ssin(B 4)

N - k. 8cos| Z-B |,
. cos[6 B]

F

2
3 4
6

F

T

5=

missd N on esikiristysvoima, B siirtymén suuntakulma ja § siirtymén arvo. Kun nimi

sijoitetaan tasapainoehtoihin (3), tulokseksi saadaan

Q = 3k;8
T=0 )
o =P

Ulkoinen voima ei siis aiheuta momenttia, ja kiekon siirtym# on voiman suuntainen.

Haruskiinnityksen ekvivalenttiseksi jousivakioksi saadaan k., = 3k,;.

Viintotapauksen ekvivalenttinen jousivakio saadaan, kun kiekkoa kierretéén kulman 6

verran aiheuttamatta sille siirtymid. Jos oletetaan, ettd kulma © on pieni, niin jousivoi-

mien lausekkeiksi saadaan
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F =F,=F, =N - kx‘..‘/_3__r06
2 (©)
F,=F,=F =N+ kx,._@roe.
Nimi sijoitetaan tasapainoehtoihin (3), jolloin saadaan
0=0
T = %kxirje ™

Jos kiinnityksen siteeksi r, valitaan mastoputken ulkohalkaisija D, harustason ekviva-
lenttiseksi jousivakioksi vadnnossd saadaan kg, = 4,5k,D*. Vifnnossd maston alapii on
jiykdsti tuettu eli maston alapddhin vadnnostd ei synny kiertymid.

Nurjahduskuormituskerroin lasketaan lineaarisen ominaisarvotehtévén avulla. Maston
normaalivoimakuormitus syntyy haruksien esikiristysvoimista ja mastoputken sekd
antennin painosta. Haruksien esikiristysvoimat lasketaan siten, ettd haruksien normaali-
voimat ovat koko ajan positiivisia, jolloin harus ei pddse 16ystyméddn. Tdmé on valtudmé-
tontd, jotta harusvaijeri toimisi jousen tavoin. Haruksien omaa painoa ei huomioida.

Rakenteen alin ominaiskulmataajuus lasketaan taivutusvérdhtelyistd. Mastoputken
massamatriisina kiytetdsin konsistenttia massamatriisia. Harukset ja kiinnikkeet huomioi-
daan keskittamilld puolet harustason harusvaijereiden massasta pisternassaksi harustason
Kiinnityskohtaan. My&s antenni huomioidaan pistemassana. Alin vddntSominaiskulma-
taajuus todettiin olevan selvisti alinta taivutusominaiskulmataajuutta suurempi, jolloin
sitd ei tarvinnut tdssd yhteydessd huomioida.

Tehtivistd laskettiin yksittdisten kriteerien optimipisteet sekd kaksi kompromissirat-
kaisua. Edullisena kompromissiratkaisuna lasketaan materiaalikustannusten minimi, kun
rakenteen maksimitaipuma on enintddn 10 cm ja vdantdjaykkyys on vihintddn 15
kNm/rad. Vaanto- ja taivutusjiykkdnd kompromissiratkaisussa maksimoidaan vaanto-
jaykkyyttd, kun materiaalikustannukset ovat enintddn 15000 mk, maksimitaipuma on
enintddn 5 cm ja alin ominaiskulmataajuus on vihintdén 15,708 rad/s. Ominaiskulmataa-
juuden raja vastaa ominaistaajuutta 2,5 Hz. Kriteerien ja suunnittelumuuttujien arvot on

esitetty taulukossa 1 ja saadut mastorakenteet kuvissa 4 ... 9.
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Taulukko 1. Kriteerien ja suunnittelumuuttujien arvot lasketuissa Pareto-optimeissa.

Piste 1 on materiaalikustannisten minimi, piste 2 maksimitaipuman minimi, piste 3

viintsjaykkyyden maksimi, piste 4 alimman ominaiskulmataajuuden maksimi, piste 5

on edullinen ja piste 6 jiykkd kompromissiratkaisu.

1 ¢ =4410 mk r=3 d, =2 mm y,=728m
max 6 = 13,2 cm x=2140m d, =2 mm ¥, = 23,36 m
k, = 5,42 kNm/rad D =889 mm d; =2 mm y; = 27,00 m
®, = 6,07 rad/s

2 ¢ = 17410 mk r=3 d, = 10 mm ¥, =997m
max & = 0,88 cm x=2500m d, = 10 mm ¥y, = 15,58 m
k, = 38,33 kNm/rad D =139,7mm d,= 10 mm ¥;=27,00m
®, = 16,28 rad/s

3 ¢ = 23500 mk r=4 d, = 10 mm y, = 20,74 m
max d = 13,7 cm x=2500m d, = 10 mm ¥, = 25,00 m
k, = 49,85 kNm/rad D=1397mm d,=10mm 3 = 26,00 m
®, = 7,78 rad/s d, = 10 mm ¥y, = 27,00 m

4 ¢ = 20380 mk r=4 d, = 10 mm ¥, = 10,66 m
max 8 = 1,5 cm x=2500m d, = 10 mm ¥, =2224m
k, = 44,61 kNm/rad D=1397mm d,=10mm y;=2324m
o, = 20,95 rad/s d, = 10 mm ¥, = 27,00 m

5| ¢ = 5400 mk r=2 d, = 4 mm y, =765m
max & = 10,0 cm x=1147m d, =4 mm ¥, =2529m
k, = 16,47 kNm/rad D =127 mm
®, = 6,25 rad/s

6 ¢ = 15000 mk r=4 d, =4 mm y, =134 m
max d = 3,0 cm x=2401m d, =4 mm y,=22,64 m
k, = 38,44 kNm/rad D =1397mm d,=8mm ¥; = 26,00 m
®, = 15,708 rad/s d, = 10 mm Y¥e=2700m
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%

Kuva 4. Materiaalikustannusten minimi Kuva 5. Maksimisiirtymén minimi

/

Kuva 6. Viintojiykkyyden maksimi Kuva 7. Alimman ominaiskulmataajuu-

den maksimi

/

Kuva 8. Edullinen kompromissiratkaisu Kuva 9. Jdykki kompromissiratkaisu

Nimi Pareto-optimit on saatu branch and bound algoritmilla. Samat pisteet laskettiin
kiyttden my6s geneettistd algoritmia. Koska geneettinen algoritmi on stokastinen
algoritmi, pisteet laskettiin kahteen kertaan. Populaation kokona kdytettiin 100 yksildd ja
sukupolvien lukumizrini 800. Materiaalikustannusten minimiksi saatiin 4800 mk ja
5160 mk (4410 mk), maksimitaipuman minimiksi 0,88 cm ja 0,89 cm (0,88 cm), vdin-
t6jdykkyyden maksimiksi 49,83 kNm/rad ja 49,84 kNm/rad (49,85 kNm/rad), alimmaksi
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ominaiskulmataajuudeksi molemmilla kerroilla 20,95 rad/s (20,95 rad/s), halvemman
kompromissiratkaisun materiaalikustannuksiksi 5780 mk ja 6330 mk (5400 mk) sekd
jaykemmin kompromissiratkaisun vaint6jaykkyydeksi 38,27 kNm/rad ja 38,29 kNm/rad
(38,44 kNm/rad). Suluissa olevat vertailuarvot on saatu branch and bound algoritmilla.
Geneettinen algoritmi oli niissd pisteissd jonkin verran hitaampi kuin branch and bound
algoritmi. '

Geneettiselld algoritmilla oli vaikeuksia 18ytdd materiaalikustannusten minimi ja
halvempi kompromissiratkaisu. Muissa pisteissd saadut kohdefunktion arvot ovat varsin
tarkkoja. Ongelmapisteissd algoritmilla oli harustasojen lukumdédrdn valinnassa ongelmia.
Vaikuttaisi siltd, ettd harustasojen lukumadrd konvergoisi hyvin varhaisessa vaiheessa ja
sen jilkeen lukumdérin vaihtaminen on hyvin epitodennikdistd. Kiytetty geneettisen
algoritmin koodi ei toimi parhaalla mahdollisella tavalla, jos tehtdvidssd on runsaasti
aktiivisia rajoitusehtoja. Kun materiaalikustannuksia minimoidaan, lihes kaikki jannitys-
rajoitusehdot sekd nurjahdusrajoitusehto ovat aktiivisia. Tdmi hankaloittaa materiaali-
kustannusten ja halvemman kompromissiratkaisun konvergointia.

Maksimitaipuman minimissi geneettinen algoritmi valitsi nelji harustasoa, kun branch
and bound suosittelee kolmea. Molemmissa ratkaisuissa kaikkien kohdefunktioiden arvot
olivat kuitenkin hyvin lahelld toisiaan. Vaantdjaykkyyden maksimoinnissa kolme maston
huipussa olevaa harusta ajheuttivat geneettiselle algoritmille ongelmia. Ndam& harukset
ovat metrin vilein toisistaan, jolloin pienikin muutos johonkin harustasokorkeuteen tekee
rakenteesta epikiyvin. Ominaiskulmataajuuden maksimointi onnistui sitd vastoin
erinomaisesti, silld suunnittelumuuttujien arvot olivat laskentatarkkuuden puitteissa
samoja kuin branch and bound algoritmilla saadut. Jaykemmassi kompromissiratkaisussa
haruksien halkaisijat ei ollet aivan samoja, mutta saatu kohdefunktion arvo oli silti

todella hyvi.

YHTEENVETO

Artikkelissa on esitelty kahden eri optimointialgoritmin kdytt6d harustetun maston

optimoinnissa. Laskuesimerkkind on kaytetty matalahkoa putkirunkoista mastoa, joka



148

laskettiin monitavoitteisena optimointitehtivind. Tehtdvistd laskettiin kuusi erilaista
Pareto-optimia, joissa harustasojen lukumiérd vaihtelee kahdesta neljéén.

Molemmilla algoritmeilla on saatu samankaltaisia tuloksia. Geneettiselld algoritmilla
oli vaikeuksia 16yt materiaalikustannusten minimid ja edullista kompromissiratkaisua.
Niissi pisteissd harustasojen lukumdirdn valinta ja usean aktiivisen rajoitusehdon
samanaikainen kisittely ndyttiviit tuottavan hankaluuksia kiytetylle ohjelmaversiolle.

Muiden Pareto-optimien laskenta onnistui varsin hyvin.
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THE FULLY STRESSED DESIGN AND THE MINIMUM OF VOLUME

PERTTI HOLOPAINEN
Department of Mechanical Engineering
Tampere University of Technology
P.O. Box 589, SF-33101 TAMPERE, FINLAND

ABSTRACT

It is known, on principle, that the fully stressed design of statically indeterminate trusses
is not possible because of compatibility.

The fully stressed design method for statically indeterminate trusses using pre-stressing
is proposed. The fully stressed design procedure to obtain the absolute minimum of
volume, deleting suitable uneconomical members of statically indeterminate trusses, is
presented for one loading. The combination of two different loadings is also considered.
The design variables are the only reduntant forces.

Introductory example

Consider the three-bar system as shown in the Fig. 1. It is a symmetric simple plane truss
with one degree of redundancy.

Fig. 1.

Member force S, = X is chosen here as a reduntant force and it is assumed that member 2
is cutt at support C. When members 1 and 3 cross-sectional areas 4, =S /o, and
4, =S,/0,, when|o,| is a maximum allowable value, members 1 and 3 are fully stressed.
Therefore elongations A, = (S,/,/ E4,), (i =1,3) are known in advance. It is assumed here,
that A, are small. In this case point A moves down distance A, = A, /sin a. But member 2
is shorter, /, =/ sina, and its fully stressed elongation A, = A;sina. This means, that
between support C and member 2 there remains a gap
A, cos’ @

§,=——=Asina=A——.
sina sin &

&)
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Member 2 can be prepared a quantity &, longer, than the length /, calculated from the in-
itial geometry. Therefore the compatibility becomes true in the fully stressed state. But this
means, that the whole structure is stressed, when the loading is absent. Member 2 is ‘too
long’ setting up the structure and it must be forced between points A and C. So the
structure becomes prestressed. Member 2 can be lengthened &, in the structure after the
mounting as is shown in principle in Fig. 2.

Fig. 2.

The elongation

5, =26n )
and the pre-stressing force
M
e e 3
0 2r tan(a + ¢) ®)

after /1/ for example. In Eq. (2) © =rotation angle and h=pitch. In Eq. (3) M=rotation
moment, r =mean radius of the thread, a =helix angle (same at both ends) and the friction
angle ¢ = arctan u in square threaded tap and ¢, = arctan(u/ cos ) in V-threaded tap and
2 =ridge angle. Elongation &, may not be too large, so that the pre-stressing force
exceeds allowable limitations in the absence of loading. When elongation &, is made, the
fully loaded structure is also fully stressed. Here it is not necessary to solve statically
indeterminate structure in conventional sense. The equilibrium conditions must always be
true, this means, all the memberforces can be calculated as a function of force X and loading
P. Varying X only all the possible variations of all member forces S, S,, S, can be
presented.

When the angle a (Fig. 1) is varied, it can be obtained
lim &, =0 C)

a—»r/2
Thus, when « = 7/ 2 there is no gap at support C. But in this case members 1, 2 and 3
joins with each other. As a result become a statically determinate (and here aiso movable)
structure.
If support C lies higher, so that I, =/ /sin a, the fully stressed elongation of member 2
A, = A,/ sin a. Thus there is no gap at support C in the fully stressed state.
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Is the volume (or own weight) of the structure as shown in Fig. 1. in the absolute minimum
when the structure is in the fully stressed state loaded by P? The whole volume of structure

V = P:_||]Sllll '*"Sz‘lz +‘S3|13] ) (5)

where the posible buckling of some members is not taken into account. When force X is
varied, the V-X-line is brocken. The angle in theV-X-line is produced, when some member
force changes its sign as X is varied. The minimum of V can occur only in some angle point
(Fig. 4). The minimum of V is reached by that value of X, which produces some member
force equal to zero.

Derivation of absolute value function. Let y = f{(x) continuously differentiable Vx €R. Let
= | f (x)| Vx ER.

Yy ¥y
Y4
P X
0 s
_// X0
y
Kuva 3.

Function y, has derivative from the point x, (Fig. 3.) on the left and on the right and the
derivatives before have different values. But in point x, the funktion y, has no derivative.
When it is denoted

£ =V f(x) (positive square root) (6)

the derivatives y,*> (k=12,...) can be expressed by one formula in the both sides of x,.
For example

w=-LE rx) vxeer-4 ™

V)
where
A={x€ER: f(x)=0}.

So instead of Eq. 5. there is written

A A O AR Y ®)
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Further

¥ 1 [.sz &, S &, Sk &, }

& o] J“"ax V[“ X \["'ax

—|—1—|[sgn(S =L +sgn(S,), +sgn(S A } ®)

If the member end loads S, (i =1,2,3) are linear funcktions of X, the partial derivates
&5,/ X are constants in Eq. (9). In this case &/ / &X is constant between the zero points of
S.(x) and is discontinuous in the zero points of §,(x).

v

N

Fig. 4.
Numerical example.

Determine the absolute [/, of the three-bar truss as shown in Fig. 5a.

D C B i
trens f.:u.- seey SZ_X
S S
1 ¢ 3 3000 mm f 3
o N <8

F

45° 30° A l X
. l F,=1000 N F,
F,=2000 N
Fig. 5.

-V examining the derivative &V / X .

It is assumed that all members are of the same material and the maximum allowed value
o] = 140N / mnr*. The truss under consideration being reduntant to the first degree. The
member force S, = X is chosen here as a reduntant force. From equilibrium conditions of
joint A (Fig. 5b) it can be obtained
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Sl=smﬂFx+cosﬂFy_cosﬁX

D D D
S3=_SII1(ZF;+COS(Z _COSd
D D Y D
(Sz = X)

D = cosasin B +sin @ cos S
When S, changes its sign
S =0& (10), = X =257735N (= §,) & §, = -11547TN
V= ﬁ[lszll2 +|85/,] =104716,07 mnr?’.
O-m -

When S, changes its sign
S,=X=08&(10)=S, =231080N & S, = 732,07N.

e 1S.[4 +|S5|1,] = 101402mm’.
[l
When S, changes its sign:
S3 =0& (10)2 = X=1000N (= Sz) & Sl =1414,2N

V- ﬁﬂs1 I +[S.)1,] = 64285,3 .

(12)&(13)& (14) =V, = 64259 mnr’.
The structure coresponding to I/, is presented in Fig. 6.

y B
. '.'",'
2
(3) uneconomical bar
1_“" 1000 N
2000 N

(10

(11)

(12)

(13)

(14



154

-V ... calculating V(X) by different values of X.

S,

2759N

2669
2580
2490
2400
2311
2221
2131
2042
1951
1863
1773

607
518
428
338
249
159

69,4
20,3
-110

§,=X _'Sé 4 AV
-500N  1098N 141387mm’
-400 1025 133390 -7997
-300 951 125393 -7997
-200 878 117396 -7997
-100 805 109398 -7998
0 732 101401 -7997
100 659 97690 -3711
200 586 93978 -3712
300 512 90267 -3711
400 439 86555 -3712
500 366 82843 -3712
600 293 79132 -3711
1900 -659 87354 2563
2000 =732 89918 2564
2100 -805 92481 2563
2200 -878 95044 2563
2300 952 97607 2563
2400  -1025 100170 2563
2500  -1098 102733,5 2563,5
2600  -1171 1065275 (3794)
2700  -1244 114525 79975

1683
1594
1504
1414
1325
1235
1145
1056
966
876
787
697

-200
-289
=378
-469
-558
-648

800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800

2800
2900
3000
3100
3200
3300

-293
-366
-439
-512
-586

-1318
-1391
-1464
-1537
-1611
-1684

|4

75420
71709
67997
64285,7
66849
69412
71975
74538
77102
79665
82228
84791

122522
130519
138517
146514
154511
162508

-3712
-3711
-3712
-3711
+2563
2563
2563
2563
2563
2563
2563
2563

7997
7997
7998
7997
7997
7997

It can be seen, that /_ = 64285.7 mm’ , which is nearly the same as that (64259 mm® )
obtained examining the derivative &V / X before.

If the loading as shown in Fig. 5 is changed so
. ==1000N and F, =2000N as before,

obtained.

109N 1300N 1244N 84525mm® -3712
20,3 1400
-69.4 1500

-159

1600

1171
1098
1025

80813
81305
83027

1722

that F, is to the left, then
the following calculations for i/, can be

Using linear interpolation/_ =80835 mm* can be obtained. The structure corresponding to
V... is presented in Fig. 7.



155

(1
uneconomical’.,
bar

.
—

1000 N A

Fig. 7.

If as a loading are the same as both previous cases, either ¥, =1000N, F, =2000N or
F, = -1000N, F, = 2000N the final structure can be combined from the trusses of Fig.s 6
and 7. Therefore members 1, 2 and 3 remains so as the statically indeterminancy. To obtain
the absolute I/, by fixed truss geometry the prestressing and the fully stressed design must
be used as described in before mentioned introductory example .

General consideration

It is assumed that the truss is reduntant to the n degree. The truss, plane or space truss,
contains m members, m>n. The member forces §,...S,, can be determined as a function of
loads and redundant forces X,...X,

8 = 8o +Su X + 8, + . S,4,

In“*n

§y =8, + S X1 + 5, X, + .. §,,4,

2n“*n

(15)
S,=8 +S, X +8,X+ ... §,X,

The Equations (15) can be derived either by the method of joints /1/ or by the unit force
method /2/. The reduntants can be both member forces and support reactions. The volume of
members material

V- |;1_i[‘/s—ﬁ' S+ s (16)

where it is assumed that all members are made of the same material and the buckling is not
taken into account. The partial derivatives
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& 1

= _[Sgn(Sl WSy, +sgn(S)LSy + - Sgn(Sm)lmSml]

K, o,

& 1

572' - H[Sgn(Sl WS +5g0(S8)LS, + .. sgn(Sm)lanmZ] a1
& 1

e _[sgn(Sl )IISIR + sgn(SZ)IZSZn + .. Sgn(Sm)lmSmn]

X, |o|

How find the V_, and uneconomical members? (Cf. numerical example before)

It must chose an abitrary combination (v) of n member forces § ™ and set them equal to
zero.Thus the gradV makes a jump and on the surface V is an edge. So

{0} = {S”} +[S X} & (15) = {X} = [SVTH{S "} (18)
Then calculates the remaining memberforces

{SU} = (ST + S (19)
Then calculates (0, |S”™)).

This procedure must be repeated by all possible combinations of {S’}. Then notes the ¥,
and the correspondent combination {S®’} ={0} Then delete the correspondent members
from the truss. The remaining system is a statically determinate truss containing member
combination (m—v). The deleted members can be replaced by the inexpensive members
with sufficient slack in fixing.

Conclusion.

The material volume optimization and the fully stressed design of the truss (buckling
exluded) with one case of loading results the statically determinate truss.

General references
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POSTBUCKLING ANALYSIS OF AN ELASTIC STRUT BY TWO
FORMULATIONS
E.-M. SALONEN

Laboratory of Theoretical and Applied Mechanics
Helsinki University of Technology
P.O.Box 1000, FIN-02015 HUT, Finland

ABSTRACT

Large displacement analysis of a uniform originally straight inextensible elastic strut (the
classical elastica problem) is performed employing both the conventional Lagrangian
description (normally used in solid mechanics) and the Eulerian description (normally used
in fluid mechanics). The article is mainly of pedagogic nature: as the displacements are
really large, the differencies between the two formulations can be clearly seen in a rather
simple setting. This example can thus be used to illuminate the basic features of the two
descriptions. The governing equations are presented. The properties of the two
formulations are discussed. The equations are transformed in non-dimensional forms and
solved by presenting the equilibrium equations first weakly and by then applying the
Galerkin method with trial functions consisting of sines. Iterative solution procedures are
necessary due to the nonlinearities. The final discrete system equations are in spite of some
linearisations still nonlinear. All the necessary numerical calculations are executed by the

Mathematica program.
INTRODUCTION

In mechanics, the two main ways to describe the motion of a continuum are the Lagrangian
description and the Eulerian description, [1]. The former is usually employed in solid
mechanics and the latter in fluid mechanics. To clearly understand the properties of these
two descriptions is of utmost importance for the student to proceed in the assimilation of
mechanics. We consider in this article the large displacement analysis of a uniform
originally straight inextensible elastic strut (the classical elastica problem). Both the
Lagrangian description and the Eulerian description are employed. This can be considered
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as a rather detailed extension of the subject treated in Reference [2] now for arbitrary large
displacements. As the displacements are really large, the differencies between the two
formulations become clearly discernible and the presentation may thus be of some
pedagogical value as a suitable demonstration example on the theme.

[ a |
I 1Q°
LD P = u(a)

A N
: Q0
€))
X
I
A
()

FIGURE 1 (a) Lagrangian description. (b) Eulerian description.

Some of the notations are shown in Figure 1. The original — and as the strut is assumed
inextensible — the final length of the strut axis is L. The independent variables in the
Lagrangian and the Eulerian descriptions are denoted by a and x, respectively. (Normally
the first space coordinate is denoted by the symbol x in both the formulations but as we
have here to consider the two formulations simultaneously, for clarity the need for different
symbols arises.) The horizontal and lateral displacement components are u and v,
respectively. The horizontal displacement A of the left hand end is considered given and
the corresponding axial load P is originally unknown. Due to the inextensibility constraint
u can be expressed in terms of v and the final problem is to determine v(a) and P or v(x)
and P in the Lagrangian or in the Eulerian formulation, respectively. The constitutive

relation is

M=EIxk, ¢y
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where M is the bending moment, EI the bending stiffness and k =1/ p the curvature.

The exact solution of the elastica problem is described for instance in [3]. The classical
formulation proceeds considering the slope angle as the dependent variable and the
curved arclength s as the independent variable (Figure 1). This leads to a rather specialised
formulation and to the use of of elliptic integrals. Here we want to consider the deflection
v as the dependent variable and the "straight" coordinate a or x as the independent variable
so that the student can make direct comparison with the conventional formulation of small
displacement beam bending.

LAGRANGIAN DESCRIPTION
Governing equations

Let us consider Figure 1 (a) for the Lagrangian description. It is important to realize that in
the Lagrangian description so to speak "physics takes place along the curved buckled strut
but mathematics takes place along the straight a-axis"; the domain of the mathematical
definition of the problem is the initial domain 0 < a < L. A student accustomed to figures
used in deriving the small displacement beam bending theory could easily write down the

formulas
dv
tan@ =— T 2
i (wrong) 2)
and
d%v
_dd’ ( ) (3)
K=———>—— (wrong
[ +(d_v)2]3zz
da

The former seems to be true by looking at Figure 1 (a) and the latter apparently corrects the
small displacement curvature approximation —d2v/da? into the large displacement range
with the help of any mathematics handbook. The pitfall lies in the fact that in the notation
wa) in Figure 1 (a), the measure a does not refer to the perpendicular point Q" to Q but to
point Q0 at the initial straight position which has displaced to point Q in the current
deformed position.

We now derive the correct versions of formulas (2) and (3) and some additional results
following roughly the presentation of Reference [2]. Figure 2 shows an infinitesimal strut
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element in the initial and in the current position. The arclength element ds is equal to the

original length element da due to the inextensibility assumtion. From the figure,

a a+da a+u a+da+u+du
Qb da lio ' d
Q da+du
:9 ldv
ds=da SR
FIGURE 2 Initial and current position of an infinitesimal strut element.
dv
tanf = LAY
da+du 1+ %
da
and
sinf = (A

@

©)

The curvature is the rate of change of the slope angle with respect to the arc length (here

with the minus sign):

g dv _ 4
__E__Q__d[sm da]_ a2
~ ds da da v,
[1-(3)"]
Further from Figure 2,

(da)? = (da + du)? +(dv)>
and division by (da)2 gives

dv

PPN 2
1—(1+da) +(da)

Solving this inextensibility constraint equation for du/da leads first to
du

dv.2./2
1+ o
da [ (da) ]

(6)

M

®

€)



161

and finally to
du dv 272
—_—==14[1-(— .
1 [ (da) ] (10

The plus sign has been selected because the minus sign would lead in the case v(a)=0 to
the unphysical result du/da =—2. Using expression (10), we obtain

u(a) = u(0) +J': %da = A+j:{—1+[1 - (%)2]“2}@
_ a dv.o/2
_A—a+j0 [1—(d—a-)2]1 da. (11)

At a =L, u=0 since the right hand side support is fixed, and we obtain from (11) a global
inextensibility constraint equation

A=L—I:[l—(%2)2]1/2]da. (12)

We see from Figure 1 (a) that the bending moment at the generic point Q is Pv. Equating

this with expression (1) using (6) gives
d2v
2
Py=-EI—3% __  0<a<lL. (13)
_dvanre
[1-( ) )]
a

The kinematical boundary conditions are
v(0)=0, wL)=0 (14)
and as the bending moments also vanish at the ends, (1) and (6) give

d%v av
7 =0, == (15)

When A is considered given, equations (12) to (15) form the governing system from which
the unknown function v(a) and the unknown constant P are to be determined. If needed,
function u(a) can be calculated by post-processing from (11).

Numerical solution

To proceed numerically, it is convenient to use nondimensional quantities. We define
E=alL, v=v/L, A=A/L, P=PL*/El, (Y=d0/dé. (16)

After some manipulations, equations (12) to (15) are transformed into
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Z—1+j;[l—(17’)2]”2d§=0, (17)

=

PV + 0, O0<é&<l, (18)

[1- ()22 =
v(0)=0, v(1)=0, (19)
y"(0)=0, ¥"(1)=0. 20)

To effect the numerical solution, the differential equation (18) is cast into a weak form
_ 1—-— 1 v” _
Pjovwd§+Jomed§—0, @1

where w(£) is the weighting function. We employ the Galerkin method for the
discretization. As a demonstration case, simple three term approximation

V(5)=§17,-6,- = By3; (&) + 5,0, (8) + byg5 (&) (22)

is used with the basis functions
(&) =sinné, P,(&)=sin3nE, ©,(&)=sin5nE. (23)

The anticipated symmetry of the solution with respect to point & =1/2 has been taken into
account in the selection of the basis functions. As the basis functions satisfy separately the
boundary conditions (19) and (20) so does also the linear combination (22).

Due to the highly nonlinear nature of the problem, the equations must be solved iteratively.
To this end, we put

V=vy+Av, (24)
where ¥, is assumed to be known from a previous iteration and try to solve for the

unknown change Av.Expanding the nonlinear terms in (21) and (17) in series and keeping
only the terms up to linear in AV gives the forms

—l _ o 1wy 1 s, VoVo Acme e

P[ % +Av)wd§+j0(FUh,2 + AT e AT WwdE=0, (25)
_ 1 _ ;: -, G

A-1+[ (R~ FOI?Z AV)dE=0, (26)

where the shorthand notation
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B=1-(%)" @7
has been used. Employing approximation (22), we have

%o =25 (28)

and

AV = 3 AB; (29)

with obvious meaning. After substituting (28) and (29) into (25) into (25) and (26), discrete
equations are produced from the weak form by the Galerkin method by selecting
consecutively W = @;, W = @,, W = @3. The final system equations are found to be

SRyAD; + (LAl B)P+MP+5=0, i=123,

(30)
3. N;Ab; +d =0,
j
where
3 1 1 — == = ——” P — ==/
,,=IO(FOI,2¢,¢,+_3,2¢,¢])d§ j( 7019, 0% °¢¢,)dé,
S
i = |, @iBdE,
S
Ml =J0v0¢1d65
- 1 74
CI=J0F 0 é_—POJ' vO(pldg
0 (31
— 1V,
N; __IOFUz j

The unknowns are Ab;, Ab,, Ab;, P .1t should be noted that that the equations are in spite
of the linearisations still nonlinear. Terms (31) are evaluated numerically by the NIntegrate
command and set (30) by the FindRoot command of the Mathematica program. The latter
formulas for K;; and ¢; in (31) are used. They are obtained by replacing v/ Fol/ 2 with
—Py¥, due to equation (18). It is hoped that this increases the accuracy of the calculations
similarly as is explained in an analogous case in a buckling analysis on p. 90 in Reference
[3]. (This remains to be checked via further calculations.) The value of the current B is
estimated from (21) with ¥ =V, and by taking W# = vy which gives
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1
[

= (32)
ﬁ Vo> d&

B=-

The specific case o =60° (Figure 1) is is considered here. Reference [3] gives as the
corresponding exact value A=0.258980---L, which is used in the following. The
calculations are started with the initial guess

B’=025, bY=0, B =0, (33)
for which (32) gives
B,=1090 (B =10.90EI/I?). (34)

The calculations converge in practice in three iterations giving the results

b;=0.2894, b,=-000145, b;=-0.000007, P =1145. (35)

The values obtained for the maximum deflection and for the axial load are given in Table
1.

TABLE 1 Results for v, and P

Venax ! L PIEIII?)
Galerkin 0.291 11.45
Exact, [3] 0.2967--- 11.367--

Considering the crude three term approximation, the accuracy achieved is rather
satisfactory. The graph of the approximate function v(a) is shown in Figure 3.

0 20 AlL 0.5 10 oL

0.1

0.2+

0.3~
v/IL

FIGURE 3 Function v(a).
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EULERIAN DESCRIPTION
Governing equations

Let us consider Figure 1(b) for the Eulerian description. If we for a while take the case
where the force P is given and thus the displacement A is unknown, immediately one
essential drawback of the Eulerian description in solid mechanics can be seen: the solution
domain of the problem is not known in advance and must be determined as part of the
problem. (In fluid mechanics this feature is not generally a difficulty as usually the solution
domain is taken to be a given fixed domain of space through which the fluid flows.
However, for instance in free surface flows this difficulty remains present.) To proceed
simply, we thus consider A as given and the solution domain is now A<x <L at least for
small enough A.

The counterparts of the incorrect formulas (2) and (3) are here now valid:

tanf = gy , (36)
dx
d%v
)
K= ___h. 37
1+(—
[1+( dx) 1
An infinitesimal arc length element
ds =[1+(2y27/2, (38)

dx
From Figure 1(b), the original strut axis length from the left hand end to point Q0 is

x —u(x). This must be equal to the curved axis length s to point Q in the deformed state
due to the inextensibility assumption:

o Py (V22
x—u(x)—s-jA[H(a) 1V2dx. (39)
From this, the horizontal displacement

u() = 5= [l (P12, 40)

At x =L, u=0 and we have from (40) a global inextensibility constraint equation

L= j:[1+(%)2]1’ 24y. (41)
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The bending moment at a generic point Q is again Pv, and making use of expressions (1)
and (37) produces the equation

d%v

a?

PV=—EI‘W
1+(—
[ (dx)]

, A<x<L. 42)

The boundary conditions are obtained similarly as in the Lagrangian formulation:

v(A)=0, wI)=0, 43)
d? d?
_d_x—;(A)=0’ ;;@):o. (44)

Equations (41) to (44) form the governing system from which the unknown function v(x)
and the unknown constant P are to be determined. If needed, function u(x) can be
calculated by post-processing from (40).

Numerical solution

To proceed numerically, it is again convenient to use nondimensional quantities. We define
n=(x=A)1, $=v/l, A=A/l, P=PI*/EI, (y=d(/dn (45)

and repeat the steps used in the Lagrangian formulation. After some manipulations,
equations (41) to (44) are transformed into

3_’[;[1_(‘3.)2]1/2(117:0’ 46)
. o B

v+[1+(§_)213f2 =0, 0O<n«l, 47
P0)=0, ¥1)=0, (48)
$7(0)=0, #(1)=0. (49)

To effect the numerical solution, differential equation (47) is cast into a weak form

el 1 P

P| twdn+ | ————=-wdn=0, 50
-[o n o1+ (@) P72 1 (50)

where Ww(n) is the weighting function. The Galerkin method is employed for the

discretization. A three term approximation
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17¢3) =§E,-¢,- = by (M) + by () + bss () (51)

is used with the basis functions
¢y (m) =sinzn, Go(m) =sin3wn, G,(n)=sin57n. (52)

The anticipated symmetry of the solution with respect to point 77=1/2 has been taken into
account in the selection of the basis functions. As the basis functions satisfy separately the
boundary conditions (48) and (49) so does also the linear combination (51).

The equations must be solved iteratively. To this end, we put
V=7, + AV, (53)
where 7, is assumed to be known from a previous iteration and try to solve for the

unknown change A?.Expanding the nonlinear terms in (50) and (46) in series and keeping

only the terms up to linear in AV gives the forms

~rl ~ A 1 GO" 1 . 3\;0'{?0" A A _
Pf (% +Av)wdn+j0(§03,,2 + g A - Sl apyidn =0, (54)
A 1 G’
A+1- ("2 + 205 A9)dn =0, (55)
0 o
where the notation
§p =1+(p)? (56)

has been used. Employing approximation (51), we have

D = %1@-%}- (57)
and
AD = T Ab,§; (58)
J

with obvious meaning. After substituting (57) and (38) into (54) and (55), discrete
equations are produced from the weak form by the Galerkin method by selecting
consecutively w = @;, w=@,, w = 5. The final system equations are found to be
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J
! (59
2.N;Ab; +d =0,
J
where
N IR AP | A W N L P . 3By o
Kij—JO(A03/2(pi i TR ?:9; )dn_Io(§03/2(pi¢j * 8 @i¢;)an.
Aol .
J=J0(Pi(l’jd77’
N T
M; = jovo‘!’idﬂ’
a1V A LA
i=JOA3f2 id"=—P°Iov°¢idn’
0 (60)

The unknowns are ABI, Al:z, AI;3, P. The latter formulas for IA{,-J- and ¢; in (60) are used.
They are obtained by replacing ¥,"/5,!/2 with — Byb, due to equation (42). The idea
behind this is similar to that explained in connection with the Lagrangian formulation. The
value of the current 130 is estimated from (50) with ¥ =¥, and by taking w ="V, which

gives

B=-t——, (61)

which is used in the following. The calculations are started with the initial guess (which
corresponds to (33) with 131 =~ L/l+by)

=034, b)=0, b)=0, (62)
for which (61) gives
B =732 (B =1334EI/1). (63)

The calculations converge in practice in three iterations giving the results

b =04237, b,=00101, b;=0.0013, P=645. (64)
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The values obtained for the maximum deflection and for the axial load are given in Table
2.

TABLE 2 Results for v, and P

Vnax ! L P/(EI/I?)
Galerkin 0.307 11.75
Exact, [3] 0.2967 - 11.367--

The graph of the approximate function v(x) is shown in Figure 4.

0.0 A/iL 0i5 1.0 xL
0.0

0.1+

0.2+

0.3
vIiL

FIGURE 4 Function v(x).
DISCUSSION

The Figures 3 and 4 presenting the lateral displacement as a function of the independent
variable clearly show the differencies between the two formulations. In this respect the
Eulerian presentation may be considered somewhat more illuminating. However, several
problems of the Eulerian description in a more general case become apparent. One
difficulty was mentioned in the beginning of the chapter on Eulerian description. Further,
let us consider the case where the strut is not uniform in its properties, say its bending
stiffness EI is not constant. We then know function El(a) but function EI(x), which
would be needed in the Eulerian description is in advance unknown. In the numerical
example considered here the computational effort in the two formulations was about the
same and no dramatic differencies in the accuracy were found. However, considering
Figure 5 sketching the deformed shape of the strut in the case of a large A, again problems
in the Bulerian description can be detected. First, the solution domain is no more known in
advance:; v(x) is clearly double valued at certain subdomains of x. Second, the derivative
dv/dx becomes unbounded at points R and S. (Some difficulties are to be expected at
these points also in the Lagrangian description as now dv/da=1 atR and dv/da=-1 at
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S; see for instance formula (13).) Altogether, even if the simple strut problem under
consideration could be solved by both the formulations with a comparable effort, in the
light of this example it is quite obvious why the Lagrangian description is to be preferred

in solid mechanics problems in general.

| X
a
R S
FIGURE 5 Deformation with a large A.
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THIN-WALLED BEAMS

MARTTI MIKKOLA and JUHA PAAVOLA
Laboratory of Structural Mechanics
Helsinki University of Technology
P.O. Box 2100, FIN-02015, HUT, FINLAND

ABSTRACT

In the present paper, the problem of non-distortional lateral buckling of a straight
beam with a thin-walled cross-section is investigated. The principle of stationary
potential energy is applied in deriving the equilibrium equations. The discrepancies
which were observed before, between the basic equations derived by applying the
energy principle and by the traditional equilibrium consideration are analyzed and
explained.

1. INTRODUCTION

In the proceedings of the 5th Finnish Mechanics Days, held in Jyvaskyld 1994 1],
the authors presented the derivation of the fundamental equilibrium equations for
the combined lateral and torsional buckling of a straight beam with an arbitrarily
shaped thin-walled cross-section. The application of the energy principle produced
equations which slightly deviated from those traditionally obtained by the equilibrium
consideration of an incremental element. In this paper it is shown that in traditional
applications of various energy principles, the mutually inconsistent, linear or non-
linear kinematics for the strain energy and the potential of external loads produces
the discrepancies observed. The results obtained by using consistently same non-
linear kinematics are in good agreement with the equilibrium consideration. However,
the linear kinematics is sufficient to result in similar equations when certain more
complete procedures are utilized. Taking in the initial state into account the
transverse normal stress components oy and o2, in addition to the traditional ones
02 and 12,, leads to correct results. This means, however, a step toward the two-
dimensional analysis since the transverse normal stresses are not determined in the
classical beam theory.

The deviations found concerned the lateral buckling of the beam only, while no
problem was due to the torsional buckling. Hence in the continuation, in order to
simplify the expressions, the torsional buckling will be left out of consideration.
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2. BASIC KINEMATICS

As a frame, a global Cartesian coordinate system z,y, z with unit vectors €z, €, €, is
defined. The axial coordinate z coincides with the beam axis, i.e. goes through the
centroid of each cross-section plane. Coordinates y and z are the principal axes of
the cross-section. In addition, coordinate s with unit vector €, follows the centreline
of the cross-section’s wall and coordinate n with €, is its normal. For simplicity, the
beam is assumed to be composed of planar plates so that the cross-section is formed
of piecewise straight sections as shown in Fig. 1.

While no distortion is present, the displacement field of a point on the middle surface
of the wall follows from the usual assumptions made in the theory of thin-walled
beams,

T = (u —yv' — 2w’ —w@)er + (v — (2 — 20)P)&y + (W + (¥ —yu)9)E=, (1)

with u the axial displacement of the centroid, v and w the displacements of the shear
center and ¢ the rotation of the cross section. The sectorial coordinate w is defined
according to Vlasov so that the linear strain e;, disappears on the centreline of the
cross section and, in addition, e;, = 0. y,, 2, are the coordinates of the shear center.
The loading is assumed to include only distributed loads p;(z) in the principal zy-
plane and p2(z) in the zz-plane with no torsion. Coordinates a, and a. define the
location of the line loads on the cross-section

plane. When no axial load exists, i.e. pl(z) =0,

and thus N°(z) = 0 the axial displacement u in 7

(1) can be dropped.

The expressions for strain components are com-

posed of linear and non-linear parts: B4

ez=ez+%(ei+9§+9§)zer+%(0§+0§), n
ey = ey + 3 (62 +63),
&2 =e.+ 3 (602 +62),

e =2ey: = 6,0, (2) -
Yzz = 2€z5 + ezey —0.0; ~ 2e;; — 92023
Yoy = 2€zy — €58, — 0.0, = 2e;y — 6.6,
Here, the second order terms, quadratic in rota-
tions are included only. The expressions for lin-
ear strain components derived in [1] are FIGURE 1. Thin-walled cross-section.

e = —yv" —zw" —we" + (" — (2 — 2,)¢")sina — (W' + (y — y»)9") cos a]
~ -y — 2w —we”,
€y = €; = €y; = €;5 = €5y = 0. (3)
The term dropped in the normal strain is related to the bending of the walls of

the cross-section. In addition, the shear strain 2e;, = —2n¢' associated with Saint
Venant torsion is taken into account. The rotation components in (2) are
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ou ou
—1i1({ZZ.g —-—=.¢2 )=
0, = 2(ay €z 92 ey) ¢7
ou ou
__l e e 4, = — /- —_ i 4
2(82 €z 9z ez) w (y yv)¢v ()
., 70d . _ B

_ 1 (Y% -2 RN _ '
0.= 3 (Ox €y B9 ex) vl —(z—zy)¢.
3. PRINCIPLE OF MINIMUM POTENTIAL ENERGY

The procedure follows exactly the linearized theory, called also EULER method,
presented for example by NovozaiLov [2] and WasHizU (3], according to which the
incremental strain energy of the beam is

AU=Ur+Uynr= 1% / (0zes + Trs2e55)dV + / (02er + ToyYzs)dV. (5)
\% v

In the linear part, HOOKE’s law between linear incremental strains and stresses is
adopted. 02 and 72, are the initial stresses in the initial position the stability of
which will be studied,

o M My 0 QyS:(y)  Q25,(2)
CETTYYT A T T T T Lt ()
The linear part Uy, takes according to [1] the form
UL — % / [E(yZ(vH)Z + 22(w11)2 +w2(¢n)2) + 4Gn2(¢’)2]dV, (7)
Vv

while the non-linear one is splitted into two separate parts Uz = Unz +UnL,2 in
which the absence of torsional load at the initial state is taken into account

Unpy = /V o2(—yv" — zw" —wg")dV, (8a)
Unrz = /V Lo2((0 — (2= 2)8' ) + (0 + (y — 90)¢")21dV

+ / Tosd—(v' — (2 — 2,)¢")sina + (w' + (y — yu)9') cos a]}dV. (8b)
v S S

The expression for the potential of external loads is 1

L
V= —/ (p;v + plw)dz, (9)
0

Traditionally in energy methods, as also in [1], the second order terms due to the kinematics are included

in the expression of the potential energy, i.e.

L
V= —/ [Py (v — ay(1 — cos $)) + pA(w — az(1 — cos ¢))]dz
° (9
<= [ B30 bayd) 4l - g,

which is inconsistent with the initial kinematics applied.
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The energy principle defines that the first variation of the total potential energy
disappears, i.e. §I1 = §Up + 8UnL 1+ 6Unp2 + 6V = 0 with

L
UL = / (ELv"80" + ELw"w" + EL,¢"64" + GL¢'8¢')dz, (10a)
0
L
§Unp1 = / (= M260" — M6w")dz, (105)
0

L
§Unp 2 = /0 {M;[(w' +28,8)6¢' + ¢'6w'] — M2[(v' — 26,488’ + ¢'60']  (10¢)

+Q5[8,(4'68 + $64') + (w66 + p8w')] + Q2[B:(8'66 + 88¢') — (v'8¢ + ¢5v')]}dw,

2
8V = —/ (pyév + péw)dz. (10d)
0

The familiar notation for the axial, two bending, warping and torsional rigidities,
and the so-called Wagner coeflicients

/dA:A, /y2dA=Iz, /deAzIy, /w2dA=Iw, /4n2dA=It,
A A A A A
1 2 2 1 2 2
== dA — v Zhe= oY) dA — vy
b= [ +PA-p  Bo=gp [ A4z Y

are introduced, and due to the assumptions concerning the coordinate system the
following integrals over the cross-sectional area are assumed to vanish

fydA=/sz=/wdA=/ysz=/ ywdA=/ 2wdA = 0. (12)
A A A A A A

Under these assumptions, the terms Uy, in (10b) and 6§V in (10d) together result
in the equilibrium conditions of the initial state, while 6UL in (10a) and 6Un 2 in
(10c) produce the differential equation system

ELv"" + (M;qﬁ)" =0,

ELuw" - (M24)" =0, (13)
Efw¢l’ll _ GIt¢II _ Mfw” _ Qﬂy(M:¢l)l + M;UH _ Qﬂz(M;¢’)l + p;ﬁyﬁf’ + pzﬁzgp =0.

for lateral buckling of a thin-walled beam, and the boundary conditions

it 6v' #0, EIv" =0,
bv # 0, —ELv" — (My¢) =0,
dw' £ 0, EIw" =0,
Sw # 0, —ELw" 4+ (M;¢) =0, (14)
66" #0, El.¢" =0,
§¢ %0, ~EI,¢" + GL,¢' + MJ(w' +2By¢") — My(v' - 2B.¢')

+ QyBy¢ + Q:8:4 =0,
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at the ends of the beam z = 0 and £ = L. The discrepancy arises from the fact that
the traditional equilibrium consideration leads to equations

EIszII + (Myo¢)” — 0,

EILw" — (M?¢)" =0, (15)
EIL,¢"" — GIi¢" — Mw" —28,(M?¢') + M " Qﬁz(M;’qb')' + pyay® + pia:¢ = 0.

where the underlined terms p§8,¢ and p;f3:¢ in eq.(13); are replaced by pjay¢ and
p°a, ¢, respectively, and to the traditional boundary conditions,

if v’ #£0, ELv" =0,
v # 0, —ELv" = (My¢) =0,
Sw' £0, EIw" =0,
dw #0, —ELw" +(M7¢)' =0, (16)
§¢' £ 0, EIL¢" =0,
56 0, —EL,¢" + GL¢' + M2 (w' +26,¢') — MI(v' — 28.¢')

+Qyay¢ +dza:¢ =0,

where the underlined terms Q3,4 and Q;8.4 in eq.(14)s are replaced by @ ay¢ and
Q%a ., respectively.

4. PROBLEM DESCRIPTION

Consider a bit more accurately the underlined terms in (8b) which produce the
deviating terms in the final differential equation system (13). Evaluating the variation
of them and integrating by parts with respect to z yield the expression

5/ 72,[(z — zp)sina + (y — o) cos alég'dV
12

= [ (= m)sina + (= w)cosal(r2.g56 + 2,966V
Y a7)
= - / [(z — zy)sina + (y — yo) cos a(72,) $6¢dV
v
L
+ [/ [(z — zy)sina + (y — yv) cos a]T;’sdAd)éqﬁ] .
A 0
When now the shear stress distribution (6) for 72, is substituted into this, following
the classical beam theory, the expression
(@Qy)'S:(y)

/OL A[(z — zy)sina + (Y — y») cos a]( T + (ngrlysty(z)>¢5¢dAdm

- [/A[(z -2+ (Y- yv)Tﬁy]dA¢6¢] ’ (18)

0
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is obtained. Here, the term at the ends of the beam, with 77, = 77, sina + 77, cos a,
is related to the rotation of the shear stress components, and is not to be avoided. It
necessarily leads to the underlined terms in boundary conditions (14). In the integral
term, the basic equations of the beam theory (Q3) = —py(2) and (Q3)' = —p:(z)
are applied, in which the information concerning the location of the line loads on the
cross-section disappears. As the result the underlined terms in equilibrium equations
(13) are obtained. The surface integrals over the cross-sectional area required are

/ [(z = zp)sina + (y — yo) cos &S, (y)dA = =B, L,t,
B (19)
/A[(z — zy)sina + (y — yu) cos a)Sy(2)dA = —B.It.

This consideration shows inevitably that the shear stress distribution defined
according to the beam theory can not take into account the location of loading
at the cross-section plane and thus describe accurately enough the two-dimensional
behaviour of a beam in lateral buckling.

5. TRANSVERSE NORMAL STRESSES

To avoid the problems due to the inaccurate shear stress distribution and the
discrepancies following it, the general equilibrium equations are utilized to eliminate
the shear stresses. The equilibrium equations at the initial state are

ory, 9oy 973 o Orzy 9oy o
o ey e BT T Ty
67:: _+_ 61’;3 + 3_0';’_ + fo —_ 0 ==\ 87';2 J— _aag __ fo
O Ay Oz 0 or 0z i

with f2 and f2 the volume forces and 7, = 77, = 0. Consider expression (17),
and particularly the integral term in its final stage. Taking into account that

T2, = To,sina + 1., cosa and substituting (20) yields

~ [le = 2)sin + (g = ) cos (72, 564V

=, /V (2 = 2)(r2) + (u — 3)(r2, ) 166dV @)
—/L/[( L S S Cis S B PR P
_OAzzvaz z yyvay y z.

Integrating once by parts gives further

L
/ (pax + Py )$6ddz — / (02 + 09)$6¢dV
0 v (22)

L
=3 /0 (pa: + pja,)8(4)’dz — 3 /V (02 + a3)8(¢)*dV,
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in which the volume forces and boundary forces are combined to the terms

pla, = /(z —zy)fedA+ [/(z - z,,)a‘z’] My,
A z=2z]
, Y=Yu (23)
poy= [ w-wifid+ | [w-vei] e
A y y=u

The first term in (22) is the same which is picked up into the traditional solution
in the expression for the potential of external loads (9’), and the second one will be
cancelled if in the the non-linear part of the strain energy (5) the transverse normal

stresses gy and o7 are also included, i.e.

UnL = / (O’iﬁz + ‘I'Ios")’zs + U;tfy + O’Zfz)dV, (24)
v

It is assumed, however, that in (24) for ¢, and €; only the rotation component
6, is taken into account, while the components 6, and 6, in (4) are dropped.
Including all the rotation components produces some terms which are dependent
on the transverse normal stresses. However, in the final differential equation system
they are summed with terms which are considerably greater. Hence, the meaning
of the terms abandoned is small and the procedure is well argued. The term at the
ends of the beam in (18) is still left in the boundary conditions. It reflects the fact
that the shear stress distribution (6); does not correspond to the distribution of the
external load.

6. NON-LINEAR KINEMATICS

One way to derive the equilibrium equations is necessarily to apply in the expression
for the strain energy the same kinematics which is referred and applied in the
expression for the potential of external loads in footnote (9’). Hence, the displacement
field

To =(—yv' — 20’ —w@ ez + (v — (2 — 20)¢ — ‘; (y — yu)¢*)Ey

+(w+(y —p)d — 3 (2 2)8)e,
instead (1) is applied. This assumption is in the slight disagreement with Vlasov’s
original idea about vanishing shear strains on the centreline of the cross-section. The

additional components in the expressions for strains in (3) due to the underlined
terms of (25) are

(25)

€y =€z = — % ¢2a
2e.. = —(z — 2,)0¢, (26)
26:3; = _(y - yv)¢¢la

of which the two latter ones produce, actually to the expression (8a) for Unr,1, when
€zs = €5y COS O + €7 Sina, an additional term

U;L,l = /‘; 212,e5,dV = — /‘; 72,[(z — zy) sina + (y — y») cos a)¢e’'dV. (27)
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The comparison with (17) shows that the additional expression (27) directly cancels
the problematic term in (8b), while the non-linear terms in the expression for the
potential of external loads (9’) produce the replacing terms required. This procedure
can also, however, be interpreted as inconsistent, since the additional non-linear
terms are included selectively by leaving most of them out of consideration. Its
correspondence to the analogy of the traditional equilibrium consideration is obvious.

7. CONCLUSION

The traditional energy methods are usually applied by using mutually inconsistent
kinematics for the strain energy and potential of external loads. This ad-hoc type
of method has been working well with the experimental results, and possibly been
interpreted as ingenious though its background seems not to be very solid. In this
paper, it is proved that the linear kinematics is sufficient to yield the complete
equilibrium equations when the transverse normal stresses are included together with
the traditional beam stresses. It has also been shown that applying consistently the
identical non-linear kinematics, although selectively by including only certain non-
linear terms, the good agreement with the traditional equilibrium consideration can
be reached.
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ABSTRACT

A method for the plane frame analysis developed in [2] is shortly reviewed. The method is
based on the use of a refined model for the monolithic joints of plane frames. A direct
method which is used in optimizing the model for selected joint geometry is presented. In
addition three iterative methods derived from it for the plane frame analyses are given. As a
numerical example the convergence rate of these methods in the case of a simple statically
indeterminate plane frame is studied.

1. INTRODUCTION

Traditionally in the plane frame analysis the beams are considered as one-dimensional
structural members with dimensioniess nodes. If the axes of the members do not intersect at
a single point, a small rigid domain is usually employed. Figure 1 deﬁicts a part of a plane
frame and some notations used in the refined corner model presented by Reivinen, Salonen
and Paavola [1].

In the model the comer is described using n+1 adjustable design parameters a;. The first n
parameters are the linear measures fixing the theoretical end points of the beam axes as
shown in Figure 1. The last parameter a,.; =1/Ac, where Ac is the area of the so-called
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core region. Six degrees of freedom (displacements u, v, rotation 6, constant strains &,,
gy andy,,) are associated with the corner centroid node. Knowing the force resultants
acting on the beam ends the values of the strains can be calculated for example using the
principle of virtual work.

Figure 1 Frame corner i (shaded) and some details of the corner model.

For simplicity, a constant shear deformation 7, is also assumed to each beam attached to the
comer. For each joint geometry the design parameters a; can be optimized in such a way
that the flexibility matrices of the plane frame model and comresponding continuum model

coincide as well as possible [1].
2. DIRECT DETERMINATION OF THE CORNER STRAINS

We consider next the joint i of the plane frame to be analyzed (Figure 1). It is assumed to be
connected with r other joints by beams. Each joint has six degrees of freedom u;, v;, 6;
€xi> Eyi» Yxy;- In the direct method all six degrees of freedom are unknown variables,
which are solved from the system equations. The direct method is used in optimizing the
design parameters for the selected joint geometry. We use the following notations

{u}, =[w,6:]" M

e =[ea ] @
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and (6 X 1)-vectors

;= {gi} )

in={iok) @

where {£}, and {£ }i are (3 X 1)-load vectors. Let {ni} be a (nx 1)-vector, which contains
the neighbour node numbers of node i, for example ni; refers to j’th node. The equations of
equilibrium of the structure derived using the displacement method are of the form

n
[K];i{d}; + Z[K]ik{d}k ={f};, k=nj. 5)
i
Each (6 X 6)-stiffness matrix in (5) can be consisted of submatrices using notations

(K11l [K12]ik:]‘ (6)

[K]ik B [[KZI],'/( [K22]ik

to obtain following more detailed system equations

[Ky1]{u}; +[ K], ledi + i[Ku],-k{u}k i zn:[Klz]ik{S}k ={f}, k=nf, @

j=1 j=1
[KZI],-,-{”},' + [Kzz]i,-{s}i + i[Kzll,-k{u}k + i[KZZ]ik{e}k . {fz}i, k= "} (3
j=1 Jj=1

The former of the equations is obtained by differentiating the potential energy II with
respect to the degrees of freedom {u}; and the latter by differentiating with respect to the
degrees of freedom {e};, respectively.
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3. ITERATIVE FORMULATIONS

To enter the iterative methods we derive two subsystems from the equations (7) - (8). The
iterative versions are derived mainly keeping in the mind the possible generalization of the
joint model for the arbitrary shell structures where the joint “glues” two or more shell
elements together. The quantities marked with the upper bar are assumed to be known from
the previous iteration cycle. The equations concerning displacement degrees of freedom {u}
for each node i are

[ G+ S KLyl = (4] - (K8l - Skl 8l k=ri  ©)
j=l

j=1

The equations concerning the strain quantities {€} for each node i are respectively
n n .
(K22 ] e} + Y Kaa ] {et ={A}, - [Kal; {7}, - D[] {5}, k=ni. (10
Jj=1 j=1

The displacements {u}; are solved from equations (9) and the strain quantities {€};, from
equations (10). The equations (9) - (10) form the iteration version 1. From the equations
(10) we obtain further

[KZZ],','{E},' . {fZ}i - i[K22]ik{§}k _[KZI],','{E};‘ - i[KZI]ik{E}k , k= n; (11)
=1

j=1

This leads to a more practical iteration form, where only 3 X3 systems are to be solved. This

is the iteration version 2. The final form can be obtained by splitting the matrix [K»,];; in
two parts

[Kzz]il. N [Kfz Lt. + [ng ]ﬁ, (12)

where ¢ refers to the contribution of the core i and b to the contribution of the beams which

are connected to the core. This leads to the following equations for the strain quantities



183

[Kfz]ii{s},- ={fh}- [Kfz ]il.{g b+

_3 [Knal 8}, ~ (K] @) - SRl k=i, (13
j=1 j=

which is the iteration version 3.
4. A NUMERICAL EXAMPLE

As a numerical example we consider a simple statically indeterminate plane frame depicted in
Figure 2. The design parameters for the T-joints (nodes 2 and 3) are derived in the reference
[2] and the values of parameters are found to be a; = ay = a3 =0,270h, a4 =as5=0,99%h
and the inverse of the joint area 1/ Ac = 1,596/ h2, where h is the thickness of the vertical
beams 4 and 5. The magnitude of the point load applied at the node 1 is F = 0,025 Eh2,
where E is the Young’s modulus. The angle between load vector F and the horizontal plane
is /4.

F JZh
\1 1 2 2 o3 3 4

— =Y ]
L 4 5
L=5h
5 6
T T
= L a4 2L o L -]

Figure 2 A statically indeterminate plane frame.

The ratio of the horizontal displacement of iterative version to the final displacement of node
2 as a function of iteration cycle is presented in the Figure 3. Using the design parameters the
direct method gives for the horizontal displacement the value 0,176 F/Eh. The traditional
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plane frame model (without design parameters) gives for the displacement the value 0,270
F/Eh whereas the continuum model gives the value 0,154 F/Eh.
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Figure 3 Horizontal displacement of node 2 using iteration versions 1 ... 3.

The refined model seems to describe the behaviour of the plane frame consisting of
moderately thick beams with essentially better accuracy compared to the traditional plane
frame analysis. In addition to this the third iteration version has a considerably faster
converge rate compared to the two other versions.

5. CONCLUDING REMARKS

In this study three iterative versions with different convergence rate for the plane frame
analysis with refined joint model derived from the direct method are presented. The constant
shear deformation assumed for each plane frame beam can be handled in a similar way
iteratively and an improvement to the convergence rate can also be obtained by a proper
arrangement of the displacement terms as shown in the reference [2].
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ABSTRACT

In failure analyses of structures, the distance between the applied load and the predicted
failure load is often indicated in terms of so-called margin of safety. The probabilistic
distributions of applied loads and material strengths can be taken into account by using
appropriate factors of safety and material allowables. A generalized method for solving the
margin of safety of a composite laminate with an iterative solver has been developed.
Failure criterion functions are handled as “black boxes™” whose internal formulation has no
effect on the solution procedure. The problem is formulated as an unconstrained
minimization problem where the objective function in the layer stress or strain space is
minimized over a closed bounded interval by iteratively reducing the interval of uncertainty.
The necessary definitions of margins of safety in the so-called constant and variable load
approach are given. An example run is used for illustrating the method.

INTRODUCTION

Closed form solutions for reserve factors can be found for various failure criteria used for
composite materials. For the constant and variable load approach, the determination of
reserve factors for quadratic failure criteria is outlined in [3]. However, the formulations of
failure criteria of composite materials may be quite complicated, for instance [4]. The failure
criterion functions may be piecewise continuous by their nature, consisting of different
expression for the assessment of different types of failure (e.g., fiber and matrix failure).
Finding closed form solutions for this type of criteria is difficult or even impossible.
Therefore, an iterative method was developed. The method has been implemented in
ESAComp [5], an analysis and design software of composites, where numerous failure
criterion functions are available. Moreover, the system provides support for user defined
failure criterion functions.
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The constant and variable load approach adopted for ESAComp is based on the partitioning
of the applied loads into constant loads and variable loads [3]. Let the applied load vector
be defined as

F=F°+F", M
where the superscript ¢ denotes the constant load part and the superscript v denotes the

variable load part of the load vector. Separate FoS are associated with the constant and
variable load parts. Hence, the effective load is defined by

F, =FoS°F°+FoS'F". 2)
The reserve factor (RF) measures the criticality of the effective load with respect to the
failure load or, in other words, the applied load with respect to the allowed load. The RF
values greater than one indicate positive margin to the allowed load. In the constant and
variable load approach, the criticality of the load case is studied with with respect to the

variation of the variable load. Thus, the critical load leading to failure of the layer is
expressed as

F, =FoS°F*+RF FoS" F". 3)
The margin of safety (MoS) corresponding to the RF value is defined by the relation
MoS=RF-1. 4

Margins of safety are often expressed as percentages. A negative MoS indicates how much
the load has to be reduced to obtain an acceptable load level.

The failure loads corresponding to the constant and variable load vectors applied
individually are defined by

F, =RF° FoS°F° ®)
and

F, =RF'FoS"F", (6
where RF and RF’ are the reserve factors for the constant and variable load vectors,
respectively. The corresponding margins of safety are denoted by MoS® and MoS,

respectively.

For the computation of reserve factors and margins of safety, definitions for the RF (and
MoS) values infinity and indefinite are given.
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Definition. Infinity as a value of the reserve factors RF® or RF” means that the load vector
can be increased without a Limit (e.g., the midplane of a symmetric laminate in pure
bending). In other words, no actual constant or variable load is applied. If a constant load is
applied, the reserve factor RF is infinity only when RF” equals to infinity and RF‘ =1 or
RF° equals to infinity.

Definition. A reserve factor is indefinite when the effective load causes failure and
decreasing the magnitude of the variable load does not make the effective load non-critical.
The limiting case where the effective load reaches the failure envelope from the outside is
also defined as indefinite. For RF® and RF” indefinite is not a possible value since the origin
of the load vector is always inside the failure envelope.

SEARCH BY GOLDEN SECTION

Among the derivative-free line search methods (the Fibonacci method, the golden section
method, the dichotomous search method, and the uniform search method [1]) the Fibonacci
method and the golden section method are the most effective algorithms. They make two
functional evaluations at the first iteration and then only one evaluation at each of the
subsequent iterations. However, to reach the desired accuracy the Fibonacci search requires
the total number of iterations # to be chosen beforehand. Thus, the golden section method
for minimizing a srictly quasiconvex function over the interval [ai, b)] was selected for the
solver.

The golden section ratio is defined by making the number & of allowed measurements points
to approach infinity

limfﬂ , (7

k—>ee Fk

where the integers F are members of the Fibonacci sequence generated by the recurrence
relation

F,=F_ +F_,F,=F =1k=2,..n. (8)

Hence, the resulting sequence is 1, 1, 2, 3, 5, 8, 13, .... The golden section ratio is achieved
as a solution to the equation [1]

Y +y-1=0. ©)
Since Y must be in the interval (0, 1) then

yz_l—;@EO.MS. (10)
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In the golden section method, the interval of uncertainty is reduced each time by a factor of
0.618. The number of observations required to achieve the desired degree of accuracy is
given by
©618)2—2 (n
b —a,

where 20 is the final length of uncertainty and (b,—a,) is the initial interval of uncertainty.
For k large enough, 1/F; = 28/(b,—a;) is asymptotic to (0.618)"".

AN ITERATIVE METHOD FOR SOLVING MARGINS OF SAFETY
Let the layer actual stresses in the plane stress state (in a layer coordinate plane 12) caused
by the load vectors FoS° F® and FoS” F' be ¢° and o, respectively. In a linear analysis, the
layer stress vector corresponding to the failure load in eq. (3) is written as

6, =¢‘ + RF¢’ (12)

The resultant load and the loads comresponding to the constant and variable load vectors
applied individually are written as

o(A)=6°+ o’ 13)
o(A)=2c* (14)
o(L)=Ars", (15)

where A denotes the load criticality factor. The value of the generalized failure criterion
function is obtained from

fA)=f(c(1)). (16)
The failure criterion function indicates failure when
f(A)=1. a7

Accordingly, A can be determined in strain space by applying the equivalent strains
corresponding to the actual stresses caused by the constant and variable load vectors.

The problem is formulated as an unconstrained minimization problem

min 6(A)=|f(A)-1|

) 18
}"z{xk I, e [ak’bk]} S
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where the objective function 6(A) is minimized over the closed bounded interval by
iteratively reducing the interval of uncertainty [ay, bi]. First, the initial interval of uncertainty
is determined. In the main step, the golden section line search method is used to search for
the point where the failure occurs.

Searching the initial interval of uncertainty is summarized as follows.

Initialization step. Let ¢°20 and ¢'#0. Let the allowable final length of uncertainty be
28>0 and the terminal condition for the infinite A be INF>0, and let k=1 and A,=1. Thus,
fi=f(A) and go to the main step.

Main step.

If f, <1, goto step 2.
1. (Iff, >1, goto step 3.
Iff, =1, go to step 6.

M =2h45
2. |k=k+1;
f, =f(%,), gotostep 4.

A =0.50 5
3, lk=k+1;
f, =f(A, ), gotostep 5.

If f, <land A, <INF, gotostep 2.
If f, >1and A, <INF,[a,,b, ]=[\.,. A ], g0 to the sequential line search.

If f, >land A, =28, goto step 3.
5. |If f, >land A, <29, Aisindefinite.
If £, <land A, >28,[a,,b,]=[\i, 2., ) g0 to the sequential line search.

Iff,1-38)< LA, =1.
If £,(1—-8)>1,\, isindefinite.

The golden section line search method is next used to focus on the failure point. The golden
section method makes two functional evaluations at the first iteration and then only one
evaluation at each of the subsequent iterations.
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Initialization step. Let 28>0 be the allowed final length of the uncertainty and let {a), bi]
be the initial interval of uncertainty at k=1. Now x;=a)+y(b;—a,) and y,=b,+Y(b—ai).
Evaluate 0(x;) and 6(y,), and go to the main step.

Main step.

if b, —a, < 28, stop; the solution lies in the interval [a, , b, Jand is thus A = (¢, +b, )/2.
1. |if© (xk )>6 (y,), gotostep2.
if 0(x,)<8(y,), gotostep3.

@y =@, and by, = x;;

X =Y and yo, =b, —v (bk+l ~ A );

2.
0 (xk+l )= 0 (yk )§
Evaluate 6 (y el ); and go to step 4.
Ay =Y, and by, =by;
3 Y =X and x,, =a,, +'Y(bk+1 — );

0 (3 )=0(x,);
Evaluate 0 (xk+1 ); and go to step 4.

4. jk=k+1,andgotostep1.|

The value A corresponds to RF, RF°, or RF" depending on whether the stress state of
equation (13), (14), or (15) is used. The use of the golden section method is demonstrated
in the following example.

AN EXAMPLE RUN
The iterative method is studied through an example run in which the first ply failure analysis
based on the classical lamination theory is performed for a symmetric graphite/epoxy

laminate. The laminate structure and the ply properties corresponding to a typical
unidirectional T800/epoxy ply are given in Table 1.

The Hashsin criterion for unidirectional plies introduced in {2] is applied. Under tensile
longitudinal loads the expression for predicting longitudinal failure is

2 2
fa =[§_) J{%) 5, 0. (19)
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Under compressive loads longitudinal failure is predicted with an independent stress

condition

c,<0.

In the case of tensile transverse stress the expression for matrix failure is

2 2
fb: 9—2— —+ lll
Y, S

A more complicated expression is used when the transverse stress is compressive

2 T 2
~1| 22|t o, <0.
Y. | S

2
£, =22 | + Y.
28 28

The more critical of the two failure modes is selected

f = max(f,.f, ).

c,=20.

Table 1. Laminate structure and ply properties.

Laminate lay-up (2(+45/-45)/2(0/0/90)/0)s

Laminate thickness 4.40 mm (¢t = 0.20 mm)

Ply engineering constants Ply failure stresses
E;=155.0GPa X, =2000 MPa X. = 1500 MPa
E,=8.5GPa Y, =40 MPa Y, =220 MPa
Gy =55 Gpa S =80 MPa
Vi = 0.30 g

Ply thermal expansion coefficients o, =-0.50 e-6/°C oy = 30 e~6/°C

(20)

€2y

(22)

(23)

A load case used in the study includes a temperature difference AT=—50°C in the constant
load part with FoS°=1.3 and a mechanical load N,=—1000 kN/m and N,=700 kIN/m in the
variable load part with FoS'=1.5. The temperature difference from the stress-free

environment of the laminate is constant through the laminate.

Let the allowable final length of uncertainty be at most 0.01. Table 2 shows the
computations for determining the initial interval of uncertainty for RF. Summary of
computations by golden section method is given in Table 3.
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Table 4 summarizes layer failure modes, reserve factors, and margins of safety. The values
of the most critical layers are taken as the laminate values. Failure mode is predicted based
on which of the equations (19)...(22) is active when failure load is reached. The critical
layers with respect to the combined effective load are the —45° oriented layers whose
margins of safety are negative. The effective constant and variable loads do not cause failure
when applied alone.

Table 2. Summary of computations for determining the initial interval of uncertainty.

k fk ag by
Layer orientation +45°
1 0.271495 0 1
2 1.11687 1
Layer orientation —45°
1 1.09473 0 1
2 0.496539 0.5 1
Layer orientation 0°
1 0.971548 0
2 34737 1 2
Layer orientation 90°
1 0.838801 0
2 3.36011 1 2

—

—

Table 3. Summary of computations by golden section method.

k ay by Xy Ve 0(x:) 0(y1)
Layer orientation +45°
1 1 2 1.61803 1.38197 0.273797 0.473364
2 1.38197 2 1.76393 1.61803 0.134461 0.273797
3 1.61803 2 1.8541 1.76393 0.0422359 0.134461
4 1.76393 2 1.90983 1.8541 0.017096 0.0422359
5 1.8541 2 1.94427 1.90983 0.0546567 0.017096
6 1.8541 1.94427  1.90983 1.88854 0.017096 0.0057772
7 1.8541 1.90983 1.88854 1.87539 0.0057772 0.0197836
8 1.87539  1.90983 1.89667 1.88854 0.00292889 0.0057772
9 1.88854  1.90983 1.9017 1.89667 0.00832853  0.00292889
10 1.88854 1.9017 1.89667 1.89357 0.00292889  0.00040102
11 1.88854  1.89667 1.89357 1.89165 0.00040102  0.00245625
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Table 3. Summary of computations by golden section method (continued).

k ag b, Xi Vi 0(x1) 90‘:()
Layer orientation —45°
1 0.5 1 0.809017  0.690983 0.16297 0.304185
2 0.690983 1 0.881966  0.809017 0.068798 0.16297
3 0.809017 1 0.927051  0.881966  0.00796211 0.068798
4 0.881966 1 0.954915  0.927051 0.0306427 0.00796211
5  0.881966 0.954915 0.927051 0.90983 0.00796211 0.0314369
6 0.90983 0.954915  0.937694  0.927051 0.00669289  0.00796211
7 0.927051 0.954915 0.944272  0.937694 0.0158063 0.00669289
8  0.927051 0.944272 0.937694  0.933629  0.00669289  0.00108194
9  0.927051 0.937694 0.933629  0.931116  0.00108194  0.00237763

0 0931116 0.937694 0.935182  0.933629 0.0032232  0.00108194

—

Layer orientation 0°

1 2 1.61803 1.38197 1.32122 0.730544

1.61803 1.38197 1.23607 0.730544 0.411929

1.38197 1.23607 1.1459 0.411929 0.232755

1.23607 1.1459 1.09017 0.232755 0.128795

1.1459 1.09017 1.05573 0.128795 0.0671323

1.09017 1.05573 1.03444 0.0671323 0.0300114

1.05573 1.03444 1.02129 0.0300114 0.00744701

R[N [ W
N I Y Y I ey =

1.03444 1.02129 1.01316 0.00744701 _ 0.00635429

9 1 1.02129 1.01316 1.00813 0.00635429  0.0148289

10 1.00813  1.02129 1.01626 1.01316 0.00109567  0.00635429

11 1.01316  1.02129 1.01818 1.01626 0.00216238  0.00109567

Layer orientation 90°

1 1 2 1.61803 1.38197 1.19843 0.603232
2 1 1.61803 1.38197 1.23607 0.603232 0.282267
3 1 1.38197 1.23607 1.1459 0.282267 0.101809
4 1 1.23607 1.1459 1.09017 0.101809 0.00287866
5 1 1.1459 1.09017 1.05573 0.00287866 0.0649664
6 1.05573 1.1459 1.11146 1.09017 0.0364918 0.00287866
7 1.05573  1.11146 1.09017 1.07701 0.00287866 0.0268297
8 1.07701  1.11146 1.0983 1.09017 0.0120695 0.00287866
9 1.07701 1.0983 1.09017 1.08514 0.00287866  0.0120615

1.08514 1.0983 1.09328 1.09017 0.0028179 0.00287866

ol k=4

1.09017 1.0983 1.09519 1.09328 0.00634668 0.0028179

— =
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Table 4. Summary of layer failure modes (tf = tensile fiber mode, tm = tensile matrix
mode, cf = compressive fiber mode, and cm = compressive matrix mode),
reserve factors, and margins of safety.

Layer RF  MoS Failure | RF°  MoS° Failure | RF® MoS" Failure
Orientation (%) mode (%) mode (%) mode
+45° 1.89 89 tf 2.62 162 tm 1.87 87 tf
—45° 0.93 =7 cm 2.62 162 tm 1.21 21 cf
0° 1.02 2 cm 2.71 171 tm 1.09 9 tm
90° 1.09 9 tf 2.53 153 tm 1.09 9 tf
Laminate
093 7 em | 253 153 m | 1.09 9 tf
CONCLUSIONS

Closed form solutions for reserve factors can be found for various failure criteria used for
composite materials. However, finding closed form solutions for some criteria may be
difficult or even impossible. Therefore, a generalized method for solving the laminate
reserve factors with an iterative solver has been developed. The internal formulation of
failure criterion functions has no effect on the solution procedure. On the basis of the
laminate reserve factors, margins of safety of the composite laminate are computed.

The problem is formulated as an unconstrained minimization problem where the objective
function in the layer stress or strain space is minimized over a closed bounded interval by
iteratively reducing the interval of uncertainty. Results show that the golden section line
search method that is used in the solver is an efficient algorithm for finding the layer failure
point. In a reasonably number of iterations, an adequate degree of accuracy for composite
laminate design is obtained.
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ANALYSIS OF REINFORCED CONCRETE STRUCTURES FOR FAST
EXPLOSION LOAD

Pentti Varpasuo
IVO POWER ENGENEERING LTD
01019 IVO, FINLAND

ABSTRACT: The study forms a part of ongoing development project of the VVER-
91 NPP concept. The reactor cavity of the plant is equipped with a core catcher. The
pressure histories on the cavity wall at various locations were developed by T.G.
Theofanous. The results of the analyses show that the cavity can carry the prescribed
loads within allowable deformation limits and that the zones where the crushing of
concrete takes place are local and restricted.

1 INTRODUCTION

The strength of the VVER-91 reactor cavity has been studied before by using
ABAQUS/STANDARD, ABAQUS/EXPLICIT and ANSYS programs. These studies
have been reported in reference[1]. None of these studies gave satisfactory results. It
appeared that ABAQUS/STANDARD was able to estimate the static load capacity of
the structure but could not be used for the dynamic analysis. ABAQUS/EXPLICIT
was capable to do the dynamic analysis of the structure but the results were not fully
consistent. The time histories for hoop reinforcement and the time histories for strain
in hoop direction were not compatible with each other. The next program to try was
ANSYS. ANSYS was capable to perform the static analysis and gave reliable results
whereas the ANSYS results in dynamic analysis were completely unsatisfactory and
clearly erroneous.

So it was decided in the beginning of 1995 to acquire a new special purpose
reinforced concrete analysis program ANACAP from Anatech Research Corporation
San Diego, California. ANACAP is advanced finite element modelling program for
the thermal and stress evaluation of reinforced and prestressed concrete structures.
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The aim of this study is to analyse the VVER-91 reactor cavity for non-axisymmetric
loads using ANACAP program. The task is the evaluation of the dynamic response of
the reactor cavity against the pressure impulse caused by the steam explosion. The
steam explosion occurs when the molten core from the reactor pressure vessel reacts
with the water in the reactor cavity. The resulting loading is a very fast impulse type
load. In cavity strength analyses two different reinforcement amounts in hoop and
vertical directions were stipulated, namely, 200 kg/m3 or 2.4 % of the concrete area
or 300 kg/m3 or 3.6 % of the concrete area.

2 DESCRIPTION OF THE STRUCTURE

The reactor cavity is a reinforced concrete cylinder which supports the reactor
pressure vessel and surrounds the lower part of the pressure vessel. The thickness of
the cylinder varies along the height. The lower five meters are 2.6 meters thick and
the upper three meters are 1.83 meters thick. The total height of the cylinder is eight
meters. The inner radius of the cylinder is 2.9 meters. At the bottom of the cavity
there is an opening which opens to the control room of the reactor inspection
machine.

The cylinder of the reactor cavity is supported by the base slab of the reactor building
on the level +3.00. The upper edge of the cavity is supported on the level +11.00. For
the analysis the following basic assumptions concerning the materials were made.
The concrete is of class K35-1 and the reinforcement is of the class AS00 HW. The
amount of the reinforcement is 50 kg/m3 in radial direction. The amount of
reinforcement in hoop and vertical directions was varied from 200 kg/m3 (2.4 % of
the concrete area) to 300 kg/m3 (3.6 % of the concrete area).

3 DESCRIPTION OF THE LOAD

When the molten material discharges from the reactor vessel, it comes into contact
with water in the reactor cavity. A violent ex-vessel steam explosion is a possible
outcome of such a contact. The ex-vessel steam explosion may threaten the structural
integrity of the reactor cavity walls, which support the reactor vessel and the primary
piping.

In order to make quantitative evaluations of the pressure impulse on the cavity walls,
one has to consider first the core melt discharge from the vessel. Two possible
mechanisms for the vessel failure has been studied in reference [2]. Scenario I is the
local creep rupture, and Scenario II is the global lower head failure.

The calculations of ex-vessel steam explosion energetics were made for typical ex-
vessel conditions with subcooled water, entry velocities of melt to the water are about
10 nv/s and the water pool depthis 1 -3 m.

The applied analysis methods PM-ALPHA and ESPROSE.m are mechanistic except
for two assumptions. These assumptions are the melting pour rate and the degree of
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melt break-up during the premixing. The melting pour rate is 1000 kg/s of oxidic
pour with a diameter of 60 cm, 100K superheat and a particle size of 1 cm.

Off-center pours with distances of 0.5, 1, 1.5 and 2 meters from the sidewall in
reactor cavity equipped with a core catcher are considered in reference [3]. The core
catcher is a cone-shaped steel cone, resting on the cavity floor and extending all the
way to the cavity sidewalls. The water depth is taken as 2 meters, the melt pour rate
at 1000 kg/s, and the melt particle size at 1 cm, so as to match the conditions in
previous calculations run for the cavity and reported in reference [2].

The results indicate that local peak loads can be quite high, due to the proximity of
the explosion zone; however, the duration becomes increasingly shorter as the pour
approaches the side and effective water depth decreases due to the conical shape. The
results also show a complicated wave reflection pattern that affects both timing and
load distribution on the boundaries.

In the following Figures 1 and 2 the wall pressures and impulses at selected
elevations are presented for the off-center pour with 0.5 meter distance from the side
wall. This run appeared to yield the highest wall pressure and impuse values from all
considered pour distances. The run was carried out with the aid of ESPROSE.m using
planar cavity model.
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Figure 1. Wall pressure at selected elevations after Theofanous [2]. Pressure in bars,
time in milliseconds.
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Figure 2. Wall impulse (kPa-s) at selected elevations after Theofanous [2].
4 DESCRIPTION OF ANACAP REINFORCED CONCRETE MODEL

The ANACAP model is a development of the smeared-crack model [4]. Since its
inception the model has been developed to include compressive plasticity, tensile
and compressive strain softening, cyclic behavior, shear transfer across cracks, high
temperature creep and temperature induced stiffness and strength degradation.

The smeared-crack models the local crack by redefining the incremental constitutive
matrix to reflect the decreased stiffness in the direction of the crack. The model
requires that the cracks at specific material point are mutually orthogonal but cracks
can have independent histories of opening and closing under cyclic load. In contrast
with the fracture mechanics based models which consider the propagation of an
existing crack along a single trajectory, the smeared crack model is a predictive crack
initiation and distribution model. This property makes it suitable large-scale 3D
computations.

5 3D FINITE ELEMENT MODEL OF THE CAVITY

The cavity structure was modelled with 354 solid quadratic elements. The number of
nodes in the model was 2019. Reinforcing bars in the model were generated on
individual bar basis in hoop, vertical and radial directions. The rod distribution was
uniform throughout the model.

One half of the cavity structure was modeled and the symmetry conditions were
imposed on the end faces of the model. The bottom of the model was fixed and the
upper edge was restrained in horizontal plane. The cavity model is depicted in Figure
3 and 4. Figure 3 is hidden line and Figure 4 shaded plot of the Fem-model.
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Figure 3 Hidden line plot of the reactor cavity model.

Figure 4 Smooth shaded plot of the reactor cavity model.
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The spatial and temporal variation of the pressure load applied to the FEM model was
devised in accordance with Figures 1 and 2. The vertical distribution of the load was
assumed to be trapezoidal and the circumferential distribution was assumed to be sine
half wave with the extent of half of the circumference. The shape of the load impulse
in time was taken to be triangle with the impulse value of 150 kPa-s for the maximum
load amplitude. The load characterization is given in Figure 5.

A,B| [pvPa) ]

0E &E

Figure 5 Spatial and temporal variation of the pressure load.
6 MATERIALS

The grade of K35-1 was selected according to the Finnish reinforced concrete code
for the concrete material. The Young’s modulus for concrete used in the analysis was
E=29580 MPa, Poisson’s ratio was 0.2 and the concrete density was 2400 kg/m3. The
uniaxial, crushing strength was 24.5 MPa and the uniaxial, tensile, cracking strength
was 2.14 MPa and the corresponding fracture tensile strain was 7.235E-5. The
reinforcement bars of class AS00 HW according to Finnish reinforced concrete code
were selected. The Young’s modulus for the reinforcement was 200 Gpa, the density
was 7700 kg/m3. The Poisson’s ratio for the reinforcement was 0.3 and the yield limit
was 500 MPa. The ideal elasto-plastic behaviour was chosen for the reinforcement.

7 SOME FEATURES OF ANACAP PROGRAM [51.[6],[71,[8]

ANACARP is a structural analysis program developed for the 2D or 3D, static or
dynamic response and failure analysis of reinforced or prestressed concrete

structures. ANACAP is cast in implicit finite element methodology and is especially
devoted for the highly non-linear material response involved with concrete due to
cracking, creep, ageing or crushing. ANACAP can be applied over the whole range of
analysis requirements from design acceptance criteria verification to construction
optimisation to failure predictions. The capabilities in ANACAP have evolved from
over twenty years of research and experimental verification by Anatech Research
Corporation. Anatech Research Corporation is an internationally known leader in
failure prediction, concrete modelling and analysis.
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The following is the summary list of capabilities of ANACAP for modelling
concrete:

0O smeared-crack model for general 3D stress states

O history-dependent cracking

O crack closure and re-opening for cyclic loading

O pre-set crack direction for modelling construction joints

0 rough-crack modelling for aggregate interlock effects

0 compressive plasticity utilising the full stress-strain curve, including post ultimate
strain softening and crushing

0 hereditary creep relations with age and temperature dependence
O shrinkage

O material damping at locally damaged regions of cracking

[J rebar plasticity with strain hardening

0 rebar bond slip models for member ductility demand evaluation

Cracking

ANACAP employs the history-dependent smeared-crack model which predicts crack
formation according to principal stress-principal strain interaction cracking criterion.
Crack orientation, and hence stiffness anisotropy, is dictated by the stress and strain
principal directions at each material integration point.

Cracks are allowed to form in three directions, and once a crack forms, it may close
and re-open but can never heal. This crack memory feature is essential for analyses
involving load reversals. The model includes algorithms for residual tension stiffness
for the gradual transfer of load to the reinforcement during crack formation and for
shear retention to simulate the effect of crack roughness through aggregate interlock.
The model also allows definition of precracked directions for analysing structures
with existing cracks.

Crushing

Plastic flow of material under compressive stresses is implemented through modified
Drucker-Prager Yield condition. The compressive stress-strain curve is followed up
to ultimate strength and into the strain softening regime where the material begins to
unload due to internal damage and crushing. The model also includes hysteretic
behaviour due to loading and unloading in the strain softening regime.

Temperature Dependence & Degradation

At elevated temperatures, usually encountered in nuclear power applications,
concrete exhibits a significant departure from its elastic and creep properties at lower
temperatures. This occurs because of thermally activated damage that is evidenced by
the degradation of the material properties, especially the elastic modulus. This
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material property degradation with time and temperature has been implemented for
temperatures up to 450°F based on experimental data for the modulus, compressive
strength and ultimate tensile strength of concrete. This feature is required for
evaluation of structural integrity involving long-term thermal creep.

Damping

For dynamic applications, a concrete response model must include the effects of
internal damping. ANACAP employs a cracking consistent damping model that
introduces energy absorption directly at the element integration point level. This
damping is treated as a function of time and the cracking orientation and status of the
concrete material. This is done in a similar manner to the modelling of plasticity in
metal structures, where hysteretic energy losses are modelled directly at the location
of the affected material, rather than as a smeared effect uniformly distributed over the
entire structure. This is a unique, specialised feature not found in any other
commercially available Finite Element program.

Rebar-concrete Interaction

In areas of large stiffness discontinuities, major cracks develop and the interaction
between the concrete and the reinforcement plays a major in determining the
structural response and failure state. Because of dislocation displacements and rebar
debonding, slippage can develop between the steel and concrete. The ANACAP
concrete model has capabilities for modelling rebar bond slip based on confinement
and anchorage utilising bond strength data from rebar pull tests.

8 NON-LINEAR DYNAMIC ANALYSIS FOR 200 KG/M3 HOOP AND
VERTICAL REINFORCEMENT

In non-linear dynamic analysis the equations of motion of the system are solved by
implicit direct integration method and displacements, velocities and accelerations as
well as stresses and strains are calculated by the equilibrium iteration for every time
step.

The results are shown at three faces of the Fem- model denoted by PL1, PL2 and
PL3. PL1 is situated at the symmetry plane of the structure at the azimuth of positive
x-axis, where the pressure load has its maximum value. This face is shown in Figures
3 and 4 at the right hand side of the plots. The faces PL2 and PL3 are situated at 90
degrees intervals from the face PL1 in counter clockwise direction. The results are
shown in form of displacement time histories, cracking pattern charts and strain
fringe plots.

The displacement time histories are presented in inner and outer face of the cavity
wall in top, middle and bottom position in the vertical direction. In two faces situated
at symmetry plane , namely PL1 and PL3, the displacements are given in x-direction
and in face PL2 the displacements are given in global x- and y-directions.
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In Figure 6, 7 and 8 the displacement histories of the cavity wall are given in the
middle height of the wall and in the faces PL1 and PL2 and in the inner and outer
surface of the wall.
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Figure 6 X-displacement time histories at middle height of face PL1 of the cavity
wall
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Figure 7 X-displacement time histories at middle height of face PL2 of the cavity

wall



208

TR EEAV0RR O YO

=08
2,00
Sl —2— 1057
—p— 3066
.00 - /"'
] y
1 P f
800 {——"" /
: ‘a"
] Vs
] s
aa.an 2 FAy
' F /
o /
~3.00 + 2
,/
=300 -/
=500 e T ——— pr—p————
00 0,50 1,00 1,50 20034072
=T
TR 51 FEICSOR TOE, FOUR X0 VENITWAN FSTNT. J00R0AR
Trema 73 pIG.0FL IO 2:2,13 A0-Dex=1236 29387398

Figure 8 Y-displacement time histories at face PL2 at middle height of the cavity wall

In Figures 6,7 and 8 the displacements are given in meters and time in seconds. The
duration of the time histories is 20 milliseconds which is five times the duration of
the load pulse given in Figure 4. The curve depicted by square denotes the inner face
displacement and the curve depicted by circle denotes the outer face displacement.
The maximum value of the x-displacement in Figure 6 is about 1 cm and Figure 7
about 3 mm. The maximum value of the y-displacement in Figure 8 is about 3 mm.
Its sign is minus and so the wall moves invards in face PL2.

A crack in a calculation point is marked by two concentric circles in the crack plane
an when two concentric circles are seen in the picture it means that the cracking plane
is approximately same as the picture plain or xz plane, that is to say that the concrete
has cracked in the hoop direction. When the cracks appear as ellipses or even just
lines it means that the planes of cracks deviate from the picture plain. The lines mean
cracking in a plane perpendicular to the picture plain. When concrete has cracked in
two or three directions in a calculation point the graphical image for each crack is that
described above for one crack .

A cross in a calculation point mean that concrete crushes in compression. In cracking
pattern charts this is seen near that part of the surface where the pressure load has its
maximum value. The cracking and crushing pattern of the wall face PL1 is shown in
Figures 9, 10 and 11 at time points 10, 40 and 120 milliseconds.
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Figure 9 The cracking pattern at PL1 at time 1 millisecond from load application
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Figure 10 Cracking pattern at face PL1 at time 4 milliseconds from load application
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Figure 11 Cracking pattern at face PL1 12 milliseconds from load application

The fringe plots for deformations are shown in Figures 12-14. Strain values vary
between 11000 microstrains of compression and 17000 microstrains of tension. Some
of the peak values of the fringe plots are caused by fixed boundary condition at the
base of cavity wall. Actual boundary condition is more flexible because cavity is
supported by concrete slab.

9 DISCUSSION

All the results shown in Figures 6-14 were calculated for the 200 kg/m3 hoop and
vertical reinforcement. The same calculations were also carried out for the 300 kg/m3
hoop and vertical reinforcement. Radial reinforcement amount was kept constant in
both runs and the amount was 50 kg/m3.

ANACAP does not plot the reinforcement stress histories but the check from print
file gave the result that reinforcement remains in elastic range except local
concentrated areas near the base of the cavity wall where fixed boundary condition
was applied.

The cracking procedure in the case of 300 kg/m3 hoop and vertical reinforcement is
almost the same as in the 200 kg/m3 case. Stresses and strains in reinforcing bars are
again in elastic region and are somewhat smaller than those in the 200 kg/m3 case. So
the crack widths are also smaller.
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There is again some compressive crushing near the maximum pressure amplitude and
near the base slab. The latter is again explained by a conservative boundary
conditions at base slab which do not take into account its deformation. The strain
fringe plot shows that strains are somewhat smaller than in the 200 kg/m3 case which
was to be expected because of increased reinforcement amount.
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Figure 12 Fringe plot of hoop deformation at the end of load pulse at face PL1.
10 CONCLUSION

The performed analysis demonstrated that the off-center pours of molten core to the
cavity can be contained by the cavity walls without impairing their capacity to carry
vertical load from vessel weight.

There exists local concrete crushing at the cavity wall adjacent to pour but its extent
is limited and its penetration insignificant compared to 2.6 m wall thickness.
Reinforcement yield is very limited and is caused by conservative restraints at wall
bottom.

Concrete cracking is spreaded throughout the whole wall section at maximum load
amplitude location but because of moderate strains the crack widths remain small,
The obtained results also confirmed the suitability of ANACAP to advanced 3D
analyses of reinforced concrete. Similar problems as studied in this report have been
studied in references [9],[10],[11] and [12].
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Figure 14 Hoop strains at face PL2 at the end of the load pulse
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ABSTRACT

Concrete filled steel tubes (= CFST) are employed as columns in steel and composite
frames and also as compressed members in pile foundations, and they are loaded mainly
axially, but some bending may also be introduced by transverse loads and due to
eccentricity in the axial load. Bond stresses are introduced to the steel-concrete interface
by the flexural load effects, which may also cause cracking in concrete, making the
behaviour non-linear. Therefore, the possibilities to apply the LBE method (= layered
beam elements) for the CFST problems are discussed and a system of two parallel
element layers is introduced. Of special interest is the problem of the load introduction
from the steel cover to the concrete core, as there are requirements for this case in
ENV-Eurocode 4. Principal modes of behaviour of composite columns and bent CFST
are enlighted by the results of three numerical examples.

1. INTRODUCTION

Concrete filled steel tubes are one form of composite columns covered in ENV Eurocode
4 [1]. The cross-sections of the columns in the scope of the code are such that both of
the material components shall have a symmetric section and the centroids should
coincide. In order to behave compositely, both materials of the column shall be
strained, which is normally true after some introduction length also for the loads
introduced from the steel cover. No parametric evaluation of the load introduction is
given in Eurocode 4, and it is only stated that the loads introduced to the column should
be transferred to act on the whole cross-section within a length not longer than twice the
diameter of the cross-section. While the real transfer length will depend on the
properties of the shear interface, there should also be reasonable tools for making
parametric studies of the real behaviour.
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The method of layered beam elements (LBE) can be suited for the problem described,
and this paper introduces the setup of the method for discretizing the CFST members
into two layers of elements, (1) the steel tube surrounding the concrete core and (2) the
concrete core with its reinforcement (Fig. 1). In the initial state of the composite
member the concrete core is uncracked and the centroids of the components of the
cross-section coincide. For large eccentricities of the load, the concrete is liable to crack
and higher interface bond stresses are required to maintain the composite behaviour.

Nodes in shear interface

Interface springs
Steel tube Reinforced concrete core

- Layer 2

Layer 2
Concrete + rebars

— e

Elevation in the plane of bending

FIGURE 1: A typical CFST and its discretization into LB-elements

2. LB ELEMENTS

The LB elements are a transformation of the normal two-noded beam element in which
the degrees of freedom included in a single node are separated and transformed so as to
make them suitable for connecting the similar degrees of freedom in various elements
together by interface springs. The structure of the element stiffness matrix is discussed
e.g. in [2] and it should be noted that the essential information required for the element
stiffness matrix is quite limited and similar with that included in the source element, i.e.
axial stiffness (EA), flexural stiffness (EI) and the location of the neutral axis for
bending (Fig. 2). This makes them practical for well-controlled parametric studies
frequently required for composite structures. While in many applications the properties
of the interface spring elements can directly be derived from simple tests which
represent the properties of the shear connection, this cannot be done in the case
considered here, but the average bond stress - slip relationship of the shear interface can
be interpreted into spring properties by numerical integration of the average behaviour,
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however. The average properties of the shear interface are based on simple push-out
tests (Fig. 3), employed normally for composite structures, €.g. in Eurocode 4 [1].

Transformation of
stiffness matrix

| 1

,. Centr. axis | Y Centr.axis 7
EA), E) |, —»0| (EA), El) [o—>

v
Basic beam element LB element

Transformation of
nodal forces and displacements

FIGURE 2: Transformations required for the source element
2.1 Derivation of the load-slip relationship for the interface springs

The average load-slip or bond stress-slip relationship for the steel-concrete shear
interface of the composite tube is evaluated from simple push-out tests, the principle for
which is shown in Fig. 3 below. 7 is the mean interface shear stress due to applied
load and & is the slip of the concrete core with respect to the steel tube. When
mechanical connectors are not involved, the behaviour is highly non-linear, resulting in
softening curves, in which the slopes are positive for all &, and the bond strengths, T,
applicable for the design purposes depend on the maximum slip that can be allowed
without impairing the system behaviour.

Load
Rigid plate

Ptb Ib%E LS

¢

AU,

(2]
o

N\ N
Slip gauges

A

FIGURE 3: Push-out test setup for defining the average 1) - 8 relationship
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Denoting the total load in the push-out test by F, the average bond stress is simply 1y
= F/n¢. It is now assumed that strength 7, is obtained at a slip of & ;, which then fixes
a unit function, f(8,), derived from the experimental 1, - 8 relationship so that (847)
= 1. Then 1y, = 1,f(8;) and the relationship for the interface shear flow and slip, v, and

8, respectively is implicitly obtained from:
/2
Vi =61, j singf(d;sing)do (1)
0

In practice the values of v, for slips 3 ; are calculated from summation:

23 1 fosino sl = PSS £
Vy = T sin r'—r = Sin
: I; T S T T 1; KSRk 2)

in which £, = f(8,), &, = 5, ;sing, and ¢, = (k - 0,5)m/(2n) with k = 1, 2, ..., n.

VI )

— — S.1
=

T d
b rsin <Pk £

FIGURE 4: Geometry for the derivation of v, - 8, ; relationship

Figure 5 shows an example of the shear flow - slip relationship derived for a welded
tube with a diameter of 200 mm. It is pointed out that the relationship is not general
and the properties of the shear interface should always be considered as based on tests.
A comparison of the curve in Fig. 5 with function f(8,) would reveal that there are only
secondary differences in the envelopes of the curves, when the curves are scaled into
similar coordinates and a good approximation for the values of v; would be to assume
the average bond stress from the push-out test to act on one third of the sphere of the
tube.

The relationship in Fig. 5 is applied hereafter in the numerical examples prepared for
studying some typical load cases for composite columns loaded primarily axially
(concentric and eccentric axial loadings).
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FIGURE 5: An examle of v; - 8 ; relationship for a tube of 200 mm

2. NUMERICAL EXAMPLES

A two-storey column shown in Fig. 6 below is analyzed in two configurations of loads
F, and F, so as to demonstrate the behaviour of an intermediate column (case a, Fy, F,
>0, balanced loading) and an end column (case b, F; > 0, F, = 0) in a frame, in which
the loads of the flooring are transferred to the columns by the fin plates of the beam-
column connection. The location of the reactions, €, is assumed to be 50 mm from the
outer face of the tube.

2.1 Intermediate column, case a

The column is loaded axially and the loads, F; + F,, (F; = F,) are increased in steps of
100 kN up to 1000 kN. Two options are considered, (1) a column without mechanical
shear connectors and (2) a column provided with stud shear connectors [5] in the section
of the load introduction (middle-height of the column). The strength of the connectors
is assumed to be twenty times of that of the bond connection within the length of the
elements. The differences in the axial load distribution between the options are seen in
Fig. 7, in which the diagrams with markers represent the thrust or pull in the steel
member of the column. In the second storey of the column the steel tube is in tension
and the concrete core in compression, and the absolute values of the axial forces are
identical. The difference between the options is clearly visible and the load transferred
by the connectors is approximately 180 kN (= the difference in the axial force of the
concrete core when passing the mid-height of the column).
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It is pointed out that for the load of 1000 kN the column behaves totally elastically and
the stresses are well below the point of yielding. This should also be seen when
evaluating the design axial resistance of the column according to Eurocode 4 [1]. The
calculation was terminated only as the design loads transferred normally from the
flooring to the columns are in the range of 1000 kN.

NN

Cross-section

FIGURE 6: Column configuration, a two-storey CFST

200
100

-100
-200
-300
-400
-500
-600
-700
-800

Axial load in material elements
[kN]

0 1000 2000 3000 4000 5000 6000 7000

Distance from the top of the column [{mm]

FIGURE 7: Axial load distributions for F; + F, = 1000 kN



221

2.2 End column, case b

The column is loaded by an eccentric load, F;, on a fin plate in steps of 100 kN up to
1000 kN. Similar options as in case a are considered. As compared to the previous
case, load 1000 kN strains the column also by bending, making thus the maximum
strains higher. Maximum deflections of 5,6 mm and 4,6 mm in the opposite directions
are observed in the second and first storey, respectively, but the strains are mostly below
the limit of yielding and local plasticity starts only developing in the region of the load
introduction. There are only minor differences in the deflections between options (1)
and (2), but while the purpose of the shear connectors is to prevent slipping in the
section of the load introduction, the yielding of the tube is slightly delayed in option (2).
The distribution of slip deformations at the connection interfaces is shown in Fig. 8 for
load F; = 1000 kN. The interface on the side of the load is shown without markers.

0.6 -|——— - _ _—

A

0.5 4— - .
o_bﬁun )

44—

0.3

0.2 1 | ] ,l r\f\

Slip at connection interface [mm]

0 1000 2000 3000 4000 5000 6000 7000

Distance from the top of the column [mm]

FIGURE 8: Slip deformations for the load of 1000 kN in case b

Although the form of the curves in Fig. 8 is similar for options (1) and (2), the slips are
smaller when mechanical connectors are involved.

Bending moments in material components (curves with markers), as well as the sum of
the component moments are shown in Fig. 9 for F; = 1000 kN. Second order effects
were considered in the calculation, i.e. the incremental moments due to deflection are
included in the diagrams. The sum of the component moments represents approximately
the external moment due to load effects, and even exactly, as far as the centroids of the
effective sections coincide. This is best true for the second storey (distance 0 - 3500
mm from the top), but the deviation of the sum from the external moment is less than
2 % even in the first storey (distance 3500 - 7000 mm from the top).
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FIGURE 9: Bending moment diagrams for F;, = 1000 kN in case b

2.3 CFST in pure bending

A CFST loaded by a concentrated central load F in bending as a simply supported
member is considered next. The principal dimensions of the structure are:

L]

outer diameter of the tube = 508 mm

wall thickness of the tube = 12,5 mm

reinforcing bars 10 ¢32 with an axis distance of 80 mm from the steel-concrete
interface

total length of the tube = 4400 mm

span length as simply supported member = 3800 mm, i.e. there are 300 mm
overhangs at both ends.

The material parameters assumed for the calculation are:

concrete grading, f . = 42 MPa

yield strength of the tube, fy = 355 MPa

yield strength of the reinforcing bars, f, = 500 MPa

Young's modulus for the steel materials, E, = 190 000 MPa

the bond stress - slip relationship obtained for 200 mm tubes is applied here,

although it may not be exactly valid for larger diameter tubes.

An ideal elastic-plastic behaviour with hardening initiating after a strain of llfy/Ea is
assumed for the tube and reinforcement.
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The member was analyzed as discretized into elements having length of 100 mm. The
load was increased in steps of 100 kN up to 2000 kN, where the calculation was
terminated due to excessive deformations. First yielding at the bottom fibre of the tube
is detected at F = 1400 kN, and for increased loading the yielding spreads towards the
supports both at the top and bottom fibres of the tube. The maximum deflection at the
termination of the loading is in excess of 90 mm.

Figures 10 and 11 introduce some results of the calculation:

. The load-deflection response is shown in Fig. 10.
. The flexural stiffness of the material components for loads F = 1000, 1500 and
2000 kN is shown in Fig. 11.

The values for the elastic bending stiffnesses evaluated by integration by the calculation
program are:

. steel tube (EI), = 1134 MNm?
. concrete core + reinforcement, uncracked, (EI), = 116,3 MNm?

The standard formula for the elastic second moment of area of the circular tube yields
(ED, = 113,5 MNm? for E, = 190000 MPa, and the respective uncracked stiffness of the
concrete core is (EI), = 110 . 125 MNm?, depending on the assumed location of the
reinforcing bars and grading of the concrete. For F > 200 kN, the concrete starts
cracking and its stiffness is highly reduced.
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FIGURE 10: Load-deflection response
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FIGURE 11:
Flexural stiffnesses in elements of the tube and concrete core for three load levels F' =
1000 kN, 1500 kN and 2000 kN. Diagrams 1, 2 and 3 represent the flexural stiffness
of the tube and diagrams 4, 5 and 6 the stiffness of the concrete core and its
reinforcement, respectively.

The bending resistance, M., as evaluated according to section C.6.4 of Eurocode 4 [1]
is approximately 1521 kNm, corresponding then to the ultimate value of the concentrated
load, Fy;, = 4M,; /L = 1521 x 4/3,8 = 1600 kKN. A far higher load could be applied
in the calculation, as the onset of yielding for the tube is F,; = 1400 kN, and it is seen
in Fig. 11 that for F = 1500 kN, the bending stiffness of the tube is not much reduced.
This implies that the method given in Eurocode 4 is highly conservative at least for
circular tubes.

3. SUMMARY AND CONCLUSIONS

The method of layered beam elements was here applied for the composite tubes which
may efficiently be discretized into two layers of parallel elements. The axial modes as
well as the bending modes of the loading can be considered effectively. While the
elements were originally developed for various flexural systems of composite structures
[e.g. 3, 4], it was shown in the examples that the method is also well applicable for the
axial loadings and mixed modes consisting of axial and flexural loads.

The results of the examples for the two-storey column indicate that the load transfer
from the tube to the composite cross-section happens both above and below the level
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where the load is introduced to the column. Figure 7 would also indicate that in the
case of fire design it is justified to 'hang' the loads coming from the flooring above the
hot compartment by the steel tube and transfer them to the concrete core in the cool
room above the fire. This kind of load transfer can only be considered in the composite
columns.

The method can efficiently be programmed to give a good view for the various
important parameters of the behaviour in composite structures. As applied for the
purpose of the study of composite columns, the standard output for every loadstep
include:

. nodal displacements and interface forces,
. axial forces and bending moments for the elements,
. axial and flexural stiffnesses for the elements.

All of these are frequently required for every reasonable parametric study of various
composite structures.
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ABSTRACT

A critical review of the existing methodology for the numerical treatment of post-
bifurcation branches at a multiple bifurcation point is presented. In the critique the
main emphasis is given to robustness, but also implementational issues and computa-
tional requirements as well unsolved problems are addressed.

1 INTRODUCTION

Path following is the most common procedure to analyze the stability behaviour of
complex structures. In these methods a one dimensional equilibrium curve is traced.
Difficulties are expected to exist with the basic continuation algorithms near criti-
cal points where the tangent stiffness matrix is ill-conditioned. If the multiplicity of
the critical point is one, the numerical treatment of post-bifurcation paths is rather
straightforward, but the situation changes dramatically when the multiplicity of the
critical point is greater than one. Occurrencies of multiple bifurcation points in a nu-
merically traced equilibrium path are quite rare. However, circumstances where the
buckling loads are clustered in a small interval just above the smallest critical load are
frequent in the stability analysis of various shell structures. Such an occurrence might
lead to an exceedingly complicated situation, where the buckling modes interact with
each other. Therefore it seems natural to require a branching procedure to be able to
handle multiple bifurcation points (or near ones) in a continuation algorithm.

In the scientific literature there are only few papers concerning the numerical treat-
ment of multiple bifurcation. Among them belong the works of Kearfott [1], Allgower
and Chien [2] and Huitfeldt [3]. In this article those methods are briefly reviewed and
the existing difficulties with these approaches are pointed out.

Also an approach which uses the Koiter type reduction technique is presented and
its properties are compared to the above mentioned techniques.

Only the question of the computation of post-bifurcation branches is discussed in
the present paper. Relevant related problems like location and computation of the
critical point itself have been left out.
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2 BASIC DEFINITIONS

Discretized form of static equilibrium equations under single load control can be written
in the form

flg,\)=2p, —r(g)=0 1)
where p, and 7 are the vectors of external and internal forces.
It is assumed that the magnitude of the loading is controlled by a single parameter
A, called the load parameter. The N-dimensional state variable vector is denoted as
q and in most applications N is large. In the solution of the non-linear equilibrium
equation (1) the tangent stiffness matrix K is usually needed (at step k)

af

Kp=—
k aq

q,
In order to parametrize the path a length measure, i.e the path parameter s is defined
as As = Y5 V' Ct , where tT = [AqTA/\] and C is a weighting matrix, see ref, [4].
It is now assumed that the critical point (g, Asr) is reached and located for pre-
scribed accuracy between steps k — 1 and k. Notification of new critical modes during
the continuation can be obtained by monitoring the inertia of the tangent stiffness ma-
trix. If the number of unstable modes associated with the appearance of the noticed
critical point(s) is M, then

Ip(Ki) — p(Kg-1)| = M,

where p(K) stands for the number of positive eigenvalues. This does not necessarily
mean that the lowest critical point itself is a M-fold critical point, i.e.

dim(ker K. ) = K < M.

However, it is assumed in the sequel that the rank deficiency of the tangent stiffness
matrix at the critical point equals to M and no other critical points lie on the primary
path in the last increment.

The number of positive eigenvalues can be determined using the Sylvester law of
inertia by counting the number of positive diagonal elements in the LDILT-factorized
stiffness matrix. If the linear system is solved by iterative methods, like preconditioned
conjugate gradient (PCG) method, the inertia of the stiffness matrix is not easily
obtainable. If the preconditioning matrix is denoted by M, the outer eigenvalues of
the preconditioned operator M ~! K can be easily obtained from the tridiagonal matrix
related to the underlying Lanczos iteration. However, it is not clear if these eigenvalue
estimates can be used in the continuation algorithm.

Multiplicity of the critical point is here defined to be the dimension of the nullspace
of the tangent stiffness matrix at the critical point. Other definitions exist. Bauer et
al. [5] defined the multiplicity of the bifurcation point to be M if 2M + 2 half rays meet
there. Since the number of emanating branches is not known a priori, the previously
mentioned definition seems to be more appropriate. It is probably the most common
definition adopted in the literature.
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3 BRANCH SWITCHING ALGORITHMS

In this section a short review of the existing branch switching techniques for multiple
bifurcations is given. The task of these algorithms is to seek solutions for the rate
of load parameter A and the rates of the projections of the tangent vectors a; of the
branches onto the critical eigenmodes ¢;,7 =1, ..., M.

Rheinboldt [6] developed an elegant and computationally favourable branch switch-
ing algorithm for simple bifurcation. He also described generalization of his method
to multiple bifurcation. However, the question of initial values for the projections a
remained unanswered.

Keller [7] presented four algorithms, which are denoted methods I-IV. The method
I uses a perturbation approach and the solutions for the branch directions are obtained
from the algebraic bifurcation equation (ABE). In the evaluation of the coeflicients in
the ABE, the second derivatives of the residual vector f are needed, or they need to be
approximated by finite differences. This method will fail when the ABE is degenerate,
e.g. at symmetric bifurcations. In order to avoid the determination of coefficents of
the ABE, Keller proposes the method II where the idea is to seek solutions on some
subset parallel to the tangent but displaced from the bifurcation point in some direction
normal to the tangent. Obviously this method will work well in simple bifurcations,
but the problem with multiple bifurcation is how to parametrize in a reasonable way
the subset where the solution is to be found. The remaining two methods III and IV
seems to be the most robust and also computationally the most demanding. Since
they are described in ref. [7] only in the case of simple bifurcation and they have
some resemblance with the Koiter’s perturbation approach, only the connections to
the proposed method are pointed out in the following discussion.

Kearfott [1] developed a technique, where in principle, all solution arcs can be
found by locating the minima of ||f|| in the region near the critical point spanned by
the critical eigenvectors, i.e finding the solutions branches on a sphere centered to the
estimate of the critical point. Drawback of this method is that it needs numerous
evaluations of the residual f. Determination of the the necessary resolution needed to
find all solutions is an open question. If the resolution to scan over the sphere is too low,
the probability of missing some brances increases, however tightening the resolution
increases the computational cost. Huitfeldt [3] included also the tangent vector of
the primary path in the definition of the sphere where the minimization takes place.
Pajunen [8) has used the residual minimization technique to solve double bifurcation
problem of a truss structure.

Allgower and Chien [2] used the local perturbation method introduced by Georg
[9] to multiple bifurcation problems. The idea is to introduce a perturbation near the
bifurcation point and solve the perturbed problem

flg,\)+7b=0 (2)

from a point on the primary path and traverse a perturbed path until it is near a
point on a branch. The theoretical foundation of this method is based on a version of
a generalized Sard’s theorem. For successful branching the choice of the perturbation
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vectors plays a key role. In their numerical examples the components in the pertur-
bation vectors are chosen in such a way that they oscillated correspondingly to those
of the bifurcating solutions. This means that one should have a priori knowlegde of
the solution of the problem which has to be solved. No specific theory or rules for the
selection of the perturbation vectors was given in ref. [2], and the method seems to be
used best as computing the solution curves interactively by trial and error fashion.

A major improvement to the local perturbation algorithm is given by Huitfeldt
[3]. He introduced an auxiliary equation which defines with the perturbed equilibrium
equations (2) a closed one dimensional curve in a N + 2-dimensional space. This
curve passes exactly one point on each branch (or half branch) of the unperturbed
equation (1). When passing such a point the perturbation parameter 7 changes sign.
The problem is then to locate the zero points of the perturbation parameter 7 while
traversing the branch connecting curve (BCC). Thus the branch switching problem is
reduced to a path following task of the augmented system

h(q,/\,T)={f(q’)\)+Tb

0
56 3)

Cb(q, )‘7 T)

which can be solved with standard continuation algorithms. A constraint that defines
a closed surface around the critical point is of spherical (elliptical) form:

(@0 7) = 3 (lg= ol +* (A = Ae)? + 877 — p7), (4)

where «, § are scaling factors and p is the radius of the sphere. In principle this method
does not need expensive evaluation of the basis of the nullspace of the tangent stiffness
matrix. Huitfeldt [3] used a random vector as perturbation b.

There are some shortcomings with this conseptually simple and elegant method.
It is not known if the branch connecting equation always defines a closed curve. It is
believed, as also argued by Huitfeldt, that using a constraint which defines a closed
surface, guarantees a closed path defined by the branch connecting equation (3,4). No
mathematical proof of this is known to the authors. Secondly, there is no guarantee
that all bifurcating branches have been found. This obviously depends on the choice
of the perturbation. In addition, the computational expense can be very high for large
problems, fortunately it grows only linearily with respect to the emanating branches
from the bifurcation point!. However, the number of branches in multimode buckling
with higher multiplicity can be very large as will be explained in the following.

An essential feature for the construction of a reliable bifurcation procedure is the
determination of the number of possible solutions branches emanating from the critical
point. This problem has been explored in the late 60’s by Sewell [10], [11], Johns and
Chilver {12],[13]. Depending on the symmetry properties of the system, the maximum
number of different post-buckling branches is

oM _1 or %(SM—I)

1Tt is assumed that for reliable detection of the zeros of the perturbation parameter on the BCC,
a minimum number of steps, say 4-5, has to separate two consecutive roots.



231

for a system without symmetry or perfectly symmetric, respectively. The minimum
number of post-buckling paths is 1 for the former case and M for the latter. The
complexity of a multi-mode buckling problem grows enormously with the multiplicity
of the critical point.

In order to develope a robust branch switching algorithm it seems natural to reduce
the problem into a smaller one and to try to get as much information as possible from
the reduced system, see e.g. [14]. Koiter’s initial postbuckling theory is based on
perturbation formulation resulting in a strongly reduced potential energy function, the
variables being the amplitudes of the relevant buckling modes. The number of “post-
buckling equilibrium equations” derived from the reduced potential energy expression
equals the multiplicity of the buckling load or the number of pertinent interacting
modes. A series expansion for the displacement field is used in the form 2

M M
=g, +)_a(Na; + 3 ai(Mai(Nagy;,
=1 4,7=1
where g, and gq,’s denote the reference displacement vector and buckling modes, g;;’s
are the second order post-buckling fields and a;’s are the unknown amplitudes. The
Koiter’s approach consists of the following steps:

1. solution of the eigenvalue problem in order to get the relevant eigenmodes,
2. solving the second-order displacement fields,?
3. evaluation of the coefficients of the reduced system,

4. solution of the reduced set of equilibrium equations.

Since the dimension of the reduced problem is very small, any robust solution
scheme can be applied. Notice that these equations are polynomial, hence, it is possible
to find all the solutions with algorithms described in ref. [15].

Solving the amplitude equation in the vicinity of the critical point gives the local
form of the equilibrium surface of the structure. The most severe limitation is that the
range of validity of the results obtained is difficult to judge. Therefore the perturbation
method has primarily been considered as an “analytical tool” to get qualitative picture
of the behaviour of the initial post-buckling regime.

Another problem in the initial post-buckling method is to decide how many eigen-
modes are relevant in the expansion. If one interacting mode is left out from the
expansion, it will appear in the second order field [16]. However, the range of validity
can be extremely small in those cases. An example of that is given in ref. [16] where
a T-beam is analysed. The interacting buckling modes comprise two local and one
overall mode, the critical load of which is higher than the loads corresponding the local
modes. If the overall mode is left out from the series expansion, the resulting two mode
analysis deviates rapidly from the three mode analysis after the secondary bifurcation
point, which lies in the immediate vicinity of the primary bifurcation point.

2Here the behaviour on the primary path is assumed to be almost linear.

3In Keller’s approach III [7] the second-order fields have to be solved from a non-linear equation
system. It is also unclear how the amplitudes in his method are determined in multimode buckling
problems.
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4 EXAMPLE

A well known example of multiple bifurcation is the double bifurcation of a compressed
flat simply supported plate, fig. 1. A plate with aspect ratio v/2 is chosen as a test
example. This problem has also been analysed by Huitfeldt [3] and Lidstrom [17],
however, no post-bifurcation paths have been presented. The plate is discretized by
uniform 20x10 quadrilateral mesh using bilinear stabilized MITC type elements with
drilling rotations (1304 dof). The stabilization parameter (shear reduction) for the
MITC element has been 0.4 [18], [19], [20]. Full 2 x 2 Gaussian integration is used
in evaluation of the element stiffness matrices and internal force vectors. The loaded
edges are constrained to remain straight, but the in-plane deflections are allowed for
the longitudinal sides (Hemp type boundary conditions). The analytical buckling load
has the value P.. = 4.572D/L, where L is the length of the loaded side and D is the
bending rigidity of the plate D = Et*/12(1 — v/*). The buckling modes corresponding
to this double bifurcation load have one or two half waves in the z-axis direction. The
length to thickness ratio is L/¢ = 100 and the Poisson’s ratio has the value v = 0.3.
In the numerical computation the value obtained is 4.39m2D/L interpolated from the
zero point of the lowest eigenvalue of the tangent stiffness matrix, which is easily
computed at the beginning of each increment by applying few inverse iterations. If
an eigenvalue buckling analysis is performed, the double eigenvalue will split in two
separate eigenvalues with values 4.32 and 4.4072D/L. \_
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Figure 1: (a) Simply supported plate, (b) load deflection curves; solid line = w¢ mode
1 branch, dashed line = wg mode 1 branch, dotted line = wg mode 2 branch.

This example is not particularly difficult, since there are only two post-buckling
branches, deformation patterns of which are just like the buckling modes. The load
deflection paths are shown in fig. 1. C and Q refer to the center and quarter points of
the plate. Deformed shapes at the end of the continuation are shown in fig. 2.

Only Huitfeldt’s approach and the branch-switching scheme based on Koiter’s ini-
tial post-buckling theory are used in the computations. Results based on Huitfeldt’s
approach are reported first. Plot of the perturbation parameter 7 with respect to the
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Figure 2: Deformed states at post-buckling branches 1 and 2.

arc-length along the branch connection curve is shown in fig. 3 as well as the dis-
tance from the starting point of the branch connecting curve. The branch connecting
curve is traced with 56 increments and it has six roots for the perturbation parameter
(two on primary path and four on post-buckling branches) and it constitutes the main
computational effort, since the primary path and one branch is traversed within 14
steps.
Magnitude of the perturbation load is chosen in such a way that the maximum
deflection caused by the perturbing load equals to the value 0.2¢. In computations,
shown in figs. 1, 3 the perturbation load vector is chosen to have only one point load
at the quarter point Q. The distance d from the begining of the BCC tracing is defined
by
d= (”q _ q*”2 + a?(/\ _ )\*)2 +ﬂ27’2)1/2

w b
where g*, \* is the starting point on the primary path.

(a) branch monitor (b) return monitor
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Figure 3: Double bifurcation of simply supported plate. Traversing branch connecting
curve. The arc-length is normalized with respect to the radius p of the spherical

constraint.
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If a random vector is used for the pertubation, the BCC-tracing failed for several
magnitudes tried. For values ||@y||w,maz = 0.2¢,0.3¢ the iterations did not converge
even if the step size was halved five times*. When using the value ||@p||w.maz = 0.1t the
BCC-tracing was stopped after 200 steps and after finding 28 zeros® for the perturbation
parameter. Even if the closed surface constraint for the BCC is used, this particular
perturbation vector does not seem to define a closed path. The perturbation parameter
with respect to the normalized arc-length as well as the distance from departure are
shown in fig. 4.

(a) branch monitor (b) return monitor
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0O 10 20 30 40 50 60 0 10 20 30 40 50 60
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Figure 4: Failure in traversing BCC; the arc-length is normalized with respect to the
radius p of the spherical constraint.

In the Koiter type perturbation method the reduced potential energy has the form
V(ay,a2) = % [(1 — (M) (af + a%)] + 141111(1111 + A1122a%a§ + Azzzza‘;},

where a; and a, are the dimensionless amplitudes of the buckling modes. In this simple
example the two post-buckling branches emanating from the critical point can be solved
analytically and they are simply:

e mode 1 branch:
A/)\cr =1+ 4A1111(lf, and aq = 0,

e mode 2 branch:
)‘/>\cr =14 4A2222a§, and a; = 0.

The values a; and ay which are used in the prediction step onto the post-buckling branch
can be defined by fixing the maximum displacement of the predictor. Solution time

4The norm ||qy||w,maz denotes the maximum norm taken from pure displacement components
(rotations excluded). g, is the displacement vector caused by the perturbing load &.

5In this example the BCC tracing should be stopped after finding seven zeros without returning
to the point of departure.
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which is needed for this kind of branch-switching algorithm is a fraction compared to
the Huitfeldt’s method. Nevertheless, the Huitfeldt’s approach can be used to solve the
small reduced polynomial equation system instead of using the polynomial continuation
methods.

5 DISCUSSION

So far all existing branch switching techniques which can be used in multiple bifurcation
problems have some annoying features. In principle Huitfeldt’s approach for traversing
the branch connecting curve requires only a path following routine, no other specific
algorithms are needed. This is in contrast to other branch switching methods which
requires the basis of the nullspace of the tangent stiffness matrix, i.e. the eigenmodes.
However, in practise also with Huitfeldt’s approach, some knowledge on the critical
eigenmodes seems to be necessary in order to construct a proper perturbation load.

To solve the eigenvalue problem at the critical point is the most time consuming
part of the proposed branch switching algorithm which uses the Koiter-type reduction
method. It is believed that this approach is also much more economical with respect
to computing time than Kearfott’s minimization procedure, in which a lot of residual
computations are needed. The price which has to be paid is the formulation of the
“second-order” load vectors, where the second order derivatives of the residual appear.

As mentioned before, the range of applicability of the Lyapunov-Schmidt-Koiter
type reduction can be very narrow due in the case that some relevant interacting modes
are left out from the series expansion. However, this usually manifests itself by the
appearance of secondary bifurcations close to the primary one. It is extremely difficult
to automate the selection of the relevant buckling modes. Thus, human expertise in
performing stability computations involving interactive buckling phenomena is crucial
for successful analysis.
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POST-BUCKLING ANALYSIS OF PLATES AND SHELLS
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ABSTRACT

In this study, geometrically non-linear analysis of plate and shell structures is considered.
The analyzed structures are discretized by rectangular C,-continuous conforming plate
elements, axisymmetric Reissner shell elements and general thin shell elements. The non-
linear equilibrium path is computed by an arc-length method. Critical points on the
equilibrium path are located in desired accuracy and identified as limit or bifurcation points.
The limit points cause no problem for the arc-length methods, but at bifurcation points
special methods for switching to the secondary paths have to be used.

1. INTRODUCTION

In the finite element method the solution of a structural problem can be presented as an
equilibrium path in a (n+1)-dimensional space spanned by n nodal point displacement
degrees-of-freedom q and a load parameter A (assuming proportional loading). At limit
points the path tangent is perpendicular to the A-axis and Newton's iteration method
parametrized by A breaks down. The solution curve or the equilibrium path can be
continued past limit points by augmenting the equilibrium equations with a normalizing or
constraint equation and parametrizing the solution path by a parameter seR. Several
choices for the constraint equation have been proposed in the literature, see e.g. [10]. The
parameter s can be made to approximate the arc-length of the solution curve.

At bifurcation points the tangent stiffness matrix has a single or multiple zero eigenvalue
and special methods have to be adopted in order to switch to a secondary path or otherwise

the continuation method keeps following the primary solution branch. For simple bifurcation
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points the existing methods are quite reliable but multiple bifurcation points can be much
more difficult to handle.

The present study is a continuation to the work reported in [12]. The numerical testing
of continuation and branch-switching methods is extended into plate and shell problems.
Path following is tested by calculating a rather complicated equilibrium path for a non-linear
axisymumetric shell. A mode jumping phenomenon is considered in the context of a plate
problem and finally the imperfection sensitivity of a compressed cylindrical panel is

analyzed.

2. SOLUTION OF THE EQUILIBRIUM EQUATIONS
The equilibrium equations in the finite element method can be written in the fornt

g(q,A)=r(q)-Ap=0 M
where q is nodal point displacement vector, r is the vector of intemal forces, A is the load
factor and p is a reference load vector. Equations (1) are usually solved incrementally by
Newton’s method:

K:(q;)dq™ =1, p-r(q;) )
where Kr=dg/dq is the tangent stiffness matrix, k and i denote the load step and the

iteration cycle number, respectively.
For handling possible limit points on the equilibrium path (1) is augmented by a

constraint equation yielding a system of n+1 equations

_ | e@r) | _
G(x,s)= {c(q, X,s)} =0 (3)

where x'=(q",A). If the Jacobian of G is nonsingular then the solution can be continued
from a known solution point (go,Ao). At regular or limit points

_[&a@h @b
* | cg(@A8) ¢, (q.M)

is nonsingular if the vector ¢4 is not perpendicular to the tangent of the solution curve [6].

C))

Applying Newton’s method to the extended system yields
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g,dq+g,dA =g,

5
cqdq+c,dh = —c, =
in which g;=-p. The system (5) is solved in two parts [9]:
dq, =K7'p
- (6)
dqg = KT g
with
dq =dq, +dAdq, . @)
In an updated normal plane method, where a constraint
Aq' -dq™ + AN =0 )
with Aq' =q’,, —q, is imposed, the change of load factor is -
. A i . d i+l
=3 s ©)
AN +Aq' - dq,

P
Fried [5] has proposed an alternative version, the so called orthogonal trajectory method, in
which
dn dq;; ’dqig

AN=——P 78 (10)
1+dq,-dq,

3. BIFURCATION ALGORITHM
In this context the ‘bifurcation algorithm’ means an algorithm that locates and classifies
the singular points on computed equilibrium paths and searches the directions of possible

secondary paths. The bifurcation algorithm is switched on when the number of negative

pivot elements of Kr changes during an arc-

length step k, say. The algorithm returns the
- k2 kK

arc-length solver to the previous equilibrium
state (Uy.;, Aw)) and locates the observed
singular point in desired accuracy by
bisecting the step size, see Fig. 1. In the next

phase the bifurcation algorithm classifies the

Figure 1. Schematic picture on the bisection method.
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singular point as a limit or a bifurcation point according to following test functions [2,9,19]:

AL Aq, -p
Ak Ag, -p

LaT
@ p{ <tol = bifurcation point,
[plp]

in which a typical value of tol is 10”%. In this study only simple singular points are considered
p

<tol = limit point,

but application to the case of higher order singularity of Kr is rather straightforward: only
the search of secondary branch directions has to be done by adopting more advanced
methods, see e.g. [6,8].

If the singular point is found to be a limit point, then the bifurcation algorithm is turned
off and the arc-length method is restarted at the equilibrium state (uy, Ax). In the case of a
bifurcation point, the directions of secondary equilibrium branches are searched by using the
algebraic bifurcation equation, see sec. 3.1, for alternative branch-switch methods, see e.g.
[12]. Finally, when the secondary branches are found and continuated far enough the
bifurcation algorithm is switched off and the primary path continuation is restarted from the

equilibrium state (uy, Ay).

3.1 Algebraic bifurcation equations

On a solution path g(q(s),A(s))=0 the differentiation with respect to s, marked with (),

yields
295 +85 =0, (11)
2a4o + 8o = —(20,4045 +285, Aok +8HAcAs) (12)

at a solution point qo=q(so), Ae=A(so). At a limit or bifurcation point the derivative of g with

respect to q, denoted by g =g, (qy,A,), is singular. The null space of g, is spanned by
the eigenvectors {@i,..., @u}, I¢i=1. The range of gg is

B(gy)={xeR"

y'x=0,i=1,...,m},

where the left eigenvectors ; satisfy \uf(pj =0;. The existence of a solution qg to (11)
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regiures that g} e®(g]) or Ag=0. In the first case the solution point (qo,ho) is a

bifurcation point. At a bifurcation point there is a unique solution v such that
gov+g; =0 with yjv=0, j=1,...,m

The general solution of (11) can be written in the form
ag=nv+Y §o; n=2;. (13)
j=1

Substituting (13) into (12) yields a necessary condition for the existence of a solution qj,

the algebraic bifurcation equations (ABE) [9]:

iiaijk§j§k+2m bgn+cn’=0,i=1,...,m, (14)
= k=l =
where

Ry =2y = YT Eeq @i P

by = Y189,

C; = Y go,Vv.
The homogenous polynomial equations (14) are augmented by a normalization equation

N’ +&+.4E2 =1.
In the case m=1 (14) reduces to (denoting &=£,, y=y, and ¢=0,)

at? +2b€ n+cn’ =0, (15)
where

a=y'g, 00,

b=yTgeve,

c=y'g) vv.
The type of bifurcation depends on the coefficients a, b and ¢ and on the value of the
discriminant d=b*-ac. At symmetric bifurcation point the coefficient a equals zero and the
eigenvector ¢ defines the direction of the secondary path. In the opposite case of an
asymmetric bifurcation point, the direction can be computed from (15) augmented by a

constraint:

N +E2=1. (16)
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The coefficients a, b and ¢ can be calculated analytically elementwise for some simple finite
elements like for the truss element but generally they can be obtained numerically e.g. by
using the finite difference method [9]. After finding the direction of the secondary path and

switching on it, the path can be continuated by using the arc-length method as usually.

4. SOME PLATE AND SHELL ELEMENTS
4.1 An axisymmetric shell element based on Reissner’s theory
Reissner [{13] has developed a nonlinear axisymmetric shell theory in which the strain
components are defined as follows:
€ =(r'+u' )cos® +(y' +Vv' )sing,
¥ =(y'+V' )cos@ + (r'+u’' )sing,
go=1u/r,
K =0-0,
K, = (sin@ —sin@, )/,

17

K, =(cos@—cos®,)/r,
where y is the symmetry axis, r is the radial coordinate, u and v are the displacements in the
r- and y-directions, respectively, ¢ measures the angle between the shell cross section and

the y-axis (in the undeformed state ©=@o), ( )’=d( )/ds, 6 means the circumferential

direction, s is the arc-length along the shell meridian, €, v and &, are the membrane
deformations, K, Ko, and K, are the shell curvature changes, respectively.

In a stress resultant formulation of the shell theory the components conjugate to the
membrane and curvature deformation measures are the membrane stress resultants N, Q and
Np and the moments M, My, and M,. The strain variables and the stress resultants are
collected in the respective vectors

e=[€, v, €, K;, Ko, Ku]
s =[N, Q, No, M, Mg, M,].
Restricting to small strains the following constitutive equations can be adopted for an

elastic material

M= N
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Q=Ghy

M, 1 v 0 [x,
Eh’

Ma :m v 1 10 Ko |»

M, 0 0 TV K,

where E and v are elastic material constants, G=E/2(1+v) and h is the shell thickness.

In rubber elasticity the restriction into small strains can be removed by introducing a
potential function, e.g. the Green-Rivlin potential, from which the stresses follow by
differentiation. For an elasto-plastic material, constitutive models valid for arbitrary strains
can be formulated in terms of the Cauchy stress and the logarithmic strain.

From the definitions of the strain components the virtual strains can be derived and
written in the form

de =Bdq, (18)
where the vector q contains the element nodal degrees-of-freedom and at a node i

q' = [ui \Z (pi]. The displacement components u and v and the angle ¢ are interpolated

by Lagrangian polynomials. In the simplest, two-noded element linear polynomial shape
functions are used and in order to avoid shear locking in thin shells, integrals over s are
performed by a one point Gaussian rule.

The contribution to the internal force vector from an element e is

r.= [B'sdV (19)
v

¢

By taking a linear increment of (19) yields a formula

K.Aq= [B'DBdVAq+ [ AB™sdV
Vv,

VB e

from which the element tangent stiffness matrix
K=Ko+K,
is obtained. K, is the geometric stiffness matrix. Consistent linearization is necessary for

obtaining good (quadratic) convergence rate in the Newton iteration method.
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4.2 Shallow shell element based on Hermitian bi-cubic shape functions
One of the most effective thin plate elements is the so called BFS-element [3] in which
the deflection w(x,y) is interpolated by Hermitian bi-cubic polynomials. The nodal variables
at the four nodes of the element comprise w, w,, W,y and W,y The inclusion of a
deformation type measure, Wy, in the nodal variables is a slight drawback of the element.

In a non-linear shallow shell theory the Green-Lagrange strains are

2Xx

I,
g, = u,x+§ W, tW,,, W, —ZW

g, = v,y+%w,§+wo,y W, —ZW,,,
Vay = Wy FV, +W,, W, Wi, W, +Wo, W, —2ZW,

where wo(x,y) is the initial deflection. The membrane displacements u and v can be

interpolated by bi-linear shape functions or the same Hermitian bi-cubic polynomials as

adopted for the deflection w can be used.

4.3 Semi-loof shell element

The semi-loof shell element was developed by B.Irons [7] for the analysis of general
doubly curved thin shells. The element is obtained from an isoparametric degenerated thick
shell element by constraining the transverse shear stresses to zero at discrete points and by
imposing additional constraint equations in integral form.

At one time the semi-loof element was considered as one of the most effective general
thin shell elements and it is still included in the element libraries of some commercial general
purpose finite element codes.

The element contains as its nodal degrees-of-freedom the translations u, v and w in the
global x, y and z directions at the conventional eight nodes and the normal rotations about

the element side tangent vectors at the so called loof nodes. The loof nodes are situated on
the element boundaries at I}=1/~/3 or Ini=1/-/3, i.e. at points corresponding to the
integration points of the two-point Gaussian rule, and &ne[-1,1] are the element natural

coordinates.
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conventional node

o loof node

Figure 2. Semi-loof shell element. Conventional nodes 1,...,9 and the loof nodes a,...,h. Local coordinates

K=rexro/\rexrql, I=re /| rel and J=IXK, wherer is an arbitrary point on the element.

5. EXAMPLES ON SOME INSTABILITY PHENOMENA
5.1 Snap-through of a shallow spherical dome

A point-loaded shallow axisymmetric shell in Fig. 3 is analyzed in order to test a shell
element based on Reissner’s theory. The shell is discretized with 22 elements giving the
equilibrium path shown in Fig. 3. The path is rather complex having up to ten limit points in
the apex deflection - load plane. Thus, the example serves also as a reliability test for the
arc-length methods. Both an updated normal-plane method (UNP) and an orthogonal
trajectory (OT) arc-length method version are tested with the full Newton-Raphson
iteration scheme. By using an iteration terminating criterion tolerance 10°® the maximum
valid step size for the both methods is about 0.22.

The computed path is in a good agreement to those reported by Argyris et. al. [1] and
Wagner et. al. [18]. In this study, as well as in the papers [1] and [18], only the primary path
associated with the symmetric deflection is considered but certainly there are also some
bifurcation points associated with secondary path(s) displaying asymmetric buckling
mode(s). However, these asymmetric modes can not be analyzed by using axisymmetric

elements.
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H=0.08589

0.06¢ @ R=4.76
" f =0.01576
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Figure 3. Snap-through of the shallow spherical dome.

5.2 Buckling-mode jumping in a uniaxially compressed square plate
In the papers by Stein [15] and Uemura & Byon [17] a buckling mode jumping
phenomenon in plates is analyzed experimentally. In this study we concentrate on the plate
introduced in {17] and further considered by Camoy & Hughes [4]. The initial data of the
test plate is depicted in Fig. 4. The plate is discretized by a 10x10 BFS element mesh and
Fried’s arc-length version with the full Newton-Raphson iteration method is adopted with

the step size 1.0 and convergence tolerance 10™*. For robust identification the critical points

are searched rather accurately

AT B A AB: simply supported so that the absolute value of

BC: °¥amP°d the minimum pivot element of
CD: simply supported

200 DA: simply supported + | the tangent stiffness matrix is

TTTITTIT]

straight edge 3
forced to be less than 10~.
' E=68670 ‘When compressed uniformly in

D c v=0.30
-------------- 4 b=2.0 one direction, the plate
Figure 4. Test data, shortens linearly until the load

reaches its first critical value at p.,=15.70. At this point two secondary branches emanate
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from the primary equilibrium path, both of which are associated with the buckling mode
consisting of one bubble in the x-y plane (see Figs. 4 and 5).

If the primary path is continued beyond the first critical point, then several more critical
points will appear e.g. at p;=18.46, 31.15, 38.94, 42.38 and 43.69. Additionally, all the
critical points on the primary path are identified as symmetric bifurcation points. When
following the secondary path it is found to be stable up to the first secondary bifurcation
point at pe,=35.17. From this point the used branch-switching algorithm ABE leads the
solution to an unstable path that changes the deformation shape of the plate from the one-
bubble mode to a mode consisting of two waves in the x-direction and one wave in the y-
direction. At the point where the deformations of the plate are fully recovered by the two-
wave mode another bifurcation point appears. This bifurcation point at p.;3=23.33 connects
the previously followed ‘mode transition’ path to a secondary path associated with the two-
wave mode. This path can be numerically followed ‘upwards’ where the path is stable or
‘downwards’ when the path leads the solution back to the primary path to the load level
Pers=18.46.

40 ~

-0.01 -2
Rotaticn at Center Deflection at Center

Figure 5. Some equilibrium paths and deformation medes of a plate. The modes are drawn at the points

marked with ‘o' and at the bifurcation points marked with ‘¥’
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In the next phase we analyze the plate under the influence of small initial imperfections.
In Fig. 6. the structural behavior of the plate under symmetric (€,) -or antisymmetric (g,)
initial imperfection shape is shown. The symmetric and antisymmetric imperfections are
chosen to have the same shape as the one-bubble and two-wave buckling modes,
respectively. In the case &,20, €,=0 the imperfect equilibrium path follows the perfect one
towards the symmetric bifurcation point at pe;=35.17. It should be noted that also the
imperfect plate has now a bifurcation point at pe2»=36.52.

In order to unfold also the secondary bifurcation point at p.>=36.52 we analyze the
plate with both €0 and &,#0. Here the imperfection mode amplitudes €; are chosen to be
ca. 0.1% of the plate thickness. The resulting path shows once more the mode jumping
phenomenon, see Fig. 6. The both secondary bifurcation points have now become limit

points (Per2»=34.23 and pe3+=23.49).

a) b)
.
0. ]
35
354 | \
i i 0
. 13
23, B0
K
30 3. . f
g T~
15 10 ~
o] !
5 3
| 6 1
9
004 \ " L
00z + s oot
° ) ° oor ©
0 0.02
! a0t -2 -2 o4 W
Rotation al Center Deflection at Center Deflection at Center Rotation at Center

Figure 6. Equilibrium paths of the compressed plate with a) one-bubble shaped imperfection (€,#0, €,=0),
two-wave shaped imperfection (€,=0, £,#0) and b) combined imperfection (€20, €;#0)

5.3 Erosion of the buckling load of a compressed cylindrical panel
The last example highlights the well-known fact that compressed shell structures are
exceptionally sensitive to initial imperfections. The test example, depicted in Fig. 7 is taken
from [14]. One quarter of a simply supported cylindrical panel is discretised and analyzed
using both shallow shell BFS elements and semi-loof elements. Using Fried’s arc-length

method the equilibrium paths shown in Fig. 7 are obtained.
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512
ki
; 1k E=70000, v=.3, p=A*73.4285
s R=586, L=92, =1, =9’
—108
- Perfect structure
0.6
" Imperfection amplitude /100
0.4

o Imperfection amplitude ¥50

+ Imperfection amplitude /20

04 0.5 0.6

0.2 0.3 !
Axial Displacement

Figure 7. Perfect and imperfect cylinder responses under uniform compression.

Simulating the real behavior of the structure, we analyze the cylindrical panel with an

initial geometric imperfection wy whose shape is equal to the first buckling mode of the

structure:
Wo=0Q,

where the parameter a receives values t/100, t/50 and t/20, in which t is the shell thickness.

The associated equilibrium paths, shown in Fig. 7 give the buckling loads 1.55, 1.40 and

0.54, respectively. Compared to the buckling load of the perfect structure, A,=1.75, the

structure can be seen to be extremely sensitive to geometric imperfections: the imperfection

with amplitude 5% of the cylinder thickness, decreases the buckling load as much as 69%.
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ABSTRACT

Some techniques to solve non-linear algebraic equations in finite element analysis are
considered. Especially the use of preconditioned iterative linear equation solvers in
path-following algorithms is described and the choice of an accelerator iteration and the
preconditioner are discussed. Some preliminary results are presented from structural
analyses.

1 INTRODUCTION

Solutions of non-linear structural problems under quasi-static loading conditions are
usually obtained by using an arc-length type continuation procedure. In these algo-
rithms an additional constraint equation is augmented to the equilibrium equation
system. This constraint destroys the symmetry and the banded form of the tangent
stiffness matrix. In order to utilize the specific storage format of the tangent matrix,
the solution of the constrained system is usually obtained by using the block factoriza-
tion scheme, where the tangent matrix is factorized and the system is solved with two
right-hand side vectors.

In large problems the decomposition time and the storage requirements will be
prohibitively high when Gaussian elimination type factorizations are used. Special
sparse matrix techniques have been developed which try to minimize the fill in during
the decomposition. However, these techniques need reordering of the unknowns and
thus are not well parallelizable and vectorizable. Iterative methods seems to be ideal
for modern vector and parallel computers to solve systems of linear equations. For
large problems they require much less storage than the direct solvers and computing
times are also in many cases reduced.

There are at least two main factors which have contributed to the slow spread of
iterative linear solvers in non-linear structural problems. Firstly, the computational
cost of the incremental and iterative methods is usually so high that the size of the
discretized non-linear problems has to be much smaller than it is possible to do in
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linear analysis. Therefore storage requirements are not so critical issue. In a practical
non-linear analysis the decomposition time is usually comparable to the time needeed
to form the global matrices and internal force vectors. Secondly, the stiffness matrix
might be ill conditioned and not necessarily positive definite in certain parts of the
solution path. In addition, some important control parameters of the continuation
process, like the determinant or the lowest eigenvalue of the tangent stiffness matrix,
are not easily accessible when iterative solvers are used.

The block factorization strategy is not feasible if the solution of the linear system
is obtained with an iterative solver. Usually the solution is carried out directly to the
augmented unsymmetric system. Krenk and Hededal [1] have recently introduced an
orthogonal or a dual orthogonal residual method where this block factorization type of
solution is not needed. In this paper these procedures are coped with iterative linear
equation solvers and the performance is compared to that of usual practice. Some
example problems both in non-linear heat conduction and solid mechanics are solved.

2 CONTINUATION ALGORITHM

Discretization of the quasi-static equilibrium equations expressing the balance between
external and internal forces results in an equation of the form:

f(q,/\)E)\pr-—TZO, (1)

where p is the external load vector. If the finite element method is used in the dis-
cretization process, the internal force vector 7 follows from the assembly operation of

the element contributions

rle) = BTsdv.
Vvie)

The vector s contains the stress components. The strain-displacement matrix B is

defined by
de = Biég,

where the column vector e contains the strain components.

Usually the applied loading is assumed to depend linearily on a single parameter,
i.e. the load parameter A, such that p = Ap,, where p, is the reference load vector.

Solution of the equation system (1) forms a one-dimensional equilibrium curve in
an N + 1 dimensional displacement-load parameter space, where N is the dimension
of the state space, i.e. the number of dof’s in the vector g. Procedures to trace the
one dimensional equilibrium path defined by equation (1) are called continuation or
path following methods. They are incremental or step-wise algorithms. A typical
continuation step includes the predictor and the corrector phases.

To traverse a solution path a proper parametrization is needed. Simple load control
is the oldest type of parametrization. It is usually the most efficient one in regular parts
of a path, and the adaptation of an iterative linear equation solver in it is straight-
forward. However, near the so called limit points, where the structure loses its load
carrying capacity (at least locally), it might break down. At the limit point the tangent
stiffness matrix is singular and the load parameter is decreasing after such a point. A
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remedy is to change the control from the load parameter to some of the displacement
components. Selecting the controlling displacement (or component from the scaled
vector containing both displacements and the load parameter) to be the largest one
from the last converged increment, results in a simple and reliable continuation pro-
cedure [2]. Non-dimensionalizing of the variables is an essential point of this method.
Nevertheless, it is recommendable for all other procedures, too.

A usual setting of a continuation process is to augment the discrete equilibrium
equations with a single constraint equation ¢ in the following form:

sty ={ 109 = . @)

This kind of procedures are also commonly called arc-length methods. A large class of
constraint equations can be written in the form

(g, N)=tTCn—c=0

where t and n are N +1 dimensional vectors and ¢, is a scalar. For explicit expressons
of the vectors t and n see ref. [3]. The weighting matrix C can be partitioned as
diag( W,a?), where W is a positive definite or semidefinite diagonal matrix corre-
sponding to displacements and « is a scaling factor.

Using the Newton-Raphson linearization on the extended equation system (2) re-
sults in

8f 6A+f(q, A = —-Kéq+pdr+f = 0

% 35‘ 3)
gL b = 7 A =

9q 5q+aA5A+c( q,) clég+edr4c 0

Usually in structural analyses the tangent stiffness matrix K is symmetric. Therefore,
in order to utilize the specific sparsity pattern and symmetry of the tangent stiffness
matrix, the solution of the augmented equations (3) is usually performed by using the
following three phase block elimination method, also known as bordering algorithm [2],

4], [5:
1. solve Kéq; = f and Kq, =p, ,
2. compute §A = —(c+ cTdq,)/(e + c"q,) ,
3. update g = 8q; + dAq, .

In this format the solution of the linear equation system at phase 1 is performed by
means of direct solvers. If iterative solvers are used, the nonsymmetric sparse format
of the equation system (3):

Héy =h, H:[c-lg'—fr:la 6y={§§}7 h:{_fc}, (4)

seems to be more appropriate, see refs. [6], [7). Chan and Saad [8] have studied
different preconditioning techniques in the non-linear elliptic second order problem
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Au+ dexp(u) = 0 on unit square with zero Dirichlet boundary conditions, discretized
by a standard five point finite difference formula. One of their conclusions is that,
when a preconditioning is available, it seems best to work directly with an iterative
method on the unsymmetric form (4).

Usually the question of the “best choice” of the constraint equation is overempha-
sized in the engineering literature, for example see discussion in ref. [9]. However,
the specific form of the constraint equation is a relevant topic in the present context.
A procedure which fits well together with the iterative linear equation solvers, is the
orthogonal residual procedure by Krenk and Hededal [1], which does not require the
block factorization process and thus only one solution of linear equation is needed per
iteration.

As argued by Krenk and Hededal, the magnitude of the displacement increment is
optimal when an orthogonality condition

AgTf=0

is satisfied. This linear condition is used to determine the current load parameter A.
The algoritm can be described briefly as:

1. compute: r; = 7(qy + Ag;), APy =1, — Xop,, Alijy1 = Aq,TA"'i/AqZTP, 7
2. solve: K8q; .1 = fiy1 = (do+ Adip1)p, — 74,
3. update: Ag;,, = Ag;+68q;,; -

Ao and g, denote the load level and the displacement vector at the beginning of current
increment. However, even if the algorithm seems to be ideally suited for the use
of an iterative linear equation solver, it has some drawbacks observed in numerical
experiments. Since the size of the increment is not restricted during the iteration,
the algorithm seems to have some tendency of increasing the size of the displacement
increment near limit points.

3 PRECONDITIONED ITERATIVE METHODS

3.1 Krylov subspace methods

In the sequel, a generic linear equation system will be denoted by
Az = b,

where the coefficient matrix A can be symmetric or unsymmetric. An equivalent
preconditioned system is

M'AM;'y = M7{'b,
where M = M M, is the preconditioning matrix and M, M, are the left- and right

preconditioning matrices, respectively. In practice this split form is not always needed.
It is usually possible to rewrite the iterative method in a way that only a computational
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step: solve u from Mu = v, is necessary, so the preconditioner applies in its entirety.
The question of preconditioning will be discussed briefly in the next section.

Krylov subspace methods seem to be among the most important iterative techniques
available for solving large linear systems [10], [11], [12]. These techniques are based on
projections onto Krylov subspaces, which are subspaces spanned by vectors which are
obtained recursively by multiplying the previous residual with the matrix: i.e.

Km(A, o) = span {ro, Arg, A’rg, ..., A™! 1-0} ,

where 7o = b — Az, Approximate solution of the system is found from a m-
dimensional subspace #o + K, by imposing the Petrov-Galerkin condition requiring
the residual to be orthogonal to another m-dimensional subspace L.

The most wellknown Krylov subspace method is the preconditioned conjugate gra-
dient (PCG) method for symmetric positive definite (SPD) matrices. There are many
different implementations of the PCG-iteration, but the following algorithm is perhaps
the most common: construct M, initialize 7 = b — A, solve Mdy = ry, compute
o = rldy and iterate 1 = 0,1,2,... until convergence:

1. compute: s = Ad;, o; =7;/d’s,
2. update: T;41 = &; + o5d;, Ty = TP — QiS,

3. solve: Mz = r;y; and compute 741 = "':{4-1z7 Bi = Tie1 /T,

=

update diy; = z + S;d..

It is a Galerkin (orthogonal projection) type Krylov subspace method, l.e. £,, = K.
One iterate of the PCG method requires one matrix-vector product, five! level-1-
operations and one solution of linear equations Mz = .

If the matrix A is symmetric but indefinite the PCG-algorithm can become unstable
and even break down. Paige and Saunders [13] were the first to devise stable algorithms
for symmetric indefinite systems. These two algorithms called SYMMLQ and MINRES
are based on Lanczos tridiagonalization, which exists also in indefinite case.

For unsymmetric matrices the situation is much more complex. The CG method
for symmetric and positive definite systems has two important properties. It is based
on three term recurrence, and it minimizes the error with respect to the energy norm.
Unfortunately these two properties can only be fulfilled for nonsymmetric CG-type
schemes for a very limited class of matrices, namely the shifted and rotated Hermitean
matrices. In this paper only those algorithms are considered which retain the short
recurrencies thus being more favourable with respect to memory requirements. Bicon-
jugate gradient (BCG) type algorithms are based on the Lanzcos biorthogonalization
algorithm which builds a pair of biorthogonal bases for the two subspaces K, (4, 7o)
and ICm(AT, ). In the numerical examples the following BCG-type methods are used
in this study: biconjugate gradient squared (CGS), biconjugate gradient stabilized (BI-
CGSTAB), quasi-minimal residual (QMR) and transpose free QMR (TFQMR). For a
unified general description of all these methods with numerous references see ref. [14].

1PCG requires an additional norm evaluation if the convergence is checked from the residual r.
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3.2 Preconditioning

It is well known that the performance of iterative solvers depends on the eigenvalue
distribution and on the possible non-normality of the coefficient matrix. These prob-
lems can be avoided, at some extent, by employing a preconditioner. It seems to be
generally agreed that the choice of the preconditioner is even more critical than the
choice of the type of the Krylov subspace iteration [15].

There are two major conflicting requirements in the development of a precondi-
tioned iteration, namely the construction? and use of a preconditioner should be cheap
and its resemblance with matrix A should be as close as possible. The most general
preconditioning strategies can be grouped into classes:

1. preconditioners based on classical iterations like Jacobi, SSOR,

2. incomplete sparse LU-decompositions (ILU or IC for symmetric matrices),
3. polynomial preconditioners,

4. explicit sparse approximate inverse preconditioners,

5. multigrid or multilevel preconditioners.

Incomplete factorization is perhaps the most wellknown strategy. There are many
variants of ILU-decompositions differing, for instance on the way how the nonzero
pattern of the preconditioner is defined. The simplest strategy is to have the same
nonzero pattern for the L and U factors as 4. This incomplete factorization known as
ILU(0) is easy and inexpensive to compute, but often leads to a crude approximation
resulting in many iterations in the accelerator to converge. Several alternative ILU
factorizations have been developed in which the fill-in is determined by either using
the concept of level of fill or by a treshold strategy where the nonzero pattern of the
preconditioner is determined dynamically neglecting small elements in the factorization.

Meijerik and Van der Vorst [16] proved existence of the ILU factorization for arbi-
trary fill patterns if the coefficient matrix is a M-matrix®. This is often the case, e.g.
matrices arising from discretizations of the heat equation. However, matrices arising
from problems in structural mechanics usually do not have this property. In order
to circumvent this problem an additional reduction step has been introduced, where
an M-matrix is determined from the stiffness matrix and the incomplete factorization
scheme is applied to this [17].

Mathematical analysis reveals that for second-order elliptic boundary value prob-
lems the ILU(0) approach is asymptotically no better than the unpreconditioned itera-
tion. More precisely, the condition number of the ILU preconditioned operator is of the
same order as matrix A. Several variants of the basic ILU have been presented in the
literature e.g. MILU, RILU and DRILU (modified, relaxed and dynamically relaxed)
[17]. However, in real engineering problems these modifield versions does not perform

2If the preconditioner is to be used many times more effort can be paid to its construction.
3A matrix is a M-matrix if its off-diagonal elements are nonpositive and all the elements of the
inverse are positive.
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any better than the basic ILU. Ajiz and Jennings [18] proposed the corrected IC fac-
torization (CIC), * which guarantees a positive definite preconditioner if the matrix
itself is SPD.

It should be remembered that the effectiveness of a preconditioning strategy is
highly problem and architecture dependent. For instance, incomplete factorizations are
difficult to implement on high-performance computers, due to the sequential nature of
the triangular solves. On the other hand, sparse approximate inverse preconditioning
needs only matrix-vector products, which are relatively easy to vectorize and parallelize,
but they are usually not as robust as ILU-factorization based strategies [15].

For second-order elliptic PDE’s discretized by low order finite elements many of the
listed preconditioning techniques can be used. However, for finite element models of
thin-shells only the corrected incomplete factorization allowing some degree of fill-in
[18], [19] or a multilevel preconditioner [20] seems to be the only reasonable choices.

For a certain type of a preconditioning technique, the computational complexity
can be reduced. Construction of a preconditioning matrix M in a form

M = (D + E)D(D + F), (5)

where D, D are diagonal matrices and E and F' are the strictly lower and upper parts of
A = diag(A)+ E + F, allows implementation of the preconditioned CG or Bi-CG-type
methods in which the computational labor is comparable to the unpreconditioned case.
This strategy is due to Eisenstat [21], and it is commonly called as the Eisenstat trick,
see also refs. [10],[12]. Unfortunately the usefulness of this stratgy is somewhat limited.
For a very sparse matrices, such as resulting from a low order FE discretizations of the
diffusion equation, the triangular solution including short rows is the main bottleneck
in a typical supercomputer implementation. Also quality of the split-preconditioners
(5), which can be used in the Eisenstat trick is not good enough in shell problems.

4 EXAMPLES

In this section some example problems are solved and the performances of the iterative
methods are compared to a direct solution procedure. The direct solver used is a
slightly modified version from ref. [22], pages 327-329. All computations have been
preformed on Digital Alpha Server 8400 ® using double precision representation for
real numbers. The program is written in Fortran 77 and the level 3 optimization flag
is used in the compilation for most, including all linear algebra routines.

Convergence of the iteration is checked by the relative and absolute residual error
and declared if

||7:ll2/|blls < RTOL or |||l < ATOL,

except computations where the Eisenstat trick is used. In that case the absolute criteria
is used and the measure is the weighted Euclidean norm with the preconditioner as the
weight matrix.

4The name corrected incomplete Cholesky is adopted from ref. [19].
5Center for Scientific Computing, Espoo, Finland.
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Figure 1: Three material solid block: (a) geometry and material data, (b) convergence
behaviour of CG and symmetric QMR iteration with IC(0) preconditioner L/h = 20
(h is the sidelength of an element).

4.1 Three material elastic block

An elastic block composed by three material layers and occupying the region (in carte-
sian coordinates) 0 < (z,y,2) < L is considered. The material interfaces are horizontal
layers parallel to the zy-plane, and having positions z = 2L and z = 3L. The stack
models a ceramic (AIN) to metal (Ti) joint brazed together with Ag-Cu filler alloy.
Constitutive parameters used for these materials are shown in fig. 1.

Uniform meshes with eight node trilinear brick elements are used. The only loading
is the temperature change defined by AT = ATyzyz/L3. Minimal constraints which
prevent the rigid body motion are imposed. Convergence tolerancies used are ATOL =
RTOL = 1075,

Some data of the stiffness matrix is shown in table 1 and a comparison of the
performance of the preconditioned CG iteration with a direct in-core skyline solver is
recorded in table 2. The SSOR preconditioning is implemented by using the Eisenstat
trick. In this case the convergence is measured in the weighted norm ||z|| = (27 Mz)'/?
and thus the tabulated values are not comparable to those of IC(0) preconditioning.
Compressed row storage format is used to store the nonzero elements of the matrix
(also for the IC(0) preconditioner).

Convergence behaviour for the conjugate gradient method exhibits some oscillations
which are absent if the material characteristics are uniform. The symmetric QMR
iteration [23] with coupled two term recurrence shows much smoother convergence
than the CG method, see fig. 1.

As expected, the solution times for the direct solvers become quickly untolerably
high due to the large bandwidth which grows like B ~ N%/3. For large 3-D problems
iterative solvers are the only possible way to get the solution at reasonable cost.
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Table 1: Three material block, stiffness matrix characteristics.

L/h N  Brms M NZ 2NZ|M
5 642 117 70552 18615 0.528
10 3987 380 1455352 135915 0.187
20 27777 1355 36803402 1035165 0.056
40 206757 5105 1043093302 8075265 0.015

N number of unknowns

B, s root-mean square bandwidth

M number of elements under envelope

NZ number of nonzero elements

Table 2: Three material block, solution times

direct solver CG-IC(0) CG-SSOR Eisenstat'
L/h | Ftime B time |iter P time Itime ratio| w iter Itime ratio
5 0.11 0.01 25 0.02 0.07 1 08 22 0.04 3
10 8.3 0.2 57 0.2 1.3 6 1.2 41 0.51 17
20 | 1660. 6. 120 1.6 39.8 40 |14 77 15.0 111
40 | 97 hours® 140.* | 257 12.7 697. 490* | 1.7 195 324. 1080*

F time = Factorization time in seconds

B time = Backsubstitution + load vector reduction time

P time = Preconditioner construction time

I time = Iteration time

ratio = (F+B)/(P+I)

* = estimated value, T = convergence measured in weighted norm

4.2 Pinched cylinder

A well known shell element test is the pinched cylinder, see e.g. ref. [24]. Length of
the shell equals to its diameter (L = 2R) and the Poisson’s ratio is 0.3. Performance
of the conjugate gradient method is studied with respect to the relative thickness and
some relevant parameters in the finite element model. As expexted, the problem gets
harder when the thickness to radius ratio, i.e. the characteristic thickness gets smaller.
Here results of only the cases t/R = 1072 and 10~ are reported.

The shell elements are facet type 3-node triangular or 4-node quadrilateral ele-
ments, with drilling rotations using the Hughes-Brezzi formulation [25]. The plate
bending part of the element is based on the stabilized MITC theory (26]. In the MITC
formulation the stabilization parameter has been 0.4 for both triangular and quadrilat-
eral elements. One octant of the shell is discretized by uniform 30x30 mesh resulting
in 5489 unknowns. Strict convergence tolerance is used RTOL = 107° and only the
relative criteria is active.

Value of the regularizing penalty parameter y used in the formulation of Hughes
and Brezzi has a notable effect on the convergence of the conjugate gradient iteration.
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Figure 2: (a) Effect of the regularizing parameter y on the spectral condition number
of the stiffness matrix. Solid markers correspond to stiffness matrices without Allman
displacement field. Upper two curves ¢/R = 10~% and lower ones t/R = 1072. (b)
Convergence plot of the CG-IC(0) iteration: v = G (without Allman field), solid line
t/R = 1072 and dashed line ¢/R = 10~2. Quadrilateral 30 x 30 mesh.

It affects the spectral condition number of the stiffness matrix, see fig. 2a. Due to
the ill-conditioning of the thinner shell problem the convergence of the PCG iteration
slows down at the level of 10~ in the relative error, see fig. 2b. Adding Allman
type displacement field [27], [28] to the in-plane interpolation has also an effect on the
convergence, however, there seems to be no definite trend on that dependency. The
number of iterations needed to convergence are shown in table 3.

The IC factorization does not exist for all values of the vy parameter. A simple
remedy is to use the shifting strategy of Manteuffel [29] where the matrix A+ pdiag(4)
is factorized instead of A. However, the quality of such a preconditioner is not very
good as can be seen from table 4.

4.3 Non-linear analysis of cylindrical panel

A shallow cylindrical shell subjected to a central point load on the convex side is a
common test problem of path-following algorithms, see e.g. ref. [30]. The longitudinal
boundaries are immovable, whereas the curved edges are completely free. The problem
data are: radius R = 2540 mm, length of the straight hinged edge L = 508 mm, Young’s
modulus E = 3.10275 GPa, Poisson’s ratio v = 0.3 and # = 0.1 rad. Two values for
the thickness are used: t = 12.7 mm (R/t = 200) and ¢t = 6.35 mm (R/t = 400).
Uniform 32x32-mesh with DKT-elements is used in the simulations resulting in 6175
dof for a quadrant of the panel. Drilling rotations are included by the Hughes-Brezzi
formulation and the y-parameter has the value v = 0.026G. Allman-type interpolation
is also included.

First, some comparisons with the IC(0) and the CIC() preconditioners for the
linear problem are performed. Also a pure treshold version of the IC preconditioner is
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Table 3: Influence of the regularizing parameter v on the convergence of the CG-IC(0)
iteration, 30x30 mesh with MITC elements. A = Allman type amendment for the
in-plane interpolation.

(a) t/R =102 (b) t/R=10"3
v/G Q-A T-A Q T v/G QA T-A Q T
1.0 - - 175 293 1.0 - - 593 -
0.5 - - 153 283 0.5 - = 511 -
0.25 - 306 142 273 0.25 - - 502 -
0.2 379 301 138 269 0.2 - - 508 -
0.1 147 288 129 259 0.1 356 - 397 1197
0.01 120 262 117 2337 0.01 307 768 330 743
0.001 118 249 115 1201 0.001 287 674 284 636

Table 4: Influence of the shift p on the convergence, 30 x 30 mesh with Allman type
interpolation, v = @, quadrilateral MITC elements with t/R = 1072

shift 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.075 0.100
iterations 2017 1265 947 825 797 805 825 875 1000

tested, where the diagonal corrections are omitted. This preconditioner is abbreviated
as IC(z)). Behaviour of the CIC(¢)) and IC(¢)) methods are tested with different drop
tolerancies ¢ and the preconditioner sizes are also recorded in table 5. Convergence
tolerancies have been RTOL = ATOL = 107%. It should be noted that the IC(0)
factorization needs a small shift (p = 0.005) as well as the IC(3) method, where the
optimal shift depend on the drop tolerance %. This is an annoying feature, since there
is no known method to determine the optimal or near optimal shift a priori.

The computing times for almost all cases shown in table 5 are higher than the
solution time needed for the direct solution, worst case almost by factor 10. However,
there are some potential of using CIC or IC with a low drop-tolerance in the non-linear
analysis, if the preconditioner need not to be computed at every time when the stiffness
matrix is formed.

Five continuation strategies are compared. Symmetric formulations use the orthog-
onal residual method with direct or iterative linear equation solver. For consistently
linearized elliptical constraint, the symmetric formulation uses only direct solver and
with the augmented (4) nonsymmetric forms both direct and iterative solvers are used.
Ounly the full Newton-Raphson strategy is used in the computations, even it is not
necessary for all parts of the continuation paths. Load-deflection curves are shown in
fig. 3 and the iteration characteristics from the computations of the thicker shell are
recorded in table 6. Same conclusions can also be drawn from the thinner case.

The results in the linear case for the Jacobi and IC(0) strategies for preconditioning
can be directly generalized to the non-linear analysis. Only the strategy, where the
treshold IC preconditioner (with drop tolerance ¢ = 1073 and shift p = 107°) is
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Table 5: Comparison of the shifted IC(0), Jacobi and CIC(¢)) and IC(%) precondition-
ers on the pinched cylindrical panel. P = preconditioner evaluation time, I = iteration
time, t-r = (P+I)-times/direct solution time, m-r = memory ratio: NZ(M)/NZ(A).
Solution time of the direct solver is 2.6 s.

R/t =200
method shift iter P I tr|NZ(M) m-r

Jacobi - 1935 0.0 18.7 7.2 6175 0.05
IC(0) |5-1073| 184 0.1 4.3 1.7| 127095 1.00
CIC(1.0) - 1995 0.3 227 8.8 6175 0.05
CIC(107) | - |1079 0.4 142 56| 18036 0.15
CIC(1072) | - 209 0.7 62 27| 93349 0.74
CIC(1073) | - 118 1.3 3.9 20| 200689 1.6
CIC(107%) | - 51 2.7 32 23| 391606 3.1
CIC(1075) | - 23 51 3.0 31| 713691 5.6
CIC(107%) | - 9 7.0 1.8 3.4/ 1010602 8.0

IC(1071) [2-1072| 388 0.4 5.6 23| 40010 0.31
IC(107?) |5-10=2| 78 0.7 1.7 0.9| 102486 0.81
IC(10-3) | 1073 39 14 1.4 11| 226936 1.8
IC(10-4) | 10~ 19 29 15 17| 455261 3.6

R/t = 400

method shift iter P I tr|NZ(M) mr
Jacobi - 1924 0.0 18.7 7.2 6175 0.05
IC(0) 5-107% | 181 0.1 43 1.7 127095 1.00
CIC(1.0) - 1957 0.3 23.0 9.0 6175 0.05
CIC(10~

| - |1023 0.4 13.7 54| 18496 0.15
CIC(1072) | - 304 07 61 26| 88230 0.69
CIC(107%) | - 110 1.3 37 15| 195314 1.5
cICc(107%) | - 46 2.7 31 22| 386823 3.0
CIC(10-%) | - 21 51 27 3.0| 718339 5.7
CIC(10-%) | - 8 7.3 17 3.5 1030444 8.1
IC(1071) |2-10~2 | 386 0.5 6.3 2.6 38905 0.31
IC(10?) |5-10°| 76 0.7 1.6 0.9 | 98030 0.77
1C(10-%) | 103 38 14 13 1.0| 215934 1.7
IC(10-4) | 10~ 18 2.8 1.3 1.6| 434653 3.4
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Figure 3: Hinged cylindrical panel, load deflection paths of the load point (solid line)

and the free edge (dashed line).

Table 6: Iteration characteristics from the non-linear analysis of the pinched cylinder
(R/t = 200); OR = Orthogonal Residual, E = Elliptic constraint.

constraint solver steps smu pu CG-it P/F I/B T
OR direct 27 111 - - 290 15 530
OR CG-IC(0) 27 111 1 23462 0.1 497 711
OR CG-IC(0) 27 111 27 20384 3 423 641
OR CG-CIC(107°) 27 111 1 4725 6 827 1047
OR CG-CIC(107%) 27 111 27 1037 184 182 580
OR CG-IC(1073) 27 111 1 9151 1.3 350 567
OR CG-IC(1073) 97 111 27 4316 35 167 417
OR CG-IC(1073) 27 111 111 4312 153 168 534

E block f. direct 46 254 - - 630 69 1227

E augm. direct 46 254 - - 1476 41 2098

E augm. B1-CGSTAB-ILU(0) 46 254 46 73573 8.6 6287 6842

smu — stifiness matrix updates, pu = precondtitoner updates
CG-it = total number of CG-iterations

P/F = total (incomplete or full) factorization time
I/B = total CG-iteration or backsubstitution time

T = total run time
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updated at the beginning of each increment, gives faster solution time than using the
direct solver.

Using the augmented nonsymmetric equation system requires much more computing
time than the block factorization with direct linear solver. All the tested nonsymmetric
iterations CGS, BI-CGSTAB, QMR and TFQMR performed almost identically. Since
only the no-fill ILU preconditioner is used in the nonsymmetric case, the figures in table
6 should not be compared to the symmetric iterations with treshold IC preconditioning.

It should be mentioned that a mixed strategy, where the stiffness matrix is updated
when necessary, would be in favour of direct solvers.

5 CONCLUDING REMARKS

At present iterative methods for linear systems of equations have reached the level
of robustness that they are included in almost every valued commercial FE-code. In
despite of the excellent preformance of preconditioned Krylov subspace methods in
heat transfer and stress analysis of solid bodies, they cannot be regarded as robust
as direct solvers. Especially, for non-linear shell analysis the results with incomplete
factorization preconditioners are still far from being satisfactory. Possibly the multilevel
approach will change the affirmed state of affairs. Finally, it should be emphasized that
the performance of the various procedures is highly problem and computer architecture
dependent, for which reason fair comparison of different approaches is difficult.
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SUURIKALIIPERISEN AMMUKSEN RASITUSTEN MITTAUS
SISABALLISTISEN VAIHEEN AIKANA

SEPPO MOILANEN
Puolustusvoimien tutkimuskeskus

Fysiikan osasto

PL 5, 34 111 LAKIALA

TIOVISTELMA

Ammuskuoren putkiaikaisten kuormitusten mittaaminen edellytt4a mittausantureiden sijoit-
tamista ammukseen, mittausdatan kerisimisti sisiballistisen vaiheen aikana ja tiedonsiirto-
valmiutta lennon aikana ammuksesta vastaanottoasemalle. Mittaustiedon tallennukseen ja
tiedonsiirtoon on kehitetty kotimainen ammuksen sisiinen telemetrialaitteisto, jolla voidaan
mitata ammuksen peréin vaikuttava ruutikaasun paine, ammuksen aksiaalinen kiihtyvyys
ja kuoren venymis putkiaikana. Tissi artikkelissa kuvataan telemetrialaitteiston keskeiset
tekniset ominaisuudet seks esitetéiin muutamia koeammuntatuloksia ammuksen sisaballis-
tisen vaiheen mittauksista. Mittausjarjestelm4 on osoittautunut kéyttokelpoiseksi ja mittaus-
tulokset hyodyllisiksi tykiston ja heittimiston ampumatarvikkeiden tutkimus- ja kehitys-

tyOss4.

JOHDANTO

Ammuskuoren ja aseen kuormituksien madrittiminen on perustunut klassiseen ruutikaasun
paineen jakautumislakiin, jonka lihtdkohtana on oletus lineaarisesta kaasun nopeus-
jakaumasta etsisyyden funktiona aseen lukkopinnasta mitattuna (Lagrangen oletus) sekd
oletus ruutikaasun ja palavien ruutijyvisten tasaisesta jakautumasta palotilassa. Havaituista
poikkeuksista huolimatta on lagrangelainen painejakauma katsottu riittivan tarkaksi mene-

telmaksi kuvaamaan aseiden ja ammusten rasituksia sisiballistisen vaiheen aikana. Uusissa



270

tykistoén pitkdnkantaman asejirjestelmissia ammuksen lahténopeus v, on ~1,5-kertainen ja
liikke-energia E, (suuenergia) ~2,5-kertainen perinteisiin aseisiin verrattuna. Koetulosten no-
jalla on viime aikoina arvioitu, ettd Lagrangen yksinkertaistuksiin perustuvat siséballistiset
mallit ennustavat vésrin siséballistisen vaiheen tapahtumia suurilla suuenergioilla ja 14hto-
nopeuksilla ammuttaessa. Korkeilla paineilla tyoéskenteleville aseille on ehka muodostettava

uudet suunnitteluperusteet [1], joiden luotettavuus on varmistettava kokeellisin mittauksin.

Perinteisesti ammuskuoret on mitoitettu kayttien lineaarista kimmoteoriaa. Mitoitusperus-
teena on ollut sallitun jinnityksen periaate ja myétolujuuden ylitystd ei ole sallittu tai se
on sallittu vain rajoitetulla alueella kuoren geometrisissa ep4jatkuvuuskohdissa. Koska am-
muskuoren kuormitus putkiaikana on kertaluonteinen, on uusien ammuksien lujuus-
teknisessd mitoituksessa hyédynnetty my6s kuorimetallin plastinen muodonmuutoskyky.
Myoétaminen sallitaan laajoilla alueilla kuoren seinidmissd ja pohjassa mitoitus-
kuormituksilla. T#lloin pienetkin kuormituksien lisdykset aiheuttavat suuria muodon-
muutoksia ja kuoren putkikosketuksen vaara kasvaa. Plastisen muodonmuutoskyvyn
hyddyntimisen edellytyksen4 on, etti ammuskuoren kuormitusolosuhteet ja kuorimate-

riaalin kiyttiytyminen siséiballistisen vaiheen aikana tunnetaan entisti tarkemmin [2, 3, 4].

Tavanomaisissa koeammunnoissa aseesta mitataan ruutikaasun paine panoskammiosta p,(t)
pietsokidepaineanturilla sekd ammuksen 1dhténopeus v, putken suulla lihtonopeustutkalla.
Lagrangen mallin mukainen ratkaisu 'sovitetaan' mittaustuloksiin. Laskennallisesti mé4rite-
t4sn ammuksen perd4n kohdistuva paine p, ammuksen putken suuntainen kiihtyvyys a, put-

ken rihlak4yrin avulla kulmanopeus ® ja -kiihtyvyys o [5].

SISABALLISTISEN VAIHEEN MITTAUS KOEAMMUKSELLA

Tarkka ammuksen liiketilan ma&drittdminen sekd sisiballististen mallien luotettavuuden
arviointi edellyttivit ammukseen kohdistuvien kuormitusten mittausta putkiaikana [6, 7].
Puolustusvoimien tutkimuskeskuksen Fysiikan osasto, Puolustusvoimien materiaalilaitoksen
esikunnan Ampumatarvikeosasto ja Noptel Oy ovat kehittineet yhteistyoprojektina kuvan

1 mukaisen ammuksen sisiballistisen vaiheen mittausjirjestelmén, jolla voidaan mitata
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ammuksen perazn kohdistuva ruutikaasun paine p, ammuksen putken suuntainen kiihtyvyys

a sekid ammuskuoren muodonmuutoksia g; putkiaikana.

VAHE 2: MTTAUSTULOSTEN LAHETYS

Kantozalto
Taajuusmadulointl
Manchester-koadaus

TIEDONSIRTOKEHYS

kanava 1
kanava 2
kanava 3
kanava &
kello
kanava 1
kanava 2
kanava 3
kanava &
tarkistussana 1 -

VAHE 1 MITTAUS yht. 3 ms = 2 mitlausjaksoa

B00 mittausjaksoa = 5
Kanava 1 Kanava 2 Kanava 3 Kanava & m 2 5
Kihtyvyysanturl Paneanturi fai  Venymdluska  Venymaliuska
venymaliuska

125 125ps  RS5ps  RS5PS Kanava 1 Kanava 2 Kanava 3 Kanava 4
' 1. nittasiaksa ' 2. mittausiakso ' e

7

PUGLUSTUSYDMEEN
TUTKMUSKESKUS
Fysikan psasto

Kuva 1. Sisdballistisen vaiheen mittausjdirjestelma.

Tavallinen ammus on instrumentoitu inertiksi sisaballistiseksi mittausammukseksi asen-
tamalla paineanturi ammuksen pohjaan, venymaliuska-anturit (2 kpl) kuoren siséseindméin
ja kiihtyvyysanturi ammuksen kirkeen sytyttimen tilalle asennettuun telemetriaosaan.
Ammuksen ulkopuolinen telemetriaosan geometrinen muoto tayttii tykiston sytyttimille
asetetut standardivaatimukset ulkoballistiikan osalta, joten mittausammuksen ulkoballistiset
ominaisuudet vastaavat normaalia ammusta. Mittausdata talletetaan putkiaikana telemet-
riaosan muistiin ja lihetetdsn lennon aikana radioteitse vastaanottoasemalle, jossa tulokset

talletetaan mikrotietokoneella.

Keskeiset tiedonsiirtoj4rjestelman tekniset ominaisuudet ovat:

a) niytteenottovili 50 ps/kanava eli £ ;= 20 kHz,
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b) 800 mittausjaksoa, kokonaismittausaika =40 ms,
¢) nelja mittauskanavaa,
d) radiolshettimen teho 1,5 W ja kantama yli 15 km,

) mittausjérjestelmé on toteutettu kaupallisilla komponenteilla.

MITTAUSTULOSTEN JALKIKASITTELY

Mittausammuksen antureilta tulevat signaalit vahvistetaan vahvistinpiireills, jotka samalla
toimivat ylipaistésuodattimina vidristien mittaussignaaleja. Védristym4 korjataan lasken-
nallisesti mittausdatan jalkika4sittelylld. Kunkin vahvistimen mitattuun amplitudivasteeseen
sovitetaan siirtofunktio, jonka avulla mééritetd4n differenssiyhtilo korjauksen tekemiseksi.
Vahvistimen suodattamasta signaalista rekonstruoidaan alkuperiinen mittaussignaali kaz4n-

teissuodatuksella. Mittausdatan jilkikasittely on toteutettu MATLAB-ohjelmistolla.

Esimerkki erisn kiihtyvyysmittauksen signaaleista on kuvassa 2. Ammuksen korjaa-
mattoman kiihtyvyyssignaalin U(?) kuvasta on havaittavissa signaalin vairistyminen, silld
signaalin loppuosa on selvisti alkuperaisti 1dhtotasoa alempana. Todellisuudessa ammuksen
hidastuvuus ilmalennon aikana on pieni verrattuna sisiballistisessa vaiheessa esiintyvdin
aksiaalikiihtyvyyteen ja hidastuvuus ei aiheuta mittaussignaalin tason muutosta. Kiihtyvyys-
signaalin korjauksen jilkeen mittaussignaali on muunnettu kiihtyvyydeksi a(f) mitta-

yksikkoni km/s? kiihtyvyysanturin herkkyyden mukaisesti.

Putkivaiheen loppua kohti voimistuva kiihtyvyyssignaalin virahtely aiheutuu ammuksen
kulmanopeuden  kasvusta, jolloin ammuksen karkiosa joutuu poikittaisliikkeisiin am-
muksen ohjautuessa rihloissa ja kiihtyvyysanturiin kohdistuu voimakkaita iskumaisia
rasituksia. Aivan putkiajan lopussa ammuksen kirjen poikittaisliike kasvaa, kun kuoren
ohjauspaksunnokset ohittavat putken suun ja suujarrun. T4lldin poikittaisliikkeen amplitudi
kasvaa ja kiihtyvyysanturi joutuu poikittaisliikkeeseen, josta aiheutuu voimakkaita hairio-

pulsseja mittaussignaaliin.
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Kiihtyvyys
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Kuva 2. Alkuperdinen kiihtyvyyden mittaussignaali U(1) ja korjattu kiihtyvyys a(1).

ESIMERKKI MITTAUSTULOKSISTA
Kuvassa 3 on esitetty aseesta mitatut lukkopaine p,, panoskammion etuosassa vallitseva
paine p,, ammuksen peristi mitattu paine p seki yhtdlon 1 mukaan paineyksikoihin
skaalattu kiihtyvyys (-paine) p,;, erdilld laukausyhdistelmilla ammuttaessa. Ammuksen

massa on m ja putken poikkipinta-ala on 4.

ma
Pum::T (1)

Ison kuvan mittaustulokset on alipasstosuodatettu katkaisutaajuudella f,,= 2 kHz. Pikku-
Kkuvan painearvot p ja p,ovat suodattamattomia. Ylanurkan pikkukuvassa on vertailtu asees-

ta mitatun panoskammiopaineen p, ja ammuksen perdstd mitatun paineen p kayttiytymistd
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putkiajan alussa, jolloin kyseiset mittausanturit ovat ldhekkain ja voidaan olettaa, etti ruuti-
kaasun paine on likimain sama molemmissa antureissa. Seki panoskammion etuosan pai-
neen p, etti ammuspaineen p mittaustuloksessa esiintyy voimakasta ei-lagrangelaista paine-
virihtelyd putkivaiheen alussa, jota ei havaita lukkopaineen p, mittauksessa. Virihtelyt
vaimenevat kuitenkin nopeasti ja painemittaukset kiyttiytyvit "pehmeasti” putkivaiheen
loppuajan. Virihtely on saattanut aiheutua panoksen epitavallisesta kdyttaytymisestd syn-
tyneesti, ammuksen perdosaan kohdistuneesta, mekaanisesta iskusta, jolloin mittauksessa

havaittu virshtely ei vilttimd4tti esitd ruudin palokaasujen paineaaltoja.

Paineet

450

400

350

300

250

p [MPa]
na
(=]
(=]

Kuva 3. Aseen panoskanmiopaineet p, ja p,, anmuksen perdstd mitattu paine p sekd

paineyksikdihin skaalattu ammuksen aksiaalinen Kiihtyvyys piin,-

Kunkin mittauksen maksimipaineita vertailtaessa havaitaan, ettd suurin painearvo saavute-

taan lukossa. Lukkopinnasta etiinnyttiessi paine pienenee eli p, > p, > p > p; lukuun-
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ottamatta em. mittauksen alkuosassa esiintyvii virshtelyd. Ammuksen perdssi vaikuttavan
paineen ja paineeksi skaalatun kiihtyvyyden erotus p; = p - Py, kuvaa ammuksen
aksiaalista liiketts vastustavaa voimaa putkiaikana F(r) = p, 4 tai putkimatkan x
funktiona F(x), kun ammuksen kulkema matka x on saatu integroimalla aksiaalinen

kiihtyvyys a kaksi kertaa ajan suhteen.

YHTEENVETO

Ammuksen sisiinen telemetrialaite mahdollistaa ammuksen laukausrasitusten mittaamisen
putkiaikana. Ruutikaasun paineen ja ammuksen kiihtyvyyden mittaustuloksia voidaan
kéyttés teoreettisten sisaballististen mallien vertailuun, ammuksen ja aseen kuormitusten
kokeelliseen madrittimiseen seké laskennallisten lujuustarkastelujen tulosten luotettavuuden
arviointiin. Aineenkoetuskokeiden nopeusalueen valitsemiseksi kuoren venymimittaus-
tuloksista voidaan madrittaa laukaustapahtumassa esiintyvat muodonmuutosnopeudet de;/dt
seké venymahistoriat €(f) kuoren kriittisiltd alueilta. Venymituloksia voidaan vertailla

kuoren laskennallisten lujuustarkastelujen tuloksiin.

Paitsi sisiballistiikan mittaukseen mittausjirjestelma soveltuu myos ulkoballistisiin
mittauksiin. Mittausjérjestelmés on kaytetty ammuksen lennonaikaisten tapahtumien
mittauksiin kuten kuoren pintalimpétilan mittaukseen seki ammusten szhkoisten
komponenttien tai virtalshteiden toiminnan mittauksiin aina sisaballistisesta vaiheesta
iskemsin saakka. Sek4 sisa- etti ulkoballistiset mittaustulokset ovat osoittautuneet
kéayttokelpoisiksi ja hyodyllisiksi tykistén ja kranaatinheittimiston ase- ja ampuma-

tarvikejirjestelmien tutkimus- ja kehitystydssa
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PUUVALIPOHJIEN OMINAISVARAHTELYT

M. KILPELAINEN ja S. PALOLA
Rakennetekniikan laboratorio
Rakentamistekniikan osasto
Oulun yliopisto
PL 191, 90101 Oulu

TIIVISTELMA

Liikuttaessa puuvilipohjan palld voidaan sen vérdhtely kokea epdmiellyttdvaksi. Haitalli-
nen virdhtely pyritdsn vilttimédén laskennallisella vérdhtelymitoituksella. Mitoituksessa
keskeisen tehtivina on vilipohjarakenteen ominaisjaksolukujen ja niistd erityisesti alhai-

simman ominaisjaksoluvun méarittiminen.

Ouluun v. 1996-1997 rakennetussa puukerrostalossa on kéytetty kahta erilaista vélipohja-
tyyppid. Kummallekin rakennetyypille on méritetty laskennallisesti ja rakennuspaikalla
mittaamalla ominaisvirdhdysluvut ensin ns. raakavilipohjan (pelkén kantavan rakenteen)
paltd ja myShemmin valmiin rakenteen (kun ylé- ja alapuoliset levykerrokset ovat paikal-
laan) péalta.

Artikkelissa esitetdsn em. vilipohjarakenteiden laskennalliset ominaisjaksoluvut, joita sit-
ten verrataan mitattuihin arvoihin. Tulosten perusteella arvoidaan kaytettyjen laskentame-
netelmien soveltuvuutta virdhtelymitoitukseen ja esitetddn arvio ominaisjaksolukuihin vai-
kuttavista tekijéista.

1. JOHDANTO
Viime vuosina on Suomeen rakennettu useita puukerrostaloja. Niiden suunnittelussa erdéni

keskeiseni haasteena on ollut vilipohjien #zni- ja vérdhtelytekninen suunnittelu. Puuvili-
pohjien ominaisjaksoluvut ovat verraten matalia ja samaa suuruusluokkaa (n. 2-20 Hz)
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kuin vilipohjien dynaamisten kuormien vérdhdysluku (kévely ja muu liikkuminen, pesuko-
neet jne.). Koska puuvilipohjan jaykkyys on hyvin pieni, voi rakenteen virghtely muodos-
tua héiritsevin voimakkaaksi, mitd vield mahdollisesti syntyvi resonanssi- ilmié voi vah-
vistaa. Viardhtelyn voivat kokea epamiellyttaviksi paitsi vilipohjan pailld liikkujat myds
sen alapuolella olevat henkilét.

Haitallinen virdhtely pyritdsn vilttiméin laskennallisella virahtelymitoituksella. Suomen
puunormeissa [1], [2] ei ole ohjeita vardhtelymitoituksesta. Puurakenteiden eurooppalaises-
sa esistandardissa EC 5 [3] on ohjeet reunoiltaan vapaasti tuetun suorakaiteenmuotoisen
vilipohjan virdhtelymitoituksesta. Ohjeet soveltuvat parhaiten ns. raakavilipohjan lasken-
nalliseen tarkasteluun, jossa ei kantavan rakenteen yldpuolisen uivan lattian ja alapuolisen
jousirangan ja kipsilevyjen muodostamien jousi-massasysteemien vaikutusta oteta huo-
mioon muuten kuin lisimassana. Ohjeet perustuvat Ohlssonin tutkimuksiin [4], joita my&s
Suomessa on sovellettu kevyiden vélipohjien viridhtelyanalyysiin.

Mitoituksessa keskeisend tehtdvind on vilipohjarakenteen ominaisjaksolukujen ja niistd
erityisesti alhaisimman ominaisjaksoluvun méérittaminen. Laskentatulosten luotettavuuden
kannalta on t#ll6in tarke# oikean rakenne- ja viéridhtelymallin valitseminen seké oikeiden
laskentaparametrien (kimmomodulit, jaykkyydet) kdyttdminen. Kaytdnnén suunnittelutyén
kannalta katsottuna laskelmat eivit saa muodostua liian tydldiksi.

Tamén tutkimuksen tavoitteena on ollut arvioida erdiden laskentamallien kiyttokelpoisuut-
ta puuvilipohjien ominaisjaksolukujen mérittimiseen. Arviointi tapahtuu vertaamalla las-
kennallisesti saatuja ominaisjaksolukuja rakenteista mittaamalla saatuihin arvoihin. Quluun
v. 1996-1997 rakennetussa puukerrostalossa on kiytetty kahta erilaista vilipohjatyyppi4.
Kummallekin rakennetyypille on méritetty rakennuspaikalla useissa pisteissd mittaamalla
ominaisjaksoluvut ensin ns. raakavilipohjan (pelkéin kantavan rakenteen) péiltd ja myo-
hemmin valmiin rakenteen (kun yld- ja alapuoliset levykerrokset ovat paikallaan) palta.
Tutkimuksen yksityiskohtaiset laskelmat ja tulokset on esitetty ldhteessd [5]. Tietoja vas-
taavista aikaisemmista tutkimuksista ei ole kdytettédvissa.

2. TUTKITTAVAT RAKENTEET

Rakennuksen A vilipohjissa on kiytetty puu-betoniliittorakennetta (RL- laattavilipohja).
Sen rakenne kiy ilmi kuvasta 1.
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1 Muovimatto

2 Kipsilevyt GN13+GN13+GEK13

3 Kova mineraalivilla OL-A 30 mm,
tasauskerros 0-40 mm leca-murske

4 Betonilaatta 60 mm

5 Puupalkit 2 kpl 45¥195

6 Naulalevyraina

7

8

be

T 60006 0B

Mineraalivilla IL 100
Jousiranka 25 mm k 400 ja vilissa
laudat 20*97 k 800

9 Kipsilevyt GN13+GN13

G DAVARRA'AWARANE

300, 450 tai 650

Va7
AVIA

KUVA 1: Valmiin RL-laattavdlipohjan poikkileikkaus.

Raakavilipohja toimi mittaushetkelld yksiaukkoisena. Liiallisten taipumien estimiseksi se
jouduttiin rakennustydn aikana tukemaan valiseinilld, jonka vuoksi valmis vilipohja toimii
kaksiaukkoisena (kuva 2).

* j LomE T T
! < ’
Kenttd 1 ': Kenttd2 Kenttd 3 3,75m Kenttd I Kenttd2 Kenttd 3 3,45
72m E i N
k300 | k450 | k650 S| k300 K450 |
| ; 3,45m i k650
: i 2,75
1 i
1 1
s ) ‘ N8 .
a
& 11,6 m i » 1,6 m »
A1 Pl A A1

KUVA 2: RL-laattavilipohjan kentdt jannevdlin ja palkkijaon perusteella tutkitussa
huoneistossa a) raakavdlipohja, b) valmis vélipohja.

Raakavilipohja on tehty n. 2,5 m leveist liittorakenne-elementeistd. Elementit on kiinni-
tetty pitemmiltd sivuiltaan hitsatuilla lattaterdskappaleilla kahdesta kohdasta toisiinsa. Li-
siksi elementtien vilinen sauma on vahvistettu tartuntateriksilld ja valettu betonivalulla
umpeen. Poikittaispalkkeja on kussakin palkkivélissd tukipisteiden liséksi kolme kappalet-
ta.

Rakennuksen C valipohjissa on kaytetty uumalevypalkki-vaneriliittorakennetta (Titaniitti-
vilipohja). Sen rakenne kiy ilmi kuvasta 3.
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| ;D 1 Muovimatto
22 :_ Pontattu lastulevy 22 mm
50 ! Kova mineraalivilla OL-A 50 mm
15 4 Havupuuvaneri 15 mm paksuviilurakenne
liimapontit
5 Titaniittipalkit 350/70
Mineraalivilla 100 mm
350 Jousiranka 25 mm k 400 ja vilissa

. laudat 20*97 k 800
8 Kipsilevyt GN13 + GN13

U

600

|
—]
ey
|——
f—
—
1

25
263

A

KUVA 3: Valmiin Titaniittivalipohjan poikkileikkaus.

Sekd raakavilipohja ettd valmis rakenne toimivat kaksiaukkoisina. Vailitukena on liima-
puusta tehty pilari-palkkilinja (kuva 4).

- S
1,0m
. e L
Kenttd 1 ! Kenttd 2
3,745 m 2,745 m
J LP 360*90 ! LP360*90 R
S~ [ T=3700 TTTEZ800 K 62m
3,455 m 3455 m
:
!
- I¥m ' T3m == =<
/]V
7,1m

KUVA 4: Titaniittivilipohjan kentdt jannevdlin perusteella tutkitussa huoneistossa.



281

Raakavilipohja on tehty n. 2,5 m leveisti liittorakenne-elementeista. Elementit on kiinni-
tetty pitemmalté sivulta naulaamalla toisiinsa. Poikittaispalkkeja on kussakin palkkivilissd
tukipisteiden lisdksi kaksi kappaletta.

Kummankin vélipohjarakenteen materiaalitiedot ja laskenta-arvot on esitetty ldhteessd [5].
3. LASKENTAMALLIT
3.1 Yksiulotteiset eli palkkimallit

Yksiulotteisessa mallissa oletetaan vilipohjapalkkien toimivan toisistaan riippumattomina
eli vilipohjan jousivakio palkkeja vastaan kohtisuorassa suunnassa jdtetdan huomioonotta-
matta. Malli on yksinkertainen ja soveltuu epaséanndllisille rakennusten pohjaratkaisuille.

Laskentamalli 1

Puolet palkkikaistan massasta keskitetéén jannevilin keskelle massaksi m (kuva 5). Palkki
on yksiaukkoinen. “Jousen” jousivakio k on sama kuin palkin taipumajéykkyys ja saadaan
vapaasti tuetulle palkille kaavasta

48E]

k= e M)
L on palkin jannevali [m]
EI on palkin taivutusjaykkyys [N-mz]

EI -
P i
=
L L 2
A i
KUVA 5: Vilipohjan vérdhtelymaili laskentamallissa 1.
T#l16in ominaistaajuus saadaan kaavasta
1 |k
fesmil= @

2n \m



282

Laskentamalli 2

Keskitetdéin edelleen puolet palkkikaistan massasta jannevilin keskelle. Raakavilipohjan
osuutta merkitdéin m,:lla, uivan lattian massaa m,:114 ja alapuolisten kipsilevyjen massaa
my:lla (kuva 6). Uivan lattian ja raakavilipohjan vilisen ilmavélin jousivakio on k; ja se

saadaan kaavasta

k=P (3)

¢ on #inen nopeus ilmassa [m/s]

p onilman tiheys [kg/m3]

d on ilmavilin paksuus [m]

k, on palkin taipumajdykkyys ja k; jousirangan ja ilmavilin yhteenlaskettu jousivakio, jo-

ka saadaan kokeellisesti.
kl
EI m2
Y -
2 3
L L %
A 71

KUVA 6: Vilipohjan virihtelymalli laskentamallissa 2.

Kysymyksessi on kolmen vapausasteen virihtelysysteemi. Ominaisjaksoluvut (3 kpl) saa-
daan ratkaistuiksi matriisimuotoisesta ominaisarvotehtivasti [K]-{u}=co2-[1\/l]-{u}, josta

saadaan taajuudet f = o/27.

Laskentamalli 3
Vilipohjalle kéytetidsn kuvan 7 mukaista rakennemallia, joka koostuu yhdestd palkkiele-

mentista.

KUVA 7: Vilipohjan vardhtelymalli laskentamallissa 3.
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Massan m jakautumista kuvataan staattiseen siirtymémalliin perustuvan konsistentin mas-
samatriisin avulla. Rakenteen globaali konsistentti massamatriisi on muotoa

(M]=2 40 -3U @)
7 40| 32 42

Rakenteen globaali jaykkyysmatriisi on muotoa

EIlar? 212
[K]=F[2L2 4L2] )

Ominaistaajuudet (2 kpl) saadaan ratkaistuiksi matriisimuotoisesta ominaisarvotehtavasta.

Laskentamalli 4

Mallilla kuvataan kaksiaukkoisen jatkuvan palkin virdhtelyd. Laskennan yksinkertaista-
miseksi vilituelle otaksutaan nivel, jolloin palkki jakautuu kabdeksi yksiaukkoiseksi pal-
kiksi, joiden ominaisjaksoluvut voidaan laskea laskentamallia 1 k#yttden. Malli on esitetty

kuvassa 8.
m m
1 EI 2
%kl ,%kz
L ! | 2 2
/1 A /1
KUVA 8: Vilipohjan vardhtelymalli laskentamallissa 4.

Laskentamalli 5

Mallilla kuvataan kaksiaukkoisen jatkuvan palkin vérdhtely. Vilituelle otaksutaan jélleen
nivel, jolloin palkki jakautuu kahdeksi yksiaukkoiseksi palkiksi. Niiden ominaisjaksoluvut
voidaan laskea siten laskentamallia 2 kdyttden. Malli on esitetty kuvassa 9.
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",
/757 k /7’7 k/?b?
kz 3 ks ¢

Kuva 9: Viilipohjan virdhtelymalli laskentamallissa 5.

Laskentamalli 6

Mallilla kuvataan edelleen kaksiaukkoisen jatkuvan palkin vérdhtelyd kahden yksiaukkoi-
sen palkin avulla. Niiden ominaisjaksoluvut saadaan laskentamallia 3 kéyttden. Malli on
kuvattu kuvassa 10.

(T (@R

KUVA 10: Vilipohjan viréhtelymalli laskentamallissa 6.

Laskentamalli 7
Tarkastellaan kaksiaukkoista palkkia, jonka massasta keskitetdin puolet kummankin janne-
vilin keskelle kuvan 11 mukaisesti.

™ ()

g m, B3, m
JOU-R. ¥ S
Ll L
17*7 N ﬂﬁ7 % ﬂh
| L, L L 2 l

KUVA 11: Vilipohjan virdhtelymalli laskentamallissa 7.
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Palkista muodostetaan nelji palkkielementtid késitt4va laskentamalli, jossa vapausasteita
on 7. Ominaisjaksoluvut (2 kpl) saadaan matriisimuotoisen ominaisarvotehtivén ratkaisu-

na.

Laskentamalli 8
Tarkastellaan edelleen kaksiaukkoista palkkia, jossa raakavilipohjan massasta puolet kes-

kitetian kummankin jannevilin keskelle. Lisiksi raakavilipohjan yldpuolinen uiva lattia ja
alapuoliset levykerrokset erotetaan erillisiksi massoiksi samoin jénnevilin keskipisteisiin.
Malli on esitetty kuvassa 12. T4ti laskentamallia ei kéytetd tdssd tutkimuksessa.

k
=, =
m, mg
%Jt
L,

A7 =k 7

2
L L, L,y

A A A

KUVA 12: Vilipohjan vardhtelymalli laskentamallissa 8.

Laskentamalli 9
Tarkastellaan vield kaksiaukkoista jatkuvaa palkkia, jonka massa on tasanjakautunut (kuva
13).

KUVA 13: Vilipohjan varahtelymalli laskentamallissa 9.

Rakennemalli koostuu kahdesta palkkielementistd. Niiden muodostama konsistentti massa-

matriisi on

1 4m, -3Lm, 0
1= 20| 3Lm ALm, +4Lm, -3Lym, (6)
0 -3L'm, 412m,

[M,

[+
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Laskentamallin jaykkyysmatriiksi saadaan

4ED,  2E),
L L,
(K] 2(51)1 4(IF:I), LAED, 2D, o
1 1 LZ LZ
b A, AED,
L L2 LZ pl

Ominaistaajuudet saadaan ominaisarvoyhtilon ratkaisuna.
3.2 Kaksiulotteiset eli laattamallit

Kaksiulotteisissa malleissa otetaan huomioon vilipohjan jaykkyys palkkeja vastaan kohti-
suorassa suunnassa. Jiykkyys tdssd suunnassa koostuu palkkien varassa olevan laatan (be-
toni, vaneri tms.) ja poikkipalkkien jaykkyydesti. Erityisesti poikkipalkkien jaykkyyttd on
vaikea arvioida.

Mallit soveltuvat siznnéllisten, suorakulmaisten vilipohjatasojen vérdhtelyanalyysiin.
Ominaisjaksoluvut lasketaan pelkéstdéin raakavilipohjarakenteelle, johon liittyvit yli- ja
alapuoliset levy- ym. kerrokset ovat pelk#stiin raakavilipohjan lisimassana.

Qhlssonin malli
Sven Ohlssonin esittimé malli on esitetty lihteessd [4]. Sen mukaan alin ominaisjaksoluku
médritetdin kaavasta
.y 2L 2(£)2+(£)4 =, ®)
2.2V m B B) | EI,
Téllsin

EL, on vilipohjan taivutusjaykkyys palkkien suunnassa yhden pituusyksikon levyisti kais-
taa kohden (N -m%/m)

El, on vilipohjan taivutusjdykkyys palkkeihin néhden kohtisuorassa suunnassa yhden pi-
tuusyksikon levyistd kaistaa kohden [N-mz/m]

m on vilipohjan massa pinta-alayksikkod kohden [kg/mz]
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L on palkkien jannevali eli valipohjan toinen sivumitta [m]
B on vilipohjan toinen sivumitta [m]

Palkit ovat yksiaukkoisia ja vapaasti tuettuja.

E 51 Ll
Malli on esitetty lihteess4 [3]. Sen mukaan alin ominaisjaksoluku lasketaan kaavasta

T EI
iy X 9
f_2[2 ()

My®s téissi mallissa oletetaan palkit yksiaukkoisiksi ja vapaasti tuetuiksi.
4. VARAHTELYMITTAUKSET

Ominaisjaksoluvut miritettiin mittaamalla rakennusten A ja C 2. kerroksen lattiasta yh-
dessd huoneistossa kummassakin rakennuksessa. Mittauspisteet 1...4 rakennuksessa A on
esitetty kuvassa 14.

I, ™
Ol r 5 v 5650
4 1850 v A L]
- 2850 ,
A O3 Y
u | O2 Xx
O4 k /* J
g PESUHUONE L =]
i O
= |

KUVA 14: Mittauspisteiden 1...4 sijainti rakennuksessa A. L on lyontipiste.
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Miittauspisteet 1...13 rakennuksessa C on esitetty kuvassa 15. Valmiista vélipohjasta ei mit-
tauksia tehty vilipohjapalkkien vilien kohdilta.

Kaikki mittaukset tehtiin Oulun yliopiston konetekniikan osaston laitteilla laboratorioinsi-
no6ri Osmo Viliheikin johdolla,

B b s
2
S
1650
re
/

S
0O X
DD
2580
>/
I
-3
o

oll | 8009
1950 '\ O:?tzo I
i 1
. e e ik e e T C
L2o S |_—
PESUHUONE 13 |
! N
y /l 90
6085 B ==
! 8 L3 29% N
2 4o =4 o 2B
2 % S =" lison= R )
— N b= A Jr
® N N !
i
/ l

KUVA 15: Mittauspisteiden 1...13 sijainti rakennuksessa C. L1...L3 ovat lyontipisteitd.

Vilipohjan mittauspisteen kiihtyvyys mitattiin valipohjaan teipilld kiinnitetyn kiihtyvyys-
anturin avulla. Herite saatiin aikaan lyémalld vasaralla lyontipisteeseen. Koska mittauksen
avulla haluttiin mitata vain ominaistaajuudet, ei heritteen voimakkuudella ollut merkitysti.

Tuloksina saatiin mittauspisteiden kiihtyvyys taajuuden funktiona. Jokaisesta mittauspis-
teestd tehtiin 5 mittausta, joiden keskiarvona mittauspisteen lopullinen kiihtyvyyskéyri tu-
lostettiin. Ominaistaajuudet 15ytyvit kiihtyvyyskdyrén maksimiarvojen kohdilta. Tyypilli-
nen kiihtyvyyskéyra jaksoluvun funktiona on esitetty kuvassa 16.
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SETP  GRP SPEC  UPPR Wosam oh A FR 100
1G0RO7____SPECA___AVG 0C. #5008 Y16 E4.A. 2
. 1 PUUKERROSTALO KAJJONHARIG 27 08. 1985 "—ﬂ "IF— k

TALDE  MITTAUSPATKKA 2 |

; i {
: i | i ! MARK LIST X Yy |
D T i 0 2820 0147 |
: { i 3L7S0 .01798 |
‘2 420 0154 |
| 3 58.500 .00%91
i 4 BC.7SC  .CO2B |
: 5 earsD .007%
L0G - - g 94.500  .00287 ©
' 8
g

S Y U T Joan ek
0

MO LWL BASE TAF 12492 100.00
28,250 W2 AVE« 0147 EU SPEC SUM N 5

KUVA 16: Rakennuksen C raakavdlipohjan kithtyvyyskdyrd ja ominaisjaksoluvut
pisteessd 2.

Mittaamalla saadut ominaisjaksoluvut rakennuksissa A ja C eri mittauspisteissd on esitetty
taulukoissa 1 ja 2.

TAULUKKO 1: RL-laattavalipohjan mitatut ominaistaajuudet rakennuksessa A.

Ominais- OMINAISTAAJUUDET MITTAUSPISTEITTAIN [Hz]
muoto Raaka viilipohja Valmis vilipohja
1 2 3 4 1 2 3 4
1 8,12 8,00 8,00 8,12 25,00 15,50 9,25 13,75
2 9,75 9,87 9,00 9,75 27,50 24,25 15,00 25,00
3 11,62 13,81 9,81 11,62 | 40,00 44,75 18,50 31,50
4 13,62 16,37 13,56 13,62 | 63,50 67,50 38,50 68,50
5 18,00 23,38 14,37 18,00 it #i# 48,25 #HitH
6 20,81 28,38 23,50 20,81 #Hith it 68,00 #itH
7 2469 2994 2694 24,69 #it# #Hi# #HitH #it#
8 32,87 it i 32,87 i i HEH #HitH
9 45,62 #Hit# #ith 45,62 #itd Hit# it Hith
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TAULUKKO 2: Titaniittivalipohjan mitatut ominaistaajuudet rakennuksessa C.

Ominais- OMINAISTAAJUUDET MITTAUSPISTEITTAIN [Hz]
muoto Raaka viilipohja

1 2 3 4 5 SA 6 7
1 2825 28,25 28,00 | 2500 2500 2500 25,00 | 22,00
2 31,75 31,75 32,50 | 31.,75 3L,75 31,75 31,75 | 24,50
3 43,00 43,25 43,00 | 43,00 43,50 43,50 43,50 | 29,50
4 58,75 59,50 59,75 | 48,00 48,25 48,25 4825 | 35,50
5 7325 80,75 73,75 | 80,75 59,00 69,00 69,00 | 49,75
6 79,75 88,75 8825 | 91,00 81,50 83,75 90,75 | 54,75
7 88,75 94,50 97,50 | 1060 92,75 93,50 93,75 | 69,25
8 94,25 FHH 106,5 | 117,0 9525 9525 105,5 | 94,25
9 109,0 HHHt 109,3 | 128,8  106,5 108,5 130,8 | 104,5

7* 8 9 9* 10 11 12
1 20,75 22,00 22,00 21,00 | 21,25 21,25 21,25
2 25,00 24,50 28,00 2550 | 30,00 30,00 30,00
3 28,50 29,50 34,75 32,25 | 32,75 32,75 32,75
4 32,50 35,50 49,50 35,00 | 4525 4525 4525
5 45,75 49,75 55,50 45,75 | 50,25 50,25 50,25
6 51,50 69,00 69,75 53,25 | 60,00 60,00 60,00
7 60,50 77,25 73,00 61,25 | 65,00 65,00 69,50
8 7825 9725 79,00 68,75 | 79,75 79,75 79,75
9 87,00 1075 82,75 79,50 | 97,25 90,75 94,00

Valmis vilipohja

1 3 5 6 8 9 11 13
1 6,75 13,75 | 21,25 20,75 | 2450 30,00 | 27,00 27,00
2 21,25 21,75 28,5 28,50 | 29,75 44,50 | 61,75 59,25
3 45,12 45,25 | 51,00 46,25 | 46,25 55,00 | 79,50 79,75
4 #it 85,00 | 66,25 66,25 HH# 77,75 HiH 121,75
5 HH 139,5 HH fiaiaid HH# 150,0 lididia fidiii

*) Vertailumittaus herétteen ly6ntipiste L1
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Voidaan todeta taulukoista 1 ja 2, ettd raakavilipohjalta ja valmiilta vélipohjalta mitatut

ominaisjaksoluvut poikkeavat toisistaan huomattavasti.

5. LASKETTUJEN JA MITATTUJEN OMINAISJAKSOLUKUJEN VERTAILU

Eri laskentamalleilla lasketut alimmat ominaisjaksoluvut ja vastaavat mittaamalla saadut

alimmat ominaisjaksoluvut eri pisteissé on esitetty taulukoissa 3...6.

TAULUKKO 3: Lasketut ja mitatut alimmat ominaisjaksoluvut RL-laattavdlipohjalla eri
mittauspisteissd. Raakavalipohja.

ALIMMAT OMINAISTAAJUUDET [Hz]

Mittauspiste Laskentatulokset Mittaustulos
LM1 LM3 Ohlsson ECS
1 7,2 8,1 7,5 7.3 8,12
2 7,6 8,5 7.9 7,7 8,00
3 6 7.2 6,6 6,5 8,00
4 7,2 8,1 7.5 7,3 8,12

TAULUKKO 4: Lasketut ja mitatut alimmat ominaisjaksoluvut RL-laattavélipohjalla eri

mittauspisteissd. Valmis vdlipohja.

ALIMMAT OMINAISTAAJUUDET [Hz]

Mittauspiste Laskentatulokset Mittaustulos
LM4 LMS LMé6| LM7 LM9 Ohlsson ECS
1 21,5 20,2 24 | 22,1 247 21,7 12,6 25,00
2 194 184 21,7 22,3 257 19,7(6,2)* 19,6 15,50
3 18,8 17,9 21 | 20,1 22,6 19,0(53)** 189 9,25
4 228 205 254 | 22,1 247 2309,7)*** 229 13,75

*) jannevéli 6,2 m

*¥) jannevili 7,2 m
**%) 3,45%3,6 m? tasausbetonilaatan ominaistaajuus
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TAULUKKQ 5: Lasketut ja mitatut alimmat ominaisjaksoluvut Titaniitti-valipohjalla eri
mittauspisteissd. Raakavalipohja. LP-palkki tarkoittaa Titaniittipalkkien keskitukena

olevien liimapuupalkkien alinta ominaisjaksolukua laskettuna laskentamallilla 1.

ALIMMAT OMINAISTAAJUUDET [Hz]
Mittauspiste Mittaustulokset Mittaustulosten
LM4 IM6 | LM7 LM9 LP-palkki Ohlsson ECS5S Kkeskiarvo
1-3 289 322 | 21,2 338 20,7 29,1 29,1 28,20
4-6 326 361 | 21,2 338 20,7 32,7 32,7 25,00
7-9 444 49,7 | 21,4 405 36,6 44,7 44,7 22,00
10-12 326 36,1 | 214 40,5 36,6 32,7 32,7 21,25
TAULUKKQO 6: Lasketut ja mitatut alimmat ominaisjaksoluvut Titaniittivilipohjalla eri
mittauspisteissd. Valmis vilipohja.
ALIMMAT OMINAISTAAJUUDET [Hz]
Mittauspiste Laskentatulokset Mittaustulosten
LM4 LM5 LM6 LM7 LMY LPpakki Ohisson ECS keskiarvo
1 139 129 155 93 16,3 10,6 14 14 6,75
3 13,9 129 155 93 163 10,6 14 14 13,75
56 156 142 174 93 163 106 158 15,7 21,00
8,9 21,3 17,7 239 7,6 153 156 21,5 215 27,30
11,13 1,5 11 129 76 153 156 143 11,6 27,00

Taulukoiden 3...6 perusteella voidaan todeta seuraavaa:

1. Sekd palkkimallit (laskentamallit 1 ja 3) ettd laattamalilit (Ohlsson ja EC 5) antavat yksi-
aukkoisen RL-laattavilipohjan alimmalle ominaisjaksoluvulle luotettavan arvion (tau-
lukko 3). Paras vastaavuus laskentatulosten ja mitattujen tulosten vililld saadaan lasken-

tamallilla 3.

. Valmiin RL-laattavilipohjan ominaistaajuudelle ei mikéin kaytetyistd laskentamalleista

anna kovin hyvii arviota. Syyni lienee se, etti vilipohjan jalkituennasta johtuen se ei
toimi selke#isti yksi- tai kaksiaukkoisena, vaan siltd vililtd (taulukko 4). Mittauspistees-
si 1 laskentamallit 6 ja 9 (massa tasan jakautunut) antavat parhaat laskennalliset tulok-

set.
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3. Kaksiaukkoisena toimivan RL-laattavilipohjan ominaistaajuuden laskentaan soveltuvat
lshes yhti hyvin seki kahden yksiaukkoisen palkin mallit (mallit 4,5 ja 6) etté jatkuvan
kaksiaukkoisen palkin mallit (mallit 7 ja 9), (taulukko 4).

4. Titaniittivalipohjan ominaisjaksoluvun mérittamiseen ei mikésn laskentamalli anna ko-
vin hyvii tulosta. Eré4nd syyna téhén lienee se, ettd vilipohja on tuettu keskituella lii-
mapuupalkkien ja -pilarien varaan. Naiden véréhtely vaikuttanee myds vélipohjapalk-
kien mitattuihin ominaisjaksolukuihin, mutta laskentamallissa titd ei ole otettu huo-
mioon.

5. Raakavilipohjien ja valmiiden vilipohjien ominaisjaksoluvut poikkeavat melkoisesti
toisistaan. Tami koskee seki laskettuja ettd mitattuja ominaisjaksolukuja.

6. Valmiin vilipohjan analysointiin soveltuva kolmikerroksinen jousimassasysteemi (las-
kentamalli 5) ei anna mittaustuloksiin paremmin soveltuvia ominaisjaksolukuja kuin yk-
sikerroksinen jousi-massasysteemi (mallit 4, 6, 7 ja 9).

7. Valmiin Titaniittivilipohjan lasketut ominaisjaksoluvut ovat selvésti pienempid kuin
raakavilipohjan lasketut ominaisarvot. Mitattujen arvojen suhteen erot menevét ristiin
eri mittauspisteissi saatuja arvoja verrattaessa.

6. YHTEENVETO

Tutkimuksessa esilli olleista laskentamalleista ei yksikién osoittautunut muita selvésti pa-
remmaksi vilipohjien ominaisjaksolukujen laskentaan. Kéytinnén suunnittelutydssé yksin-
kertainen palkkimalli olettaen joko massan puolikas jannevalin keskelle tai koko massa ta-
san jakautuneeksi koko jannevilille ndytté antavan riittévén tarkan arvion alimmalle omi-
naisjaksoluvulle. Raakavilipohjan yli- ja alapuoliset levykerrokset voidaan tdlldin ottaa
laskennassa huomioon pelkistizn lisémassana muodostamatta kolmikerroksista jousi-mas-
sasysteemid. Kaksiaukkoinen vilipohjapalkki voidaan laskentaa varten jakaa kahdeksi vk-
siaukkoiseksi vapaasti tuetuksi palkiksi. Siten yksiaukkoisten vilipohjapalkkien alin omi-
naisjaksoluku voidaan arvioida yksinkertaisimmin joko laskentamallilla 1 tai 3 ja kaksiauk-
koisten alin ominaisjaksoluku joko laskentamallilla 4 tai 6.

Laattamalleja voidaan perustellusti kidyttd, jos vilipohjan pohjamuoto on si#nnéllinen
suorakaide, massa on tasan jakautunut (pesuhuoneen tasausbetoni, huom.) ja vilipohjan
jaykkyys palkkeihin nihden kohtisuorassa suunnassa on suuri. Télloin lahteissé [3], [4] ja
[6] esitetyt laskentakaavat ovat riittdvan yksinkertaisia.
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Valmiin vilipohjan alimman ominaisjaksoluvun tulisi olla mahdollisimman korkea. Tdhén
padstizn lisdamalld vilipohjan taipumajiykkyyttd (lisdamalla palkkien taivutusjaykkyyttd
El ja lyhentimilld jdnnevilig) tai vihentdmalld vélipohjan massaa. Massan vihentiminen
heikentiii merkittdvisti vilipohjan #dneneristivyyttd. Alimman ominaisjaksoluvun tulisi
vilipohjan pailla liikkkumisen aiheuttaman vérdhtelyn vaikutusten minimoimiseksi olla vi-
hintssin 8 Hz. Pyykinpesukoneen aiheuttaman tirinén haittojen minimoimiseksi tulisi véli-
pohjan alimman ominaisjaksoluvun olla vahintisn 20 Hz. Mittauksilla on voitu osoittaa,
ettd Ouluun rakennetussa puukerrostalossa (Kiinteistd Oy Puukotka) pyykinpesukoneen ti-
rind- ja dniefektit eivit juuri erottuneet taustatirinésti ja -melusta eivatkd olleet haitallisia
edes koneen linkousvaiheessa.
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ABSTRACT

The calculation of settlements is a basic task for geotechnical engineers. This article deals
with several different methods for estimating the behaviour of a test embankment. The
Haarajoki test embankment will be constructed in the summer 1997. The Finnish National
Road Administration is organizing an international competition to calculate settlements of the
test embankment. All the calculations presented in this article are made before the
construction of the embankment. The suitability of the calculation methods is discussed.

1. INTRODUCTION

The calculation of the settlement of embankments constructed on soft soils is often based on
the results of oedometer tests. In most cases this kind of classical analysis is good enough.
In some cases (complicated geometry, low factor of safety, horizontal movements...) the
classical one-dimensional analysis is not acceptable. A simple modification may be the
assumption of two- or three-dimensional waterflow (elastic Terzaghi- or Biot-type
consolidation analysis). The parameters are derived from vertical (and horizontal - if
available) oedometer test results. The next step may be the use of the Finite Element Method,

and then the parameters are derived from the oedometer and triaxial test results. FEM-
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analyses gives also better understanding on horizontal displacements and pore pressures in

the ground.

The Finnish National Road Administration is organising an international competition to
calculate settlements concerning the Haarajoki Test Embankment. The goals of the
competition are to improve the standard of geotechnical calculations, and to test the usability
of new calculation methods, and to improve the mode of presentation of calculations [1]. The
test embankment will be constructed as part of the noise barrier during July and August 1997.
The construction of the test embankment is part of the Road Administration’s strategic
project Road Structure Research Programme (TPPT). The Laboratory of Soil Mechanics and
Foundation Engineering of Helsinki University of Technology has taken part in the soil
sampling and laboratory testing. Calculations are also part of the TPPT-project (together
with the Technical Research Centre of Finland) for developing the settlement calculation

method which is based on the water content of the ground.
2. THE HAARAJOKI TEST EMBANKMENT

The embankment is 100 meters long and it will be constructed on clay ground in part without
ground improvement and partly onto vertically drained area [Il The geometry of the
embankment is shown in Fig. 1. This article deals with that part of the embankment which is

made without ground improvement.

Classification properties of the ground are shown in Fig. 2. The subsoil consist of over 20
meters of overconsolidated clay and silt. Overconsolidation is so low that in some layers the
increase of the vertical pressure of the embankment will reach the pre-consolidation pressure.
The ground water table is on the ground surface, and excess pore pressure is measured in the

ground (-3...10kPa). Most compressible layers are at the depth of 2...10m.

Numerous measuring devices (settlement plates, piezometers, inclinometers, extensometers,
total stress gauges) are installed under test embankment for monitoring the vertical and the

horizontal displacements and the pore pressures.
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Figure 1. The Haarajoki Test Embankment [1]

The construction of the embankment will take three weeks in six stages of 0,5m filling. The
fill material is gravel...sandy gravel. The bulk density of the fill material is 20...22 kN/m’ (in
the calculations the value is 21 kN/m?).

3. CALCULATION METHODS

3.1 Calculation programs and parameters

Six calculation programs were used for analysing the stress-strain-time behaviour of the

Haarajoki test embankment : RAKPA, KONSOL, EMBANKCO, Sage CRISP, ZSOIL and
PLAXIS.
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Figure 2. The Haarajoki Test Embankment. The classification properties.

Program RAKPA is based to the conventional Finnish tangent-modulus method for total
primary consolidation settlement calculation. KONSOL is based to the modified Terzaghi
one-dimensional time-settlement calculation with the finite element method. Programs were

developed by Pauli Vepséldinen in 1980's and 1990's.

EMBANKCO is a swedish one-dimensional settlement calculation program which is based
on finite difference method (Anvindarhandbook [2], Larsson et al SGI 13 [3] EMBANKCO

contains also secondary consolidation.

Sage CRISP [4] is a Finite Element Program which is based on the Critical State Model.
Consolidation analysis is based on Biot's two-dimensional and three-dimensional

consolidation theory. Program CRISP was originally developed in the Cambridge University
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in England. Sage CRISP was developed from the program CRISP by adding graphical pre-

and post-processors.

ZSOIL [5] is a Swiss Finite Element Program which is suitable for stress-strain-time analysis
and stability calculations in undrained, consolidation and drained state.  Primary
consolidation is based on Biot’s theory. Secondary consolidation model (Kelvin) was not

used here.

PLAXIS [6] is a Dutch Finite Element Program which is suitable for stress-strain-time
analysis and stability calculations in undrained, consolidation and drained state (like

programs Sage CRISP and ZSOIL). Primary consolidation is based on Biot’s theory.

The parameters for the calculations are shown in Table 1. RAKPA and KONSOL use
parameters which are derived from oedometer test results. Constant Rate of Strain (CRS)
oedometer tests are most suitable for determining parameters for EMBANKCO. FEM-
programs need also triaxial test results. Main differences in giving the input parameters are

concentrated to the pre-consolidation pressure or overconsolidation ratio.

3.2 RAKPA and KONSOL

RAKPA is a conventional program for total primary consolidation settlement calculation. It
needs the usual settelement parameters of the tangent modulus method used in Finland.
Program RAKPA is acting as an input program for the terrace, material and loading data for

the program KONSOL.

KONSOL is a FEM-program for time-settlelement calculations of layered ground. It is based
to the one-dimensional primary consolidation theory of Terzaghi. The theory is modified so
that it includes also the over-consolidated part of the time-settlement behaviour. Besides of
the data from RAKPA, program KONSOL needs the coefficients of consolidation for over-

and normally consolidated stages, seepage boundary conditions and the load-time history of
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Table 1. The material parameters for the calculation programs.
a) RAKPA and KONSOL b) EMBANKCO c) CRISP, ZSOIL and PLAXIS
(in program PLAXIS o, from table a is used instead of p, in table ¢ )

a) “Tayer depth Y G, m, Bs M;  CNKSTD CvKSTD CWKCRS  CvYK CRS
m kN/m® kPa m*/a m%/a m?/a m%a
1 0-1 17 80 28 0,25 105 1,0 5,3 1,0 53
2 1-2 17 60 26 0,46 57 1,0 1,9 2,5 2,5
3 2-5 14 52 42 -1,1 50 0,10 9,0 0,20 9,0
4 5-7 14 52 4.9 -1,0 59 0,10 1,7 0,20 1,7
5a 7-8 15 60 4,0 -0,75 58 0,05 7,9 0,24 7,9
5b 8-9 15 70 4,0 -0,75 58 0,05 7.9 0,24 7,9
S5 910 15 82 40 -0,75 S8 0,10 6,5 0,42 6,5
6 10-12 15 95 2,0 -1,26 80 0,10 2,7 0,50 2,7
7 12-15 15 99 2,7 -0,86 72 0,10 4,8 0,10 4,8
8 15-18 16 129 3,7 -0,60 58 1,3 12 1,3 12
9 18-222 17 105 30 0,5 10 10 10 10
b) Tayer depth point Y o My, My op M a8 Oymex Pa K; B
m m kN/m® kPa kPa kPa kPa *10?2 *10" m/s
1 0-1 0,60 17 80 6940 3167 180 12 1000 0,12 0 20,2 9,87
2 1-2 17 80 6940 3167 180 12 1000 0,12 0 20,2 9,87
3 2-5 2,30 14 67 6150 89 77 27,6 100 1,76 0 21,1 4,64
433 14 76 5950 28 77 18,6 100 1,15 0 9,46 3,77
4 5-7 633 14 72 6280 62 77 18,6 100 1,03 0 11,7 4,26
5a 7-8 7,24 15 60 7490 350 92 18,0 100 148 0 7,24 3,94
Sb 89 822 15 87 6810 220 103 22,2 100 1,48 0 7,83 4,14
S5¢c 9-10 924 15 92 7140 514 114 12,5 100 2,26 0 8,59 4,12
6 10-12 10,22 15 109 6250 67 114 183 100 0,58 0 15,5 4,57
7 12-15 14,10 15 130 4640 335 167 18,6 100 0,43 0 6 4,18
8 15-18 1510 16 137 6100 470 200 13,4 100 0,99 0 6 3,63
17,60 16 129 6780 560 180 15,0 100 0,30 0 9 3,52
9 18-22, 18,00 17 129->90 100 0
19,69 17 104 11480 3300 225 23,8 100 0,30 0 50 3,52
22,20 17 121,4 11480 3300 225 23,8 100 0,30 0 100 3,52
c) Tayer deph y M & v E x A € e K Ky Pe
m__kN/m’ R kPa __*10*m/d *10*m/d kPa
1 0-1 17 1,5 36,9 0,38 6410 0,007 0,1 1,4 1,78 13 13 80
2 1-2 17 1,5 36,9 0,38 3900 0,013 0,1 14 1,76 13 13 65
3 2-5 14 1,5 36,9 0,38 3150 0,028 1,08 2,9 6,68 1,56 1,3 65
4 5-7 14 093 23,7 0,1 4330 0,068 1,86 2,8 9,51 1,21 0,86 72
5a 7-8 4,68 72
5b 8-9 15 1,07 27 0,1 4890 0,075 0,65 2,3 4,84 1,38 0,69 91,5
5¢c  9-10 4,96 111
6 10-12 15 1,07 27 0,28 5600 0,066 1,23 22 722 2,59 1,3 114
7 12-15 15 1,15 28,8 0,28 12000 0,027 1,09 2,2 6,63 2,59 1,3 114
8 15-18 16 1,5 36,9 0,28 5870 0,061 0,48 2 3,98 8 1,12 114
, 4,11 150
9 18222 17 1,5 36,9 028 5870 0,009 0,1 14 1,84 80 80 150
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distributed surface loads. The initial excess pore pressure condition is calculated through
excess vertical stresses to simulate typical Finnish normally consolidated clay conditions.
Excess vertical stress influence values are calculated already in RAKPA by the Boussinesg
method. The finite element method and the time integration by the implicit method is used
to calculate excess pore pressures, effective vertical stresses, vertical strains and settlements

with time. The program makes the one-dimensional finite element net automatically.

3.3 EMBANKCO

EMBANKCO is a swedish program for settlement calculations of road embankments on fine
grained soils. EMBANKCO contains one-dimensional primary and secondary consolidation
model. The stress distribution is calculated by using the theory of elasticity. The parameters
are determined from the results of constant rate of strain (CRS) oedometer tests. The co-
efficient of secondary consolidation is determined from long duration incremental oedometer
tests. EMBANKCO is based on empirical observations of changing values of tangent mo-
dulus (M), permeability (k) and coefficient of secondary consolidation («,) (Fig. 3).

3.4 Sage CRISP

Sage CRISP is developed from the program CRISP (CRitical State Program, Univ. of
Cambribge). The soft layers are simulated by the Modified Cam Clay Model and the
embankment material by ideally elastic-plastic Mohr-Coulomb model. Sage CRISP uses the

displacement FEM-scheme coupled with Biot's consolidation and implicit time integration.

The finite element net consists only half of the symmetric embankment and soft soil layers
with 575 eight-noded quadrilateral elements and 630 nodes. Input data is needed for net
geometries and topologies, material parameters for soil layers and in-situ conditions for
effective vertical and horizontal stresses, pore pressures and hydrostatic overconsolidation
pressures (the latter for MCC-model). Fuithermore there is need for displacement and see-

page boundary conditions, the vertical boundaries of the net are assumed impervious.
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Figure 3. The material parameters for EMBANKCO.

The construction of the test embankment is simulated by adding embankment elements with
the supposed time schedule (35 days), so the consolidation process is happening already in

the construction stage.

3.5 ZSOIL

The nonlinear finite element scheme incorporated in ZSOIL (version 3.1) uses the four-node
isoparametric quadrilateral element with bilinear interpolation function. The problem was

handled in plane strain. To reduce the number of elements, the shape of the embankment was
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assumed symmetric and only half of it was included in the model. The vertical sides and the
bottom of the mesh were impermeable, the bottommost soil layer modelled consists

permeable silt. The finite element net consists of 700 elements and 760 nodes.

The initial stress conditions were automatically evaluated. The isotropic hardening
elastoplastic model chosen for the problem was the Extended Drucker-Prager yield criteria
with cap-closure 3N. 3N closure adjusts the size of the Drucker-Prager criterion to the Mohr-
Coulomb criterion with the following assumptions: Failure under plain-strain conditions and

non-associative plastic potential (plane strain default).

The cap closure require the specification of the following parameters: Initial void ratio e ,
pre-consolidation pressure p, , modulus E and compression index A. The parameters were
evaluated from triaxial test results or incrementally loaded oedometer test results. The value
of pre-consolidation pressure is constant in the calculation layer. In thick normally
consolidated layers the pre-consolidation pressure is increasing when the depth is increasing.
This error is corrected (z = 5...7 m) by dividing the layer to three thin layers. In the analysis
the value of cohesion was assumed to be zero. The primary consolidation is calculated by

using Biot's consolidation theory.

The construction of the embankment was modelled by Mohr-Coulomb model. The
embankment was constructed on 6 steps during 35 days. Subsoil was consolidated also

during the construction of the embankment.

ZSOIL calculates automatically initial horizontal and vertical stresses before further analysis.
K, is calculated by using the Poisson's ratio. ~Small values of Poisson's ratio affect
incorrectly very small horizontal stress. In this case this effect was avoided by using

Poisson's ratio which was calculated from the value of effective friction angle.

The initial excess pore pressure was determined in all the nodes of macro elements. Instead

of hydrostatic pore pressure and total bulk densities the effective bulk densities were used.
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3.6 PLAXIS version 6.1 (Professional version)

PLAXIS is a non-linear finite element program, which is used for different geotechnical

problems. The problem is handled either in plane-strain or axi-symmetric conditions.

The geometry is modelled by a suitable finite element mesh. The user devides the whole
mesh into mesh blocks and every mesh block into smaller quadrilaterals. The mesh is
generated automatically by dividing each quadrilateral in two triahgular finite elements.
Every triangular element is either 6- or 15-noded, depending on the user. Displacements are
calculated at each individual node. Stresses are calculated at Gaussian integration points

(‘stress points’). A 15-noded triangular element contains 12 and 6-noded 3 stress points.

The consolidation analysis is based on Biot’s theory and only the primary consolidation is
possible. Darcy’s law for fluid flow is also assumed. The permeabilities of soil layers can be

given both in horizontal and in vertical directions.

The shape of the test embankment was assumed symmetric and only a half of it was included
in the model. The problem was handled in plane-strain state. The whole profile (mesh) was
devided into five mesh blocks and it included 780 triangular finite elements. These elements

were 6-noded because of the great number of elements.

The material model used for clay layers was isotropically hardening elasto-plastic Modified
Cam-Clay Model (MCCM). In this model the yield surface represents an ellipse in p’-q-
plane. The material is behaving elastically within the yield surface, whereas stress paths that
tend to cross the boundary generally give both elastic and plastic strain increments.

Parameters needed by using Modified Cam-Clay Model were determined by oedometer and

triaxial tests.

The initial stress state in lightly overconsolidated subgrade layers is defined by using Pre-

Overburden Pressure, POP (= o', - o'y ). This value gives a more homogenous stress state in
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clay layers than the normally used Over-Consolidation Ratio, OCR (= ¢'./ 0'y ). To trying to
have as homogenous stress state in every single layer as possible the third layer (z = 2-5 m)
is devided into three thinner layers (Fig. 4). After determining these POP-values and giving
K, -values (K, -values were calculated by using effective friction angle) the initial stress
conditions were evaluated automatically. The difference from static pore water pressure was
handled by changing unit weights so that the effective vertical stress o',, equals the real in-

situ stress.

The material model chosen for the embankment was the Mohr-Coulomb model. The
embankment elements were activated at six stages so that the total building time was 35 days.

The settlements at building time were due to both undrained and consolidation settlement.

a) b)
: Vertical stress (kPa) Vertical stress (kPa)
50 100 150 200 0 50 100 150
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Figure 4. The Haarajoki Test Embankment.

a) Effective vertical stresses. Pore pressure b) Pre-consolidation pressure.
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4. RESULTS AND DISCUSSIONS

The summary of settlements from different calculations is presented in table 2. It is seen that
the differences are quite remarkable depending on the calculation method or program at the
settlement-time scale. Moreover, the calculated long-time settlements (30 years) are from 172
mm to 831 mm, which anticipates that even the estimation of the total primary consolidation

settlement correctly may be very difficult.

Table 2. The Haarajoki Test embankment.

a) The calculated settlements. b) The calculated horizontal movements.

a)

0 months 6 months 12 months | 18 months | 24 months 10 years 30 years

A B C|lA B C|lA B C|lA B C|A B C|lA B C|A B C
Sage CRISP [117 103 40156 138 63 168 149 72 |177 158 80 | 183 164 85 (224 203 117|244 222 133
ZSOIL 121 96 30134 108 42 (139 113 47142 117 50145 119 52165 139 70 |172 145 76
PLAXIS 151 128 44 |241 199 72 (279 230 87 (309 255 98 |333 275 108|462 384 155477 397 160
EMBANKCO | 91 82 39192 130 75|219 150 89 |241 165 97 (265 179 1031470 292 123]1633 384 124
KONSOLCR |42 41 19|93 87 43120 113 58140 132 69 [156 146 78 [448 329 140|831 689 183
KONSOL ST |42 40 19|89 84 42|116 109 55135 127 66 |150 141 74 |359 264 137|656 543 182

b)

0 months | 6 months | 12 months | 18 months | 24 months | 10 years | 30 years
B Cc|B ¢c|B C|B C|B C|B C|B C
SageCRISP| 9 18| 11 20| 11 20| 11 20| 11 20| 11 20| 12 21
ZSOIL 18 25|18 24|18 24| 18 24| 18 24|18 24| 18 24
PLAXIS 23 40|36 52|40 55| 41 58| 44 59| 51 66| 52 67

The graphical presentation of calculated settlements at the center line of the test embankment
during the first two years is shown in figures 5 and 6. In figure 5 are the results of FEM-
calculations (programs Sage CRISP, ZSOIL and PLAXIS) and in fig. 6 the results of perhaps
more conventional methods (programs KONSOL and EMBANKCO). The KONSOL
calculations were made by two ways: KONSOL STD means that all the settlement
parameters (including the coefficients of consolidation) used are from standard oedometer
tests, and in KONSOL CRS-calculations-the coefficients of consolidation are from CRS-

oedometer tests and all other settlement parameters from standard oedometer tests (table 1).



307

The results of EMBANKCO-calculations in figure 5b include the effect of secondary

consolidation.
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Figure 5. The Haarajoki test embankment. Calculated settlements 0 - 2 years.

Calculated settlements during a longer time period (30 years) are presented in fig. 6. The
graphical presentation includes the results of EMBANKCO-calculations with and without
secondary consolidation, KONSOL STD and KONSOL CRS-results and results from
PLAXIS-calculations. Settlements presented are from the center line of the embankment. As
is seen from the table 2a, calculated settlements by programs Sage CRISP and ZSOIL are

much lower than those presented in fig. 6.
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Figure 6. The Haarajoki Test embankment. The calculated settlements 0-30 years.

Results of the calculated horizontal movements at the frontier line between the test
embankment and the natural ground are presented in the table 2b. Point B means the distance
of 4 meters and point C the distance of 9 meters from the center line. The horizontal
movements were calculated only by the FEM-programs Sage CRISP, ZSOIL and PLAXIS
(the estimation is not possible by one-dimensional programs KONSOL and EMBANKCO).
Differences in the results are remarkable even in this case, but the usually accepted tendency
- the larger vertical settlements mean the larger horizontal movements - is best seen from the

PLAXIS-results.

5. CONCLUSIONS

The Finnish National Road Administration has arranged an international competition to
calculate settlements of Haarajoki test embankment. The settlement during the competition
time (2 years) will be only 15....33 cm with different calculation methods. The calculations
were made also for 30 years, and then differences in calculated settelements are significant
(17....83cm). All the programs used heré are suitable for analyzing the behaviour of an

embankment constructed on soft ground.
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RAKPA and KONSOL are especially made for this kind of analyses. KONSOL is used for
estimating primary settlement. The parameters are determined with standard oedometer tests
or with continuous loading oedometer tests. The need for calculating secondary

consolidation also could be seen from pore pressure data.

EMBANKCO is especially made for this kind of analyses. EMBANKCO contains also a
secondary consolidation model. Primary and secondary consolidation are occuring at the
same time. The values of the calculation parameters are dependent on stress or strain. The
parametres are determined with standard oedometer tests (secondary consolidation) and with
continuous loading oedometer tests. All the parameters can be determined also with standard
oedometer tests. The program contains also empirical parameters from swedish data for

preliminary analyses before laboratory testing.

Sage CRISP is suitable for analyzing stresses, strains and pore pressures with time. The
determination of the parameters from oedometer and triaxial test results is laborous and
difficult. The determination of the pre-consolidation pressure is most important for getting
reliable results. The anisotopic initial yield surface of Haarajoki clay (and most Finnish
clays) is totally different than the Modified Cam Clay yield surface which is used in
calculations. The adjustment of the input value of the pre-consolidation pressure may cause

underestimation on the settlements.

ZSOIL is originally not made for analyzing soft clay behaviour, but the modern version of the
program is suitable for this type of analyses. ZSOIL contains also model for secondary
consolidation. In this case only primary consolidation was calculated. The use of ZSOIL
needs special knowledge on the program and the determination of calculation parameters.

Then it is a powerful tool for analyzing also complicated problems.

PLAXIS is suitable for primary consolidation analyses of the embankment. The program uses
the pre-consolidation pressure from oedometer tests for solving the overconsolidation ratio of

soil layers. This is maybe the main reason for larger settlements than in other FEM analyses.
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The project for analyzing the behaviour of the Haarajoki test embankment will now continue
with efforts to approximate the settlements by using water content data. Another task is
analyzing the embankment with vertical drains. Then the most interesting stage will be the
comparison of the measured values to the calculated values guring the years 1997-1999.
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Abstract

Treatment of domains with curved boundaries in finite element method
leads often to questions concerning the continuous deperdence of the solution
on the geometry. We propose here to use the techniques arising from optimal
shape design to estimate the error due to approximation of the geometry. We
provide examples where shape differentiability leads to useful error estimates.
Likewise, some examples are given where the lack of shape differentiability
indicates also lack of continuous dependence on geometric data.

1 Introduction

This paper is motivated by the dilemma of smooth polygonal domains’ related to
error analysis of the Finite Element Method. The dilemma is that the finite ele-
ment methods are naturally formulated in polygonal (or more generally in piecewise
polynomial) geometries. On the other hand, the abstract error estimates rely on in-
terpolation error estimates that require smoothness of the solution that is typically
achieved only in regular geometries.

In the literature this question has been treated in several ways. Perhaps the most
popular approach is that of the above mentioned smooth polygonal domains. That
is, the analysis is carried out assuming that the domain is polygonal and hence the
grid fits exactly to the domain, and at the same time the solution is regular enough
for the optimal interpolation estimates. At the other extreme are the works where
the curved boundary is captured more or less exactly by introducing corresponding
curved elements, [2], [3], [9], [10]. In this case the analysis can be made rigorous
but the price to pay is more complicated local analysis and implementation. Finally,
there exists quite a number of papers where the smooth domain is approximated by a
polygonal one which is then triangulated. In many of the papers the error analysis is
based on some specific feature, like the possibility to extend the FE-solution outside
the polygonal domain. Also the analysis of the approximation of geometry is generally
interwoven with the analysis of the FE approximation properties.
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In this paper we introduce an approach where the approximation of geometry is
detached from the FE-analysis. This means that we shall analyze the error due to
approximating the original problem in smooth domain by an auxiliary problem in
(polygonal) approximate domain. Then, the error for the finite element approxima-
tion of the auxiliary problem is analyzed, bearing in mind that the auxiliary solution
is close to the original, smooth one. The first error is estimated using the techniques
familiar from shape optimization [5] where the question of continuous dependence
with respect to variations in geometry is a key issue. The question of continuous
dependence of the solution on the geometric data dates back to at least Hadamard’s
times. Most of the analysis has been qualitative. Some quantitative works were
published in early 70’s, [6], [8] with the motivation arising from finite element error
estimates. Then, it seems, the issue was forgotten.

The contents of the paper can be briefly summarized as follows. In chapter 2
we introduce the strategy in abstract framework. Then in chapter 3 we consider a
model second order elliptic problem for which we show the continuous dependence of
the solution under polyhedral approximation of the boundary. Corresponding finite
element error estimates are also formulated. In the subsequent chapters we consider
second order systems and a fourth order problem where polyhedral approximation of
the boundary turns out to be much more delicate issue. In particular we comment
Babuska’s famous counter-example, [1], [4] from the point of view of shape derivatives.
This paper is an abridged version of [7].

2  Abstract formulation

The aim is to study the dependence between the solution u of the variational problem
defined in a smooth domain 2 and its finite element approximation wy defined in
approximate domain 5. To be able to compare u and u;, we have to be able to
prolongate one of the two to the domain of definition of the other. As prolongation of
FE- functions is difficult (as FE-functions) in the general case we choose to prolongate
the original solution from (2 to £J; by some prolongation operator. The idea behind
error estimation is to introduce an auxiliary problem defined in £, to be able to
separate the approximation of geometry from approximation by FE spaces.
Thus, let the original problem be given as

a(u,w) = (f,w) Yw eV
for f € V', u € V =V (Q). We introduce an auxiliary problem
a(t, w) = (f,w) Yw eV

with VA = V(€). The bilinear forms a and & are assumed to be continuous and V
(resp. V) elliptic. The auxiliary problem is defined so that its FE discretization gives
the discrete problem

a(un, wp) = (F, wy) Yw, €V, C V.



313

We want now to estimate the error between v and u,. Because of different domains
of definition we have to consider an extension of u, @. Let now || - || be some norm
for functions defined in €. Then by triangle inequality

8 — unll < 1% — @l + (12 — uall-

Here the first part corresponds to the error due to geometry, whereas the second part
is standard FE-approximation error (but now in polygonal domain).
Assume now that we have a quasi-optimality result with respect to || - || norm

|t —unll < C inf |G — wa. (1)
whEVR

Then using triangle inequality again we can estimate
1@ — wall < [l& — a@l| + [[7 — wall
Hence,
= uall < Gyl — | + Ca_inf [} — whl] @)
whEVY
In order to derive useful concrete error estimates from (2) we have to make sure
that the following conditions are satisfied.

1. f , & and the extension operator are chosen so that we get an appropriate esti-
mate for ||& — 4|

2. Extension is defined so that % has the regularity needed for interpolation esti-
mates. That is, 7% should be at least piece-wise smooth.

3. f and @ should be natural extensions of f and a as they will be used to construct
the discrete problem.

4. The quasi-optimality estimate (1) is valid uniformly for all 2.

The condition 1 above is best satisfied when the auxiliary problem is defined sim-
ply by mapping ) to ) and defining the ’extensions’ using the same transformation.
Then, of course ||& — @] = 0. On the other hand the mapping ends up to the coef-
ficients of the auxiliary problem and its discretization complicating thus both error
analysis and implementation. This is what happens in practice with curved elements.

3 Model problem

Let us consider the following model problem

—Au = f, in , (3)
u = Ug, on FD, (4)

3]
5 o= g, on Ty, (5)

on
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where 2 C D C R" is a smooth domain with boundary 0Q =TpUTy, Tp Ny = 0.

We assume that f € L?(D), g € H'(D) and uy € H%(D). Then it is well known
that the problem (3) has a unique solution v € H2(Q), u — ug € H*(; Tp).

We shall study the dependence of u on the shape of 2. For that we construct a
family of domains €, as follows: let us choose a vector field V € CY(D : R") and
introduce a deformation map T; : £ — z + V(z) which is injective for small t. We
denote O = T3(Q) = {z +tV(z) | z € Q}. In O we define the state problem as
follows:

Ay = f, in QF, (6)
U = ug, on I't,, (7)
% = g on I'ly. (8)

We address the question of continuous dependence using the concept of shape
derivative. We define the shape derivative of u to direction V as the limit

where ~ denotes any regularity preserving extension from Qf to D. The limit does not
depend on the choice of the extension.

Theorem 3.1. Under the above assumptions there ezists a shape derivative uj, €
H(Q). Moreover, u}, is the unigue solution of the problem

-Auy, = 0, in Q, (9)
Bu —
uy = — uanuo(V,n), onI'p, (10)
oul,

or, ~Vr-({(V,n)Vru) + (f + Hg + g—z)(V, n), onTy. (11)

Here Vr denotes the tangential part of V, that is, Vru = Vu — du/dnn.

The proof of this theorem can be obtained by combining the proofs of Propo-
sitions 3.1 and 3.3 of [5]. This result is almost what we need to analyze the error
due to polyhedral approximation of the geometry. Namely, let (2, be a polyhedral
approximation of . If h is small enough, we can write 8Q, = {z + hV,(z) | z € 00}
where [|Vi||re < Ch, ||Vallwre < C. Clearly, the problem (9) is well defined for such
V.. Moreover, we can estimate the norm of «' as follows:

; , o’
lv'lle < CUlw llhy2rs + ll—an ll-1/2,00)
Now,

, A(u — up) A — ug) 2
by, < Ml = =5 == Vim)llsr,ll = =5 —~(V: i,

O(u —
KLV, 2NV,
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provided that u and u, belong to H*/2(Q). Similarly,
o’
[|%“—1/2,r,\, < Ch'/?

if u e H52(Q), f € H/*(Q) and g € H¥?().

This suggests the estimate [Jug, —uql/1 < Ch%? in the case of sufficiently smooth
data. However, the above development is so far only formal as the velocity field V
does not satisfy the conditions of the shape differentiability proof of [5]. Repeating
the argument in the case of V € W1 one can, however, prove the following result.

Theorem 3.2. [7] Let V € Wh*(D). Then if u and ug belong to H*?, f € H'(Q)
and g € HY(Q) and 4 is an H*? eztension of u to D, it holds

Lo < CUVIEZIVING -

|| — 2

If we now apply the above result to a smooth domain and its polyhedral ap-
proximation, we obtain an O(h®?) estimate for the energy norm of the error in the
solution. Similar estimates have been obtained already by Strang and Berger, (6]
and Thomee, [8] in the early seventies under the assumption that the domain to be
approximated was convex.

For the purpose of finite element error estimates in energy norm an O(h) estimate
is sufficient. It can be obtained quite easily with weaker regularity of the data.

Theorem 3.3. Let i, uo € H2(D), f € L*(D) and g € H'(D). Then
[l — @fl1,00 < CHV [l wroe-
The above estimate can be obtained by writing
e = dllge < llus —wo T 1o + luo Tt — e

and estimating the terms separately. Note that u o T, defines in fact another ’ex-
tension’ of u in the sense of section 2.

We conclude this section by discussing the finite element error estimates related
to above geometric estimates. In the case of the estimate in the energy norm the
situation is very simple. Thanks to Poincare’s inequality and Cea’s lemma we ob-
tain easily that the quasi-optimality result holds with uniform constant. Hence the
developments of section 2 lead immediately to

Theorem 3.4. Let Q, be a polygonal approzimation of Q. Define the discrete prob-
lem as standard piecewise linear finite element approzimation of (6) for t = h. Then
for the error between the discrete solution uy, and the prolongated solution @ it holds

12 — unllgr@n) < Chllfllz2e)-
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4 Second order systems

Let us next consider the case where the state problem is a system like the elasticity

problem or the (Navier) Stokes equations. It turns out that the question of continuous

dependence on geometry is more delicate in this case. To illustrate this we shall

consider a model problem in elasticity with several different boundary conditions.
Let us write the problem in abstract setting as

a(u,¢) =F(¢) VpeV. (12)
Here
V={pe(HQ))|¢=00nTy, ¢-n=0o0nT}.
The bilinear form ¢ is defined as
o) = [ (e (9)
where
«(8) = 5(D¢+ D9)
and the stress tensor o is defined as

O'ij (U) = C’ijklek, (U) B

Above and in the sequel we use the standard convention of summation over repeated
indices. The fourth order tensor of elastic coefficients, C, satisfies the standard sym-
metry conditions

Cijrr = Chimt = Chuij (13)
and the coercivity condition
Cijrrbije > cijbs; (14)

for some ¢ > 0 and for all symmetric second order tensors . Finally, the data F is
given by

F(¢)=/in¢i+/rzgi¢i

for some f € (L?(D)), g € (L*(D))¢. The boundary of Q is decomposed as 99 =
ToUT, UTy If |Tgl¢_1 > O the problem (12) is coercive and, consequently, its
solvability is obvious.

Let us now address the question of continuous dependence on geometry. As in
the previous section we start by stating a shape differentiability result. First we
formulate sufficient conditions for shape differentiability
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e The velocity field V € C?(D) with V =0 on Ty n Ty, Ton Ty, Ty N Ty
o f€(C'D)), g€ (CHD)), C e (CHD))*
e Du-V e (HY(Q))%

Under these conditions the solution of (12) is shape differentiable to direction V' and
the shape derivative u’ solves the problem

Vo =0 in Q, (15)
u = =V, n)a , on Iy, (16)
w-n = u,-(DV'-n), onTy, (a7
o), = (V,n)fr, on I'y, (18)
o (19)

yon = (V,n)(f+Hg) - Vr-({(V,n)o,), onTs.
(

Here 0, =0 -n— (0 -n-n)n and u,, fr denote the tangential components of » and
f respectively. For the proof see, [5], theorem 3.11.
If T'; = 0 we can extend the above results for Wh* velocity fields as well.

Theorem 4.1. Let Ty = 0, V € Wb°(D), V = 0 on T N T2 Then if u and ug
belong to H%2, f € H'(Q) and g € H'(Q) and @ is an HY? estension of u to D, it
holds

1/2 1/2
llug — @l < CHIVIE2IVIY

If I'; is present, we can not obtain shape differentiability in H* for W velocity
fields. This follows directly from the fact that

W =u, - (DVT -n)

does not belong to H/?(T';) anymore if V has only the W™ regularity.
This result implies that the finite element approximation of this problem has to
be made more carefully than just by approximating the domain by a polyhedric one.

5 A fourth order model problem

In this section we consider the continuous dependence on geometry for higher order
problems. As a model example we take the linear Kirchhoff plate. Thus, let w €
H*(Q) be the transversal deflection of the plate 2 C R?, which satisfies the equation

(bijrw )i = f €N

with the boundary conditions

Q
&

w = 0, — =0 on Iy,
on
w = 0, M, =0 on I'y,
M, 0, Q=0 on I'y,
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where 0Q = To U U TS,
My, = Mijnin;

with M;; = bijw g1, denotes the moment and

0
= =My n, — — (Mg
Q kL 1TV 6T( kITUT)
is the shear force. The coefficient tensor b € R%' satisfies the standard symmetry and
coercivity conditions analogous to (13) and (14).
The corresponding weak form can be written as

a(w, §) = F(¢) VoeV,weV (20)
where
2 o¢
V={¢€H(Q)|¢=OOHF0UF1,EL‘ZOOHP0} (21)
and

a(w,¢) = ‘/Qbijkl'w,ij¢,kla
r@) = | fo.

If Ty # O the solvability is guaranteed for all f € V'.

Next we state without proof a shape differentiability result from [5]: If the data
(£2,b, f), the deformation velocity V' and the solution w are smooth enough, then the
solution w is shape differentiable to direction V' and the shape derivative w' is the
unique solution of the problem

(Bijlwiyy)s = 0 in Q,
! 8'(1), 8211)

w = 0, %=<V,n)w on [y,
ow
w = —(‘/, n)gﬁ on ].-\1,
M, = Vr{{(Vin)My,,)+Vr((V,n)M;)-n onT;UT,,
QI = _VF : (VF . (<V7 n>M‘r)'r) + <V7 n)f on F2,
where
M, = bjnwiyning,

(M'r)ij = Mij—Mnninj.

As before we shall use the equation for the shape derivative to get error estimates
for the solution under perturbation of the geometry. First we notice that conforming
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approximation of fourth order problems requires the use of C*-elements. Hence, if we
use similar approximation for the geometry as well, we are lead to study deformation
velocities in W2, In this case we can show that the leading term in the difference
between w;, solution in the perturbed domain, and @, H%-extension of w to €, is
tw'. Hence, to estimate the error due to change of domain, it is sufficient to get a
bound for w'.

Now, to get an estimate for w' in H2(Q) we have to bound w' in H3/2(Ty U T),
%' in HY2(Ty), M, in H~Y3(T1 UTy) and Q' in H~%?(T,). For w’ we have

1/2

1/2 1/2 1/2
[w'llsjary < w12 '35, < CIVIVZIVIY, n

||2 ISE
Similarly, for the other terms

< CIVIAIVINE 2 &

on2 ”1F1a

1ML -1ja,rs0r; < CIVIZZIVIEE
and
1@ l|=s/2ms < CIIVIZZIVIFZIMI1r, + ClIV | 2o lf |12

Thus summarizing the above estimates we get
1/2 1/2 1/2 1/2
lwllze < CIVILEIVIZIwliza + CIV Iz e IV IEGn w2
+C|[Vilze | fll-1/2,0-

Now, if Q, is an approximation of § resulting from C" cubic spline approximation
of the boundary 6Q and if Q is a C*-surface we have that | — Q4| = O(h*) and that
), can be obtained as the image of a W2* deformation map T, = I + hV, where
IV |l2=k 00 < ChI**, k= 0,1,2. This results further to the estimate

lwn = Bllo0 % hllw'laa < OB
in the general case and to
lwn — |20 < OB/

in the case where I'; = ). One observes thus that the solution is more sensitive
to approximation of I'; than to approximation of other boundaries. In both cases,
however, the geometric error is asymptotically smaller than the O(h?) error related
to finite element approximation by C*-elements.

In the case of polyhedral approximation of {2 one observes a situation analogous to
the elasticity case. For V € W the problem for w' admits a solution only if I'; = 0.
However, unlike in the case of second order problems we can not deduce continuous
dependence on geometry from this result as the proof of shape differentiability and
hence the derivation of the corresponding problem requires higher derivatives of the
deformation velocity. In the case where I'; is present, the solution is not continuous
with respect to polyhedral approximation of the geometry. This is demonstrated in
the classical counter-example of [1], the so-called Babuska’s plate paradox.
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ABSTRACT

So called conjoint interpolation for expressing the final smoothed derivatives is ap-
plied in connection with two novel patch recovery methods. A numerical comparison
is made between this interpolation technique and standard C°-continuous finite ele-
ment interpolation, which has been applied in connection with these patch recovery
methods earlier. The new technique seems to give better results.

1. INTRODUCTION

Patch recovery methods [1)-[7] combined with so called Zienkiewicz—Zhu error esti-
mate [8] have proved out to be efficient tools for a posteriori error analysis of finite
element results.

Two different techniques of expressing the final smoothed derivative quantities (such
as fluxes or stresses) have been used in connection with existing patch recovery meth-
ods. The first technique uses standard C%-continuous finite element approximation,
whose nodal values are obtained using patch by patch extrapolation to the nodes
and averaging. This technique has been proposed and explained in some detail in
reference [1]. It has also been used in references [2],[4]-[7]. The second technique
uses so called conjoint interpolation and has been proposed in reference [3].

The purpose of this paper is to combine the conjoint interpolation technique of ref-
erence [3] with two novel patch recovery methods [5]-[7] developed by the authors.
This paper also compares numerical results obtained using this second interpolation
technique with earlier results of the first interpolation technique. Typical diffusion
and plane elasticity problems are considered as numerical examples.
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2. TWO PATCH RECOVERY METHODS

This chapter introduces two novel patch recovery methods. The speciality of these
methods is how they use information from the original boundary value problem to
improve the quality of the recovered solution. Information from the field equations
is included in advance to the local polynomial representation of the basic unknown
functions, which is used within the recovery patch. The unknown parameters of this
polynomial are obtained by least squares fitting at the nodes of the patch. In patches,
whose assembly nodes are located on the boundary of the domain, information from
the boundary conditions cause additional constraint equations between the unknown
parameters. These constraint equations are included into the least squares fitting
procedure using Lagrange multipliers. These two patch recovery methods have many
common features, but they differ in the way how the constraint equations from the
field equations and boundary conditions are formed.

2.1 Local polynomial representation with ”built-in” field equations

Consider a boundary value problem in two dimensions governed by n second order
linear partial differential equations

o%u 0%u u
f p—t — —— ———
R (w) =Aze Ox? T 24y dxdy T Ay 0y? (1)
ou du .
+Aa;5; +Ay@ +Au+f— 0 in Q,
where u(z,y) is n X 1 vector of unknown functions, Az (z, y),--.,Az,y) aten X n

matrices and f(z,y) is n X 1 vector of known functions.

Let us represent the unknown u(z,y) locally within the recovery patch using a com-
plete polynomial of degree p as

P i
a(, p) = Z E XN agg, (2)
i=0 j=0
where u;; are n x 1 vectors of unknown parameters,

T — T _Y—%

are dimensionless coordinates, g and yo are coordinates of the patch assembly node
and h is a charcteristic length of the patch. The dimensionless coordinates A and x4
have been adopted here in order to shorten the notation of the paper and to keep the
parameters u;; dimensionally homogeneous. A suitable value of the length h is

h= %[(xmax . wmiu)(ymax - ymin)]%7 (4)



323

where Tmax, Lmin; Ymax a0d Ymin aTe maximum and minimum values of the coordi-
nates of the nodes of the patch considered. Equation (2) can also be expressed in
matrix form as

(), p) =PP(A p) U7, (5)
where
P? = [I,AL pI, AL Al p%1, ..., AP, N—Lul L AP P (6)
and r
U? = [“(1;0’“{0, “Firvu%’o’“ghugm - a“§0=“$1’ S 7u;l;(p—1)’ u;I;p] . ()

To form constraint equations between the parameters U?, we demand that the right-
hand-side (residual) R (u) of the field equation (1), with u = @, should approx-
imarely vanish. This can be done using (i) power series method or (i) weighted
residual method. These methods are briefly described in the following.

(i) Power series method: We construct a complete polynomial representation

p—2 i

RI(p) =)D N IR ®)

=0 §=0

of degree p — 2 of the residual RS (z,y). Based on two dimensional Taylor expansion
of the function RS (z,y), the corresponding coefficients can be obtained from

h RS
R = — :
15 (’L — _']) '.7‘ 8x’-38yﬂ (wO, yO) (9)
With the help of equations (9), using rules of differentiation and using further equa-
tion . .
S h d'a
T (i 5)lg! Oz Iy

((L‘o, yO)a (10)

which holds for the unknown parameters u;, the coefficients Rfj of the residual can

be expressed as (linear) functions 'R{j(Up) of the unknown parameters UP. (More
details of this procedure is given in references [5] and [6]). Demanding that the
polynomial representation (8) should vanish with all values of  and y (or A and p)
results to linear equations ‘R{j(UP) =0(j=0,...,4, i=0,...,p—2), which can be
expressed in matrix form as

c/ur+df =o0. (11)
(ii) Weighted residual method: We write weighted residual equations of form
Pr-2TRY (i)d2 =0, (12)
Q.

where the integration domain Q* is simply zo—h < © < wo+h and yo—h <y < yo+h
and it is demonstrated in Fig. 1. The number of weighted residual equations (12)
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Fig. 1: Domain Q* of integration.

has been chosen to be n(p — 1)p/2, which is exactly equal to the number of similar
equations in the power series method. Equations (12) can be easily reduced to

cfur+df =o. (13)
(More details of this procedure is given in reference [7]).

Equations (11) or (13) are n(p —1)p/2 linear constraint equations between the n(p+
1)(p + 2)/2 unknown parameters U? . They demand that the representation (2) or
(5) satisfies the field equation (1) in an average sense. It is thus possible to choose
n(p +1)(p +2)/2 — n(p — 1)p/2 = n(2p + 1) of these parameters as independent
parameters

al = [af,...,ang]T. (14)

It is reasonable to do the choice of these independent (rn X 1 vectors of) parameters
a; so that first a; = ugo and then corresponding to each degree 7 (> 1) independent
parameters ag; and ag;4+1 are equal to two of the original parameters u;p, ..., ;.
By substituting the independent parameters af into the constraint equations (11) or
(13) we get

CUP + Cyaf + df = 0, (15)

where UP is vector of the remaining dependent parameters u;;, Cr and Cy; are
matrices containing those columns of matrix Cf, which correspond to UP and a?,
respectively. Solving equation (15) for UP? results to

Ur =Sa* + T, (16)

where

§=-C;'Cy, T=-Cr'dl. (17)
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The chosen relations between the dependent and independent parameters together
with equations (16) can be written as

U?P =Saf 4+ T. (18)
These equations express the original unknown parameters U? in terms of the new
independent parameters a’.

Substituting the result (18) into the original polynomial representation (5) finally
gives
ﬁ()‘i p) = NP(A, /‘L)ap + ug(’\7 ”)a (19)

where

NP\ p) = PP\, p)S,  uf(h,p) =PP(A\u)T. (20)
Equation (19) is local polynomial representation of the unknown function u(x,y),
which contains ”built-in” approximate solution of the field equations (1). The degree
of this representation is p and the number of unknown parameters a is n(2p+1). Cor-
responding polynomial representation for the derivative quantities v(z,y) = Vu(z,y)
is obtained straightforwardly and is

;/()‘a lu’) =B? ()‘7 iu’)ap I 7(1),()" y’)? (2]-)

where

BP(\, p) = VNP(A, ), Y5 (A1) = Vg (X, ). (22)
The degree of this representation is p — 1.

2.2 Constraint equations based on boundary conditions

The n boundary conditions of our second order boundary value problem are expressed
as

ou ou
b —
where B.(s), .. ., B(s) are nxn matrices and g(s) is nx 1 vector of known functions.

We want to form constraint equations between the parameters U? by demanding that
the right-hand-side (residual) RY(u) of the boundary conditions (23), with u = @,
should approximately vanish. This is done by using either (i) power series method
or (ii) weighted residual method.

(i) Power series method: We construct polynomial representation

P
RYo) =) _o'RI, (24)
=0
of degree p in the boundary coordinate s for the residual of the boundary conditions.
In equation (24)
88— 80

g=— (25)
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is corresponding dimensionless coordinate and sp is the coordinate s of the patch
assembly point. Based on one dimensional Taylor expansion of function RY(s), the
corresponding coefficients can be obtained from

ht d'R®
R} = ﬁ'@'(SO)- (26)

With the help of equation (26), using the chain rule and other rules of differentia-
tion and using further equation (10), the coefficients of the residual can be expressed
as (linear) functions RY(UP) of the unknown parameters U?. (More details of this
procedure is given references [5] and [6].) Demanding that the polynomial represen-
tation (24) should vanish with all values of s (or o) results to n(p + 1) equations
RY(UP) =0, i =0,...,p, which can be written in matrix form as

C’U? +d°=0. (27)
(ii) Weighted residual method: We write weighted residual equations of form

[ @rRH@ar =0, (28)

where
Q? =[I,01,07%1,...,071]. (29)

The integration domain I'* on the boundary curve is simply so —h < s < so+h and
it is demonstrated in Fig. 2. The number of weighted residual equations (29) has
been chosen to be n(p+1). This is exactly equal to the number of similar equations
in the power series method. Equations (28) can be easily reduced to

Fig. 2: Domain I'™* of integration.

C*UP +d° =0. (30)

(More details of this procedure is given in reference [7].)
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Equations (27) or (30) are n(p + 1) linear constraint equations between the n(p +
1)(p + 2)/2 unknown parameters UP, which demand that the representation (2) or
(5) should satisfy the boundary conditions (23) in an average sense. These equations
are additional constraint equations (in addition to equations (11) or (13)) between
the original parameters U?, which should hold, if the patch assembly node is on the
boundary of the domain. The corresponding equations between the new parameters
aP are obtained with the help of equation (18) and they can be written as

Ca?+d=0, (31)

where

C=c’s, d=d"+C°T. (32)

2.3 Least squares fitting in a recovery patch

The unknown parameters a? (of the patch under consideration) are obtained by least
squares fitting of the polynomial representation @1(z,y) to the corresponding nodal
values u; of the original finite element solution at the nodes of the patch. The
corresponding least squares function is thus

1= 3 (o, ) — il [ v0) - (33)

If the patch assembly node is on the boundary of the domain, this least squares
function is modified to

=Y fia(zs, 1) — wil [(es, %) — vl + (A7 (Ca? +d), (34)
where ) is vector of corresponding Lagrange multipliers.

3. FINAL INTERPOLATION OF THE DERIVATIVES

Our purpose is to find an interpolation formula for getting representative values of the
derivative quantities 7 at certain point (§,7) within an element of the finite element
grid. Typically such points are the integration points. There are two possibilities
to perform this final interpolation after the parameters aP corresponding to each
recovery patch have been solved.

3.1 C%—continuous finite element interpolation

In the first procedure the derivative quantities 7y are first extrapolated patch by
patch to appropriate system nodes using the representation (21). Unique system
nodal values ~y; are then calculated by averaging these values at the system nodes.
Finally local finite element approximation

Sem) =3 Nie e (35)

i=1
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7 discontinuous

Fig. 4: Two triangular elements in a corner of the domain.

is used, where N;(£,n) are the element shape functions, which were used to approx-
imate the basic unknown function u(z,y) in the original finite element analysis, «f
are element nodal values corresponding to the system nodal values -; and m is the
number of element nodes. (More details of this procedure are given in reference [1].)

3.2 Conjoint interpolation

The second procedure is explained here in more detail. To do this the polynomial
representation (21) of the derivatives vy(x,y) corresponding to recovery patch ¢ is
here expressed as

(N, ) = BI (N, pi)al + (X, ), (36)

where ) )
;_ T3y Y~
A= e p= o (37)
The superscript p referring to polynomial degree has been dropped out and the
superscript ¢ referring to the patch under consideration has been added.

Consider an isoparametric triangular or quadrilateral finite element, whose each cor-
ner node 7 is a patch assembly node (see Fig. 3a). The geometrical mapping of the
element is
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m

L= ZN:i(gan)xb y= ZN_’I'(£7 Tl)yj, (38)

j:l '=1

where z; and y; are the coordinates of the element nodes. The interpolation formula
we are looking for should weight the the derivatives 4* of each patch corresponding
to the corner nodes 7 of the element suitably. A rather natural choise could be to use
the shape functions of the corner nodes as weighting functions. The interpolation
formula is thus

J(&m) = ZN (EmA (X, 1), (39)

where N*(£,m) are the shape functions of linear triangle or bilinear quadrilateral,
respectively, and m* is the number of corner nodes of the element, (3 for triangles and 4
for quadrilaterals). Equations (36)-(39) can be used to perform conjoint interpolation
of reference [3].

The calculation process could be as follows: (i) Physical coordinates = and y cor-
responding to the natural coordinates £ and 7 are evaluated using equations (38).
(ii) Patch coordinates A* and p* corresponding « and y are evaluated using equations
(37). (iii) The patchwise derivatives ¥* are obtained using equation (36). (iv) The
final interpolated derivative 4 is obtained using equation (39).

A patch recovery node at the corner of the boundary of the domain is rather com-
plicated to handle even though a singularity of the solution does not exist (see [6]).
Therefore a good engineering solution could be to leave the corners of the domain
without patch recovery nodes and we are going to do so in this paper. Consequently
we have to be able to interpolate within an element, whose one corner node k is not
a patch assembly node (see Fig. 3b). One possibility is to use instead of equation
(39) the formula

HEm) = Z[N*(g, N MIF N ). (40)

.;ek

At the corner node k this interpolation gives

:7(£ka"7k) . Y ( i:a“‘lic)’ (41)

which is the mean value of the corresponding patch approximations. This seems
at first glance, to be quite acceptable. There is, however, a small limitation: If two
elements are connected to a corner node, which is not a patch assembly node (see Fig.
4), the approximation 7 on the boundary of these two elements is not continuous. In
spite of a better idea we, however, accept formula (40).
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4. NUMERICAL EXAMPLES

4.1 Example problems and typical grids

Two example problems with known, nonpolynomial, analytical solutions were used
to demonstrate the presented methods:

Fig. 5: Problem A.

Q
8
A e O o s
TR
8Q

Fig. 6: Problem B.

Problem A: Potential flow around a circular cylinder. Figure 5 shows the
domain and demonstrates the problem. It is governed by equation (1) with n = 1,
u=9¢ A=Ay =1 Ay =A; = Ay = A =0, and f = 0, where ¢ is the
unknown potential.

Problem B: Stretching of an infinite plate with a circular hole. Figure 6
shows the domain and demonstrates the problem. It is governed by equation (1) with



331

Ju G [ng+1 O G o1
u_{v}n Aza:—n_1|: 0 n_l:ly Azy_'f]—ll:l 0]’

_ G In-1 0 | fe
=210 ) {7

and A, = A, = A =0, where u and v are the unknown displacements, G is shear
modulus, 7 = (3 — v)/(1 +v), v is Poisson’s ratio and fr and f, are volume forces.
Here f, = f, = 0 and thus f = 0.

(43)

Figure 7 shows typical finite element grids (h/a = 0.5) used in experimental conver-
gence study of the two example problems.

(a) (b)

(e) (d)

-

a h a h
Fig. 7: Typical grids of (a) linear triangles, (b) bilinear quadrilaterals,
(c) quadratic triangles and (d) quadratic Serendip quadrilaterals.

4.2 Numerical results

Figs. 8-11 present experimental convergence study of the relative error in energy (mE)
of the two example problems A and B. Four different element types: linear triangles,
bilinear quadrilaterals, quadratic triangles and quadratic Serendip quadrilaterals were
used in the analysis. Each of the figures show error of the smoothed solution obtained
with either of the two patch recovery methods of this paper using C%-continuous finite
element interpolation (FEI) and conjoint interpolation (COI). Error of the smoothed
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Fig. 8: Results of problem A using power series method:
(a) linear triangles (p = 2), (b) bilinear quadrilaterals (p = 3),
(c) quadratic triangles (p = 4) and (d) quadratic quadrilaterals (p = 5).
(a) (b) (c) (d)
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Fig. 9: Results of problem A using weighted residual method:
(a) linear triangles (p = 2), (b) bilinear quadrilaterals (p = 3),
(¢) quadratic triangles (p = 4) and (d) quadratic quadrilaterals (p = 5).
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(a) (b) (e) ()
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Fig. 10: Results of problem B using power series method:
(a) linear triangles (p = 2), (b) bilinear quadrilaterals (p = 3),
(¢) quadratic triangles (p = 4) and (d) quadratic quadrilaterals (p = 5).
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Fig. 11: Results of problem B using weighted residual method:
(a) linear triangles (p = 2), (b) bilinear quadrilaterals (p = 3),
(¢) quadratic triangles (p = 4) and (d) quadratic quadrilaterals (p = 5).
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Table 1: Effectivity indices § with coarse grid (h/a = 0.5); problem A.

Element SPR Power series: Weighted residuals:
type Ref. [1] FEI COI FEI COI
Linear

triangles 1.06 1.16 1.0 1.05 1.01
Bilinear

quadrilaterals 1.26 1.11 1.10 1.10 1.18
Quadratic

triangles 1.95 1.23 1.21 1.27 1.20
Quadratic

quadrilaterals  1.86 1.18 1.04 1.61 1.06

Table 2: Effectivity indices  with dense grid (h/a = 0.0625); problem A.

Element SPR  Power series: Weighted residuals:
type Ref. (1} FEI COI FEI (6{0))]
Linear

triangles 0.994 1.004 0.999 1.002 0.998
Bilinear

quadrilaterals 0.991 1.002 1.000 1.002 1.000
Quadratic

triangles 0.989 1.001 0.998 1.001 0.998
Quadratic

quadrilaterals 1.015 1.004 1.003 1.000 1.003

solution obtained with the superconvergent patch recovery (SPR) method of refer-
ence [1] and error of the original finite element solution (OFE) are also shown for
comparison. Results of problem A obtained using patch recovery based on power
series method and weighted residual method are shown in Figs. &8 and 9, respectively.
Results of problem B obtained using patch recovery based on power series method
and weighted residual method are shown in Figs. 10 and 11, respectively. Both patch
recovery methods of this paper give clearly better smoothed solution than supercon-
vergent patch recovery method (SPR) of reference [1]. Conjoint interpolation (COI)
gives better smoothed solution than finite element interpolation (FEI), but the rate of
convergence in connection with bilinear and quadratic quadrilaterals slightly reduces
with dense grids.
Tables 1-4 show a comparison of the effectivity indices

esti

=2, (44)
nE

where ng is relative error in energy and ng® is the corresponding Zienkiewicz-Zhu
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Table 3: Effectivity indices # with coarse grid (h/a = 0.5); problem B.

Element SPR  Power series: Weighted residuals:
type Ref. [1] FEI COI FEI CO1
Linear

triangles 0.93 141 1.14 1.28 1.07
Bilinear

quadrilaterals  0.96 1.36 1.07 1.32 1.11
Quadratic

triangles 1.93 1.33 1.26 1.33 1.23
Quadratic

quadrilaterals  1.50 1.38 1.18 1.42 1.40

Table 4: Effectivity indices § with dense grid (h/a = 0.0625); problem B.

Element SPR  Power series: Weighted residuals:
type Ref. [1] FEI COI FEI COI
Linear

triangles 0971 1.017 1.000 1.011 0.996
Bilinear

quadrilaterals 0.977 1.006 0.999  1.005 0.999
Quadratic

triangles 0.952 0.999 0.986 0.999 0.987
Quadratic

quadrilaterals 1.010 1.007 1.003  1.006 1.000

[8] estimate, obtained for the two example problems A and B. Tables 1 and 2 show
the results of problem A using coarse (h/a = 0.5) and dense (h/a = 0.0625) grids,
respectively. Tables 3 and 4 show the results of problem B using coarse (h/a = 0.5)
and dense (h/a = 0.0625) grids, respectively. Both patch recovery methods of this
paper give clearly better error estimates than superconvergent patch recovery method
(SPR) of reference [1]. Conjoint interpolation (COI) gives better error estimates than
finite element interpolation (FEI) especially with coarse grid.

5. CONCLUSIONS

The purpose of this paper was to introduce two novel patch recovery methods [4]-
[7] and to combine them to a new final interpolation technique of the derivative
quantities, so called conjoint interpolation [3].

The obtained numerical results show, that this new interpolation technique works well
and improves the results of these two patch recovery methods compared to standard
CP-continuous finite element interpolation, which has been applied in connection
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with these patch recovery methods earlier, especially with coarse grids.
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ABSTRACT

Conventional finite element solution method for 3D elastostatic problems starts from
Navier's equation and uses Galerkin method for building of discretized equilibrium
equations. This procedure leads to same computational code as minimization of total
potential energy or use of principle of virtual work. In this paper, the problem is
reformulated using Papkovich-Neuber-solution, in which the Navier's equation is
substituted by Poisson equations. By considering two computationally most demanding
phases of numerical solution, namely numerical integration of elemental stiffness matrices
and triangulation of global stiffness matrix, it is shown that the proposed procedure is
potentionally 5 to 25 times faster than conventional method. It is also shown that the
amount of memory needed to store the global stiffness matrix is reduced by almost 90%.
Because the standard Galerkin method leads to problems at boundary, solution procedure is
formulated using least squares method.

INTRODUCTION

Computational speed is a desired property of numerical solution of partial differential
equations. In elastostatics, the tendency of creating FE-model from geometrical model
increases the size of FE-model considerably compared to situation, where FE-model is
created from scratch. Also the use of shape optimization procedures leads to excessive
number of analyses, and thus the analysis speed tends to be a limiting factor in the practical
use of these methods.

When using conventional FE-procedures to solve governing equation of displacements,
the matrix product

[NT[E]N] (D)

needs to be evaluated at each integration point of an element, where matrices [N] and [E]
in 3D-situation are of the form



N, O 0 I-v v 0 00
0 N, O v o 1-v 0 0 0
0 0 N; v 1% 1-v 0 0 O
[Bl=|y.  » (l)’Z [EI=El v o o 7% 0 0
Ly 6Lx v
0 N N, 0 0 0 0V O
[N, O N, | 0 0 0 0 0 V|
- E _
E=—x+—7—, v=1(1-2v 2
(1+v)(1-2v) 2(1-2V) @

Taking the special structure of these matrices in to account, it can be shown that matrix
product (1) needs approximately 13n3 flops, where n, is the number of nodes in element,
and 1 flop is either addition/subtraction or multiplication/division [22].

When solving one Poisson equation using conventional FEM, the matrix product

[N[N] 3)

needs to be evaluted at each integration point, where matrix [N] has a form

le N2,x Nn X
[N]= Nl,y N2,y Nne,y )
Nl,z N2,z Nne,z

This matrix product needs approximately %nf flops, and is thus over five times faster to

evaluate than corresponding matrix product in elastostatic problems.

The triangulation of global stiffness matrix in elastostatics needs approximately N B
flops [22], where N is the number of global DOFs and B is the bandwidth. If the same
element mesh is used to solve one Poisson equation, both the bandwidth and number of
global DOFs drops to one third, and hence in this situation the triangulation needs %N .B?

flops. Hence, triangulation of global stiffness matrix for one Poisson equation with the
same element mesh as in elastostatic problem is approximately 27 times faster.

Using the same notation as in previous paragraph, the amount of memory needed to store
the global stiffness matrix in elastostatic problem is proportional to N-B. To solve one
Poisson equation, this is reduced to %N -B. Thus, the amount of memory needed drops

almost 90 %.

It is clear that governing equation of elastostatic problem, namely Navier equation, cannot
be substituted by one Poisson equation, and hence the above conclusions needs to
reconsidered. Some aspects of this matter is slightly addressed later when the problem is
stated more clearly. The results above are very approximative, the evaluation of Jacobian
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of geometric mapping and evaluation of derivatives of shape functions are not considered.
Also, different formulations should be compared based on some well defined error-norm,
not based on same element mesh. Finally, only numerical experiments show, in what
proportions the numerical integration of elemental stiffness matrix and triangulation of
global stiffness matrix appears in total computation time.

The displacement field u of linear, materially isotropic and homogeneous, elastostatic
problem is governed by Navier's equation {21, 23]

(A+p)V(V-u)+uV?a+£f=0 5)

where A and p are Lame’s contants and f is the body force density. The solution to
Navier equation is known to exist and is unique when global rigid body displacement is not
possible [21]. In this paper, the region occupied by elastic material is denoted as D and
boundary of D is denoted as T.

Using the definition of vector Laplacian

VZu=V(V-u)-Vx(Vxu) (6)
it is possible to write Navier's equation in the forms

(A+2u)V(V-u)— uVx(Vxu)+f=0 (7a)
(A+2u)V2u+ A+ p)Vx(Vxu)+£f=0 (Tb)

From equations (5) and (7b) it is seen, that Navier's equation is almost vector Poisson
equation, the only difference being either the term V(V-u) or Vx(V xu).

There are several possibilities to substitute Navier equation (5) by several Poisson
equations (or vector Poisson equation). Among these, the displacement field u can be
decomposed to irrotational and solenoidal components [24, 25], which are governed by
vector Poisson equations, the displacement field can be represented by scalar and vector
potentials [24, 25], which in tumn are governed by Poisson and vector Poisson equations, or
new representations of the displacement field can be defined in a suitable manner to reach
vector Poisson equation for unknown vector field, as in Betti's method [20]. All of these
methods seems to be inconvinient considering numerical solution. For this reason, the
Papkovich-Neuber-formulation is considered in this paper.

GALERKIN VECTOR AND PAPKOVICH-NEUBER FORMULATION

It is natural to examine representations in which the displacement field is built up from
second derivatives of a potential function. The most general such a form is found to be

u= [cV2 -V(V .)]F 8)
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where ¢ is an arbitrary constant which will be assigned so as to simplify the representation.
Substituting representation (8) to Navier equation (5) and realizing that

v[v- (V2F)] = V{V.[V(V-F)]} = V2[V(V-F)] ©)
and setting
_A+2p
c——;“_# =2(1-v) (10)
yields
2(1=v)uV*F = —f (11)

The vector F is known as Galerkin vector. Its use in numerical solution is inconvenient

because of biharmonic operator V* and because it is not unique [21, 23].
Papkovich [1, 2] and Neuber [3] independly defined an auxliary vector

y=—1V?F (12)

which is governed by

V?w——l—f (13)

N 4(1-v)u

as can be seen from equations (11) and (12). When it is noted that

1
V2(r-y)=2V-y+————r-f 14
(r-w) Voo (14)
and from definition (12)
V-y=-1V*(V-F) (15)
it is clear that
1
V(r-y+V - F)=—-—rf 16
R (T e
Now, an auxliary function 8 is defined by
2 1
Vo= )]

- rf
4(1—V)ur
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so that finally

V3(r-y+V-F+8)=0 (18)
This shows that

~V-F=r-y+¢'+6 (19)

where scalar field ¢’ is harmonic, i.e. V3¢’ =0. Combining ¢’ and 8 by ¢ =¢’+8 leads
to Poisson equation

1

Vi =

for scalar field ¢.

Substituting V2F from (12) and -V -F from (19) to Galerkin vector representation (8)
leads to displacement formula

u=—4(1-v)y+V(r-y+9¢) (21

and governing equations for unknown functions are (13) and (20). In this paper, the
unknown functions ¥ and ¢ are called Papkovich-Neuber-potentials.

COMPLETENESS, EXISTENCE AND UNIQUENESS
OF PAPKOVICH-NEUBER-POTENTIALS

There are four unknown functions, namely ¢ and three components of Y. Because
naturally there arise only three boundary conditions at each point of the boundary, there

have to be an additional equation constraining the four unknowns or possibly one
additional boundary condition. Looking for fourth equation, ¥ is expressed as

y=-1VF=-1V(V-F)+1Vx(VxF) (22)

Now, Vx(V(V-F))=0 and V-(Vx(VxF))=0. Hence, equation (22) expresses Y
decomposed to irrotational and solenoidal parts

Y=V, +wsol (23)
where

Vi =—3V(V-F) Vxy,, =0 (24a)
Vo =4 VX (VXF) Vy,, =0 (24b)
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Taking the gradient of (19) with the aid of (24a) results
2y, =V(r-y+9) (25)

which is the required equation constraining the unknows. To show that this equation
indeed remove the redundancy, (25) is substituted to (21)

u=—4(1-v)y+2vy,, (26)

where scalar field ¢ is eliminated. Thus, at the boundary the Papkovich-Neuber vector y
have to be decomposed to irrotational and solenoidal components in order to represent the
boundary conditions, which is inconvinient in numerical solution. This can be avoided, if
scalar field ¢ is substituted by scalar field

a=r-y+o¢ 27
Now, from (25) with the aid of (24b)
Vi =2V .y (28)

Equation (28) couples the unknown fields o and Wy and thus bandwidth of global stiffness
matrix is increased. Formulation with scalar field (27) is due to Freiberger [21].

The completeness of Papkovich-Neuber-formulations (21) and (26) has been proved by
Naghdi and Hsu [7] for regular, bounded and multiply connected region of space. For other
proofs of completeness and related matters, intrested reader is referred to [4-6, 8-14]. It is
clear that the excistence of Papkovich-Neuber-potentials follows from the completeness of
representations (21) and (26).

Historically, because Papkovich in his formulation includes ¢ in [1] and excludes it in [2]
and Neuber [3] claims that ¢ or any component of Y could be set to zero without violating
the completeness, many attemps has been made to show that this is possible. The results
are as follows: ¢ can be set to zero

a) if region D occupied by elastic material is star-shaped with respect to one of it's points
and 4v is not an integer [(5), 6, 10, 12, 13, 14]. If 4v is an integer, ¢ can be limited to the
set of solid harmonics of degree 4 —4v [10, 13].

b) if region D is bounded and r-convex [14].

c) if region D is unbounded and a radial line cuts boundary transversely in at most one
point [14].

d) if region D is bounded, periphractic domain between two surfaces, which are star-shaped
with respect to same point [14].

Any rectangular component of Y can be set to zero if region occupied by elastic material is
convex [6]. Additionally, if region is convex in e.g. z-direction, ¥, could be set to zero (6,
14]. Although one element is always star-shaped with respect to one of it's points or
usually convex, these results cannot be used for general region and hence in numerical
formulation of the problem.
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Considering the numerical solution, the most tempting formulation using Papkovich-

Neuber-potentials is
u=—4(1-v)y+V(r-y+¢) (29)

where
1
Viy=—->" f 30.
v -V (30a)
1
Vp=——-r-f 30b
0 4(l_v)pr (30b)

Now, an attempt is made to add one boundary condition to the problem so that
representation (29) is also unique. First, the null displacement field w, =0 is sought using

(29). For this field
uy =—4(1-vV)yo +V(r-yo+0,)=0 31

where y and @ are harmonic, i.e. V2\|10 =0 and V2¢0 =0. Taking the divergence and

rotor of equation (31) leads to

Vy,=0 (32a)

Vxyy=0 (32b)

Equation (32b) guarantees the existence of scalar potential @,
Y=V, (33)
and equation (32a) leads now to
Vid,=0 (34)
Null displacement field (31) is now represented as
ug =V(r-Vd, —4(1-v)D +¢,) =0 (35)
This shows that
(36)

¢0 =4(1—V)¢0—T‘V¢0 +C0
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where ¢, is constant. According to equation (36), because scalar potential @ exists also
Papkovich-Neuber-potential ¢, exists. To sum up, the general null displacement field can
be represented by

Yo =V, (37a)
0o =4(1-v)®y—r-Vd; +c, (37b)
Vid, =0 (37¢)

Next, it is assumed, that some complete representation
u=—4(1—v)1|;1+V(r~1|!1+¢1) (38)

can be found for a problem at hand. It is possible to add null displacement field to (38), i.e.
Papkovich-Neuber-potentials

Y=y, +V¢)0 (393)
o=0¢, +4(1-v)@y—1-VO; +¢ (39b)

represents the same displacement field as (38). Defining boundary conditions for scalar
potential @ fixes y and ¢, and representation (39) is still complete. Now, the question

arises, it is possible to define such boudary conditions for ® so as to render representation

(39) also unique?
Indeed, this is possible, as Stippes [10] has shown. The most convinient method in
numerical solution is to force r-y +¢ to be zero at boundary. It is only needed to show

that this is possible by defining suitable boundary conditions for ®. From (39)
ry+o=r-y,;+¢, +41-v)®y+cy=0onT (40)

and defining ¢ =0 and
41-v)®y=-r-y;—¢;on T 41)

the scalar potential @ is fixed. Thus, representation (29) or (39) with r-y+¢=0 at

boundary is complete.
It is simple mater to show that representation (29) or (39) with r-y +¢ =0 at boundary is

unique, if the null displacement field uy =0 can be produced if and only if Yy, =10 and
0o =0, where Papkovich-Neuber-potentials v and ¢y fulfills the boundary condition
r-y,+0¢, =0 at boundary I'. According to (32a), V-y, =0 on D. But (14) shows that

V3(r-ywy+00)=2V-yy=0o0onD (42)
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Because r-y,+¢,=0 also at boundary, it must zero everywhere. Then (31) leads to
—4(1-v)y, =0 on D, and hence Yy, =0, ¢, =0.

EXPRESSIONS FOR DISPLACEMENTS, STRAINS AND STRESSES
IN CARTESIAN ORTHOGONAL COORDINATE SYSTEM

In order to represent the boundary conditions arising from elastostatics, displacements and
stresses needs to be expressed using Papkovich-Neuber-potentials. In Cartesian orthogonal
coordinate system, the displacement components are

Uy _—(3 4V)V/x+xv,xx+y‘//yx+z‘1/zx+¢’x
u (3 4V)Wy+xv/xy+yWyy+zwzy+¢’y
u, =—B—4VIY +XW, IV, 2 0., 43)

The strains are

. _2(1 - ZV)Wx,x FXY o TV g t2Y, o T 0 xx
£y, ==2(1=2V)yy , + XV, 0, + IV, + 2V 3y 00y,
=2(1-2V)W,  + XV, + YV T2V 1 0y

[ (1~ 2V) ny+V/yx)+xWxxy+yWyxy+szxy+¢,xy]
[ (1- 2V) V’yz+‘//zy)+x"”xyz+ywyyz+z‘/’zyz+¢’)'z]
[ (1- 2V) l:V;u:z""//z,\r)"')“//xxz"'y!//yxz"’z'f/zxz"'(p’xz] 44

II II
N N l\)

and the stresses are

E
o, = m[—2(vV -y +(1—2V)'lfx,x)+ XY o F IV T2 o +¢,xx]

E
oy =1 [—2(VV-W H(L=2V)Y ) )+ XY 4+ YWy + 2V +¢,yy]

E
o, = m[—2(vV SUET(EAY | B2 VS S NS S 47 +¢,u]

Txy = %[—(1 . ZV)(Wx,y + V/y,x) + xWx,xy + yu/y,xy + le,z,xy + ¢’xy]

E
T =Ty [—(1—2v)(wy,z Y ) F XY oy H IV H Ty iy

E
Tx = m[_(l i ZV)(Wx,z + l/’z,x) bl £77 + yWy,xz +ZV,x + ¢’xz

(45)
In the expressions for normal stresses, the governing equations (13) and (20) has been
used.
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NUMERICAL SOLUTION WITH FEM

As is shown above, the displacement field of linear, materially isotropic and homogeneous
elastostatic problem can be represented as

u=—4(1-v)y+V(r-y+¢) (46)

where Papkovich-Neuber-potentials are governed by

1

Viy = Wf onD (472)

v2¢=_mr.f onD (47b)
One boundary condition is

ry+¢=0 onT (48)

Other boundary conditions arises from elastostatics. Two types, which arises most often,
are

Type L. u=uonl;y (49a)
Type IL: t=tonTy (49b)

where =T, UTy, I, "I =&, overbar denotes prescriped function and t is traction
vector.

Some important remarks concerning the problem are as follows:

1. In order to uncouple the components of ¥ in (47a), the rectangular cartesian components
should be used.

2. It is impossible to choose such a approximation for unknown fields, that some (essential)
boundary conditions are satisfied a priori.

3. In order to get advantages of the formulation, same shape/trial functions should be used
for every unknown field inside the domain D.

4. At the boundary T, shape/trial functions can be of different type for unknown fields in
order to represent boundary conditions efficiently.

When the problem is solved using standard finite element procedure with Galerkin
method, each governing equation is multiplied by test function and integrated over region
under consideration. This procedure will lead to equations

Vzw_t Vy f.r""x

Vi, vy 1 fyvy
YV IdQ = — dQ (50)
E[ Vzw;' vz 4(I_V)#£[ fzvz

V3w —r-fw
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In order to get symmetric stiffness matrix, Green's formula is used

Vr;.rt-Vv ven-Vy —fevy
[ V“”‘ _j ALY L (AR FORE
ol V2 v.n-Vy, 41-v)u 5| —Lfv.

V¢ Vw wn-V¢ r-fw

Comparing this to expressions of displacements and stresses, it is seen that boundary
conditions do not appear in the first integral on right hand side (there are second
derivatives in stresses but not in (51), not to mention boundary condition (48)). Obviously,
there are no means by which the second derivatives of unknown fields can be incorporated
to boundary integrals. For this reason, the Galerkin method is not suitable for numerical
solution of this problem.

Because partial integration by the use of Green's formula do not produce suitable boundary
integrals, the partial integration should be avoided. One possible formulation is the least
squares method, in which the approximations of unknown fields are written as

Vo=[NJad 7, =[N Ja ) 7. =[N Ka} 6=[NoJ{a} D

where [N, ], [Ny], [N,] and [N¢] are row matrices (vectors) of global shape functions and

{a,}, {a),}, {a,} and {a¢} are column vectors of unknown nodal values. Approximations

(52) are substituted to (47) and because these approximations are not exact solutions,
residuals R,, R, R, and R are generated. These residuals are functions of unknown nodal

values. Next, a non-negative function of unknown nodal values is formed as
N 2 2 2 2
I({a1{a Mo }{a,}) =, [R2dQ+ e, [ R2dQ+ e, [ REdQ + oy [ R3d2+
Q Q Q Q

+a,j(u—ﬁ)~(u—ﬁ)d1“+a” J(t—f)-(t—f)dl‘+
Y 7

+ar [ (cy+9)°dl (53)
r

where the @;'s are suitable positive weighting coefficients. Obviously, it is rational to
choose a, =0a, =, =1. Minimization of function (53) with respect to unknown nodal

values will yield equations, from which the unknown nodal values can be solved.

It is important to note, that in order to generate nonzero residuals, at least quadratic shape
functions should be used, because governing equations (47) includes second derivatives of
unknown fields. Also, because formulation by least squares method is considerable
different from standard Galerkin method, comparison by simple flop count could be totally
misleading.
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If nodal values at boundary for each unknown field is collected to one column vector {ag}
and all unknown nodal values are collected to one column vector

{a}':[{axD}T {ayD}T {azD}T {%D}T {aB}T:|T (54)

where subscript D denotes unknown nodal values inside domain D, and the same shape
functions are used for each unknown field inside the domain D, the procedure above will
lead to symmetric positive definite stiffness matrix

[kp] [0] [0o] [0] [
] [kp] [01 [0] |
[K]=| [0] [0] [Kp] [0] [Kus] (55)
] o] [0] ou[Kp] [
|[Kxs] [K,z] [K.8] [K¢B] [Ks]

In triangulation process, the submatrix [K D] needs only be triangulated once. The number

of rows in this matrix is equal to number of inner nodes and its bandwidth is less than
bandwidth in solution of one Poisson equation in the same domain using standard Galerkin
procedure. Thus, if the proportion of number of inner nodes to number of boundary nodes
is large, the procedure should be efficient when conceming speed of solution.

However, there are still plenty of problems. Because boundary integrals in (53) contains
derivatives of unknown fields, all nodal values in elements adjacent to boundary falls in to
vector {a B}. This will signicantly decrease the efficiency of the procedure. Also, the values
of weighting coefficients should be determined in some suitable manner. Because these
same problems arises in least squares Trefftz finite element method, and because Trefftz
method offers superior accuracy, problem should be attacked by this method [15-19].

CONCLUSIONS

An alternative solution strategy for elastostatic problems was proposed. Using Papkovich-
Neuber-solution, Navier's equation was substituted by vector Poisson and Poisson
eaquation. Based on literature, the completeness of resulting representation was concluded.
Using published results, the representation was also forced unique. It was shown that
standard Galerkin and least squares finite element methods leads to some problems, and
hence it was concluded that some other numerical procedure should be used. Authors
consideres the Trefftz finite element method the most appropriate.
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FEM ANALYSIS OF A TRAVELING PAPER WEB AND SURROUNDING AIR
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ABSTRACT

The increase of running speed in paper machines and printing presses has increased the
attention received by the vibration and stability problems of the traveling paper web. The
present paper shows a new numerical model where the finite width of the paper web and the
coupling of the vibration of the web and surrounding air are taken into account. A novel
modification of Lanczos algorithm has been developed in order to improve the accuracy of the
eigenvalues obtained. Numerical results have been compared with available analytical and
experimental results in some special cases. The agreement has been good. Moreover,
parametric studies concerning the effect of some design parameters of the system have been

done.

INTRODUCTION

With the increase in speed of paper machines and printing presses, the problems associated
with the vibration and stability of paper web have received much attention. The achievable

operating speed is limited by the instability of the web, by excessive vibration amplitudes or



352

by the threshold of the formation of wrinkles. Therefore the understanding of the effects of the
various design parameters to the dynamic behaviour of the system has become more and more

important.

The present vibration problem belongs to a broader class of problems called vibration and
stability of axially moving material. Typical such systems having engineering importance are
fluid conveying pipes, traveling strings, belt drives and band saws. Recent reviews of the
research on these fields can be found from references [1] and [2]. The axially moving material
problems involve the salient feature of having three inertial terms instead of one in “usual”
vibration problems. The two additional terms are due to the convective acceleration caused by

the continuous traveling of the material in its own plane.

Because of the dimensions of the practical problem under consideration (width of the web
larger than the roll distance) one dimensional models are not adequate. Previously there have
been only a few models where the axially moving material has been described as a two
dimensional plate or membrane medium, e.g. [3] and [4]. The effect of the surrounding fluid
has, however, been neglected in the abovementioned studies. The coupling of the vibratory
motion of a submerged solid body to the surrounding fluid decreases generally the natural
frequencies and the lighter is the vibrating solid the more pronounced is this effect.
Experimental [5] and [6] analytical results obtained earlier have shown that with dimensions
typical in a pilot paper mill the first natural frequency will be overestimated by up to 400%
if the coupling is neglected. Preliminary results obtained by FEM and based on the ideal fluid
assumption [7] showed that also the geometry of the surrounding fluid field has a considerable

effect on the dynamic behaviour of the paper web.

The present study is continuation to the study described in [7]. Now, the compressibility
of the air is taken into account. A special purpose FEM program system has been developed
for the analysis [8]. It contains a modified version of the Lanczos algorithm with convergence
control and improved computational accuracy of eigenvectors. A separate post processing

program has been developed for the visualization of the computational results.
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The numerical results agree with the previously obtained analytical and experimental
results available. Parametric studies done on the effect of the geometry of the fluid domain
have, for example, revealed that the increase of the diameter of the rolls decreases the

eigenfrequencies of the web.
EQUATIONS OF MOTION

The system under consideration consists of a membrane ( width b, length a ) traveling
between two roll-supports with constant velocity v in the positive x-direction originally in the
x,y-plane subject to in-plane forces T, (x,y), T, (xy) and T, (x.y) per unit length ( assumed to
be independent of time ) and a transverse force g(x,),2) per unit area. The transverse motion
of the sheet is formulated using spatial coordinates. Thus, the kinetic energy of the portion of
the membrane between the supports is

b

2a
1 ow ow)? 2
T-;f{pp[(g“’g) +vildxdy oY,

where p, denotes the mass per unit area of the sheet. The potential energy of the membrane

between supports is

b
2a
Pw w *w
V=21 T 22 +2T + T —| dxdy .

Zf{[ xxaxz x)’axa}, )yayz g (2)

The equation of motion in the undamped case can be obtained using Hamilton ’s principle
in the same way as in a similar problem - dynamics of fluid conveying pipes. The Hamilton ’s

principle takes the familiar form

5 f(T - V)dt = 0 (3)

f
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provided that the transverse displacement is prescribed as zero both at the inlet boundary and

at the outlet boundary, as is the case in the present problem.

By substituting expressions (1) and (2) for 7 and V in equation (3) we obtain in a standard

manner the equation of motion

Fw o*w 2w &*w Fw a
— + 2p v + pyi—r-T — - 2T -T — = .
ot P e P e e TRy iyl ! N

The present equation of motion differs from the usual membrane equation in the two

additional inertia terms (second and third) due to the in-plane velocity v.

For the fluid around the traveling membrane the following assumptions are made: 1)
velocities are small enough for convective effects to be omitted 2) the pressure-density
behaviour is locally linear and varies by a small amount only 3) the viscous effects can be
neglected. Based on these assumptions the governing equation in fluid domain is

2
Vzp - _l.i'i =0 , (5)
cZoe?
where ¢ = /B/p is the speed of the sound and B is the bulk modulus. This equation is the well
known Helmholtz equation. If the fluid does not separate from the membrane, the pressure
gradient and the velocity of the membrane along the outward normal must satisfy equation

ap avn . .
AL = —Q— = -DV = -pU . 6
an P Y pv, pu, (6

The normal is pointing from the fluid to the membrane. If the fluid is in contact with the rigid
wall the boundary condition becomes dp/dn = 0. If the fluid is assumed to extend to infinity
(e.g. in comparison with some available analytical results ), the motion is assumed to vanish
at infinity and therefore the dynamic pressure must vanish there, i.e. p=0.Ina numerical
representation an infinite boundary has always to be truncated at some sufficiently large
distance. At such a boundary the truncation boundary condition

P __1p
on c ot ™
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must be introduced.

When expressions (1) and (2) are substituted into equation (3) and w is replaced by FEM

trial wlxp,t) = Nu(®) and correspondingly in equation (5) p is replaced by FEM trial

motion

phyzt) = N 'p(¢) and Galerkin’s method is used for it, we obtain finally the equations of
[M 0

N B R P

where K, M and H, Q are the stiffness and mass matrices of the membrane and the fluid

respectively. G is the skew-symmetric gyroscopic inertia matrix of the membrane and D is
the radiation damping matrix of the fluid. f and f ' are the force vectors of structure and fluid
respectively. The coupling between the surrounding fluid and membrane part occurs via the

matrix S.

Substituting (# p)7 = ze™ into equation (8) and neglecting the right-hand side force vector

yields

oS 0 0 b 0H)z=0, ©

which is an unsymmetric eigenvalue problem with complex eigenvalues and eigenvectors. The

RN

eigenvalues are of type A = 0 + [ w, where 0 and w are real numbers and / is the imaginary
unit. Thus, two types of instability are possible: A = 0 indicates divergence and o > 0 indicates

flutter.

RESULTS

The eigenvalue problem (9) was solved by computer program [8] based on Lanczos
algorithm. A membrane travelling between two roll-supports was studied using FEM model
of 110 bilinear elements for membrane and 6644 8-node brick elements for fluid. The length
of the membrane is @ = 2.4 m , length/width ratio a/b = 5.1. In figure 1 the four lowest non-

dimensional eigenfrequencies F = f, Za,/pp/Tx as function of the non-dimensional velocity
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V =y, ,/pp/T " _are presented and the importance of surrounding fluid for the eigenfrequencies
of the light membranes is clearly seen. The experimental results in the figure are from

reference [6].

T, A Eigenfroquoncy
3 Emﬂnqmc;""“._ + | Meavared

-o-gio- No Fluid

x-x-x+ With Fluid

e

Nondimensional eigenfrequency F
.
-

3 Eiscrd'mq;wncy
2 Eigeafrequency

02§

1. Eigenfreqitency
o
o 0.1 0.2 03 04 05 06 07 08 0.9

Nondimensional velocity V

Figure 1. Non-dimensional eigenfrequency as function of non-dimensional velocity and the
model of the membrane and surrounding air [8]. The membrane and the fluid are separated for
clarity. Boundary condition p = 0 on the cylindrical fluid-boundary. Density of air p = 1.3
kg/m® and speed of the sound ¢ = 340 m/s. The weight per unit area of the membrane is p,=
35.5 10°* kg/m® and the tensions 7, = 600 N/m, T, =10 N/m, T, = 0. The height of the fluid
area is 5.25b and the width 12.38b .

The effects of coupling of two membrane parts are studied using L-shape membrane
traveling through three roll-supports whose diameter is neglected. The width of the membrane
is 0.47 m and the length of the horizontal and vertical parts are 2.4 m and 2.6 m, respectively.
The membrane is modelled using 200 bilinear elements and fluid area contains 13641 8-node
brick elements. The coupling effect is best seen in eigenmodes and in figure 2 it can be seen

when V=0.5...0.9 [8].

In practice the diameters of the supporting rolls can’t be neglected because they change the
shape of fluid domain and affect the fluid flow. The effect of the diameter of roll-supports is
studied by using the model in figure 3. The membrane is modeled with 480 bilinear elements

and the fluid with 10560 8-node brick elements. The width of the membrane, which is
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traveling with constant velocity through two two-roll nips, is 8 m and the length 2.4 m. The
membrane is assumed to travel between two rigid walls. From the results in figure 3 it is

clearly seen the decreasing of eigenfrequencies when the roll diameter is increasing [8].
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Figure 2. Non-dimensional eigenfrequency as function of non-dimensional velocity
(F = j‘iZam ,a =2.4m) and the model of the membrane and surrounding air. The
membrane and the fluid are separated for clarity. Boundary condition p = 0 on the cylindrical
fluid-boundary. Density of air p= 1.3 kg/m?® and speed of the sound ¢ = 340 m/s. The weight
per unit area of the membrane isp,= 35.510° kg/m2 and the tensions 7= 600 N/m, Ty: 10
N/m, Tg= 0 length/width ration a/b = 5.1 for horizontal section and a/b = 5.53 for vertical

section. The height of the fluid area is 5.25b and the width 12.38b.

The system (8) is a coupled second-order differential equation. Various solution schemes
for coupled problems have been suggested by Park and Felippa [9], Paul [10] and Felippa and
Geers [11]. The difficulties with field elimination methods are that order of resulting
differential equation is higher, sparseness of matrices are lost and special algorithms are
required due to new initial conditions. The method of simultaneous solutions also poses some
computational difficulties because the resulting equations (8) are unsymmetric. Attempts to
make them symmetric leads to loss in bandedness of the resulting equations. The method of
partitioning overcomes the above mentioned limitations. Here the structure or the fluid field

may be integrated by implicit, explicit or mixed time integration scheme on two different
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Nondimensional velocity V
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£ 0os
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Nondimensional velocity V Nondimensional velocity V

Figure 3. Non-dimensional eigenfrequency as function of non-dimensional velocity and
different diameters of supporting rolls. -o0-o- d/a = 0.00, -x-x- d/a = 0.21, -*-*- d/a = 0.42,
—+-+- d/a = 0.625. The model of the membrane and surrounding air. The membrane and the
fluid are separated for clarity. Boundary condition dp/dn = 0 on short faces. Density of air p
= 1.3 kg/m® and speed of the sound ¢ = 340 m/s. The weight per unit area of the membrane is
p, =355 10° kg/m’ and the tensions 7, = 600 N/m, 7, =10 N/m, T, = 0 . The height of the
fluid area is 0.75b and the width b.

meshes in a staggered fashion and interaction effects can also be accounted. In practice there
is two solution sequences: 1) first structure then fluid, i.e. predicted pressure is applied to the
structure and the corrected response after solution of the structure equation is transferred to
the fluid to take into account the interaction effect. 2) is just opposite, first fluid then structure.
Coupled problems with various mesh partitioning schemes along with the predictor-multi-
corrector algorithm are not easily amenable to stability analysis. Some general notations are
available in references [9]-[11], where it is concluded that stability depends on integrator,
mesh partition, predictor formula and computational path. However, based on information
available, stable algorithms can be selected and optimum mesh partitioning is possible. Based
on our experience of solving equation (8) solution sequence 1) is recommended because it
gives the best convergence behaviour. In the present work the Newmark’s implicit integration

scheme in predictor-multi-corrector form with parameters B =0.25and y = 0.5 is used. A
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tolerance of 1.0E-06 was used as convergence criteria on the ratio of norm of incremental field

variables (pressure or displacement) with norm of total field variable.

Start next time step

Predict the structure response

|

Predict the fluid response

Evaluate the coupled force Evaluate the coupled force
on the structure on the fluid
Evaluate incremental Evaluate incremental
structural displacement fluid pressure
Correct the structure response Correct the fluid response
Convergense

I

Go to next time step

Figure 4. Flow diagram for fluid-structure interaction problem.

The effects of dynamic loading to a membrane traveling between two roll-supports was
studied using FEM model in figure 1. The dynamic load applied at every node at line x = a/7.3
is shown in figure 5. The displacement responses with and without surrounding fluid are
shown in figures 6. The response is plotted based on mid-span displacements (x = a/2,y =

b/2). From figures 6 it is clearly seen the effect of velocity to the response.



360

Force function 11

T T T T

Force [N]
o
—
:

o L i i : 1 H i i i
"0 0002 0004 0.006 0.008 0.01[] 0.012 0014 0016 0018 0.02
me [s]

Figure 5. Time dependent loading f1 used in calculation.
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Figure 6. The mid-span (x = a/2, y = b/2) dispacement response due to load f1 at line
x = a/7.3 with and without fluid, At = 0.01 ms.
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A FINITE DIFFERENCE SHOOTING METHOD FOR GENERATING
AXISYMMETRIC ELEMENTS

PENTTI TUOMINEN
Laboratory of Structural Engineering
University of Oulu
Kasarmintie 4, 90100 Oulu, FINLAND

1. PURPOSE OF THE METHOD AND A BRIEF DESCRIPTION OF IT

The paper deals with the case of the finite difference method (FDM) in connection with the
finite element method (FEM). The purpose of the method is to generate macroelements for
FEM. If possible elements should be some way natural with a known accuracy.

The method is a direct method using numerical solutions of differential equations. It is a
variation of FDM and is formulated as a pure transfer matrix method. The basis of the
differential equations are the expressions of normal forces and couples.

Seven different element types have been programmed. These elements are linear and
orthotropic. Their displacements are small and loadings axisymmetric. As an example are
presented equations and the flow of calculations for open spherical shells.

2. NOTATIONS

In the present method the meridional line of an axisymmetric structure is divided into »
equal segments which determine grid points from 1 to » + 1. The grid point 1 is situated at
the final boundary. The grid point sare indicated with subindeces. ‘Index’ i + %2 or a
corresponding fraction is used for the mean point between grid points i and i + 1. The mesh
lenght between two neighbouring grid points is As. Superindices s and ¢ indicate
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meridional and circumferential directions of the element. In Figure 1 there is presented the
geometry of a spherical shell to light the notations used. The stress resultants and couples
are further shown in Figure 2 as positive.

FIGURE 1: Dimensions and displacements of a spherical shell. Quantities are shown as

positive.

\

FIGURE 2: Stress resultants and couples of a shell under axisymetric loading.
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3. DIFFERENTIAL EQUATIONS

The usual system of six first order equations is replaced with one first order and one second
order differential equation combined with numerical integration scheme for handling the
right hand sides of the equations. The two basic equations are obtained by rewriting the
expressions of the meridional normal force and couple in an inverted order. Equations for a
spherical shell are [1, pp. 433-434]

NS

du u w
—+pcosp —+(l+p) — = 1
2 TH s " (1+p) " I ey
d*w pcosd dw w M 1N°

" —+(1+p)—= - 2
ds? ( p‘)az B* acC* @

where p is Poisson’s ratio. B° and C° are the meridional bending and stretching stiffnesses
of the shell. Other termes of equations are presented in Figures 1 and 2. The first version to
solve these equation using the shooting method at hand was presented in [3, pp. 407-416].
For a cylindrical shell or for a beam structure Equations 1 and 2 get their simplest forms.
The left hand side of the former equation is then du/ds+uw/a2 and that of the latter one
Fw/ds*+ p.w/az. The normal force N stays also away from the right hand side of Equation
2. The meaning of these equations is obvious.

4. HANDLING OF THE LEFT HAND SIDE OF DIFFERENTIAL EQUATIONS

Discretizing the derivatives of the displacements # and w is made with the finite

differences

du —u, + U, 2

e =—1 &l 4 O(As%), 3

(&), = ®
2

(_dﬁ) _ Wi T Wi +0(As?) @)

ds ), 2As ’

d*w W —2W, + W, )
= 2L 0(AsY) , 5

(£r) - 2R ey ©
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and

w, (dw Y Wiy 5
=S W W TV ooas?) 6
V= (ds) 2 AT (As7) ©®

Equation 6 gives the rotation of the meridian at grid point i and 0(As") is a term which
goes to zero as As”. After some manipulations three recursive equations are obtained

Ascosd ; Assin
du, = =l % ;= E'{'”J 2 _¢J W;'"'Ws‘l)
2r, 2a 2r,

J

; 7
NJ' 3 .o 1
+As—=+0(As”), |j=i+z
G 2
2
Wiat = I_M Eui'" I m‘r A=p) |
2r, a 2a’
As As® M1 N? ®
—_ 1- [t COS¢J ‘_+_ et +0(A_§‘3)
27, 2\ B TaC
Yia= Yt 7% * Wi + S 1.1,,,,)&:2 Win
a d.u]m d,,IZa (9)
— (Mﬁ*' 1N, )+0(As%)
2d BH-I C.-“:I
In these equations the notation d; is d;, =1+ BiAscos, .

2r,

i

Equations determine the displacement vector

if the normal force and the bending moment of Equations 7, 8 and 9 can be calculated at

grid points j =i+ ) and i+1. This problem is considered in the next section.
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5. HANDLING THE RIGHT HAND SIDES OF DIFFERENTIAL EQUATIONS

Equations of this section are based on consideration the equilibrium of a meridional strip
between grid points i and i+1 on a spherical shell. Considerations of loadings are omitted
for shorting this paper. The strip is shown in Figure 3.

FIGURE 3: A meridional strip of a spherical shell and forces acting on it.

The consideration of equilibrium in the direction of N;,, will lead to the expression

N2y =2 (N7 cos b+ 07 sinag)+ =0t [vias
i+l Fin S.

Sis1 | (ll)
-L J[Z Sin(¢i+1 _¢)+ XCOS(¢,-+1 _¢)}ds

i+1 S,

for the meridional normal force.
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The quadrature of the circumferential normal force N' is approximated using the the
trapezoidal rule as

sl+l

| wids~ —(N’ +N4,). (12)
J 2

The substitution

NI

i+l

(1 + PkUk)C;‘
o

=N =pu, N5+ (u, cosd, +w, sind,) (13)

into 12 and further into 11 with some rearranging give the recursive formula

(1 _ By, Ascosd,, )N:

2-’}+| i+l
+ ASCOSd)H] Nil + ASCOS¢H_1 (1 = }'I'H-IUIH )C‘:-lv]
2y, 2r;

i+1 i+

= L(Nf cosAp + O/ sinA¢)
,.

i+l

r ( :+1 COS¢ :+1 r+l 51n¢1+1) (14)

i+l

Si41

-— j[Z sin(9,,, —¢) + X cos(9,,, —¢)]rds

l+1 5

for calculating the normal force N;,,. After that the circumferential normal force N, can
be computed according to Equation 13.

At the mean point j = j+1/2 the formula for N has a shorter form
Nj:i(NfcosA2¢+Q sin—+ [+ ———L N/

i

Ad ) Ascosd
2 2r,

4 (15)
_r_j![zSin(q,i ~¢)+ X cos(p, —¢)ds .

where j =i+ 1/2.

The consideration of the equilibrium in the direction of the shearing force O, will give

the equation
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01, = T~V sin 5 + 0 cosad) - 22 (N, + Ny,
n a |
i lm (16)
T _[[Z cos(¢p;,; —9)— X sin(¢,,, — }'ds
I+l s;

where the circumferential normal force N/,, was calculated using Equation 13.

i+l
The moment equilibrium of the strip about the circumferential axis through the grid point
i +1 produces the expression

_[Ms +Nia(l- cosA¢)]+Q asinA¢ ——TN a(cosd; —cosd)ds

:+1 :+1 5

M.Y

i+]

L ‘j-‘ M’ cosdds + r_ I[Z sin(¢,,, — ] +X [1 —cos(f;,; — ¢)]ards 17)

i+l s i+l 5

for the meridional couple.

In this equation the integrals are again aprroximated using the trapezoidal rule. The two
first quadratures are now

Fis)

| N'(z1 —2)ds = AsN; Az (18)
and

Sisl , AS

IM cosdds ~ —2—(M cos¢ + Mj, cos¢,+1) (19

Si

The expression 18 can be calculated as N, is known. In the approximation 19 the couple
M;,, is unknown. For it can be written Equation

1-u,,,v,..)B
M‘+] ( p'H: H-l) i+l - (20)

i+l

1
M, =pi
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The substitution of vy ,,, (from Equation 9) into 20 and this further into Equation 19 will
produce with rearranging the final formula

(1-5,,)M;, = —r’—[M; +Nya(l-cosAd)+Qa sinA¢]—£N,.’Az
i+l i+1
—-u.v,..)B Cow—w
+ AS Mil COS¢,— _ AS (1 I"I'H-IVH-I) i+l COS¢I+] [ﬂ_’_ W, wr+1 (21)
i+1 2r, Fin a dy,hs
1+p,,,)As w y
+( Bin)AS wy  As 1N + influence of loading
2d,,a a 24, aC,
where dj,; is given in Equation 9 and the shortened notation by, is
b = o + 2B 25 B | @
2d1. 2 r, B,

6. FLOW OF THE CALCULATIONS

The equations of the two former sections are used to generate the transfer matrix between
displacement and force vectors at grid points i and i+/. The displacement vector is given in
Equation 9 and the force vector at point 7 is
N/
fi=19¢ (23)
M

The transfer matrix is a 6x6 - matrix. In Calculations matrix FIR (6,6) (first boundary)
includes the dependence of vectors v; and f; on themselves and is thus a unit matrix I. The
matrix SEC (6,6) (second boundary) includes the dependence of vectors vy, and f,; on
vectors v; and f; . It is calculated in a loop of program (Figure 4). Both matrices can have
two additinal rows for the circumferential normal force and couple at points i and i+1.

The use of equations of former sections is given in the next flow chart shown in Figure 4.
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Calculation of geometric and elastic terms in Equation 7 to 21 l

| . CALCULATING OF MATRIX SEC (I, J) = transfer matrix between two grid
f ! points:
i I - calculation of w;,; with Equation 8, row 3 of SEC
. ’ with Equation 15
/N - calculation of u;,; with Equation 7, row 1 of SEC
[
[

- calculation of N,
- calculation of N, and N/,,, Equations 14 and 13, rows 4 and 7 of SEC
- calculation of Q7 , with Equation 16, row 5 of SEC

i+1

- calculation of M;,; with Equation 21, row 6 of SEC

'r
| - calculation of y;,;, and M;,, with Equations 9 and 20, rows 6 and 8 of SEC
i

‘ yes
forward

AN\

FIGURE 4: Flow of calculations for determining the transfer matrix SEC between grid
points i and i+1.

The transfer matrix between two grid points was calculated. The transfer matrix of the
whole structure is obtained by repeating »n times calculations combined with a matrix

multiplication. Results contain a discretization error.

To improve results the number of meridional segments is incresed and calculations are
carried out several times (<5). In increasing the number of meridional segments Bulirsch’
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queue (7 = 1,2, 3, 4 and 6) [2, p. 109], is used as multipliers to limit the round-off error.
After that an extrapolation toward zero length of As is used.

Due to extrapolation the transfer matrix (and loading vector) should be quite accurate. The
stiffmess matrix and equivalent modal loads can now be calculated with good accuracy.
The extrapolation is discussed in the next section.

7. EXTRAPOLATION

To decrease discretization error in calculated results Richardson type extrapolation [2, pp.
108-110] is carried out toward zero grid length. The basis of any extrapolation is some kind
presumption about the nature of the error. Neville’s algorithm [2, pp. 109-110] contains the
form

e=ZaAs' , i=1,2,3,... (23)

for the discretization error. In using Romberg’s method [2, pp. 146-148] the error
assumption is similar but includes only even powers of As.

In the phases of extrapolation terms of power series 23 are eliminated in turn beginning
with the lowest power. When a person considers results of the first phase of Neville’s
algorithm, he can find the error to be approximately proportional to the second power of
the grid length As. It is a very natural choice to use Romberg’s method in the next phases
of the extrapolation. In this study this simple idea was experimented. The powers in the

series 23 are now i = 1, 2, 4, 6 and so on.

It is rather surprising that the modification of Neville’s algorithm works giving after a four-
phase extrapolation results with a rate of convergence eight for equations considered in this
study. An exception seems to be found. It is discussed very briefly a little later. A condition
for the convergence rate is the use of the trapezoidal rule in the numerical quadratures
carried out. Integral 19 will lead to Equation 21. The corresponding equation for a ring
plate [4, p. 36] was written after a discussion with associate professor Juha Paavola. The
modified Neville’s algorithm has given good results when the thickness of the structure has
been linearly or parabolically varying. The rate of convergence has decreased when the
thickness varys piecewise linearly.
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Then the exception; When considering a spherical cap it is needed a routine of its own type
for determining the transfer matrix between the polar point (aumber 0) and the
point (number 1) with a distance As away from the pole. The matrix multiplication with the
transfer matrices described in Sections 3 to 6, produces now matrices the convergence of
which at least partly seems not to obey the presumption 23 in its modified form with
powersi=1,2,4,6,..

8. NUMERICAL EXAMPLES

In this section three examples are presented to verify the convergence rate of the method.
In these there are used two error indicators. The first one

k.
e=max———— , (24)

is a measure for the asymmetry of stiffness matrix [35, p. 34]. In the expression k; is the
element on row i and column j of stiffness matrix K.

Error parameter e is compared with the parameter

g= maxlfLa'J’ x sign(k,.j —a,.j) (25)

a,a,

for verifying its reliability as a measure of calculation error. In Equation 25 a; is the
element corresponding k; in a stiffness matrix A calculated analytically or with a high
accuracy that is with two to four correct digits more than matrix K.

Example 1 considers an isotropic ring plate with the inner radius 2.0 m and the outer radius
5.0 m. Thickness of the plate varys linearly and is 0.4 m at the inner and 0.20 m at the outer
boundary. Young’s modulus of and Poisson’s ratio of the structure are 10 000 MN/m’ and
1/3. The structure was calculated as a conical shell with a half apex angle of 90 degrees
using five calculation loops. Data and error parameters are given in Table 1.
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TABLE 1. Ring plate example. In columns are given number of meridional segments in the
first and fifth loops and error parameters e and g. The bottom line contains proportions of

values on two former lines.

Number of Error parameters
segments n...6n e g
18...108 0.4452-10 -
6..36 0.1905-10°* -0.9801-10°®
8..48 0.1987-10° -0.1075-10°
(8/6)*=9.99 9.59 9.12

The second example is a slightly orthotropic cylindrical shell with the radius ¢ = 10.0 m
and lenght / = 2.0 m. Young’s moduli are £° = 16 000 MN/m® and E' = 10 000 MN/m’.
Poisson’s ratios are v = 0.30 and p = 0.1875. The thickness of the structure is constant # =
0.10 m. Results are given in Table 2.

TABLE 2. An orthotropic cylindrical shell. Content of the table is similar with the one in

Example 1.
n...6n e g
32...142 0.3352-10™2 -
6..36 0.3151-10° -0.3146-107
12..72 0.1188-10° -0.1186-10
(12/6)%=256 2652 265.2

In two first examples results compared also with the analytical ones computed with ESAS-
program of prof. Hannu Outinen [6] . Coincidence with them is excellent.

The third example structure is an isotropic spherical shell the radius of which is 10 m and
thickness n= 0.10 m. Angles of boundaries are ¢, = 30° and ¢,,,; = 40° . Elastic constants
are E = 10 000 MN/m” and v = 0.200. Results are in Table 3.
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TABLE 3. Results for an isotropic spherical shell. Content of the table is similar with the
one in Example 1.

n...6n e g
30...180 0.1237-10™" ;
10...60 0.2129-10° -0.2254-10°8
6..36 0.1273-10° -0.1364-10°
(10/6)*=59.54 59.8 60.0

10. CONCLUSIONS

Finite difference approximations combined with numerical integration using the
trapezoidal rule and with an extrapolation give a good rate of convergence in solutions of

differential equations of this study.

The asymmetry of the stiffness matrix seems to be a realiable measure of the calculation
error in generating shell elements. A more thorough consideration will show that for the
stretching state of a ring plate the asymmetry fails totally as a measure of error.

As a numerical method the shooting method presented would be well applied in computing
composite structures.

For cylindrical shells with constant thicknesses # one can found contours of error
parameters e and g (Eq. 24 and 25). The calculation error is proportional to the term
1/ ah , where I is the length and a the radius of the cylinder. If Geckeler’s approximation
is regarded valid in calculating shell structures, also the length of the meridional line of
other shell types is limited, when a certain error level is tried to catch in computing. In one
example carried out with a long cylindrical shell this limitation could be avoided by
shooting from opposite boundaries of the shell and coupling the results at the line of
symmetry. The method may be experimented with success also with asymmetric structures.
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INFINITE ELEMENT STRIPS AND h—-CONVERGENCE

J. AALTO and K. KUULA
University of Oulu
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FINLAND

ABSTRACT

Infinite strips of mapped elements are proposed as a generalization of mapped infinite
elements. Combined with standard isoparametric elements infinite element strips
can be used to solve boundary value problems with unbounded domains effectively.
Typical diffusion and plane elasticity problems are considered as numerical examples.
Experimental convergence studies of the error in energy show that it is possible to
achieve better rate of h-convergence, if infinite element strips instead of conventional
infinite elements are used.

1. INTRODUCTION

Unbounded domains cause difficulties in standard finite element analysis. One possi-
bility to overcome these difficulties is to cover the domain of the problem using stan-
dard finite elements and special infinite elements. Infinite elements connect the outer
boundaries of the standard grid to the infinite boundaries of the domain. Mapped
infinite elements first proposed by Zienkiewicz et. al. [1] are attractive and easy to
implement.

The most simple combination of standard parametric and mapped infinite elements is
obtained, if equal degree of interpolation of the basic unknown functions (in natural
coordinates) is used in both element types. There is, however, a shortcoming in this
attractive and widely used combination: The possibility to increase the accuracy of
the analysis by making the grid denser is limited. The reason for this is simply that
the number of degrees of freedom does not change and the approximation does not
improve in the longitudinal direction of the infinite elements.

The paper presents a simple way to avoid this defect. The idea is just to use a mapped
strip of elements (whose last element is infinite) instead of a single mapped infinite
element between the finite element grid and the infinite boundary of the domain.
Such strips of elements are called here "infinite element strips”.
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Fig. 1: Geometrical mapping of an infinite element strip

2. GEOMETRICAL MAPPING OF AN INFINITE ELEMENT STRIP

The geometry of an infinite element strip can be defined using two curves: so called
pole line I" and so called interface line . The latter connects the infinite element
strip to the standard finite element grid. Pole line I" and interface line T are expressed
as

z = #(0),

y=i(0) M
and

z = %(0),

y= g(a)9 (2)

respectively, where ¢ is a parametric coordinate.

Coordinates z and y of a point R in the infinite element strip are defined by scaling
the coordinate differences Z —# and §— ¥ (see Fig. 1) with a multiplier ¢, which may
vary from 0 to co. Thus we have

T~ %=c(Z— %),
y— 3 =c(f— ) ®)
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Choosing ¢ = 1/(1 — p), where p is another parametric coordinate, we get

x(pa J) - [:E(U) - pi‘(a)]’

tr (4)
W(p.0) = —[5(0) ~ pio)]

p
It is easy to see that z(0,0) = Z(0), y(0,0) = g(0) and z(1,0) = y(1,0) = oo. Thus
if p =0, we are on the interface line T, and if p = 1, we are on the infinite boundary
of the domain.

A natural way of expressing the coordinates Z(0), 9(o) and Z(o), y(o) of the pole
line I" and the interface line T, respectively, is to regard these lines as parametric line
elements and use Lagrange interpolation. Thus we have

#(0) = Y_LT(0)%;
o (5)
gw=2wmw

and
(o) =) L7 (0)%,
i=1
= (6)
g(o) = > LM0)G,
i=1
where
= o—0;
L™(0) = L 7
©=115=3 (7)
i

m is the number of nodes of the line element and &;, ; and Z;, §; are the correspoding
nodal coordinates. Combining equations (4), (5) and (6) finally gives

m

26,0 = 3 75 @~ PEILY (), .
' 8

W(p,0) = 3 7= s = PILT (o).

i=1

Equations (8) express the geometrical mapping of an infinite element strip.
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3. MAPPED ELEMENTS IN AN INFINITE ELEMENT STRIP

The relations between the natural coordinates £ and n of element e and the strip
coordinates p and ¢ are assumed to be linear and of form

_Pitps | P

o=,

(see Figs. 2b and c). With the help of equations (8) and (9) one thus obtains

m

21—’1’ - [pf + pg (PS - ptlz)g]i:z m
z(€,n) = E L; ;
&) Lo 2—pt—p§—(p5 — P)E )

i (10)

_ N~ 25— et + 05+ (p5 — p2)EN p
e Ny ey

=1
Equations (10) express the geometrical mapping of an element in an infinite element
strip.

4. PROPERTIES OF MAPPED ELEMENTS

4.1 Properties along a radial line

The decaying solution u(z,y) of a boundary value problem, which should be approx-
imated using the elements of an infinite element strip, can be expressed as an infinite
series of form

ug(0)

u(r,0) = ue() + u1£9) + Uz;‘(ze) + 5 +---, (11)

where 7 and # are polar coordinates so that r is measured from the pole P and u;(6)
are smooth functions of #. Along a radial line § = g it can be expressed as

[a 5] (2] (8 %:]
. 00) = =l etk 12
u(r, 6o) a0+r+'r2+'r‘3+ (12)

where a; = w;(fg). A possibility to get a priori information of the quality of the
elements of our infinite element strip is to study, how well they can approximate the
function (12) along a radial line. This is done in the following.

The finite element approximation of function u(z,y) within element e of an infinite
element strip is a polynomial (of the natural coordinates £ and 7) and of form

A(E,n) = ap + a1 +agn +ase? +asln+asn® +---. (13)

The number of terms in this polynomial depends on the element type. Using the
linear relations (9) it can be written as

it(p,7) = bo + b1p + bao + bgp? + bypo + bso® + - -+, (14)
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Fig. 2: A quadratic Serendip element in an infinite element strip:
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where
E+ & e+ e
bo = a0 - 1 20, + (LTL2)2g,,
P3 — P1 Pz — Pl
2 4(pS + p§
b e - A,
Pz — P1 (5 — pS)
¢ o
b2=az—£l+z3 ;
2~ P1
: 4 (15)
3 = ——— 543,
(p5 — p5)?
2
by = P - a4,
P2 — P1
bs = as

™

The distances of points R:(z,y) and Q:(Z,¥) from the pole P:(%,§) (which is consid-
ered to be fixed here) are

r=V@-2F + -9 (16)

and

F=+(@—-%)%+ @ - 9> (17)

respectively. With the help of equations (4), (16) and (17) one easily gets the result

r=7 i pF, (18)
p=1- 7_'(7'—0). (19)

Substitution of this into equation (14) results to

N 1 _ 1
u(r, 0‘) =bo+bi+bs+ (b2 +b4)a+b502 - (b1 +bs +b40')’r‘(0'); +b37‘2(0')r—2 T
(19)
Consider now the approximation @ along a radial line. Let us denote the correspond-
ing values of the coordinate o and angle # as og and 8y, respectively. They are related
by equation
g(oo) — ¥
tanfp = .
anfy 2(00) — & (20)

We now get
" ci ¢
u(’r‘,oh)——co+?1+r—§-+---, (21)
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where
co = by + by + bz + (by + by)ag + bso3,

c1 = — (b1 + bz + bgog)7(00),

¢2 — byr2(a), @)

Comparison of equations (22) and (12) show now, that along a radial line the finite
element approximation of a mapped element in an infinite element strip is able to
reproduce certain first terms of the corresponding infinite series form of the analytical
solution. If the element is bilinear these terms are aip and a1 /r and if the element
is quadratic (Serendip or Lagrange) these terms are g, a1/r and az/r? etc.

4.2 Infinite element strip with one element

Consider an infinite element strip with one element. Now we have pf =0 and p§ =1
and equations (9) and (10) give

z(€,m) = ; 21_1(1—;5)243"‘ (), -

yEm =Yy %—}%ﬂw(n).

i=1

If the element is a quadratic Lagrange quadrilateral of Fig. 3, we have m =3

4 5 6 Pt

Fig. 3: An infinite element strip with one quadratic Lagrange quadrilateral
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1
L?(n) = —577(1 - 77),
L) =1-7n (24)
1
Li(n) = 5n(1+n),
and
T1=21, Y=Y,
Ta =4, Y2 =1U4, (25)
I3 =27, Ys=1Yr-
We get for the z-coordinates of the nodes at £ =0
o = :L'(O, —1) = 2% — ¥ = 2z — I,
X5 = :D(O, 0) = 29 — B9 = 2x4 — T2, (26)
Trg = :L‘(O, +1) = 9F3 — X3 = 2z7 — E3.

Equations (26) can be solved for the z-coordinates #; of the poles. The result is

%1 = 231 — 739,
5:2 = 2:1:4 — Ts, (27)

55'3 = 2.’1:7 — Xs.

Similar equations result for the y-coordinates of the poles. Substitution of these into
equations (23) gives

(£,m) = [(221 — 22)No(€) + z2N2(£)] L3 ()
+ [(2z4 — z5)No(€) + 25 N2(€)1L5 ()
+ [(2z7 — 28) No(€) + s N2 (€)1 L3 (m),

Y(E.1) = (201 — 10)No(€) + 12 Na(OILE) (%)
T [(2us — ys) No€) + 3 N2 3 ()
+ [2yr — 96 Nol) + usNa ()13 (n),
where :
No(g) = ——*
e (29)
Np(§) = T—¢

The geometrical mapping of equations (28) is identical to that of the mapped infinite
element of reference [1].
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=

=0

Fig. 4: Notation for both the flow problem and the elasticity problem

5. NUMERICAL EXAMPLES

5.1 Example problems

Potential flow around a circular cylinder. This problem is referred as ”flow
problem” in the following. Consider irrotational flow of an ideal fluid around a
circular cylinder of radius @. The velocities far (r — oo0) from the cylinder (see Fig.
4) are v; = v and vy = 0. Expressed in terms of the velocity potential ¢(z,y),
which is related to the velocities vz(z,y) and vy(z,y) by equations

9¢ 0¢
U = _a_xs Vy = —@’
this problem is governed by the Laplace equation. The Neumann boundary condition
on the surface of the cylinder is

(30)

o
=—-—=0. 31
tn on (31)
Because of symmetry we can restrict our consideration to the first quadrant of the
x,y-plane and assume the Dirichlet and Neumann boundary conditions v, (z,0) = 0

and ¢(0,y) = 0 on the z- and y-axes, respectively.

The potential ¢ will be infinite on the infinite boundaries of the domain and the
corresponding nodal values should be infinite too. Thus ¢ as such cannot be used as
an unknown in the numerical analysis. We will take the potential difference

¢* = ¢ — ¢o, (32)



386

where ¢ is the potential corresponding to uniform flow with velocities v; = v and
vy =0, as a new unknown of the problem. It is easy to see, that the potential ¢ is

¢0 = —Voo . (33)

Far from the cylinder (r — oo) the influence of the cylinder vanishes and ¢ = ¢o.
Thus on infinte boundaries of the domain the potental difference ¢* is finite and has
the value ¢* = 0.

The modified boundary value problem, which is expressed in terms of the potential
difference ¢*(x, ), is governed by the Laplace equation and the symmetry boundary
conditions, but the boundary condition (31) on the surface of the cylinder is changed.
With the help of equations (32) and (33) it can be written as

. 00

="

= —DzVoo, (34)

where the superscript * refers to the modified boundary value problem and n; = cos ¢
is the z-component of the unit normal of the surface of the cylinder. The equation
¢* = 0 on the infinite boundaries of the domain can further be taken as an additional
Dirichlet boundary condition to the modified boundary value problem.

Relative energy norm of the error of the finite element solution 43* is

l6* — Il
o it 35
8= el (35)
where
l6llz = /(2 +2)dS (36)
Q

and € is the mesh of finite elements and infinite element strips. The relative norm
nE is used as an error measure in the experimental convergence studies of the flow
problem.

The analytical solution of the flow problem (see Fig. 4), which is used in the error

analysis, is
2

b= —Veo(r+ %) cosf. (37)

Stretching of an infinite plate with a circular hole. This problem is referred as
”elasticity problem” in the following. Consider an infinite elastic plate with a circular
hole of radius a. The state of stress far (r — co) from the hole (see Fig. 4) is assumed
to be 0, = 0o, 0y = 0 and 7;y = 0. Expressed in terms of the displacements u(z,y)
and v(z,y) this problem is governed by the Navier equations of plane elasticity. The
Neumann boundary conditions on the surface of the hole are

tp =Ng0z + NyTay =0, by = NgTay +ny0y =0, (38)
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Because of symmetry we can restrict our consideration to the first quadrant of the
z,y-plane and assume the mixed boundary conditions ¢;(z,0) = v(x,0) = 0 and
u(0,y) = t,(0,y) = 0 on the z- and y-axes, respectively. ‘

The displacements « and v will be infinite on the infinite boundaries of the domain
and the corresponding nodal values should be infinite too. Thus u and v as such
cannot be used as unknowns in the numerical analysis. We will take the displacement
differences

u=u—uy, v°=v-—"1, (39)

where ug and vg are the displacements corresponding to uniform state of stress o, =
0o, 0y =0 and 7,y = 0, as new unknowns of the problem. It is easy to see that the
displacements ug and vy are

T, V0o

r, Vo= ——E Y. (40)
Far form the hole (r — co) the influence of the hole vanishes and u = ug and v = vo.
Thus on infinte boundaries of the domain the displacement differences u* and v* are
finite and have the values u* =0 and v* =0.

The modified boundary value problem, which is expressed in terms of the displace-
ment differences u*(z,y) and v*(,y), is governed by the Navier equations and the
symmetry boundary conditions, but the boundary conditions on the surface of the
hole are changed. They can easily be written as

by = N0y + NyThy = —Nzlco, by =NgTgy +nyoy =0, (41)
where the superscript * refers to the quantitites of the modified boundary value
problem. The equations u* = 0 and v* = 0 on the infinite boundaries of the domain
can further be taken as additional Dirichlet boundary conditions to the modified
boundary value problem.

Relative energy norm of the error of the finite element solution &* = [a*,9*]7 is
[[u* — 0%l
NE =~ 42
ol “
where
lulle = [ é"Deds, (43)
)
% g [t v 0O
€= 5y , D=——=|v 1 © (44)
du dv 1-v 0 0 1—v
wta 2

and () is the mesh of finite elements and infinite element strips. The relative norm 7z
is used as an error measure in the experimental convergence studies of the elasticity
problem.
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The analytical solution of the elasticity problem (see Fig. 4), which is used in the
error analysis, is

1 3
Icosl9+2 2c059+1+V00530 —1(1—00530 ;
a T 2 r3

ool

2 (45)

Oooll

E

1 1 8
v = v sing+2 —(1-v)sinf + +Vsin30 - +Va—3sin30 F
a T 2 2 r

5.2 Grids

Both example problems (the flow problem and the elasticity problem) were analyzed
using identical grids. The pole P of all the infinite element strips is located at the
centre of the circle (cylinder/hole). The interface line T' consists of lines AB and
BC in Fig. 5. Five uniformly refined grids with h/a = 1,0.5,0.25,0.125,0.0625
were constructed for experimental convergence studies. Typical grids (h/a = 0.5)
of bilinear and quadratic Serendip elements, which are composed of standard finite
elements and infinite element strips are shown in Fig. 5. Similar grids (h/a = 0.5),
which are composed of standard finite elements and mapped infinite elements of
reference [1] are shown in Fig. 6.

5.3 Experimental convergence study

Fig. 7 presents results of experimental convergence study of the flow problem using
bilinear and quadratic Serendip elements. The analysis was first performed using
grids with infinite element strips (see Fig. 5). The experimental rates of convergence
seem to approach the values 1 and 2 for the bilinear and quadratic elements, respec-
tively. These values 1 and 2 are the ideal values, which should be approached using
standard finite elements in bounded domains (with no singularities). The analysis
was repeated using grids with mapped infinite elements of reference [1] (see Fig. 6).
Practically identical results were obtained.

This result might raise the question: Do infinite element strips bring any improvement
compared to mapped infinite elements? The coincidence of the results can, however,
be shown to be caused by the simplicity of the anlytical solution (37). Along a radial
line # = y the analytical potential difference ¢* is of form

9" (r,00) = =, (46)

where
a1 = —vea® cosby. (47)

and it does not contain higher degree terms of 1/r. Based on the reasoning in section
4.2, a bilinear element (and also a quadratic Serendip element) in an infinite element
strip is able to reproduce this result. Thus one element in an infinite element strip
(a mapped infinite element) is needed and additional elements do not improve the
result.
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Fig. 7: Experimental convergence study of the flow problem:
(a) bilinear elements (b) quadratic Serendip elements
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Fig. 8: Experimental convergence study of the elasticity problem:
(a) bilinear elements (b) quadratic Serendip elements
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Fig. 8 presents results of experimental convergence study of the elasticity problem
using bilinear and quadratic Serendip elements. The analysis was first performed
using grids with infinite element strips (see Fig. 5). The experimental rates of
convergence seem to approach the ideal values 1 and 2 for the bilinear and quadratic
elements, respectively. The analysis was repeated using grids with mapped infinite
elements of reference [1] (see Fig. 6). These results are not any more identical and
they do not seem to converge.

Infinite element strips did bring a considerable improvement compared to mapped
infinite elements. The analytical solution (45) was complicated enough to reveal this.

Along a radial line 8 = 6 the analytical displacement difference u* = [u*, v*]T is of
form o og
u(r,00) = —+ 3, (48)
where ) "
_ Ol 2cosfp + 2" cos 3t
S F { —(1 —v)sinby + 1—”5—" sin 36g (49)
and ( | p
_ oes(l +v)a” [ cos3fy
oy = - Il L {sin3ﬂo}' (50)

Based on the reasoning in section 4.2 a quadratic element (and also a bilinear element)
in an infinite element strip is not able to reproduce this result. Thus the result is
worst with one element in an infinite element srip (a mapped infinite element) and
it improves with inereasing number of elements.

6. CONCLUSIONS

The paper presented a systematic procedure of constructing mapped strip of ele-
ments, which can be used instead of mapped infinite elements between the finite
element grid and the infinite boundary of the domain. Based on experimental con-
vergence studies and some theoretical reasoning the paper also showed, that usage of
such ”infinite element strips” improves the accuracy of the analysis of unbounded do-
mains compared to mapped infinite elements. Only two-dimensional problems were
considered but generalization to three-dimensions is straightforward.
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ABSTRACT

A uniform rotating Rayleigh beam, carrying translational springs and dy-
namic vibration absorbers at its ends, is used as a basic model for a flexible rotor
with dynamic vibration absorbers attached to the bearing houses. A closed form
analytic solution for an arbitrary periodic load is derived. The necessity of taking
into account the rotational coupling in the determination of the optimal tuning
parameters is demonstrated by studying a numerical example of a paper machine
roll. The values of the optimal absorber damping and spring constant are calcu-
lated as a function of the rotational speed of the roll. Finally, the effectiveness
of the absorber is analyzed as a function of the absorber size.

1. INTRODUCTION

The dynamic vibration absorber or simply dynamic absorber was invented in the be-
ginning of the 19th century by Frahm [1], and since then, it has proven to be an
indispensable device to reduce the undesirable vibration in many applications such
as gas turbines and engines, ship rolling, helicopters, electrical transmission lines etc.
This discrete dynamic absorber was first analyzed by Ormondroyd and Den Hartog
in 1928 [2], and the optimum damping was later derived by Brock [3]. Their stud-
ies covered a main system consisting of a mass and spring and a dynamic absorber
with a mass, spring and viscous damper. For this system it was possible to obtain
analytical expressions for the optimum tuning and damping of the absorber. Later in
1981 Thompson [4] extended the study to a viscously and hysteretically damped main
system. He presented a numerical method for the determination of the optimal tuning
and damping.
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Young [5] was the first to consider the application of dynamic absorbers to beams
in 1952. Snowdon [6] considered the optimization of the discrete absorber on beams
with various boundary conditions when structural damping was present. Jacquot [7]
used an approximate method in which the analogy established between a beam and
a SDOF system allows the use of the optimum absorber parameters for the latter to
determine the ones for the beam. The main system damping was not included in his
theory so that the analytical resuts of Den Hartog and Brock could be applied. H. N
Ozgiiven and B. Candir [8] extended Jacquot’s treatment by considering a hysteretically
damped beam with two dynamic absorbers for suppressing the first two resonances of
the beam. A further extension was made by D. N Manikanahally and M. J. Crocker [9]
who included mounted rigid masses in their beam model. The previous works, however,
do not account for the rotational motion of the beam. This is an important factor,
escpecially in high speed machinery.

In this paper a general closed form solution for a rotating uniform Rayleigh beam,
with dynamic vibration absorbers, is presented. An example of a rotating paper ma-
chine roll with translational springs, dampers and dynamic absorbers at its ends is
studied. The present theory can be utilized in suppressing e.g. nip induced vibrations
in paper machinery.

2. THEORY

The equations of motion of a uniform rotating Rayleigh beam (see Fig.1) can be written
in the inertial coordinates as

pAii — pIi" + 2pIQ" + Cy(is — ) + EIu" = f,, (1)

pAD — pIt" — 2pIQ0" + Ci(v + Qu) + EIV"™ = f,, 2

where u(Z,t) and v(Z,t) are the horizontal and vertical displacement fields, respec-
tively, and f,(Z,t) and f,(Z,t) are the components of an arbitrary time periodic load.
The density, cross-sectional area, moment of area, modulus of elasticity and rotational
speed for the beam are p, A, I, E and , respectively. The internal damping of the
beam, proportional to the vibration velocity of the beam relative to the rotating coor-
dinate system, is described by the linear viscous damping coefficient C; and the length
of the beam is L. The spring constants and viscous damping coeflicients at the ends of
the beam in the horizontal and vertical directions are K, C, K and C‘, respectively.

When equations (1) and (2) are Fourier transformed with respect to time, a pair of
ordinary differential equations for Z is obtained:

A~ P 2.1, 0P N pA 2.4 Ci _ Ci - _ 1.
4" + —Ew 4" 4 z2—EQwv —EIw 4+ z—EIwu ——EIQv = —EIfu, (3)
N P an 5P T pA Qe - C C; .. 1 .
Ly — e lauar — P2 Lot + 2Qi = —f,.
B +Ewu 125w EIw v+zEva+EIQu EIf” 4)
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Figure 1. Spinning Rayleigh beam resting on springs and viscous dampers.

The general solution of equations (3) and (4) can be shown to be

4

WZ2) = Z_:l{[AE + 9, (2)127(2) + |47 + g7 (2)]127(2)}, ()
0(Z) =1 X_;{[A; +9,(2)12;(2) - [A7 + 97(2)]27(2)}, (6)

where the complete set of basis functions are given by

®(Z) =sinv*Z, ®£(Z) = cos vt Z, 3 (Z) = sinh k*Z, 8F(Z) = cosh k% Z,

(7)
the g-functions accounting for the load by
7 _fu@) xifu(2)
+ _ u v 4+
9 (Z2)=— v SBIAGE + k27 cosv=zdz, 8
z2_fulm)xif(?)
7y _ +
9 (2) = o SETAGE + v2) sin =z dz, 9)
N fu(z) iifv(z)
+ 7Y = h +
95 (2) 0 SEIRE(EE + D) cosh k*z dz, (10)
z f i f
a(Z2)=— ful2) £ 15 (2) sinh k*z dz, (11)

o 2EIR*(vE2 + k*2)
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and

C.
EI E

1]p p pA . Ci
= |2 = +1/[= 24482 42
7l — 2{Ew(w:i:2Q) \/[Ew(w:t%))] +4—w? -4 I(w:I:Q)

E EI EI

’\2

} ")

KE = l{—-ﬁw(w +2Q) + \/[%w(w +20)]2 + 4ﬁw2 - i4£i—(w + Q)} :

(13)

The boundary conditions of the problem are determined by the springs and dampers
at the beam ends (see Fig.1) and two identical dynamic vibration absorbers which
here are supposed to execute vertical motion at the beam ends as well. The Fourier
transformed boundary conditions (14)-(19) and equations of motion for the absorbers

(20) and (21) can be shown to be

EI3"(0) + plw?d (0) + i2pIQw'(0) + (K + iCw)a(0) = 0,

EI"(0) + pIw?9'(0) — i2pIQwi'(0) + (K + iCw)5(0) = (kq + iwea) Vo,

4"(0) = 0, §"(0) =0,

EI3"(L) + plw*d/ (L) + i2pIQuwd'(L) — (K 4 iCw)i(L) = 0,

—EI"(L) — plw®' (L) + i2pIQwd/ (L) + (K + iCw)d(L) = (ko + iwea) Vi,

@"(L) =0, 9"(L) = 0,
(ko + iwe, — Maw?)Vo = (kq + iwe,)5(0),

(ko + iweg — mawz)VL = (kg + 1we,)0(L),
where

+ ka,
+

Co-

Q=
Il
» N>

(14)

(15)
(16)

(17)

(18)

(19)

(20)

(21)

(22)
(23)

Above my, ¢g, kq, % and VL are the mass, viscous damping constant, spring constant
and Fourier transforms of the displacements of the absorbers at locations 0 and L,
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respectively. The coeffiecients AF (n =1, ...,4), Vp and V7, can be solved by substituting
the expressions (5) and (6) into the equations (14)-(21). _

Finally, if T is the period of the loading functions f, and f, in equations (1) and
(2), then the complete solution of the problem is

n=oo

u(Z,t) = n;m 1 (Z)e™, (24)
w(Z,t) = i 3a(Z)e, (25)

where
o= 2% (26)

and the functions @,(Z) and ©,(Z) are obtained from equations (5)-(21) with nw in
place of w.

3. APPLICATION TO A PAPER MACHINE ROLL

In order to illustrate the dependence of the optimal parameters of the dynamic absorber
on the rotational speed of the beam (2, the present theory is applied to 2 paper machine
roll. We specify a uniform vertical load f, = 1, f, = 0 on the roll and calculate the
vertical response ¥;(L/2,w), i.e, the frequency response at the center of the roll. The
optimization criterion used, for a fixed absorber mass m,, to find the optimal values of
¢, and k, is

Eikn{mjxx 0(L/2,w)}. (27)

The parameter values used in the calculations are shown in Table 1.

TABLE 1

Structural parameters used in the example
Parameter Notation Value
Modulus of elasticity E 2.106 - 10" N/m
Cross sectional area, A 0.1257 m?
Roll density p 7830 kg/m3
Area, moment of inertia I 1.010- 1072 m*
Horizontal bearing stiffness K 5.5-10* N/m
Vertical bearing stiffness K 6.0 108 N/m
Horizontal and vertical bearing viscous damping coeffs. c, ¢ 3.94-10* Ns/m
Internal damping coefficient for the roll tube C; 807.65 Ns/ m?
Absorber mass Mg 300 kg
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The frequency response function in the neighbourhood of the lowest resonances is
plotted in Fig.2 for three different 2 values. The absorber parameters ¢, = 2253 Ns/m
and k, = 7.0086 - 10% N/m used, determined by the condition (27), are optimal for Q =
130tad/s. Note that the familiar condition of equal height of the peaks at resonance for
the optimality also seems to apply in this case. However, due to the coupling between
the horizontal and vertical displacements u and v, an additional third peak appears
between the two conventional peaks which correspond to the motion of the beam and
absorber mass in phase and antiphase. The third peak is due to the lowest resonance
in the horizontal direction at w = 150rad/s. Actually, there is an antiresonance in the
vertical direction at this value of w, because the resonance in the horizontal direction
brings about an energy transfer from the vertical to the horizontal vibrations. As a
result the third peak appears at w = 151rad/s. On the other hand, if the lowest
horizontal resonance frequency falls outside the region between the leftmost peak and
the resonance frequency of the bare roll without absorbers, only two peaks will appear.
Also, for decreasing € the coupling gets weaker and the midmost peak vanishes (case
2 = 0). It should be noted that the values of ¢, and k, are not optimal for & = 0 and
80 rad/s, which clearly demonstrates that the gyroscopic and dissipational coupling
bears a considerable effect on the optimal parameters values of the dynamic absorber.

3 A T §
;N Q =130 radfs ————
2.8 SN Q =8rad/s ~—————=-
I~ Q=0radfs c—r—-—c-
2.6 "
N 2.4
=57
; 2.2
fi N
2
1.8
1.6

146 148 150 152 154 156 158 160

w [rad/s]

Figure 2. Frequency response function in the vertical direction for three roll rotational speeds
and % = 92%.

The calculated optimal absorber parameters ¢, and k, as a function of the rotational
speed for three different bearing stiffness ratios % are shown in Fig.3. It can been seen

that for % close to unity the optimal tuning depends relatively strongly on €. This
relates to the considerations above. When the lowest horizontal and vertical resonances
are close to each other, the horizontal motion will interfere with the vertical motion
thereby affecting the optimal tuning. Note also that percentually ¢, seems to be more

sensitive to the coupling.
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Figure 3. Optimal absorber parameters (a) ¢, and (b) k. as a function of the rotational speed
for three bearing stiffness ratios.

From a practical point of view the effectiveness of the absorber is of considerable
interest. In order to study this, the amplitude reduction factor 1 will be defined as the
ratio of the maximum values of the frequency response function in the neighbourhood
of the lowest resonance for the optimally tuned roll and the roll without absorbers.
The function 7 as a function of the absorber size is plotted in Fig.4 for Q = 80rad/s. It
can be seen that 7 falls steeply near the origin indicating that even with small absorber
masses a considerable vibration attenuation can be achieved. When the absorber size
increases further, the n-function levels out and only a minor improvement is obtained.

0.02 0.04 0.06 0.08 0.1 0.12 0.14

ma/pAL

Figure 4. Reduction of the maximum of the frequency response function relative to that of
the bare roll as a function of the absorber size for { = 80rad/s.

4. CONCLUSIONS

A closed form analytic solution for a rotating Rayleigh beam driven by an arbitrary
periodic load and with dynamic vibration absorbers at its ends is presented. The
boundary conditions consist of horizontal and vertical translational springs and viscous
dampers at the ends of the beam. However, the procedure is general and can be used
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for any linear boundary conditions and additional dynamic absorbers as well. The
extension to an arbitrary nonperiodic load is also straigthforward - just replace the
Fourier sums by the Fourier integrals.

As an application a numerical example of a paper machine roll is studied. The
significant effect of the gyroscopic and dissipational coupling on the optimal dynamic
absorber tuning is demonstrated and the optimal absorber parameters are presented
as a function of the rotational speed of the roll. It was found that, for certain ratios
of the horizontal and vertical bearing stiffnesses, the frequency response function at
the optimal tuning displays three peaks of equal heights instead of the conventional
two ones. Finally, the effectiveness of the dynamic absorber is studied as a function
of the absorber size. The conclusion is that even for very small absorber masses a
considerable vibration attenuation can be achieved.
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DESIGN OF THE DECELERATION DYNAMICS AND
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ABSTRACT

The deceleration dynamics and tribology of a high speed rotor system are studied. The rotor
is vertical and in normal operation it is supported by magnetic bearings. In emergency
braking situations its should be stopped fast with minimal radial and axial damage to a ring
sliding bearing. A list of feasible tribological material pairs are tested by simulation for
selecting the best ones for field tests. Wear rates and wear volumes under various
assumptions are estimated and also power consumptions and temperature rises. Dynamic
behaviour of the rotor bearing system is studied using analytical modelling and simulation
solution and also using a multibody 3D dynamics program Working Model. The
simulations are used to design the experimental testings. There is a need for more
quantitive material models and interdisciplinary design when designing tribological
advanced high speed products. Present tools give reasonable results but integrated design

tools are needed.

1. INTRODUCTION
Customers using high speed machinery need to decelerate them in emergencies. They are
satisfied with such a mechanical braking system which endures cost-effectively sufficiently

many decelerations. The aim of this study is to serve this goal. It consists of five subgoals:
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The first goal is to study the deceleration dynamics of the rotor bearing system using
analytical modelling and simulation, The aim is to use this model to optimize the designs.
The second goal is to simulate the deceleration dynamics using a 3D multibody dynamics
simulation program and CAD modelling of the geometry. The third- goal is to study the
tribology of the system for selecting the optimal wear resistant material pair. The fourth
goal is to calculate the transient temperatures of the critical bearing for use in material
selection. The final fifth goal is to utilize the previous results in designing the testing

program and make recommendations.

2. DECELERATION DYNAMICS OF THE ROTOR USING ANALYTICAL
DYNAMICS AND SIMULATION SOLUTION

The Jeffcott flexible-rotor model used as a starting model according to Childs [1]. The
equations of motion for the system shown in Fig.1 are
mRy + k. Ry = fx +maxg}52 +may
mRY +k Ry = fy +maY{b2 —maxa 1)
J,b =T, + may Ry —max Ry
where m is the mass of the rotor, mass of the shaft is not considered, £, is the shaft stiffness

coefficient, J, is the moment of inertia of the disk about its Z-axis. The components of the

external force vector are f = { Ix fy} and the component of the external moment vector

along Z-axis is T,. The transverse motion vector of the rotor is R = {Rx RY} . The vector a

is the imbalance vector. The mass is located at vector
S=R+A =Ry +iRy +(ax +iay)
S=R+ae'? a=ax+iay=aei7

S=R+A 2

axéz + aY¢i|

§S=R+ aei¢(—¢2 +i$) =R +(ax +iaY)(_¢2 +i¢) S Lygﬁz —axé

The principle of virtual work may be used to express the equations
(Xacl - "”Sx )d‘: =0= (fx —kRy -'J’?!{R.x *-*dxéﬁz —ayiﬂ})ﬁx =0

€)
(Y;ct —m8y )(Ey =0= (fy —kRy —m{féy —ay@? +axa})§y =0
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The torque balance is
(T2k - Jgk —ax mR) e kép =0 (
4)

axmR = (ax +iay) x m(R'x +ijéY) = m(axjéy - aYRx)

F 3

zZ .
OO o I

I -toa_\

Y
C >

mHm
| 4 X O
a) b) c)
FIGURE 1I: Rotor shaft models. a) The Jeffcott flexible-rotor model where the disk is at the

middle of the shaft, b) present model and c) approximate model

The dynamical equations of motion were solved as follows. First the highest derivatives
must be solved as functions of the lower ones. Substituting the angular accelaration into X
Y equations gives

ARy +BRy =C+Dg¢? 5)
A Ry +B Ry =C+D'¢?

The highest derivative components can now be solved as

ST
a1 axp | Ry ky
jéx = (k1a22 —kzalz)/D RY = (kzd“ - k1a21)/D (6)

D =ayay; —ajpay

|:m— ij man|Rlx +|: m.]aY maxj|1'€'Y = fx +max¢2 + ij TZ
z z z
@
it may |Ry +|m+ a2 may |Ry = fy +may@? - 7ex 1
JZ JZ JZ

The state and derivative variables are defined as follows
STATERX RXt RY RYt q qt B
DER dRX dRXt dRY dRYt dq dqt dB
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For the state variable solution the following definitions are made

dRy =Ry dRy = Ry

dRy: = Rxn(4:) , Ry; = Ryu(4y)

dg=¢, , d¢, = J_IZ'M = jLZ(TZ +may Ryy — maXRYtt) @
ap = By

The following assumptions are made :
a The rotor moves in global X and Y directions and not in vertical Z direction
b Radial clearance is 0.3 mm, and unbalance vector is @ = 1-10°m
¢ The movement of the total mass m is considered
The components of the unbalance vector in the global XYZ and the local rotor fixed xyz
coordinates are
ax =ay cosp—aysing
ay =a, sing+a, cosg ®
ay =acosy =a , ay,=asiny=0
The total decelerating torque is sum of three torques
Ty = Toip + Tzax + Traq = —k§* — pZoymgr — iZ;ag N1y (10)
Here T, is the decelerating torque due to air flow resistance at the rotor. A simple model is
T, =k¢* , k=6.112.10° (11a)
A more accurate empirical model is as follows
T = —sign(@)Gf ¢>1355 then K, else K;)
K =if ¢<1355 and ¢2773 then K, else K, (11b)
K; =g +bi¢+ci¢2 +di¢3 +ei¢4 , 1=1.3

The sign functions for the axial and radial friction surfaces are

Zy =sign(Vy) , Vo =7 a2
Ziaqg =5ign(Ving) 5 Viag = rzﬂ"rz(b

here 7 is friction radius of the upper surface between the bearing ring, #; is radius in the
inner surface of the bearing ring, 7, is the radius of the shaft through the bearing ring. Now
here F is normal radial force at a contact and Ar is radial clearance ( 0.3 mm). F causes
P=Ry - Ar (13)
where p is change of diameter d; due to compression by the normal force F by which the

shaft compresses the bearing according to Niemann [3]
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d 4(1-v%)
Ady=p=F-V i+1n(—D=F- F) , V== 14
=D (3 i o(F) == (14)
where
1/2 -
g==tife. dy=dy+24r b=1.08(F—d) (15)
dy—d, EL

Now for the restoring force F a simpler model F = ky-p with &z = 1-10° = 10000/2-k, was
used. Here E is elastic modulus of the bearing ring. The shaft is steel, v is poisson’s ratio
and L is length of the bearing in axial direction.
Now p is known and the normal force N is calculated as

N=if p>0 then F else 0 (16)

Momentary contact is at angle Srelative from the global X axis

Ry 1 Ry RyRy RyRyx-RyRy

tanf="X
Rx "cos’p Rx Ry’ Ry’ an
B= Ry Rx — Ry Ry
sz + RYZ
The components of the external force f on the rotor are
fx = N(=cos 8+ pZ 4 sin ) )
fy = N(=sin f— iZ . cos f)
70 %
Talr [
&0
504
30
20
10 »
- e .50: 1000 1500 2000 21/OO 3000 3500

q,[rad/e]

FIGURE 2: The measured air torque T, vs. angular velocity ¢ model.
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F, ai *

; 4 %
shal ft fame bearing

FIGURE 3: The rotor-shaft model. a) Jeffcot model b) geometry of motion

Some results of Simnon [2] simulation are shown in Fig.4.

b)
a) _
4000 4.104_
2000 0
. 410 Ar T Ar) By [m
0 4 tmesfs] 10 -410° 216 0 210° 410°
o FIGURE 4: Simnon simulation results a)
[m] rotor angular velocity ® vs. time, b)
210° Displacement components Ry vs Ry from
time 0 to 1s ¢) Ry (3) and Ry (4) vs. time.
0
Initial Rx(0)=10-10'6m, Ry =0. Parameters
104 kp=2de-4 , kg = 1- 10°, p=0.1, a=1-10"m,
m =85kg, J = 0.18 (kRx, kzp, p =R - 4r,

0 0.4 0.8 1 :
time £, [s] Ar =310" , allowable simulation error:

0.510°
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3. SIMULATION OF ROTOR DYNAMICS WITH A PROGRAM

The Working model 3D of version 2 was used (Pre-release version) [4]. Some results are
shown in Figs.5-14. A three dimensional model was made using AutoCAD, Fig.10. This
model was then transferred to WM. The coefficient of friction between the bearing and the
shaft was estimated as u = 0.1. The coefficients of restitution were for the rotor e = 0.3 and

for the bearings e = 0.2. Initial rotational velocity was 20000 r/min. The fast initial drop in

o in Fig.5 partiably probably due to calculational accuracy.

. 10 |
Wi .
S 8 8 81| 8
= o~ < & © =
BN
D

| _mm L
o :

g 8 8 8 8 8 400

.S
FIGURE 5: Angular velocity W, [v/min] FIGURE 6: Contact force F, between bearing
of rotor. and rotor.

:mmI N
N |

[ 15000+
2007
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|
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| |
(=]
of 2 2 % 8| s s g
ﬁq -—
L]

FIGURE 7: Contact force F,, between FIGURE 8: Contact force F, between the

the bearing and the rotor. bearing and the rotor.
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FIGURE 9: Coordinates and forces of WM3D RIGURE 143 Awigcadmyodel of

the rotor.
model. b
10000
10000
AN
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.00 :. ‘|
i 0.(1)' Iy il —[ | T i1 i
b< ii! i | = & S
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10000 100001
™ s
FIGURE 11: Friction force F,, between the FIGURE 12: Friction force F,, between
bearing and rotor due to forces F, and F.. bearing and rotor due to forces F, and F,,
20 4000
N b
3000 4
100 2000
10004
0 0 It I_L[IHH!‘PMA- = _
e 8 8 8 8 8 8 8 8 8 8 8
=) [N < © o =] =) ~ B © @ o
o8] t1s]

FIGURE 13: Resultant force F of friction FIGURE 14: Total friction power Qr between
Jorces Fy, and F,, the bearing and the rotor.
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4. WEAR MODELS

In analysing a tribological situation the following aspects are regarded as important :
1 Load, 2 speed, 3 vibration and dynamic loading, 4 temperature, 5 presence of loose
abrasives, 6 nature of loose abrasives, 7 nature of gaseous environment, 8 contaminants, 9

lubrication and 10 damage in manufacture or assembly.

4.1 The linear wear model

This model gives the wear volume as, Fig.15a

vV F ;
§=Zgn > V’_—Anh 5 h=ht ] S=Vt ? Fn =pAn ” (19)
Anht = Z& —> }.lzpv£

vt H H

where ¥V is the worn out volume [m3], F, is normal force [N], 4, is nominal area [mz], pis
nominal pressure [Pa], % is thickness of the worn out layer [m], ¢ is time {s], § is sliding

distance [m], v is sliding velocity [m/s], Z is wear coefficient, Z = k and H is hardness on

the wearing surface, H{MPa] = 9.81- H[kp / mm2] .

~Adsorbed gas layer
[m e~ Oxide layer
2.~ Work-hardened layer

Ft + Fn ~Contaminant layer

.................................

FIGURE 15: Wear models. a) Illustration of wear model, b) schematic view of films on a

metal surface, ¢) a typical metallurgical and adhesional joint [5].
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4.2 Hardness and mechanical properties

Wear rate is generally inversely proportional to hardness. The young’s modulus of a
polycrystalline metal is a structure-insensitive property. The yield strength of a metal is
markedly structure dependent, however. Rabinowics [5] has plotted data; from Metals
handbook (196‘1) whenever possible data has been chosen for the pure metal in fully work
hardened condition. This is the state that a metal surface might achieve after repeated
sliding. The average relation for many materials is

o,=0003E , oy=¢,F , H=30,

20
T = log(E)/ A, A4 =1og(21-10')/1500°C , Ea? =152 C? (20)

where « is the coefficient of thermal expansion. Thermal stresses will appear with a

thermal difference AT across the surface layer. o = EaAT .
4.3 The adhesive wear rate models for metals and nonmetals

According to Rabinowicz [5] the wear coefficient k£ = Z depends on the friction coefficient
for metals (m) and nonmetals (n) as shown in Fig.16. Essentially, friction is not a

temperature dependent quantity.

;im=va—m , Zo=AguP 4,=37-10% |, B, =37 H,=H

Hm
' s (1)
h=pvo Z =A% 4,=26-10° , B =205 H,=02H

n

Rabinowicz gives also data [5] (p.160) for the following combinations. For WC on WC and

for tool steel tool steel

. Z B . Z
hyewe = Pv%m . Zwewe =1-1078 gy = Pvﬁi , Zgg =1:3107%(21)
m m

4.4 Abrasive wear

The abrasive wear rate equation looks similar to the adhesive equation. Rabonowicz gives

[5] (p. 194) the following experimental values for the abrasive wear coefficient

. 74
hae = py=22 22
abr = P H (22)

m



LSl

TABLE 1: Abrasive wear coefficient values, [5 ] ( Rabinowicz, p. 194)

lubrication File Abrasive paper . new | Loose abrasive grains | Coarse polishing
Dry surface 500-10” 10-10” 1.10° 0.1-10”
Lubricated 1000-10° 20-10° 2.10” 0.2-10°
102k O Wencal or T T T T T T T
pdre 530 — et | B
ey asl.  Seeed - atms 0 mvie i
[Tend =
5 05— —
5ol Sos
; £l A
E 104 |- §
= oz shoan of 50 3eparaie vy
- - S
Notuinaddsl O AGOEE
4]‘ M0 w5 60 00 100 105 140 1600 1800 000
ot Siicieng txmperatere, °F
0.105 O.Ilo o_;l Of! B,lﬂﬂ!ix UE& 01! 0!.5 10
Friction coefficient
a) b)

FIGURE 16: Wear models. a) The wear coefficient for metals k = Z vs. friction coefficient,
b) mean friction coefficient vs. sliding temperature as derived from 50 widely varying
material combinations [5].

4.5 Wear under the deceleration stage
The model is shown in Fig.3. The rotor is in normal operation supported by magnetic
bearings in axial directions. To slow it down an axial retaining bearing is used. It also gives

radial guidance to the rotor.

[m] vt hnmet Reaus e tat
a) Bet  woxs
nmet 2,88 N -
hwcrwe
Boysae et = - [ an e
b) - [°cl time ¢, [s]
temp Dl
tmax .,
b i 7o an
c) [m]
Tus _’: Fatr  Frw e Jﬂv&v%hvﬂvﬁv“v"
T" -
T Lime &, Camsd " N
(1} 10 20 30

FIGURE 17: Wear and dynamical models. a) Weared out surface h for hmet(l) : for
metals, hnmet(2) : for nonmetals, hwewe(3) for WC/WC pairs (close to abscissa), hstst(4)
for steel/steel pairs, b) qt(1) is rotational speed, temp(2) is mean temperature, tmax(3) is
flash temperature, ¢) F, (1) = Ty air friction torque, Fy(2) = T, friction torque on the

axial bearing surface.
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The dynamic equation of motion of the rotor in the braking stage is

q. N f.:tir + Tm)r
J .
Ty = —sign(@)kg* 23)

Ty =i abs(q)<qyq or abs(q)<qq then Tp, else Tn
where the decelerating friction torque is

Tomy =—sign(v) uNr , N=mg , v=gr

T, = —Tmyy% , Ty = XuNr
T

@4

Here J = 0.18 kg m” is the mass moment of inertia, m = 85 kg is the mass of the rotor, T, is
the torque resisting the rotation due to air flow. Experimentally it was determined by a

power measurement as
P=T,w=ko’ o 230kW=k(335lrad/s)’ —k=6112-10" (25)

An approximate solution is obtained as follows with numerical estimates

pmgr __ 035-85-10-0.04

T . =
a=hmer 4 J 018
4(t) = 4(0) ~ Kt T=w—£=%=505ec
26)
- Z z _ Lo\ Z (
h—pvﬁ— a)o—Kt)rpE h(t)—(coot—th )rpH
2 2 -5

w Z 3351 ¢ 10 s
WD =1+=2 rp = =12"2"_004.0.61-10° ———=2-10

kK "H *? 1000-10°

Substituting here further a model describing the dependence of the wear coefficient on the

coefficient of friction gives the thickness of the wom out layer at time T to stop.

Z=A.k,l.lBk
WD) =120 Z_3J00" mmg Z _3Joo" 4™ KE AP @D
"k PHT 4 rmguH A H  Area Hardness

The allowed wear per one deceleration is # = 0.1 mm = 10-10”m. The calculated wear at
room temperature for steel/steel pair is about 5.10°m, Fig.17a. But when the temperature of
a steel workpiece increases from 0.2 to 0.4 T, the hardness decreases by about a factor of

about 0.3. Thus wear % increases about three times or more than allowed.
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5, BEARING MATERIAL SELECTION USING FRICTION ENERGY INPUT AND
COMPARISON OF CALCULATED AND ALLOWED TEMPERATURES

5.1 Bearing temperature estimates with simple stationary models

When surfaces slide together, almost all the energy is dissipated in friction and appears in
the form of heat at the interface. The surfaces make contact not over the nominal area 4,
but over only a few isolated junctions whose area is the real area of contact 4, Fig.15a.
During sliding these junctions are broken and their temperature is fairly even at flash
temperature. The mean temperature of the layers is lower. Several models may be
described. At the present case the pressure is 0.5 MPa in axial surfaces, sliding veloity is
100 m/s, ambient temperature is high 150 °C. No lubricants may be used.

Model A. At moderate speed v the interface attains an equilibrium mean temperature rise

T,, above the rest of the material given by

_ y71/4%
o 4JrJ(/11 +ﬂ,2)

(28)
Here y is friction coefficient, 7; is the radius of the junction, J is the mechanical equivalent
of heat, W is the load carried by a single junction, and 4, and A, are the thermal
conductivities of the two contacting materials.

Model B. Rabinowics [5] gives the following simplified model

T, =cv, Tm[°c], v[m/s], c=50(1/3...3)["C/(m/s)] (29)

Typical values are : ¢ = 50 generally, ¢ =9 with brass on nylon, ¢ = 13 with steel on bronze,
¢ = 32 with steel on nylon, ¢ = 140 steel on steel.

Model C. A simplified model for the mean temperature of the friction surface is based on
the assumption that the friction power in conducted to the two contacting layers under

steady state heat flow conditions

Or=01+0,

HpvA = A[ll

- _ 30
T rwuzr Tw] =T, + pv (30)
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5.2 Friction power estimate with stationary models

One method of design a retainer bearing is based on ability of the bearing to dissipate heat.
In this approach a pv value is computed using the equation

. k(Tp —T4)
y7

p (31

where p is load per unit of projected bearing area [kPa], v is surface velocity of journal
relative to bearing surface [m/s], T, is ambient air temperature [°C], Ty is bearing bore
temperature [°C], u is coefficient of friction.

The constant & in Eq.(31) depends upon the ability of the bearing to dissipate heat. Table 2
shows some of the materials commonly used under dry or mixed-film conditions. It is to be
noted that all quantities listed are maximum values. However, they cannot all be maximum

at the same time. [7] ( p. 463 )

TABLE 2: Maximum normally allowable pressure, temperature, sliding velocity and pv

values of some materials [7].

MATERIAL MAXIMUM MAXIMUM MAXIMUM MAXIMUM
pressure, temperature, speed, pv value,
MPa °C m/s kPa * m/s
Cast bronze 31.0 165 7.5 1750
Porous bronze 31.0 65 7.5 1750
Porous iron 55.0 65 4.0 1750
Phenolics 41.0 95 13.0 530
Nylon 7.0 95 5.0 100
Teflon 35 260 0.5 35
Reinforced teflon 17.0 260 5.0 350
Teflon fabric 410.0 260 0.3 900
Delrin 7.0 80 5.0 100
Carbon-graphite 42 400 13.0 530
Rubber 04 65 20.0
Wood 14.0 65 10.0 530

First it is essential to represent the theory of dissipated heat generated from friction at the
interfaces. Friction power that releases at sliding surfaces is

Or=0+0, (32)
where O, represents heat dissipation to retainer bearing (Fig.18) and O, heat dissipated to

rotor shaft and impeller back ring.
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FIGURE 18: Heat power [W] dissipated to the retainer bearing vs. time [s] due to sliding

friction at interfaces for friction coefficients 0.1(lower curve ) and 0.2(upper curve).
5.3 Transient temperatures at the bearing

In order to select the best candidate material pairs for field tests the highest transient
temperature loads are compared with melting temperatures or allowed limit temperatures.
The load temperatures were calculated using the following approach.

a The partial differential equations of heat conduction in time and in thickness direction
were discretized first, Fig.19¢, Eq.33.

b The finite difference method with Euler application [6] was used to solve transient
temperatures at nodes.

¢ Then these were solved using Simnon “discrete system* option.

dTl B 1-in+1 _T]n ﬂ_ T;n _I;n (33)
dt At dy h,

Here n and n+1 are sequential time step numbers, At is time step, T, is ambient temperature
in bearing housing, « [W/(m’K)] is the combined coefficient of radiative and convective
heat transfer, A [W/(mK)] is coefficient of conductive heat transfer, #; are layer thicknesses,
p [kg/m’] is density of the material, C, [M/(kgK)] is specific heat and Q, 1s dissipated heat
flow. In this model two material layers ( &y, k. o1, P2, Cp1, Cpz, A, and 4,) can be used.
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Energy balance of node 1 gives (Fig.19c)

L -1 L"-T"
0= Qc 1+ Q12 Q1 ®= Pi€p1 21 : At b A 2 A, . (34)
It is assumed that heat dissipation to the bearing is 1/2 times friction power
30
0= ZA—" (35)

Here 4, is nominal area of axial surface of retainer bearing. Total friction power at sliding

surfaces is Or. Energy balance of node 2 gives

O, =0ci, +0cs +0s (36)
L"-T" T -1" b, T L' -1

—l 2 1 = c L5 2 + 2 a2 2 _2’ 3 2
1 A, -pl P17 AL P25 > AL 2 I,

Energy balance of node 3

0y =0c;+0y (37

22 a1 -7, ) (38)

In this application we chose o = 30 W/(mzK) according to Shigley [7] and assumed

constant ambient temperature T, = 150 °C. The foliowing equations are obtained

T = (1-2R)F +2R " 4255 RO/ (39)
1
FF,(S+1
I;n+l=2 SF;FZ ];ﬂ+(1_2 1 2( )]I;"+2 F'I}TZ T;” (40)
F, +SF, F +SF, F, + SF,
L' =2F,T" +(1-2F,[1+ B, )|I," +2F,Bi, T, (41)
Where
y)
F‘l _ /11At . F2 - Azm - S= 1h2 312 - ahz (42)
plcplhl pch}kz z’zhl /1’2

Then these were solved using Simnon “discrete system* option. The results in Fig.19 show
temperature vs. time curves at three nodes of the model for the retainer bearing made of

iron with low friction surfaces using two assumed friction values 4 = 0.1 and 0.2.
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FIGURE 19: Temperature rise of iron bearing. Friction coefficients are 0.1, 0.2, melting
temperature 1473 °K. Temperature [°K] as function of time [s] at three node points,
a) time scale 0...100 s, b) time scale 0...7000 s and c) a finite difference model used.

TABLE 3: Temperature rise peaks and melting temperatures [K] of some material pairs

with two coefficients of friction 0.1 and 0.2.

Material sliding Temperature Temperature Melting temperature
on steel at u=0.1 at =02 or limit temperature
Bronze 1170 1610 1283
Steel 1120 1540 1623
Iron 1120 1520 1473
Stellite 6 980 1360 1533...1630
PI 60% + graphite 40% 4400 7300  glass trans. temp. 638
Silicon carbide 1450 2050 3073

6. DISCUSSION

Successful design of high speed machinery requires interdisciplinary approach and
synergical combination expertises of rotor dynamics simulation, tribology and materials
science and heat transfer. This approch gave satisfactory results. One drawback is the need
to use of several design tools. Reliability of complex simulations need to be checked with
simple models and also the sensitivity of results to error limit choices. An integrated design
tool is required which is user friendly and gives reliable results cost-effectively.
7. CONCLUSIONS

Customers using high speed machinery often need to decelerate them. One choice is
mechanical braking system based on dry friction. The goal in study was explore ways to
optimize this system to endure sufficiently many decelerations. This goal consisted of the

following subgoals.The first goal was analytical modelling and simulation solution of the
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deceleration dynamics of the rotor bearing system.This was achieved satisfactorily and
simulation results were nearly quantitative.This model can be used for optimization and
sensitivity “what if studies”. The second goal was to simulate the deceleration dynamics
using a 3D multibody dynamics simulation program Working Model. The model geometry
was created using AutoCAD and imported to WM. The results were reasonable and
detailed. The third goal was to use tribology, material models and simple analytical
dynamics for selecting the optimal wear resistant material pairs. The results showed that the
wear resistance of structural steels was not sufficient. The fourth goal was to calculate the
transient temperatures of the bearing. The result was safety margin of peak temperature
load vs. endurance or now the melting temperature. This was needed in material selection.
The fifth goal was to use the previous results to aid the design the testing program. This
was achieved satisfactorily at start up stage of testings. It is recommended that more
emphasis is laid to expertise on physical simulation modelling and testing and maintaing
availability of expertise for use in future tasks cost-effectively.
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ABSTRACT

The bifurcation structure and bifurcation diagrams of a periodically driven van der Pol-type
nerve pulse equation are presented. The bifurcation maps display 1:1 phase locked and period
doubling regions, a classical region of Arnold tongues and quasiperiodic behaviour and an
interesting transition region with periodic, quasiperiodic and chaotic solutions. The response
exhibits Neimark-Sacker, period doubling and saddle-node bifurcations, N:M-type phase-
locked states, Farey organization and chaotic behaviour. The rich variety of calculated
arrhythmias and conduction blocks agrees well with measured behaviour of dog and sheep
cardiac Purkinje fibers.

1. INTRODUCTION

Already in 1920's mathematical and experimental models were developed to explain cardiac
arrhythmias. These models, based on a difference equation [1] and on coupled nonlinear
electric oscillators [2], were used to display the generation of different rhythms related to
atrioventricular heart block as a function of the system parameters. These studies are the
earliest ones to emphasize the role of bifurcations of a nonlinear model to understand the
qualitative behaviour in biological systems. Later studies, accounting also for spatial aspects,
were performed utilizing the concept of an excitabie medium [3]. These studies associated
ventricular tachycardia and fibrillation with rotating spiral waves in cardiac tissue. An
important contribution was the Hodgking-Huxley model based on nonlinear partial
differential equations describing the excitation propagation in squid giant axon [4]. The
model was developed to explain voltage clamp studies of the ion currents in squid nerves.
Thereafter, an enormous amount of work has been done to explain the functioning of heart

[5].

The idea that human disease may sometimes be associated with bifurcations in the
dynamics of living organisms was originally proposed by Mobitz [1] and van der Pol and
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van der Mark [2], and made more explicit by Mackey and Glass [6] with the notion of
'dynamical disease' to denote abnormal dynamics in physiological systems associated with
changes in system parameters. Of most interest is the understanding of the bifurcations and
topological features of the nonlinear equations under parametric changes. This topological
approach considers the identification of disease as a problem of understanding the
bifurcations in an appropriate underlying model system. They suggested that one basis for
therapy is to manipulate the physiological parameters back into their normal ranges.

Many biological rhythmic processes can be modeled by nonlinear differential equations
exhibiting limit cycle behaviour. Recently, periodically driven and coupled oscillators have
been subject to considerable interest. The basic analytical model for the periodically
perturbed biological oscillator was given by Guevara and Glass [7]. Many important systems
with relaxation oscillations have been described by the harmonically driven van der Pol
equation, being a basic model of driven self-excited oscillations in physics, electronics and
biology. The driven van der Pol equation is one of the most intensely studied equations in
nonlinear dynamics (see [8]). Much less studied are the asymmetric van der Pol and the
quiescent nerve pulse equations. Nonlinear dynamics of the heartbeat was modeled by two
coupled nonlinear oscillators using an analog electrical circuit with an external voltage source
by West et al. [9]. A Bonhoeffer - van der Pol (BvP) model with self-sustained oscillations,
exposed to periodic pulse trains, was used to describe the influence of periodic inhibitory
trains on a crayfish pacemaker neuron [10]. Bonhoeffer - van der Pol equation has also been
used to describe the cAMP signalling system in the cellular slime mold Dictyostelium
discoideum and to model the cell cycle [11]. Many coupled oscillating systems, such as the
primary and secondary pacemakers of the heart, have been modeled by the standard circle
map.

A system can also contain nonlinear, spontaneously quiescent, excitable threshold
elements (or neurons) paced by the oscillating parts of the system. The aperiodic response of
non-spontaneously active cardiac Purkinje fibers and ventricular muscle cells to rhythmical
stimuli from their surroundings was studied by Chialvo and Jalife [12] and Chialvo et al.
[13]. A bifurcation analysis of the non-oscillating BvP equation stimulated periodically was
given by Braaksma and Grasman [11] and Sato and Doi [14]. A mathematical model for
periodically driven neurons and an analytical treatment for their firing frequency, explaining
the experimental results of the artificial (transistor) neurons [15], were presented by Nagumo
and Sato [16].

Nerve pulse propagation has attracted attention since Hodgkin and Huxley explained the
mechanism of ion currents governing the pulse motion. Due to the complexity of the
phenomenological Hodgkin-Huxley model, the simpler FitzHugh-Nagumo (FHN) model is
widely used [17,18]. Still another approach, based on the full hyperbolic telegraph
equations, leads finally to a Liénard-type nerve pulse equation (NPE) for the stationary wave
profile of the transmembrane action potential [19,20]. The harmonically driven NPE is
equivalent to the BvP equation except for a missing Duffing-type cubic term. Depending on



421

the parameter values, the NPE exhibits relaxation oscillations and can be considered as an
(asymmetric) van der Pol equation, or the relaxation oscillations cease to exist [11,20] and
the NPE becomes a quiescent excitable nerve pulse equation (or a quiescent van der Pol
equation).

The cardiac electric conduction system can be considered as a network of selfoscillating
pacemakers and quiescent, excitable, His-bundle and Purkinje fibers. The sino-atrial (SA)
node, being the primary pacemaker, and the atrioventricular (AV) node, a secondary
pacemaker, can be modeled as a pair of coupled relaxation oscillators [2,9,21]. Under
normal conditions, the intrinsically faster SA node appears to entrain the slower secondary
pacemaker resulting in a one to one phase-locking of the pacemakers [22]. However,
perturbation of this system may lead to a complex dynamic interaction. The AV node, on the
other hand, acts as a drive for the His bundle and Purkinje network, considered as non-
pacemaking excitable media.

In this work the pacemakers of the heart in an entrained mode are modeled by a periodic
train of Dirac delta spikes. These act as a drive for the cardiac conducting tissues (His-
Purkinje network) modeled by the NPE. This pulse equation intrinsicly includes the
refractory period of the nerve cells and no book-keeping of the expression or quenching of
the pulse conduction is needed.

The paper is organized as follows. We first consider some basic features of heart
physiology in view of the electric rhythm generation and the voltage transmission along the
nerves. We then present the main results for the NPE and numerical results for the NPE
driven by a periodic train of Dirac delta spikes, simulating real transmembrane action
potential measurements. Finally, the conclusions are drawn.

2. PHYSIOLOGICAL BACKGROUND
Heart Dynamics

The rhythm of the heart is set by a small region of specialized myocardium in the right
atrium, called the sinoatrial (SA) node, which generates a spontaneous electrical rhythm
associated with the flow of ions, principally sodium, potassium and calcium, across the cell
membrane. The rate of this sinuous pacemaker can be affected by nerval activity from
sympathetic nerves which speed up the heart, and the vagus nerve, which slows down the
heart. The electrical current spreads across the atria, and this in turn leads to a contraction of
the atrial muscle. In normal individuals, the atria and ventricles are electrically coupled only
by way of a small strip of specialized tissue, the atrioventricular (AV) node. The rest of the
tissue that separates the atria and ventricles is nonconducting fibrous tissue. Specialized
fibers, the Purkinje fibers, rapidly conduct the electrical activation to the ventricular
subendocardium. Activation of the muscle cells is then completed within about 0.06s in
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FIGURE 1. Main elements of electric action potential generation and propagation in heart:
(1) SA node (2) AV node (3) His bundle with branches (4) Purkinje fibers.

humans ensuring nearly synchronized contraction of the massive ventricular muscle. The
basic units of contractile material within the muscle cells are the sarcomeres which, when
switched on by the calcium ion fluxes, triggered by the action potential, produce force in the
direction of the muscle fibers. All the mechanical events of the heart as a pump are driven by
the repetitive electric signal, the action potential, which starts from the SA node. The
sequence of the main elements is the following [23]:

*  SA node with its thythmicity (a basic clock for the cardiac cycle)

* AV node introducing a delay which allows effective mechanical contraction of atria
followed by ventricles

*  Bundle of His and its branches carrying the action potential
*  Purkinje fibers distributing the action potential over the myocardium
*  Mpyocardium contracting as a result of the distributed action potential.

Nerve Pulse Transmission

The contemporary understanding of nerve pulse propagation is based on the membrane
theory. The nerve pulse (voltage) is transmitted down the axoplasm core of a nerve which is
surrounded by a cylindrical membrane. The currents through this membrane from the
axoplasm to the intersticial fluid and inversely govem the nerve pulse propagation.
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The process is the following [24]: Both the axoplasm (inside the nerve) and the intersticial
fluid (surrounding the nerve) contain ions of sodium (Na*) and potassium (K) as well as
other ions. The relative concentration of sodium and potassium ions create the
transmembrane potential. At equilibrium the value of this potential can be estimated by the
Nermnst equation [25]. Calculations show that the axoplasm contains a larger potassium and
lesser sodium ion concentration than the intersticial fluid, resulting in a resting potential in
the range (-50 mV, -100 mV).

If an electrical stimulus is applied to the nerve, the membrane acts in different ways
depending on the value of the stimulus. If the stimulus is below a certain threshold value, the
depolarization process of the membrane is reversible and the equililbrium state returns fast
without any pulse propagating. If the stimulus is above the threshold, the permeability
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FIGURE 2. (a) Typical transmembrane action potential profile and (b) idealized nerve with
ion currents.

of the membrane to sodium ions is increased and the inward flow of the sodium ions starts.
The positive increase in the transmembrane potential causes then a further decrease of the
permeability to these ions and the potential goes through a depolarizing phase resulting in a
value of about +50 mV at the inside of the membrane. This process is followed by an
increase in the potassium permeability which causes an outward flow of the potassium ions.
When the potassium outward current equals the sodium inward current, the transmembrane
potential peaks and the process returns to the equilibrium through an undershoot. As a result,
an asymmetric solitary wave propagates in the nerve. This is depicted in Fig. 2.



Lok

Model for Nerve Pulse Propagation

To model the nerves we start from the Lieberstein [19] model

dv  di,
20,2 %y im0,
st ox T 1
L v
20t 9x a= ™

where v is the potential difference across the membrane, i, the axon current per unit length, i
the membrane current per unit length, a the axon radius, C, the axon self-capacitance per
unit area per unit length, L the axon specific self-inductance and r the resistance per unit
length. Further, it is convenient to introduce the membrane current density I=i/(2ma).
Equations (1) are hyperbolic transmission line equations (telegraph equations).

For the current density I a FitzHugh-Nagumo type cubic expression
I=av+ BV +w )
with one recovery variable w is used. The recovery variable obeys the equation

ow _
E—'}’(V"‘Vo). (3)

Here a, B, Y and v, are constants. Starting from the above equations it can be shown
[20,26] that the final equation for the transmembrane action potential becomes

azv
Eds £as +f (V)_E +g(v)=0, 4
where
fW)=ag+av+ azv2 , gW)y=av 5)

are polynomials with constant coefficients, s is distance along the nerve and the variable
§=cot—s (6
has been used. Here ¢ is time and ¢ the propagation velocity determined from the telegraph

equations. Equation (4) together with the initial condition describes the full dynamics of the
wave. However, when a stationary profile after the transient has been formed, the
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corresponding ordinary differential equation may be utilized. Because the stationary wave
does not propagate with the equilibrium velocity ¢, the transformation .

n=s+6¢& Q)
is introduced. This leads to the equation

dy dv 1

—s+ f(V)—+—g(v)=0, 8
e f( )dn Bg() ®)
where 6 denotes a pseudovelocity determining the final velocity of the progressive wave
through

¢ - ©)

It is further shown that equations (4) and (8) exhibit a threshold, a possible amplification of
the initial excitation and a formation of a stationary profile with a characteristic refractive
part. It is also shown that the stationary wave profile of equation (8) is very similar to that of
the FitzHugh-Nagumo equation.

We prefer writing equation (8) in the form

d%v dv
W+F(v—vl)(v—v2)—dﬁ+v=0, (10)

where typical values for mammal nerves F =3.265, v; =0.5 and v, =1.9 are used [26]. In
this work these values for the nerve pulse equation are used unless otherwise stated.

A single stimulus acting on the nerve pulse equation (NPE) (10) in its resting state will be
either attenuated or amplified resulting in a sub-threshold (small stimulus) or supra-
threshold (larger stimulus) wave shown in Fig. 3.

9 v(t)
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FIGURE 3. Threshold, sub- and supra-threshold wave profiles of equation (10).
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The threshold solution on the (v,dv/dn)-phase plane touches tangentially the line of zero
isoclins, which locates the inflection points of the curves v =v(n). In the case of cardiac

1,=6.0 I[,=1.8 I,=1.62

O = N W

-2 0 2 4
Di

FIGURE 4. Threshold impulse I, for the NPE for various initial conditions
(Vo,V(')):(O,Io).

Purkinje fibers the sub-threshold response is not able to fire the contraction in the
myocardium cells resulting in a skip of one heart beat. The minimum impulse (velocity kick)
I, = 1;,(DL 1) needed to create a supra-threshold response, as a function of the impulse
exertion time, is presented in Fig. 4. The curve displays a maximum indicating that the NPE
under consideration behaves as a supernormal neuron.

3. RESULTS AND DISCUSSION
Simulation of Action Potential Experiments

In the following we study the nerve pulse equation (10) driven periodically by a train of
Dirac delta spikes. This is of practical interest since many experimental transmembrane action
potential measurements are performed using cell stimulation by short rectangular current
pulses [12,13]. The emphasis is on a detailed study of the bifurcation diagrams of the
response as a function of the drive frequency for different drive amplitudes and on the
bifurcation map on the drive frequency-amplitude plane. The model equation for the
ventricular conduction fibers driven rhythmically by (infinitely) short depolarizing current
pulses thus reads

d*v dv -
-‘;T—2+F(V—V1)(v—vz)d—1+v=1’§)5(T—nT), i

where I accounts for the strength and 7=27/e for the basic cycle length (period) of the
stimulus, and 8(-) is the Dirac delta function.
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The overall bifurcation structure of equation (11) displaying the bifurcation lines of period
one solutions on the (/,®)-control plane is shown in Fig. 5. Here dotted and solid lines
denote period doublings and Neimark-Sacker bifurcations, respectively. A detailed study of
bifurcations up to period six solutions revealed the classic Farey organization and Arnold
tongue structure for phase locking zones originating from the Neimark-Sacker lines within
the quasiperiodic region, period doubling cascades and chaos originating from the two
‘butterfly wings', and a complicated transition region between these main domains. A more
detailed bifurcation structure within the zone 1< @ <3 is shown in Fig. 6. Here Neimark-
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FIGURE 5. The skeleton of the bifurcation structure of eq. (11).

Sacker bifurcations are labeled by NS and saddle-node and period doubling bifurcations by
sn(m,n) and pd(m,n), where m and n denote torsion and period numbers, respectively, as
follows [8]:

sn(m,n) one saddle and one node, both with period n and torsion m, coincide and
disappear

pd(m,n) an orbit with period n/2 and torsion m/2 bifurcates into an orbit with period »
and torsion m.

The torsion number m equals the average number of windings per drive period of a
neighboring orbit around the underlying attractor. For attractors with torsion number m and
period number » the ratio p =m/n defines the generalized winding number (GWN). It
should be noted that the GWN is also well defined for systems with a broken or no invariant
torus [27]. Let us consider Fig. 6(b). The bifurcation sequences pd(1,2)—
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pd(1,4) — ...chaos within the lower wing and pd(1,6) — pd(1,12) — ...chaos and
pd(1,8) = pd(1,16) — ...chaos within period three and four Arnold tongues bordered by
sn(1,3) and sn(1,4) lines, respectively, are found. The Amold tongues originate as cusp-like
forms from the points of resonances R(1,3) and R(1,4) at the Neimark-Sacker bifurcation
line approximately at @ =3 and = 4. The period doubling bifurcations inside the tonques
are very close to the saddle-node bifurcations bordering the tongues. Note overlapping of
tongues three and four and tongue three with the lower wing in the vicinity of chaotic
regions. The higher period tongues do not display overlapping nor do they bifurcate, and
together with the intervening quasiperiodic regions they form a typical Amold tongue
structure on the right hand side of the transition region. In the upper part of Fig. 6(b) a cusp
pertaining to sn(1,2) bifurcations appears very close to the pd(1,4) line. This cusp creates a
fold which leans over the period doubling region and continues up to higher values of I,
changing to a sn(1/2,2) bifurcation line above I = 3.1. Note also that the cusp is connected

(@ 5
4.5¢

I at
a5 s "
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FIGURE 6. More detailed bifurcation structure around the transition region.

to the Neimark-Sacker line via the pd(1,4) bifurcation line. This suggests that the cusp can
be interpreted as a reminiscence of period two Arnold tongue. Upper part of the 1< w <3
strip shown in Fig. 6(a) displays quite a similar structure with period doublings and Armold
tongues than the lower part. However, the pd(1,4) bifurcation line extends below the upper
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wing following the sn(1/2,2) line down to I=3.7. Note also that the period doubling
wings are connected via a NS bifurcation line enclosing, together with the sn(1,2) line, a
closed area (lobe) displaying quasiperiodic behaviour. The lobe contains higher Arnold
tongues and, therefore, this NS bifurcation line can be interpreted as a continuation of the
NS bifurcation lines on the other side of the wings. The pd(1,2) lines, which intervene the
NS line, arise due to the 2:1 conduction block, which is primarily caused by the
supernormality of the NPE under consideration.

In Figs 7-9 the bifurcation diagram using the Poincaré section points v, defined as the
maximum values of v between consecutive Dirac delta spikes, largest Lyapunov exponent 4
and generalized winding number p (GWN) for steady state solutions are shown as a
function of w for different drive amplitudes I. The definition of the GWN is based on the
torsion of the local flow around a given attractor. Within a period-doubling cascade, the
GWN exhibits an interesting stepwise structure [27] embodied in the sequence

Ay 1
pn=p°°i3fn )2:1 ? (12)
0"
where
_ 1
Pe=PoF3 — 13)
0

Here p, and my are the GWN and the period of the first attractor in the cascade. Upper or
lower signs in equations (12) and (13) must be chosen depending on which attractor is
chosen as the first one. Equation (12) describes a sequence of alternatingly falling and rising
steps with the step height halved within every bifurcation.

A typical bifurcation diagram for small drive amplitudes is shown in Fig. 7(a). For
increasing @ the stable period one attractor experiences a NS bifurcation leading to
quasiperiodic behaviour (see the Lyapunov exponent). The NS bifurcation occurs approxi-
mately (within a relative error of 0.15 %) when the average value of the drive I/T =wl/2r
equals the lower root v; = 0.5 at @, =4.19. The amplitude spread in the Poincaré section
seems at first to follow the typical square root law [28]. However, when the firing over the
instability strip v <v < v, starts, a sudden amplitude rise occurs. The periodic windows
within the quasiperiodic region are narrow. When the drive average equals (within a relative
error of 0.06 %) the value of the upper root v, =1.9 at @_, =15.9, a reverse NS bifurcation
occurs. This is preceded by a sudden amplitude decrease analogously to the lower end of the
instability strip. At @ > @,, a stable period one attractor resides above the instability strip
(parts of the curve near the minima may penetrate into the instability strip). This corresponds
to a superstimulated state where the repolarization of the neuron is prohibited. The GWN
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FIGURE 7. (a) Bifurcation diagram, (b) largest Lyapunov exponent and (c) generalized
winding number as a function of @ for I = 0.75.

displays a regular devil’s staircase-type behaviour throughout the w-interval within the
quasiperiodic region.

When the drive amplitude approaches the firing threshold (f;, =1.62) for a single
stimulus, the bifurcation diagram experiences strong exchanges. This is displayed in Fig. 8
for the value I = 1.5. A period doubling cascade and chaotic region now precede the
quasiperiodic regime and replace the NS bifurcation (see Fig. 5). The period doublings occur
at @-values corresponding to a drive average lower than the root v;. Consequently, it is
natural that no NS bifurcation occurs at this stage. Nevertheless, the drive amplitude /= 1.5
is quite near the firing threshold for a single stimulus. This means that the system phase
point penetrates deep into the instability strip, even at low drive frequencies, resulting in a
strong interplay between the drive and the NPE leading to the observed period doublings and
chaotic behaviour. For increasing @ the drive average assisted oscillations of the NPE
become strong enough to compete with the external drive. This results in the quasiperiodic
behaviour starting at @ = 3.3 via a saddle-node bifurcation from the period four window. As
before, the reverse NS bifurcation and the appearance of the period one superstimulated state
occur for still larger values of @. The small period windows at the left end of the bifurcation
diagram are widened compared to the case of lower I. A closer examination shows that the
dotted regions around the period doubling points in Fig. 8(c) indeed form the stepwise
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FIGURE 8. Same as Fig. 7 for I=1.5.

structure determined by equations (12) and (13). The distinction between period doubling
and saddle-node bifurcations is easily made solely on the basis of the GWN. Note also that
the jump in the GWN occurs at the superstable solution (minimum of the Lyapunov
exponent) indicating qualitative changes in the local flow around the attractor at this point.

The case for I =2.43 is shown in Fig. 9. The drive amplitude has exceeded the single
stimulus threshold and the response is supra-threshold already at small driving frequencies.
For increasing @ the response bifurcates only once and then becomes directly quasiperiodic
via a saddle-node bifurcation. The chaotic region is now omitted and the bifurcation diagram
displays a beautiful sequence of alternating quasiperiodic regimes and phase-locked periodic
states, emerging and disappearing via saddle-node bifurcations. For I € (v, +v,)/®
the Arnold tongues increase in size as the drive amplitude increases. The behaviour is quite
similar to that displayed by the sine circle map at values K < 1 [29]. For increasing w the
period of the widest windows increases by one from window to window while the width of
the windows decreases gradually. At @, = 4.89 a reverse NS bifurcation takes place. The
widest phase-locked plateaus visible in Fig. 9 correspond to 1:1, 2:1 ,..., 7:1 stimulus:
response lockings. These plateaus, as well as the whole devil's staircase, are clearly
displayed by the GWN. Between the 1:1 and 7:1 lockings, the GWN falls from 1 to 1/7.
After the falling and rising steps given by equation (12) a region of gradual monotonic
decrease in the GWN appears. Within the quasiperiodic region we also find higher periodic
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FIGURE 9. Same as Fig. 7 for I = 2.43.

windows ordered according to the Farey hierarchy (5:2 between 2:1 and 3:1, for example)
and manifested by the devil's staircase as well. Besides the N:M locking ratio, the order of
the supra- and sub-threshold responses (i.e. action potentials and dropped beats) in a
sequence obtained by Farey-combination can also be predicted. For example, the 2:1 and 3:1
states can be represented by the patterns (1,0) and (1,0,0), respectively. Consequently, the
pattern of the 5:2 state will be (1,0,1,0,0). A similar behaviour has been found by Chialvo
and Jalife [12].

Low dimensional chaotic behaviour in sheep and dog cardiac Purkinje tissues has been
demonstrated by Chialvo et al. [13], where period doubling bifurcations of the
transmembrane action potential amplitude were shown to precede the irregular action
potential behaviour. For a 1.5 x threshold drive amplitude and increasing drive frequency,
the period doubling bifurcations associated with changes in the stimulus:response locking
were manifested in the sequence 1:1 —» 2:2, 2:1 = 4:2, 3:1 — 6:2 and 4:1 — 8:2 until
irregular activity occurred at very brief cycle lengths. Careful exploration also revealed
irregular dynamics between the 4:2 and 3:1 states. For a 2.6 x threshold drive amplitude, the
corresponding sequence was 1:1 — 2:2 — 4:4 — irregular dynamics. Additional evidence
to show that this irregular activity was in fact deterministic chaos was sought by plotting a
return map for the action potential amplitude, which displayed a one-hump-type behaviour,
typical of one-dimensional chaotic maps.
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In order to compare with these experimental results, let us look at Figs 5 and 6. It can be
seen from Fig. 6(b) that a horizontal cut at 1=1.5X1,, = 2.43 results in a different
sequence of attractors than the corresponding experimental one. However, a slight tilting
down from the horizontal makes the cut pass through the sequence 1:1-52:2, 2:1-4:2 ...
chaos, 3:1-6:2 ... chaos, 4:1-8:2 ... chaos, quasiperiodicity, 5:1 and so on. The
consistency with the above experimental sequence is excellent. It can be seen that a slight
raise of the cut makes it pass through the sequence 1:1-2:2, 2:1, quasiperiodicity, 3:1,
quasiperiodicity, 4:1, quasiperiodicity, 5:1 and so on, i.e., through the classic Amold tongue
structure avoiding period doublings and chaotic regions. The real action potential
measurements should be extended to these values to see if real Purkinje fibers also display
the corresponding behaviour. It can be seen from Fig. 6(a) that a slightly tilted cut around
I=2.6x1, = 421 results in the sequence 1:1— 2:2— 4:4— ... chaos — inverse period
doubling sequence to the superstimulated state. Again, the fit to the corresponding
experimental sequence is excellent. Note also that in the @-direction the domain of the 2:1
solution in the lower wing is about two times that of the 2:2 solution in the upper wing,
which also agrees well with the experimental results for sheep Purkinje fibers [13].

4. CONCLUSIONS

In conclusion, some characteristic features of a second order spontaneously quiescent
Liénard-type nerve pulse equation were studied. This nerve pulse equation was proposed to
model the transmembrane action potential propagation in the cardiac His-Purkinje nervous
network. The threshold and sub- and supra-threshold responses were described. A closer
examination of the firing threshold revealed that the nerve pulse equation under consideration
is a supernormal neuron.

For comparison with experimental results for dog and sheep cardiac Purkinje fibers, the
nerve pulse equation was stimulated by a periodic train of narrow spikes. For small stimulus
intensities the response developed, for increasing drive frequency, from a 1:0 sub-threshold
state via NS bifurcations and quasiperiodic behaviour to a 1:1 superstimulated state. For
stimulus intensities near the single stimulus threshold value, period doubling bifurcations
and chaotic behaviour replaced the NS bifurcation at lower driving frequencies. This
development has no counterpart in the sine circle map and originates from the firing property
of the NPE. However, for larger driving frequencies the quasiperiodic behaviour was
developed via a saddle-node bifurcation from a periodic state leading finally, via a reverse
NS bifurcation, to a 1:1 superstimulated state as above. Sequences of N:M-type phase-
locked states displaying a Farey-tree and devil's staircase structure were found. For
intermediate stimulus intensities the response was supra-threshold even at low drive
frequencies and, for increasing @, developed directly into quasiperiodic behaviour with
intervening periodic windows. The behaviour resembled that of the sine circle map for K <
1. For still larger stimulus intensities the tori started to break until only chaos interrupted by
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periodic windows was present. The reverse NS bifurcation leading to the 1:1
superstimulated state was replaced by a reverse period doubling cascade. The whole
bifurcation structure displayed an approximate symmetry with respect to the center line
lo =1 +v,).

The calculated results agreed closely with the measured transmembrane action potential
responses for supernormal dog and sheep cardiac Purkinje fibers. It was proposed that the
measurements with real Purkinje fibers would be extended to also detect a possible
quasiperiodic behaviour.
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ABSTRACT

In this paper, the concept of self-adjointness is generalized and extended in a certain sense
to the problems which are non-selfadjoint in the classical sense. An extension of
Hamilton’s variational principle to those problems is also made. Theoretically, the work is
based on the change-of-variable technique familiar from the theory of partial differential
equations. The extensions may be utilized in developing new approximation procedures for
the kind of problems considered here. As far to the author’s knowledge, the theoretical
ideas of the paper are brand new and have not been published in the literature before.

1. INTRODUCTION

The eigenvalue problem associated with nonconservative mechanical problems has been
the concemn of numerous studies during the last years. It would be injustice omitting to
mention the numerous papers of Leipholz [e.g. 1,2,3,4,5,6] where a firm foundation for the
concept of generalized self-adjointness is laid. As application examples, he considers
systems which are truly nonconservative in the classical sense, and shows that certain
systems are yet conservative with respect to functionals obtained through the use of the
concept of generalized self-adjointness. Furthermore, he proves that there is an extension
of Hamilton’s variational principle to corresponding systems. One should note that the
main shortcoming of Leipholz’ otherwise distinguished work is that the velocity-dependent
terms are almost totally omitted from the differential equation in the references op.cit..

Walker [7] as well as Inman & Olsen [8] include the velocity-dependent terms but limit
their consideration to boundary conditions corresponding the pin-ended beams. Very
interesting and useful results may then be derived which, however, are not feasible e.g. in
the case of cantilevered fluid conveying pipes.
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Tonti [9,10] gave a set of variational formulations for every (nonlinear) problem (sic!).
Tonti’s work is based on replacement of the “canonical” bilinear form with a more general
one. Through the change of the bilinear form, the so called extended variational
formulations are obtained. Alliney & Tralli [11] apply the theory presented by Tonti and
give an extended variational formulation for the Beck’s problem. In a certain sense, their
formulation agrees with Leipholz formulations, but is little more unrestricted (in the spirit
of Tonti). As to my opinion, Tonti’s work is not very feasible for the problems considered
in this paper.

One more different’ viewpoint to the non-selfadjoint problems can be found in the paper of
Auchmuty [12]. Combining his work with the results published by Tretter [13] gives good
opportunities to treat a wide variety of eigenvalue problems. Unfortunately, the problems
with velocity-dependent terms in the differential equation become little cumbersome,
which is a drawback in their works.

In this paper, a new point of view is taken by applying a change-of-variable technique
familiar from the theory of partial differential equations. This makes it possible to tackle
e.g. the problem of cantilevered pipe conveying fluid and show that the problem becomes
conservative with respect to a certain functional. Also, an extension of Hamilton’s
variational principle associated with the problem becomes possible. Furthermore, some
statements concerning the completeness of eigenfunctions are easily made. The proposed
method may offer a new basis even for the numerical solution procedures.

2. BACKGROUND

The linearized mechanical systems considered here can be mathematically described by a
partial differential equation of the form

w+Lw+Lw=00nQ 49
with boundary conditions
Bw=0alongoQ2, 2)

where w=w(x,t) denotes the deflection in Q. Problems with one spatial dimension only
are involved here, thus ¥ € Q=(0,1) with the boundary 6Q consisting of points X =0
and ¥ =1. The dot denotes time differentiation, and L,, L, are linear spatial differential
operators. B is a linear spatial differential operator reflecting the boundary conditions.

! In fact, Auchmuty’s work has a lot of similarities with [8].
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The above boundary eigenvalue problem covers a wide range of linearized mechanical
systems. Because of the preliminary nature of this study, a restricted subclass of (1) will be
considered here with L,, L, defined by

. ®

Lu=p*u"+u"". 4

Then, the basic differential equation (e.g. Chen [14]) in a dimensionless form for a fluid
conveying pipe is achieved as

W+ 2Ppw + i + " =0, ®)

where B, are dimensionless parameters, B taking care of the mass of both the pipe and
the fluid and, u corresponds to the fluid velocity.

The boundary conditions are taken as those of a cantilevered pipe, i.e.
w(0,7)=0=w'(0,7) (©)
w'(L,T)=0=w"(L7). )

The differential equation (5) with Coriolis-effect together with the boundary conditions (6),
(7) describes a truly nonconservative mechanical system. In the language of mathematics,
the corresponding expression were non-selfadjoint.

3. CHANGE OF INDEPENDENT VARIABLES

Let us write the differential equation (5) in the form Lw+w""” =0 using the operator L
defined by

Lw =+ 2Puw’ +pw” . 8)
The parameter B always satisfies p <1 (see e.g. [14]). Then,

(Bp)* —p?=(B*-Hu’ <0, Q)
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which shows that L is an elliptic operator. This suggests the following change of
independent variables’,

6= G- )

(10)
(X, 1)="1
where the shorthand notation 8 is defined by 82 = (1-p*)p>.
Substitution of (10} into the deflection function w allows one to write an identity
w(x, 1) = v(EE,T),1(E,T)). (1n

Partial differentiation on the both sides of the identity with respect to ¥ and 7 as many
times as needed in (5) gives the differential equation for v

v 8% ia"v

a:2+a§2+e4a_g_‘=0' (12)

Denote &,=£(0,7), 1, =1(0,7), &, =£(1,7) and 7, =1(1,7). The boundary conditions
(6,7) now appears as

ov
v(go,‘ro)"o_i@.os’ro) (13)
o _ _63v
55_2@1311)_0— 6&3 (E_,],Tl). (14)

Although the equations (12-14) already give the necessary problem transformation into the
form that accepts certain conservativeness result formulation as well as a possibility to
extend Hamilton’s variational principle to the nonconservative system involved, let us yet
make a second change of variables (a kind of aesthetic change) affecting mainly on the
boundary conditions.

Let the new variables x and ¢ be defined by

2 Let us denote that the change of variables is not unique but there are several (obviously infinitely many)
possibilities. The only demand is that the new variables satisfy a certain set of first order partial differential
equations which will not be reproduced here. The set of equations can be found in almost any classical
treatment of partial differential equations.
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x(E,t)=¢E, -&
(15)
tE,t)="1
Write an identity
v(g,7) = u(x(§,7),1(E,7)) (16)

and make the necessary differentiations on both sides of equation (16) as well as the
substitutions into the boundary conditions, thus obtaining

i2+u”+617u"” =0 a7
u(-07",1)=0=u'(-07"7) (18)
u(0,7)=0=u"(0,7), (19)

where the dot denotes differentiation with respect to ¢ and the prime with respect to x. Next,
we tumn to the main subjects of the study.

4. ON THE COMPLETENESS OF “EIGENFUNCTIONS”
Tt is not very difficult to prove the completeness of eigenfunctions in certain Sobolev-like
spaces for the problem (17-19), but as the proof is rather lengthy it will be omitted here. As
a reference for the proof it is worth to mention again the paper by Tretter [13] which gives
the necessary tools.

5. GENERALIZED SELF-ADJOINTNESS AND CONSERVATIVITY

Define an operator T by the relation
1
To=6 "(—g—x,t) . 20)

Instead of the “canonical” bilinear form (y,$) we define a more useful bilinear form with
respect to operator T by

(w.0)=.T8)= fy(x,0¢"(-07" —x,1)dx @1)

]
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Through a direct calculation’, it can be shown that the following results holds true:

(w.0)=(d.w) 22)
(w.o)=("w) (23)
(wrd)=(6""w)- 24)

This means that the eigenvalue problem associated with equations (17-19) is self-adjoint
with respect to the operator 7.

Define now the functional F,
1 2 " 1 nn
F={u,u)+(u +oau'u)- 25)
Differentiation of both sides with respect to ¢ gives
: .. 1 )
F=2(i+u"+—u"",u).
0

Application of (17) justifies that
F=0 = F=constant. (26)

Obviously we may say that also the original system (5-7) is conservative in some (higher
than the Leipholz’ higher) sense. The exact conclusions will be made in a later paper.

Consider the functional H,
)
H=|{ii)-(u"+6u"", . 27
!{(u i) (u +07*u u)}dt @7

Exploiting the standard techniques of variational calculus and the above defined
generalized self-adjointness, the first variation of H assumes the form

SH = 2?{12,812)—(1:" +9'4u"”,8u>}dt. (28)

? For the reference, see e.g. Leipholz [3].
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Applying integration by parts to the first bilinear form and imposing on the variation du
the common conditions

du(t,)=0=23u(2,) (29)

one achieves at
f
SH =-2 j(u+ W' +0 " Su)dt . (30)

Hence, as the differential equation for the problem is satisfied, it follows that
SH=0. 31D

But this means that in the space of admissible variations the functional A attains its
stationary value.

6. CONCLUSIONS AND REMARKS

It has been shown that the dynamics of a cantilevered fluid conveying pipe obeys some
conservativity features. The study also shows that an extension of Hamilton’s variational
principle is in some sense applicable for the problem.

Remark 1. Although the problem becomes self-adjoint with respect to a certain operator, it
still remains indefinite. Thus, Rayleigh quotient cannot be applied in the eigenvalue
problem solution.

Remark 2. In the study, the operator L, was chosen according to equation (3). The above
described technique can also be applied in the case of operator L, defined by
L=+ 2Bpat’ (i.e. external damping included). But, if e.g. Kelvin-Voigt material model
is assumed, then such a simple change-of-variable technique described above cannot be
found.
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TIIVISTELMA

Metsitraktoreiden ja erilaisten maansiirtotéissé kéytettévien tydkoneiden kuljettajtin kohdistuu
tyoskentelyn aikana matalataajuista (0-10 Hz) suuriamplitudista térindd. Pysty- ja
pituussuuntainen vérahtely ei ole kovin haitallista kuljettajalle koska ihmisen keho kestdd varsin
hyvin ndmi rasjtukset. Sen sijaan sivusuuntainen heilahtelu on ongelmallinen. Kuljettajan
selkirankaan kohdistuu voimakas rasitus joka ajan my6td alentaa tydtehoa ja aiheuttaa

vasymysta.

Virihtelyongelmien eliminoiminen on tapahtunut perinteisesti passiivisilla vaimentimilla joilla
systeemistd poistetaan energiaa. Teoriassa virahtelyongelmien eliminoiminen on mahdollista
mybs aktiivisesti ohjatuilla jarjestelmilld. Aktiivisessa vaimentimessa systeemiin tuodaan lisdd
energiaa, joka aikaansaa vérdhtelyd kumoavan vastavoiman. Helpointen toteutettavissa on
matalataajuisen jiykén kappaleen liiketilan hallitseminen.

Tissd tydssi on luotu aktiiviseen viréhtelyjen vaimennukseen soveltuvan istuimen ripustus-
mekanismin ja sen sdé4toalgoritmin simulointimalli *MATLAB/SIMULINK-ympirist6ssé [1].
Valitulla kahden vapausasteen mekanismilla on mahdollista vaimentaa yleistd tasoliiketta.
Simulointimallilla voidaan simuloida kuljettajan litketilaa, kun tyokoneeseen kohdistuu tunnettu
herite. Edelleen simulointimallilla on mahdollista simuloida ja kehittdd aktiivivaimentimen
sddtoalgoritmeja [2].

1. JOHDANTO

Metsitraktorien kuljettajiin kohdistuvan matalataajuisen térindn ajheuttaja on maaston
epitasaisuus. Térindn voimakkuuteen vaikuttavat liséksi ajonopeus, kuormaus ja kuljettajan
ajotapa. Maastossa kulkeva traktori heilahtelee seka pysty-, sivu- ettd pituussuunnassa. Pituus-
ja pystysuuntaisen heilahtelun jhminen kestad varsin hyvin. Sivusuuntainen heilahtelu on
ongelmallinen ja rasittaa erityisesti kuljettajan selkdrankaa. Tdmi aiheuttaa alentunutta tyotehoa

ja visymysta.
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Perinteinen ratkaisu vérihtelyjen hallinnassa on kuljettajan istuimen eristdminen alustastaan
jousen ja vaimentimen muodostamalla passiivisella vaimentimella. Tuloksen on mekaaninen
alipaastdsuodin, joka vaimentaa rajataajuutta korkeampia taajuuksia. Samalla suodin kuitenkin
vahvistaa rajataajuutta matalampia taajuuksia. Rajataajuutta laskemalla yhd suurempi osa
virahtelystd saadaan vaimennuksen piiriin, mutta samalla jérjestelman jaykkyys pienenee ja sitd
kautta kuljettajan suhteellinen siirtyma ohjaamon suhteen kasvaa [3].

Aktiivisessa vaimentimessa kiytetddn ulkoista energiaa vérdhtelyjen vaimentamiseen.
Tyypillisesti aktiivinen vaimennusjirjestelma on servomekanismi, joka antureiden ohjaamana
tuottaa alustaan nihden vastakkaisen liikkeen. Pelkdstadn takaisinkytkentddn perustuva
jirjestelma asettaa toimilaitteelle ja sen ohjaukselle suuret vaatimukset. Erds kompromissi
aktiivisen ja passiivisen jirjestelmin valilld on ns. hitaaasti toimiva aktiivijousitus. Systeemissa
siirtymai tuottava toimilaite on Kkytketty sarjaan passiivisen vaimentimen kanssa.
Takaisinkytkennin avulla ohjataan toimilaitetta ja vaimennetaan passiivisen vaimentimen
rajataajuuta alhaisempi virdhtely. Koska aktiivinen vaimennin toimii vain matalilla taajuuksilla,
ei toimilaitteelle ja sen ohjaukselle aseteta kovin suuria vaatimuksia [4].

2. ISTUIMEN RIPUSTUSMEKANISMI

Henry Jouppi on diplomityossaan [5] esitellyt aktiiviseen virihtelynvaimennuksen soveltuvan
kahden vapausasteen mekanismin jolla on mahdollista vaimentaa yleistd tasoliiketta.
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Kuva 1: Istuimen ripustusmekanismi.

Mekanismi muodostuu nelinivelmekanismista ja sen kanssa sarjaan kytketystd saksi-
mekanismista. Nelinivelmekanismi tekee ympyrinkaariliikettd jonka rotaatiokeskipiste on
maanpinnan alapuolella sijaitsevassa traktorin kuvitteellisessa rotaatiokeskipisteessa.
Saksimekanismi on suoravientimekanismi jolla vaimennetaan pystyliikettd. Ndin muodostetulla
kahden vapausasteen mekanismilla on mahdollista vaimentaa yleistd tasoliiketta.
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3. KINEMATIIKKA

Tarkastellaan kuvan 2 mukaista kahden vapausasteen tasomekanismia jossa nelinivelmekanismin
péilld on suoravientimekanismi.

Kuva 2: Ripustusmekanismin kinemaattinen malli.

Nelinivelmekanismille on voimassa karteesisessa Axy-koordinaatistossa yhtilo [6]

a, cos, +a, cosB, +a, cosO, - f =0

1
a, sinB, + a, sin0, + a, sinf, = 0 . Y

Valitaan nelinivelmekanismille vapausasteeksi vaakatasosta mitattu kulma 6, = q. Kulmat 6,
ja 6, voidaan ratkaista yhtélostd (1) *MATLABin FSOLVE-funktiolla. Kulmien nopeudet ja
kiihtyvyydet saadaan derivoimalla yhtél64 (1) ajan suhteen.

Saksimekanismin pisteelle P voidaan kirjoittaa

x, = a cos®, + £, cosB, - m, sinb,
¥, = 4 sinB, + &, sinB, + n, cos, . @)

Valitaan saksimekanismille vapausasteeksi neliniveimekanismin suhteen mitattu kulma ©. Jos
saksimekanismin sauvan pituus on L voidaan siis yhtilo66n (2) sijoittaa 1, = L sin 8. Pisteen
P nopeus ja kiihtyvyys saadaan derivoimalla yht&l6a (2) ajan suhteen.

Nyt pisteen P liiketila, ts. paikka, nopeus ja kiihtyvyys on tunnettu.
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4. LIIKEYHTALO

Etsitddn liikkeyhtdlo kiyttden Lagrangen yhtélditd vapaassa koordinaatistossa [7]

48 T g, i=12. 3)
dr o4, 0g;
Valitaan nelinivelmekanismille vapausasteeksi vaakatasosta mitattu kulma q, = q ja

saksimekanismille nelinivelmekanismin suhteen mitattu kulma g, = ©. Q; on vastaavassa
toimilaitteessa vaikuttava yleistetty voima koordinaatin i suuntaan. Kokonaisliike-energia T on
tyypillisesti muotoa

. 1 .
Tqpd) = S/ a)d; - @
Sijoittamalla yhtal56n (1) saadaan
46 + B + Cg2 + DG + E®® = Q, )

Fb +« G§ + H? + 184 +JO" = Q, ,

missi funktiot A,B,... J ovat funktioita koordinaateista q ja 0.
4. MEKANISMI *MATLAB/SIMULINK-YMPARISTOSSA

Mekanismin simulointiin on kiytetty *MATLAB/SIMULINK-ohjelmistoa. Liikeyhtals (3) on
voimakkaasti epilineaarinen, joten perinteiset integraalimuunnoksiin perustuvat menetelmat
siirtofunktion 16ytamiseksi ovat vaikeita toteuttaa. Mekanismin simuloinnissa kéytetdén
liikeyhtilén numeerista aikaintegrointia lahtien tunnetusta alkutilasta. Valmiita integrointi-
algoritmeja 16ytyy *MATLAB-ohjelmistosta. Simulointia varten likeyhtals muunnetaan
vektorimuotoiseksi ensimmiisen kertaluvun differentiaaliyhtaloksi. Tésta tilamuuttujaesityksestéd
kirjoitetaan edelleen ns. S-funktio, joka on muotoa

% = Ax + Bu (6)
y=Cx +Du.

Mekaniikan tehtivissi yleensi valitaan minimiméérd tilamuuttujia. Nyt tilamuuttujat vektorissa
X esittdvit vapausasteiden kulmaa ja kulmanopeutta. Vektorissa u ovat mekanismin
toimilaitteissa vaikuttavat voimat. Funktio tulostaa vektorisssa y mekanismin liiketilan, ts.
valittujen vapausasteiden kulman, kulmanopeuden ja kulmakiihtyvyyden. A, B, Cja D ovat
kerroinmatriiseja.
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*MATLABIn laajennus *SIMULINK on dynaamisten systeemien simulointiin kehitetty ohjelma.
*SIMULINK avaa *MATLAB-istuntoon erityisen lohkokaavioikkunan. Tutkittavan systeemin
malli luodaan lohkokaavioikkunaan yksinkertaisesti vetdmalld hiirelld “ikoneita valikoista.
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Kuva 3: Simulointimalli *MATLAB/SIMULINK-ympéristossa.

Kuvan 3 mallissa S-funktio “Liikeyhtild® sisiltdd yhtdlén (6) esittimin tilamallin. Kun
mekanismin liiketila tunnetaan saadaan pisteen P liiketila kinemaattisilla yhtal6illé (2) (ja sen
aikaderivaatoilla). Yhtil6t kirjoitetaan *MATLABiIn .m-funktioksi ja niitd kutsutaan funktiossa
“kuljettajan relatiivinen liiketila™.

Hiirié tuodaan systeemiin Axy-koordinaatiston yleiseni tasoliikkkeend maahan nihden. Téll6in
edelld kuvatut kinemaattiset yhtdl6t kuvaavat pisteen P relatiivista liiketilaa likkuvan Axy-
koordinaatiston suhteen. Pisteen P absoluuttinen liiketila saadaan yleisesti tunnettujen
relatiivisen lilkkeen kinematiikkaa esittivien yhtildiden avulla [8]. Liikeyhtdl6a kirjoitettaessa
Axy-koordinaatisto oletettiin inertiaalikoordinaatistoksi.

Kuvan 3 mallissa mekanismiin on litetty sd4din jossa pisteen P vaakasuoraa liiketilaa sdddetéén
nelinivelmekanismilla ja pystysuoraa liiketilaa saksimekanismilla. Mallin sdddin perustuu
takaisinkytkent4i jossa aiheutetaan erosuureeseen verrannollinen muutos toimilaitteessa
vaikuttavaan voimaan. Erosuure voi olla lineaarinen funktio pisteen P absoluuttisesta ja
relatiivisesta liiketilasta. Kiytinnon sovellutuksissa ilmeisen hyddyllinen on erosuure joka
perustuu kuljettajan absoluuttiseen kiihtyvyyteen ja relatiivisen paikkaan.
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5. TULOKSET

Tulosten Kisittely on vaivatonta *MATLAB-ympiristossd. Tulosten graafista esittamistd varten
on kirjoitettu *MATLABin .m-funktio. Tdssd on tulostettu samaan kuvaan kuljettajan
absoluuttinen liiketila mekanismin ollessa lukittu ja aktiivisen sd&dén ollessa p#élld. Hairiond
on Axy-koordinaatiston 5° harmooninen rotaatio origonsa A ympari.
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Kuva 4: Kuljettajan absoluuttinen liketila, hiiri6 5° rotaatio pisteen A ympri.
¢ * Mekanismi lukittu, ‘-----" aktiivinen vaimennus.

Séitéparametrien optimiratkaisu sisiltdd kompromissin toisaalta kuljettajaan kohdistuvan
kiihtyvyyden ja toisaalta ohjaamon suhteen tapahtuvan siirtyméan suhteen. Léhteessd [9] on
esitetty optimiratkaisuna siddinté joka minimoi neli6llisen suorituskykyindeksin II. Laajennetaan
suorituskykyindeksi yleiseen tasotapaukseen laskemalla vaaka- ja pystysuuntaiset osuudet
yhteen

I = xaz +)';"12+ p(_xr2 + _yrz) : 7
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Kuljettajan ‘mukavuus’ on siis funktio absoluuttisesta kiihtyvyydesta ja relatiivisesta paikasta
ohjaamoon nihden. Painokerrointa p voitaisiin kdytt4d adaptiivisessa sddddssé tai kuvaamaan
eri kuljettajien kasitystd hyvéstd vaimennuksesta. Tédssd on kédytetty arvoa p = 1.

Kisiteltavissd esimerkissd kuljettajan x-suuntainen kiihtyvyys pienenee 36 %, y-suuntainen
kiihtyvyys pienenee 37 % ja mukavuusindeksi paranee 46 %.
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