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Preface

These proceedings contain the papers presented at the Fifth Finnish Mechanics Days
held in Jyvaskyld, Finland, 26-27 May 1994. The First Finnish Mechanics Days were
held in Oulu in 1982, the Second in Tampere in 1985, the Third in Otaniemi (Helsinki)
in 1988 and the Fourth in Lappeenranta in 1991.

The aim of the Finnish Mechanics Days is to bring together researchers and doctoral
students whose interest lies in mechanics and scientific computing. The program of the
seminar consisted of invited lectures given by U. Lepik and E. Stein and contributed
papers.

The organizers are grateful to the participants of the meeting and to the speakers who

contributed their lectures to these proceedings.

Jyvaskyla, May 1994

Raino A. E. Makinen Pekka Neittaanmaki
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A CONTINUUM MECHANICAL APPROACH FOR
ANALYTICAL SENSITIVITY ANALYSIS
IN STRUCTURAL OPTIMIZATION

FRANZ-JOSEPH BARTHOLD & ERWIN STEIN
Institute for Structural Mechanics and Computational Mechanics
University of Hannover
Appelstrafie 9A, D-30167 Hannover, GERMANY

ABSTRACT

We present a differential geometry based formulation of structural optimization which
links continuum mechanics and computer aided design closely together to obtain very
naturally fundamental sensitivity data for the optimization procedure.

A variational principle based on a variation of the covariant basis vector in each point of
the deformed or undeformed configuration is formulated to obtain analytical sensitivity
data both for lagrangean and eulerian description of structural mechanics.

1. A CONTINUUM MECHANICAL FRAMEWORK

In this section we introduce the basic notations and mappings used in this paper. For
details see books on continuum mechanics e.g. Malvern [9], Marsden, Hughes [10]. We
freely use Einstein’ s summation convention on repeated indices.

1.1 The configurations of material bodies. The material body B consists of a compact
set of material points M. For each time ¢ from the space of time T; the material points
are mapped into the points P of the euclidean space IE® by a continuous mapping and
can be identified by their position in space.

At reference time ¢t = %, the undeformed and unstressed material body occupies a refe-
rence configuration B,. Using a fixed cartesian frame Ei, E,, E; at reference time t, we
obtain X = X2E,4. The coordinates X4 are called material or lagrangean coordinates.
All quantities of the reference configuration are labeled by capital letters. At current time
¢ > t, the material body has a deformed current configuration B, and using the cartesian
frame ey, €y, €3 at time ¢ the position of the material points is denoted by x = rFey.



The coordinates z* are called spatial or eulerian coordinates. All quantities of the current
configuration are labeled by small letters.

The deformation of the material body from the undeformed reference configuration B,
at reference time ¢, into the current configuration B; at time ¢ is given by the mapping

4 = B M)
LR I X = 4, (X).

The mapping ¢, is assumed to be continuous differentiable and for each fixed time ¢
invertible. For notational convenience we write ® without indices. Furthermore we assume
the cartesian frames of the reference and current configuration to be identical,i.e. E; = e,.
The theory can fully be developed only by using the mapping ¢ from an undeformed refe-
rence configuration into a deformed current configuration. In this context the coordinates
X4 of the material points at time ¢, are the independent variables.

1.2 The concept of differential manifold. For any further development towards intro-
ducing scalar valued design variables or formulating variational principles for optimization
purposes this approach is inconvenient because the reference configuration depends on de-
sign and is therefore not fixed. To overcome this problem in an elegant way we introduce
concepts of differential geometry to describe the different configurations of the materi-
al body, see e.g. Marsden, Hughes [10] and Abraham, Marsden, Ratiou (1] for further
theoretical background on manifold theory.

In the framework of differential geometry a configuration of a material body is considered
to be a differential manifold. This means that a finite number of smooth mappings with
local support from a fixed cartesian coordinate system into the euclidean space is sufficient
to describe any real configuration of the body. We restrict our attention to one chart
from the atlas of the differentjable manifold and introduce local coordinates 6',0% 03
to describe the vector X and thus the material point M uniquely. Using these ideas the
parameter space Tg := [0, 1]3 C IR of local coordinates 01,02%,0% s mapped by

. Te — B,
¢'{(el,e*,ea) - X =y(61,0%,0°) ®

into the space B := {B|B = ¢(B, )} of the reference configurations of all possible material
bodies. The cartesian coordinates X4 or x', respectively, can be described by the local
coordinates using the mapping ¢, i.e. X4 = XA©1, 02, ©?) and 2' = (@', 02, O, t),
respectively. The mapping between the coordinates {X “‘} or {z'} and {93} is assumed
to be sufficiently smooth and invertible for any fixed time ¢. The tangential space at any

point X € B, is given by the covariant or contravariant basis vectors

ax . 00
G; = *a@ or G'= EX— (3)

where G; -G/ = §, G;-G; = G;; and Gy; G = 6. Here Gi; and G denote the covariant
and contravariant metric coefficients, 6] is the Kronecker symbol.

1.3 Computer Aided Design and continuum mechanics. For any practical applica-
tion of modern computational methods for analyzing or optimizing structural behaviour
we should consider computer aided design as a central tool for describing geometry well



established in industry. To implement CAD into a continuum mechanical framework of
structural optimization we recall the mathematical concept. A so called patch within e.g.
a surface description is again a chart of a differentiable manifold mapping locally a para-
meter space To := [0,1]° C IR® into the real surface, i.e. again X = (©',0?,©?) for any
point X. Thus, both CAD and continuum mechanics are founded on differential geometry.
Using features already available in CAD we can calculate covariant and contravariant ba-
sis vectors G; and G for any point of the CAD geometry model representing the reference
configuration.

1.4 Variation of design using CAD. So far no comment has been made how different

designs given by different mappings ¢ are interrelated. A sequence of different bodies with

a sufficiently smooth change of design must be considered to obtain any optimal solution

by improving the objective function within some mathematical programming algorithm.
Analyzing CAD geometry representation carefully, e.g. X = 4(0',0? 0°) given by

n n ro! 02 @3

X = 3 H1(01,0%,6%) Y; and Gi=Y 3MJ(@8£§? ,©)

Jj=1 j=1

Y; (4)

where M; denote some geometrical shape functions and Y; are e.g. control point coor-
dinates of a Bézier surface description, we observe that these requirements are already
naturally fulfilled. Introducing the control point coordinates, i.e. Y; = Y;(s), or any other
naturally given or improved combination of scalar control parameters as design variables
(denoted by s) we end up with the desired sufficiently smooth parametrization of a family
of possible bodies. This parametrization is also a discretization in geometry since only a
finite number of control points can be used. Therefore once the geometrical shape functi-
ons M; = M;(©1,02,0?) are chosen we are restricted to a finite dimensional subspace of
all possible bodies.

Considering any variation of design 6X given for example by changing CAD control points
of a Bézier representation of curves or surfaces we end up with variations w; of the covariant
vector field G; given by

X J

which are actually the partial derivatives of the covariant basis vectors with respect to
design, i.e.

- =3 \507%) =5 \ae7) B~ 50705 o (5)

Thus, it is essential for the sensitivity analysis to calculate the mixed partial derivatives
of the coordinates X' of all points of the reference configuration with respect to the
local coordinates © and the design variable s. Calculating these quantities analytically
for general design variables in commercial CAD software is the central point for further
development of structural optimization.

aG; 0 (3)(‘ ) 3} (6}(‘) X

1.5 Influence of design variables on continuum mechanical functions. These
results are leading to a modification of the functional dependencies of the material body
and the reference and current configuration. Using ©',02, ©° from the parameter space
To = [0,1]° C IR® as discussed above we introduce a design variable s from the parameter



current configuration B,

?/).ZTQXT;XT,—) R3 x=¢((—)1,92,93,t,s)

parameter spaces
space Tg time T; design T;
CE |

to t So S

:81

FIGURE 1: Deformation of a body parametrized by local coordinates, time and design

space T, := IR of the design variables into the definition of the mapping 3 which enhances
equation (2). For notational convenience we use again ¢ to describe the mapping

_ ToxT, — B, ©)
Y (01,0%,6%s) - X =007 0% )

of local coordinates and design variables into the actual reference configuration. The
mapping ¥ is assumed to be sufficiently smooth with respect to ©',02, 0% and s and now
the deformation is given by

) ToexTixT, —» IR® .
771(0,0%0% 1) = x=y(01,02,6%s). (7)

The cartesian coordinates X4 or ', respectively, can be written as
X4 =X40,0%0%s) or gi= £(0',0%,0% t,s). (8)

Thus the actual configuration of a material hody in space and time is parametrized by
the local coordinates ©1,©?, 03, time ¢ and design variable s as shown in figure 1.

Introducing the displacement field u = x — X we observe the functional dependencies

u=a(X,t,5) = (0,02 6°¢s) (9)



and o = &(s,0(s)) for a model function o representing any continuum mechanical objec-
tive function or constraint (either scalar, vector or tensor valued). The stated relationship
is valid for all elastic materials where the structural response is only a function of the
total displacement vector. If sophisticated materials are considered these dependencies
must be enlarged to represent the deformation history.

2. STRAINS, STRESSES AND WEAK FORMS

2.1 Strain measurements. The deformation gradient F = Grad x with its determinant
J := det F is used to define strain measurements, e.g. C = F’F,b=FFT,2E=C-1.
These quantities are used to evaluate invariants and eigenvalues used in finite elasticity.

2.2 Strain energy functions, stresses and elasticities. The strain energy function
W of rubberlike materials used in the examples is given as a function of the invariants or
eigenvalues of the strain tensor, i.e. W= W(L,LI) = W(\1, A2, A3). As an example we
mention Ogden’ s material law

N
W =W, da) = ? (X7 + 257 + 257} + (). (10)
p=1"7P

A detailed representation of the stress tensor and the tensor of elastic moduli for isotropic
hyperelastic materials is given in Barthold (6]. We introduce the notation T for Cauchy
stresses, 7 for Kirchhoff stresses, P for the first Piola-Kirchhoff stress tensor and S for
the second Piola-Kirchhoff stress tensor and obtain 7= J T = FSFT = PF7. Using the
strain energy function W we can derive the stress tensors and the tensor of elastic moduli

2 2
gj%vgv, s oW G 08 _ oW . 20 4 OW

T= 3¢ ®=%23¢=%Y3cac =79 7 9%50g

2.3 Weak form of the equilibrium condition. The weak form of the equilibrium
condition is given by g = §(s,8(s)) =: Jint((3,0(3))) — Gezt = 0 where

Jint(s,0(8)) = /T:gradr] dv and gem = {/p—lz-ndv-i- / f-r)da}. (11)
B. B: OB..

We concentrate our attention (for notational simplicity) on gint and assume g to be
deformation independent and constant for any considered design variable s. The variation
of the displacement field is given by 9. The internal virtual work can be expressed using
the design independent local parameter space Te

Gint = ij¢ dVe and f=‘r:gradn=P:Gradf]=S:FT Grad 9. (12)
Te

2.4 Linearization of the weak form. The linearization of the weak form with respect
to some displacement increment Au can be obtained by a well known technique, see e.g.

(8]

1
Dy(g,n)- du= [ {Gra.d AuS +FC: [FT Grad Au + Grad” AuF] } . Grady dV
B,



and depends linearly on the virtual displacement g and the displacement increment Au.

2.5 Discretization using finite element method. A discretization of the unknown
displacement field u and similarly of the virtual displacement n and the displacement
increment Au using the shape functions N; = N;(©', 02, ©3) is given by

uzuh=ZN.-v.-, ﬂ%"h=z:N.’6V; and AUNAU;,=ZN;6AV.' (13)

where v;, §v; and §Av; denote the node displacement vector, the virtual node displace-
ment vector and the incremental node displacement vector, respectively, of the node i.
Assembling these node based vectors to global vectors V, §V and §AV we can write the
discretized weak form and the corresponding linearization in the following form

g gh=6VTIR=0 and Dg(¢,n) - Au = Dgn(p,n,) - Auy, = VT Kz AV (14)

where R and K denote the global residual vector and the global tangent stiffness matrix,
respectively.

2.6 A detailed consideration of the deformation gradient. Considering the above
introduced quantities it turns out that the deformation gradient F dominates all conti-
nuum mechanical functions. A careful consideration of its functional dependencies with
respect to design and displacement is the key for an efficient sensitivity analysis. For
this reason we use local coordinates to formulate F with respect to the deformed and
undeformed covariant basis vectors G; and g, i.e.

_oX _0x _0X+uw) _0X Ou __ ou__
“=3e ™ B35~ "ge ot e = Ot g = Gitui (19

Using these relationships we can write F Grad x = 1+ Grad u where 1 = G:i®G' =g; ¢’
denotes the unity tensor which is independent from design. Therefore, the displacement
gradient
du i :
H=Gradu=W®G=u,,—®G (16)
carries all information both of deformation and geometry into strains and stresses as well
as weak forms. Analyzing the displacement gradient we observe the following facts.

1. Geometry is represented by the curvilinear basis vectors G; and G' which can be
calculated using standard features of CAD at any point (0',0%,03%) € T, see
equation (4).

2. In any realistic industrial application using CAD the underlying design can be for-
mulated by a finite number of scalar variables. The number of interesting variables,
Le. the design variables which can be modified to improve the design, is also fini-
te. Thus it is very reasonable to restrict the infinite dimensional design space and
the space of all considered variations of design to some finite dimensional subspace
spanned by the chosen geometrical shape functions M;.

3. The deformation field u from the undeformed reference configuration B, into the
deformed current configuration By can be formulated as function of local coordinates
(©',0%,0°) and time ¢ € T}. Furthermore it is an implicit function of geometry, i.e.
depending on G;. This part of H is approximated using e.g. the finite element
method.



2.7 Definition of the geometry gradient. The deformation gradient F is the gradient
of the mapping ¢ from the undeformed reference configuration B, into the deformed
current configuration B,. In a similar way we consider the mapping ¥ from the parameter
space Te into the reference configuration B, and define

_9X _ X
v'= 30 ~ 06
and call this quantity geometry gradient. The determinant Jy, := det F, is used to trans-
form the volume elements of B, and Te via dV = Jy dVe where

F QE =G QF (17)

Jy :=det Fy = det [%] = det [G1, G2, G3] = {det G;- Gj]}llz = {det [G,-J.]}llz, (18)

Furthermore, it is interesting to note that Fy and its inverse and transpose can be used
to apply push-forward and pull-back operations between Te and B,.

Having these fundamental relationships in mind we proceed to present a variational sen-
sitivity analysis relying on discrete scalar valued design variables naturally introduced
by CAD. For further remarks on variational techniques in optimization and on the state
of the art on analytical sensitivity analysis see e.g. Haug, Choi, Komkov [7], Banichuk
3], Arora [2], Tortorelli, Wang (18], Souli, Zolesio [12]. Our formulation improves these
known techniques for deriving analytical sensitivity data and the subsequent numerical
realisation in several ways which will be outlined later on. We want to concentrate on
the basics of this new approach and refer to Barthold, Stein [5] for all tensor analytical
details.

3. PARTIAL DERIVATIVES WITH RESPECT TO DESIGN

In this section we consider functions depending on some scalar valued design variables s
and on the scalar variable time ¢ leading to a close relationship between time derivative
and sensitivity. In this section we restrict our attention to derive partial derivatives with
respect to the design variable s and refer to the next section on the variational approach
for total derivatives, i.e. variations.

3.1 Purely geometrical functions. The partial derivative of Jy (see equation (18)) can
be calculated using the derivative of a determinant of a tensor with respect to this tensor,
i.e.

By 0sE, O O (% p)

ds dF, ~ 0Os “os ds
aG' ‘ aG. i . 4 § aG.
= Jytr (E®G)=J¢ (—£®G).(G’®G5)=J¢G e

3.2 Strain measurements. All other strain measurements depend on the deformation
gradient F and their sensitivity can be derived from the sensitivity of F using chain and
product rule. Using either cartesian coordinates X B or local coordinates ©* to describe
the deformed configuration we obtain the partial derivatives of the deformation gradient
F = 1 + Grad u with respect to the design variable s

OF OH 0Gradu _ 9 (Bu"‘ du _ OG

—— B_ Y- o2l

Js Jds Js Os



3.3 Stresses. The stress tensor of any isotropic hyperelastic material is a function of the
strain tensors C = C(s) or b = b(s), i.e. S = S(C(s)) or T = T(b(s)). It is important to
formulate the necessary partial derivatives with respect to the design variables by using
the already calculated elasticities and the sensitivity of the strain tensors, i.e. considering

S we obtain S 88 9C . l@_C_G.a_E

ds 0C " 8s T 20s " 8s
The partial derivatives of Cauchy’s stresses T with respect to the design variable s can be
derived by using the elasticities €. The Kirchhoff stresses 7 defined as r = J T = FSFT
are used to calculate the partial derivative of Cauchy’s stress tensor T

(20)

9T _ o (l ) _cZloJ  lor
Bs 0s\J )T 23 T T
where
aJ 0 0 JF _r OF OF _1)
—_— = —— = —_— P —_— = e —F =Jtl,
55 = Bs (det F) 5F (det F) : s JF s Jtr <6s rla
and the notations
oF __ 1 T
la = N F! and dy = 5 {lA + IA} (21)

are used. The partial derivative of T can be calculated using T = FSFT, je.

r OF _ . OFT 88 . .18C]
E_ESF +FSE +FEF =lar+7Ipo+F (D.2as F.

The elasticities with respect to the current configuration ¢ and the reference configuration
C are related by

a= ] . (FT T
c:a=—F [C: (FTaF)| F
for each spatial tensor a. Using the transformations

10C 1_0S

T T
—_— = M = = = B 2
53 F'daF and «¢:da 3 F PR F (22)
we can can calcute the partial derivative of T with respect to design s by
%—f=¢:dA+1AT+Tl£—tr1AT. (23)

This results indicates that the already calculated elasticities can be used directly to deter-
mine the major part of the sensitivity of Cauchy’ s stresses. The above equation indicates
the close relationship between time derivative and design sensitivity.

3.4 Equilibrium conditions. The weak form of equilibrium is an integral formulation
depending on the domain of interest which is influenced by design variables. We consider
only the internal part of the weak form and assume that the virtual work done by the
external loads is independent from design. The virtual work of the actual stresses done on
virtual strains can be expressed equivalently in different forms (see equation (12)) and we



can use several reference or current configuration descriptions to evaluate the sensitivity.

Choosing f = S : FT Grad 5 we obtain

T Grad
o FTGradn:-a—S+S:@F oy

Os Os ds
JE OFT Gradyn
— w7 .¢.2& il )
= F? Gradg:C: aS+S. s
0E OFT Gradg | 0G:
- T Q- ; . .
= {F Gradn:C: 5= +8: —a } s (24)

It is important to observe that again € can be used to reduce the sensitivity of stresses
to the sensitivity of strain measurements. Finally it is necessary to calculate the the
derivatives of E and F7 gradn with respect to the covariant basis vectors. Using results
from tensor analysis we obtain third order tensors

. Ok R (FT Grad q)
b= — Vi 25
Mi:=p= and N 3G, (25)
Thus, we can formulate the partial derivative of f in the following way
%i=a‘-a—(,)Gi where &' :=F7 Gradg:C:M‘+S:N". (26)
3 s

Finally, the partial derivative of the weak form with respect to s is given by

dg . 0G; : . :

_—= e ' = y G'- 27

- T/ AZ2J,dve where Afi=al+f (27)
(-]

We call A the (partial) sensitivity vector of the weak form corresponding to a virtual
change of covariant basis vectors induced by a virtual change of design.
4. A VARIATIONAL FORMULATION OF SENSITIVITY ANALYSIS

4.1 General formulation of the variational principle. We start of by considering the
internal part gin; of the weak form as an example for any continuum mechanical function
(either scalar, vector or tensor valued) defined on the parameter space To in the following
way

Gint = / F(Gi,u(Gy)) Jy(G:) dVe. (28)
Te

Performing the total variation with respect to design we obtain

6g.-,.,=6[/fJ¢dVe] =/6[fJ¢] dVe=/6fJ¢+f6J,pdVe (29)
Te Te Te

Thus it is important to calculate the total variation of internal virtual work f with respect
to a variation of design which leads to

6f = %[f(G.- + ew;, u(G; + ewi))],—o

of of ou\ . of . 0f bu
{aG.-+auac;.-}"""a_c.i""”’%a_c;,-"""
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Since the functional relationship of the displacement field u for the solution for the structu-

. Ou .
ral analysis problem is not known explicitly we cannot determine e But it is important
1]
to observe that
_ Ju
n = ﬁ - W (31)

is a special variation of the displacement field induced by the chosen variation w;. Thus
we can write

§f = 6lf+62f=aa_Gf.w'+%ﬁ
= % [f(G| + € w;, U(Gi))]¢=0 + % [f(Gn U(G,') t+€ ﬁ)]€=° : (32)

Here 6, f denotes a variation of f with respect to geometry (i.e. w;) keeping t.he d.ispla-
cement field u fixed and 6;f means a variation of f with respect to the special virtual
displacement field 7 keeping geometry fixed.

4.2 Variation of Jy. Since all integrals are transformed to the local parameter space Tg
using the relation dV = J, dVs we must supply the variation

aJ,

=0 = ﬁ ’ w‘. (33)

d
8Jy = 2= [Jy(Gi + ewi)]

which is linear in w;.

4.3 Variation of objective function, constraints and the weak form. After intro-
ducing the general framework of a total variation with respect to design we can apply the
developed technique to all functions modelling the optimizing problem. The variation of
weak form with respect to design must vanish for all w; since the equilibrium state has to
be fulfilled for every design, i.e.

bg =6 / F(Gi,u(Gy)) Jy(G:) dVe | = o0 (34)
Te

This equation is valid for all variations w; of geometry and for the induced variation # of the
displacement field and can therefore be used to evaluate 7 for any given variation w;. This
procedure will be explained after formulating the corresponding discretized sensitivity
equation.

Considering any other continuum mechanical function a we can determine the tota] va-
riation via

aa 6a - : —
50‘_6_G‘.w'.+%.q_,b-w,+c~r], (35)

if for given w; the induced variation 7 was calculated. It is important to observe that §a
depends linearly on w; and 7.

Tle necessary (partial) variations with respect to design or displacement can be calculated
using standard tensor analytical arguments, e.g. as outlined in section 3.

Our discrete CAD based geometry model is an important application of the variational
formulation since it can be considered to be a finite dimensional approximation of all
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possible shapes. Thus limiting the whole variety of infinite many possible shapes to all
shapes from a finite dimensional space of possible CAD based geometry models can be
seen as a discretization process similar to the finite element approach of approximating
the unknown displacement field u by uj. Now, it is important to distinguish geometrical
shape functions M; from shape functions N used to approximate the displacement field.

5. A DISCRETE FORMULATION OF THE SENSITIVITY ANALYSIS

The above derived sensitivity equations must be discretized corresponding to the given
finite element scheme. It is necessary to divide the discretization process up into a discreti-
zation in space using some triangulation of the reference configuration and a discretization
of the unknown displacement field. First of all we only consider the discretization in space
and assume the exact displacement field to be given over the actual domains.

5.1 Considering different domains. The problem of discretizing structural analysis
as well as sensitivity data can be discussed efficiently by introducing the following four
domains of interest, see Fig , which are connected by well known mappings. It is important
to note that these mappings are purely geometrical and independent from any continuous
or discretized solution of the structural analysis problem.

1. To :=[-1, 1]3 quadrilateral element reference domain with local coordinates £, €3, €.
2. Te := [0,1]? space of local coordinates @', ©?, 3.

3. B, reference configuration with coordinates X', X2, X3.

4. B, discretized reference configuration with coordinates X}, X, X3

An effective finite element formulation is almost formulated with respect to the local coor-
dinates &y, &2, €3 of the standard quadrilateral reference domain To and we recall that a
finite element is called isoparametric if the geometry and the displacement field are appro-
ximated using the same shape functions. Otherwise the element is called subparametric or
superparametric, respectively, depending on the actual choice of different shape functions
for geometric mapping and displacement approximation.

Furthermore the mesh generator and the mesh refinement strategy operate on the para-
meter space To to create first of all the local coordinates ©' for each node of the finite
element mesh. Finally the actual point X is calculated by inserting 0,02, 0% into the
mapping 1.

The local coordinates (£;,£2,&3) € To = [—1,1]° can be mapped into Te via

0 =Y L*(&, 2. 65) O (36)
k=1

where L* denote bilinear functions which are identical to the shape functions if four noded
elements are used and O, is the j-th component of the local coordinates of the k-th element
node.

5.2 Discretization of the displacement field. The displacement ficld u is approxima
ted by uy using shape functions N* = N k(£1,€2,&3) in the following way
nkel

uj, = (61,62, 63,8) = Z 1\7"(51762,53) 4 (s), (37)
k=1
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Box
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XA =¥h_, N¥&, &)X

FIGURE 2: Geometrical mappings connecting four domains of interest

with v} denoting the i-th displacement component of the k-th node.

5.3 Discretization representing the exact geometry. It is important to observe that
an exact triangulation of the reference configuration without introducing any discretiza-
tion error is possible by using the mapping ¢ on each triangle or quadrilateral. Thus, it
is possible to formulate some superparametric finite element method using exact CAD
formulated geometrical shape functions M;.

In this case it is appropriate to use local coordinates ©!, 92, 03 and we obtain second
mixed partial derivatives of the cartesian coordinates with respect to local coordinates
and design variable

92 XA d?
901 0s _ 007 ds

Y Mi(0',0%,0°) VA(s)

1me]

=) A0i s 8)

] n [aM-‘(@*,e?, 0%) AYA(s)
i=1

Analyzing the result it is necessary to evaluate the local coordinates 0',0%, 0% at the

quadrature points ¢;, £;, {3 using equation (36) and the partial derivatives of the geome-

trical shape functions M; with respect to the local coordinates for these values as the
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continuum mechanical part of the information. The structural optimization part is given
by the partial derivative of the control point coordinates with respect to design varibale
s. Both parts are linked multiplicatively to give the partial derivative of the local basis
vectors.

In computational mechanics cartesian coordinate systems are often easier to handle than
curvilinear coordinate systems given by G, introducing the extra transformation between
To and T, i.e. we obtain

o (dut)_2 @i.é‘&..aﬁj)_?ﬂ.%.{ﬁ(%’)}
s \3XB) ~ 33 \ ¢, 007 0XB) 8 007 |0s \0X"

where the sensitivity

a (80" _ 90! _ * XA . 007

9s \o0xB)~ ~\9x4) \00ids) \0XP?
is independent of the displacement field. Thus any discretization of the displacement field
u is separated from the sensitivity information.

5.4 Discretization using the isoparametric concept. Using on the other hand some
standard isoparametric finite element schemes we introduce an approximation error on
the geometry and on the displacement field. Considering the geometry approximation we
observe that the nodes of the finite element mesh are lying on the exact geometry with
equation (8) defining their nodal coordinates. Since the local coordinates ©!,0?, 0% are
fixed for all nodes they depend only on the design variable s, i.e. XA = X{(s) . The
interior of each element is defined using shape functions N* in the following way

nkel

X;l‘ = X}f(ﬁla€2’£3,s) . Z Nk(EI,EZaES) Xf(s) (39)

k=1
and the covariant basis vectors G; of the exact geometry are approximated by Gy;. Using
local coordinates we obtain

Gy 625(;. 9 [nkel ] nkel [6!?" axk] nkel [3&1‘ (%“, 35(:;}

8s  00ids 00ios

3_6,%7 0s

LA B
k=1 k=1 00’ Os k=1
The partial derivative of the covariant basis vectors G; with respect to design, i.e. the
variation of G; which is w; = 6G;, is approximated by the partial derivatives of finite
element node coordinates using local shape functions N*, i.e.

nkel 6}0‘1& a.i
Wp = 6Gh,' = Z [-a—& E-é*; 5xk] .

k=1

(40)

The vector 6Z := {6Xy,- - ,5X,,,,od,}T collecting the variation of all finite elemente node
coordinates §X; must be supplied using CAD and the mesh generator.

5.4 A discretized variational sensitivity analysis. A discretization step can be per-
formed for the variation of the weak form g and for the variation of any objective function
6o using standard isoparametric finite elements. Since the variation depends linear on w;
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Or Wy, Tespectively, it is possible to separate §Z (used in the discrete variation wy;) from
the integral part using the same procedure done for the discretized virtual displacement
7, to separate §V. Thus finally we end up with

8gn = 8VT [ Ar6Z + Ky 6V] =0 (41)

and we can calculate 6V via

V =-K;' A, 6Z. (42)
Here A}, 6Z denotes the discretization of equation (27). Inserting this relationship in the
discretized form of the variation of & we obtain by discretizing (35)

Sa=by6Z+ {6V = [b] +cf [ ~K7' Ay ] | 6z (43)

Here b]6Z and cT denote the discretization of (0a/8G;) - w; and da/Bu respectively.
Analyzing the above obtained matrix representation of a model function a we seperated
the influence of the virtual change of geometry from the discretized sensitivity. Here A
denotes the discretized partial sensitivity matrix of the total residual vector with respect
to the coordinates of the FE nodes which is analytical available and independent of the
actual choice of design variables. It is important to observe that both Kr (and K7') and
A, are sparse matrizes, i.e. K;! A, can be calculated efficiently being itself sparse.

6. SOFTWARE REALIZATION AND EXAMPLES

The proposed concept of structural optimization has been realized in our research ana-
lysis tool INA-OPT (INelastic Analysis and OPTimization). The described sensitivity
analysis was applied in various intermediate stages of its development to solve optimiza-
tion problems considering rubberlike materials under large strains. The overall structural
optimization algorithm and numerical details concerning the sensitivity analysis and the
used mathematical programming algorithm can be found in Barthold [6].

We present very briefly an example, where a plate with
dimensions a = 36 mm, b = 20 mm, thickness d = 1 mm
and a circular hole with radius r = 5mm was optimized
to reduce weight under displacement and stress cons- f
traints. The plate consists of an incompressible rubber ST H7A
material which can be modeled by Ogden’ s material

law, see equation (10). Using symmetry only a quarter

of the systems was considered. The plate was deformed

to an overall elongation of three times the initial length. b
The geometry of the plate was modelled using Bézier
curves and a Coons surface model. The control point =
coordinates of the outer surfaces are design variables. AT
The radius is fixed.

The finite element mesh comsists of 255 elements and
364 nodes with 698 d.o.f. The mesh was derived by using
adaptive mesh refinement strategies, see Rust [11], Zien- a
kiewicz and Zhu [14].

The deformed mesh of the initial design and the optimal design as well as the distribution
of maximal normal Cauchy stresses for the optimal design are given in figure 3.
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FIGURE 3: Displacements and stresses of initial and optimal design

7. CONCLUSIONS

In this paper a continuum mechanical theory of structural optimization is developed.
Considering the geometrical properties of a material body in the continuum mechanical
context and of patches in computer aided design we linked these two important founda-
tions of structural optimization together.

This theory is an important application of the modern variational formulations in struc-
tural optimization. Here we consider the well established CAD software systems as a tool
for discretizing the continuously derived sensitivity analysis towards an applicable discrete
geometry model. The step from any variation of shape to this proposed family of possible
shapes parametrized with well known control parameters is similar to discretizing the
unknown displacement field by finite element approximants.

The variation of continuum mechanical functions with respect to geometrical design va-
riables can be written using the covariant basis vectors in each point of the body and
their sensitivity.

A discretization process using isoparametric elements end up with a new elegant matrix
formulation of sensitivity analysis reducing the total computational effort drastically.
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CHAOS IN STRUCTURAL MECHANICS

ULO LEPIK
Institute of Applied Mathematics
Tartu University
Vanemuise str. 46-250, EE2400 Tartu, ESTONIA

ABSTRACT

The main aim of this report is to give an overview about chaotic processes in structural
dynamics. The paper begins with an introduction, where main features of a chaotic motion
are described. After that we shall examine chaotic vibrations of elastic and elastic-plastic
systems. In the last part of the paper some results of the author are presented.

1. ABOUT CHAOS

What is chaos? To give an answer to this question is not quite easy, since up to now an
mathematically exact dcfinition of chaos is wanting. A somewhat simplified definition is:
chaos is an unpredictable motion.

Investigation of chaos began with the famous work of Edward Lorenz from 1960 (although
the term ”chaos” was introduced somewhat later, by James York in 1975). Lorenz solved
numerically the following system of equations

z=10(y - )
y=zz+28x -y (1)
, 8
i=rzy— -2
Y73

It turned out that this system is very sensitive to small changes of initial conditions (e.g.
the initial values 0.506 and 0.506127 brought io quiie different solutions). Figuring the
solution in three-dimensional space Lorenz got the well-known ”butterfly” diagram.

Next contribution to chaos belongs to James York and Robert May (1975-76). They
mvestigated the mapping
np1 = r2n(1 = 2n); (2)

which characterizes the growth of populations for diflerent values of the parameter r. It
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turned out that if r < 2.7, the process n — o has a unique solution. By increasing the value
of r a period doubling takes place and we have two values for z., . If r rises further another
peried doubling is observed, after that the system turns chaotic and we get infinitely many
different values for 7., . It is interesting to mark that inside the chaotic region there are
"windows” where the motion is deterministic.

An import step was made in 1977 by Benoit Mandelbrot, who introduced the concept
of fractals”. A fractal can be defined as a continuous function which does not have a
derivative in the common sense. Many objects of nature have fractal pattern (coastline,
snowflakes, ice cristals, metal allows); fractal are also cracks in a concrete. The boundaries
of fractal structures are generally compound lines (i.e. they exist in the form of several
lines). By zooming this picture it remains fractal and more and more new lines become
evident (seli-similarity effect).

There are several methods for establishing chaotic motions. For shoriness sake we shall
consider here only two of them. Let us take an autonomous dynamic system

z1 = f(z1,%2) ) #3 = g(z1,22)

and compose the phase portrait in the plane (z;,;). In the case of periodic or quasiperiodic
vibrations we get a closed curve. For chaotic motions we shall have in the phase plane
orbits which never close or repeat; the trajectories of these orbits tend to fill up a definite
section in the phase plane (cf. Fig. 1a).

The other possibility is to put together a power spectrum diagram. For this purpose we
shall transform the time variable f(t) with the help of a discrete Fourier transform into

the frequency domain
aN-1

F(wp)=At Y ft)emosts (3)
k=0
and calculate the power spectrum
Plws) = [Fwy )|

Periodic and quasi-periodic vibrations can be recognized by discreie line spectra; chaotic
motions - by a broad, coniinuous band of frequencies (cf. Fig. 1b).

From other criteria for chaotic behavior of dynamical systems we shall mention here a
positive Lyapunov exponent, a Poincare map of fractal dimension, Melnikov method for
homoclinic trajectories. One can learn about these methods of the text-books, from which
some are presented in the list of references [1-7] .

One of the equations of motion for which regular and chaotic motions are investigated in
detail is the Diiffing’s equation

J+ky-Py+ oy’ = Acoswt. (4)

This equation was first examined by Georg Duffing in 1918. A more detailed analysis was
given by Ueda [8] , who cleared out the regions in the parameters plane (4, k) for which
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chaotic motion takes place. The equation (4) is important to structural dynamics, since
many problems about nonlinear vibrations of structures can be reduced to the solution of
this equation.

|dB)

g als

()

3

3

10 0 4 W 20 0y 10

FIGURE 1. Phase portraits and power spectra
for regular and chaotic motions (Thomsen [19])
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2. CHAOTIC BEHAVIOR OF ELASTIC STRUCTURES

Chaotic motion can take place only in nonlinear dynamic systems. In structural dynamics
nonlinear effects can be introduced in two ways: (i) due to large displacements: we must
take into account nonlinear terms in the equations of motion (geometric nonlineary);
(ii) from external forces or boundary conditions. Both cases are illustrated in Fig. 2.

P

@ 1 () ] ©) ]
I
- _ | - | - |
aclogwt : adoswt : acloswt ;
| | [
NN NJ |
| | S S ] B
P

FIGURE 2. Three elastic periodically excited beams

Here we have three elastic beams which are Placed on a vibrostand carrying out forced
vibrations acoswt. The first beam is compressed by the end load P, and, if we assume
that the axial load T is constant along the beam, then the equation of motion is

8w 8w
Pw 8% . . _ g
EI(?:.:‘ ngz +Cw + pAv = acoswt, (5)
where BA f% p
w
T=-R+ E/; (57 )ds. (6)

Here E is the Young’s modulus, I — moment of inertia, A - cross-sectional area, p — density,
C - damping coefficient, L - length of the beam. If we take

w = f(t)sin w% (N

and solve the equation (5) by the Galerkin’s method, we get the Diiffing’s equation (4).
As to the other two problems then the beam in Fig. 2b vibrates between two magnets,
nonlinearity is caused by the magnetic forces. In Fig. 2c there is a stop near the free end
of the beam,; so for source of nonlinearity is the boundary condition.

These three problems were solved by Moon, Shaw and Holmes [4, 14, 15]. It follows from
their analysis that for certain values of the beam and load parameters chaotic vibralions
take place; also the period doubling was stated. Tang and Dowell [18] showed that ihe one
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degree of freedom formula (7) may lead to significant errors and therefore higher modes
should be taken into account. Dowell [10] found chaos in the flutter of a buckled plate.

Bifurcations and chaotic behavior of elastic strings in three dimensional space were exami-
ned by O'Reilly and Holmes [16, 17] ; their results were confirmed by experiments carried
out by Molteno and Tufillaro [13].

Bifurcation analysis of a rotating elastic beam was examined by Gross et al. [12]. Chaotic
dynamics of a double pendelum was investigated by Thomsen [20]; the pendelum consists
of two rigid bars, which carry concentrated masses and are connected by elastic springs.
For establishing chaotic motion the Ljapunov exponents, Poincare sections phase portraits
and power spectra have been used (some characteristic diagrams are shown in Fig. 1). In
another paper by Thomsen [19] chaotic vibrations of non-shallow arches are examined.
Goncalves [11] has investigated the dynamic non-linear behavior of a pre-loaded shallow
spherical shell under a harmonic excitation. The equations of motion are solved by the
Galerkin’s method. Different physical situations are identified in which period-doubling
phenomena and chaos can be observed.

Irregular vibrations of compressed beams under lateral excitation are discussed in several
papers from which we shall note here the paper by Teeng and Dugundij [21] . These
results were developed further by Abhuankar et al. [9] . They considered a beam which
is compressed by an axial load greater than the Euler buckling load and then is fixed in
its compressed position. After that a transverse load F = F(z,t) will be applied, besides
a bage excitation ws(t) may act (Fig. 3). Now the equations (5)-(6) hold if we ghall
substitute the right side of (5) by the term F(z,t) - pAis.

F(x,t)
ar TLL LTI s
L 79pr
Wo(1) Wg(t)

B FIGURE 3. Simply supported beam

The equation (5) was solved in two ways: (a) making use of the Galerkin’s procedure;
(b) solving this partial differential equation by an explicit finite difference scheme. The
results, which were carried out for F(z,t) = asin 74 coswt and i, = 0 according to these two
methods, showed good accordance. Also a problem where |u(z,1)| < § (i.e. deflections are
constrained by two stops) is considered. Chaotic behavior of the solutions follows from
phase portraits and period doubling bifurcations.

3. ELASTIC-PLASTIC PROBLEMS

In 1985 Symonds and Yu [34] considered the following problem: a fixed-ended beam is
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subjected to a short intensive pulse of transverse loading that produces plastic deforma- -
tion. Since the ends of the beam are fixed then also membrane forces must be taken into
account. For simplicity sake the real beam was replaced by a Shanley-type model with a
single degree of freedom. This model consists of two rigid beams, which are connected by
a small elastic-plastic "cell” (Fig. 4a). Solving the equations of motion Symonds and Yu
found that permanent deflection may be in the direction opposite to that of load. Such
a phenomenon they called ”the anomalous” or ”counter-intuitive behavior” of the beam.
They established that such a behavior takes place only in a narrow region of beam and
load parameters. '

° W
© —
FIGURE 4. Shanley-type beam models

A different single degree of freedom model was proposed by Yu and Xy [35] in 1989. This
model consists of a rigid concentrated mass and two tiers of elastic-plastic strings, which
connect the mass to the fixed pin ends. The model describes the same effects as the model
of Symonds and Yu.

Counter-intuitive behavior of the beam was observed also in experiments which were
carried out in 1991 by Kolsky et al. [25] ; here the impact loading was simulated by
pulling the specimen to an initial deflection and then releasing it abrubtly.

For counter-intuitive behavior of the beam the question, if the vibrations in a pin-ended
beam may be chaotic, arises. Lee and Symonds [26], making use of energy approach,
showed that in the case of a single degree of freedom model the motion is fully determined
and there cannot be chaotic vibrations,

So if we want 1o get chaotic motion we must go out from & model which has two degrees
of freedom at least. Such a model was proposed by Symonds and his coworkers and is
shown in Fig. 4b (here three rigid bars are connected by three elastic-plastic shells). This
model has been applied in several Ppapers of Symonds et al.; for shortness sake we have
brought in the list of references only some of them [22, 27, 33]. A brief survey of the
obtained results is as follows.

Symonds et al. showed that at after some first vibrations the motion ”shakes down”,
so that the plastic strains remain constant and the following motion is wholly elastic.
The solution is very sensitive to small changes of load. This is demonstrated in F 18. ba
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where permanent deflections of midpoint of the beam are shown; Fig. 5b shows the same
for an expanded scala. As to the black regions in these figures then if we shall go to
more expanded scales they are decomposed to positive and negative subintervals of very
small size. From here the fractality and self-similarity, which are characteristic to chaotic
processes, follow. Symonds and Lee (33] calculated also the fractal dimensions for this
problem. They found for the similary dimension the value 0.78 and for the correlation
fractal dimension ~ 1.44 (in the non-chaotic case these values are 0 and 1, respectively).
Symonds and his coworkers have used also other methods for establishing chaotic character
of vibrations (e.g. Poincare’ diagrams, Lyapunov exponents).

: " o \ll

FIGURE 5. Final midpoint deflections plotted as function
of pulse force (Symonds and Lee [32])

Elastic-plastic response of circular plates was examined by Galiev and Nechitailo [22-23].
The equations of motion were integrated by the second order difference method. The
yield condition of Huber-Mises has been applied. It follows from the calculations that
also for this problem counter-intuitive behavior can be realized.

Of course, il would be important to get solutions for continnous beams (i.e. without
making use of Shanley-type or analogical models). For this purpose FEM-type technics
could be used, but this requires a lot of computation time. Therefore it is essential to
work out some simplified meihods of solution. Such an attempi has been done by the
author [28-31] . The method of solution proposed in these papers is reporied below.
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If a transverse pressure p(z) acts to the beam, then the equations of motion are

T 8%y
= — - — =0
b= 8z phB o3 i (8)
M 8§, buw 8w
— (T — —pBh—— =0
B 53 T oz(Tax)”(”) & o3

It is assumed that the beam has a rectangular cross-section (B - 18 the beam width, & —
height). Axial force T and bending moment M we shall calculate from the formulae

§ §
T= /-_!L o(z, z)dz, M= /__!A o(z,z)2dz. 9)
6
C
A
oI AE

B

FIGURE 6. Stress-strain diagram

For simplicity sake we shall take the stress-strain diagram in the form as shown in F 1g.
6 (material with linear strain-hardening), elastic unloading (line CD) is also taken into
account. To the equations (8) we shall apply the Galerkin’s procedure

I ¥ '
/ Pbudz =0, / $6wdz = 0. (10)
Q 0
Displacements u and w we shall seek in the form
u=Zb;sin 2:'1%; w=z_f; cos(2i+1)1r%. (11)

=1 =1

The integrals (9) and (10) we shall evaluate numerically doing this we find the second
derivatives 5; and f;. For evaluating the quantities 5,4, f;, /.. we shall use the scheme of
central finite differences (it was shown by Mikkola et. al. [32], that with this simple
method high accuracy can be achieved). To get a stable solution the time increment
must be sufficiently small. Calculations have shown that ii is enough to take two terms
from the series (11). The results obtained by our method are quite close to the solutions,
obtained by Abacus technic (see [30] ). Now let us briefly discuss some results obtained
by this method. Most of the elastic solutions 80 out from the assumption that the axial
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force is constant along the beam (see (6)). In paper [28] it was shown, that for plastic
beams it does not hold(see Fig. 1-3 of this paper). Still more, in the elastic case examples
can also be brought, where the assumption T = const brings to quite different deflection-
load diagrams to be compared with the real solution. Therefore one should be careful
by making use of the solution T = const even in the case of elastic beams. Computations
show that plastic deformations take place only during the first vibrations; after that the
system ”shakes down” and the subsequent motion is wholly elastic. This enables us to put
together an approximate solution (elastic recovery type solution). If we assume that v =0
and w can by approximated by one term in the equation (11) we get again a Diiffing-type
equation. Details of this approximate method can be found from papers [28-30] . It follows
from papers [28-31] that in the case of continuous beams also counterintuitive behavior
takes place. Weak chaotic effects in the response of the beam may exist, especially in
the initia! phase; as to the long-term motion then it transitates to periodic vibrations of
smaller amplitude. In paper [31] also vibrations of flat elastic-plastic arches are considered.
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PRODUCT DEVELOPMENT PROCESS OF A SANDWICH PANEL,

STRUCTURAL MECHANICS
MARKKU HEINISUO SIMO MALMI
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P.0.Box 600,FIN-33101 Tampere, FINLAND

1. INTRODUCTION

The paper deals with the studies of the mechanics of a new Sandwich panel, Composer. The
faces of the panel can be made of steel, copper, aluminium or some other metal. The core
material is plastic foam. The panel is used as a covering of the outer walls of buildings. The
panel is usually a rectangular plate which is joined to the wall by using the special connectors
developed to this purpose. Fig. 1 presents 2 typical panel connection to the wall and the use
of the panel in buildings.

FIGURE 1. The panel developed.



The product development process is going on in Tampere University of Technology in co-
operation with the company Teriselementti Oy, which is the fabricator of the panel. The
research project has been divided into two parts: the durability and fabrication of the panel
and the mechanics of the panel. The first part is done in the department of material science
and the second part is done in the department of civil engineering. The paper deals with the

second part of the project.
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2. DESIGN CRITERIA OF THE PANEL

The design criteria of the panel were taken from the reference [2] because there are no
similar criteria available in the Finnish codes for the Sandwich panels. The following equation

must be satisfied at both the ultimate limit state and the serviceability limit state

Fd = ’Y{ ( Fwind + 0-5 FT )S 7R_

Fy =Y ( Fp, + 0.5 Fotna ) S

‘E"’ (1)

where

F, = design value of action

Y = relevant load factor according to Table 1

F,. = Ccalculated value of the action of wind

Fy = calculated value of the effect of temperature

R = value of resistance at relevant limit state

Vo = relevant material factor according to Table 1

Ultimate limit state Serviceability limit state

Load factor ¥, 1.5 1.0
Material factor vy,
yielding of metal face 1.1 1.0
wrinkling of metal face at a support 1.5 1.2
shear of the core 1.25 1.0
crushing of the core 1.25 1.0
failure of fasteners 1.25 1.0
failure of an element at a point of
connection 1.25 1.0

TABLE 1. Load factors and material factors for Sandwich panels [2].
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3. LOADING OF THE PANEL

The panel is loaded mainly by the variable short-time actions like wind loads and temperature
gradients when the panel is used in buildings. The self weight of the panel can be ignored
when designing the panel. The wind loads and corresponding shape factors are taken from the
national codes. Instead, the temperature and its gradient between the faces must be studied,
because there are no exact rules for this loading e.g. in the Finnish codes.

The surface temperatures at the outer side of the panel, i.e. at the sunshine, can be found from
[2]. There are some facts which must be taken into account when designing this kind of
panels. Firstly, the temperature values in [2] are given for the use of panels in the middle
Europe. Secondly, the heat flow between the panel faces is remarkable, because the thickness
of the panels studied is only 4-6 mm.

Temperature-measurements of a panel in the building of Fig. 1 were done in site to get
relevant information of the actual temperature loadings. Fig. 2 shows the variations of
temperature of the inner and outer surface of a panel and in the structure behind a panel and
the variations of air temperature during a cold and sunny winter day.

| = Inner foce

Outer face Ait temperature = Behind panel |

10
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&D}zm 2:24.00 4:48:00 136! 50 ) 124 ::': 19:12:00 21:36:00 0:00:00

.
w

Temperature /( "C)

Time / (h)

FIGURE 2. An example of measured temperature values of a sandwich panel

Some more tests were done in the laboratory of TUT and in the factory of Teriselementti Oy.
The calculation model proposed in [1] was used to verify the experiments.
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As a result the design values in Table 2 were found to be proper for the design of these

panels for the use in Finland.

Maximum summer temperature values at serviceability limit state T°C
- very light colours, R;=75-90 % 45
- ligth colours, R;=40-74 % 50
- dark colours, R;=8-39 % 55
Maximum summer temperature values at ultimate limit state

- dark colours, R;=8-39 % 60
Rg= degree of reflection relative to magnesium oxide=100 %

Maximum temperature difference between metal faces 10

TABLE 2. Design values of temperature load [7]

The equations 2 ([1],[8]) can be used for the calculation of the temperatures of the outer and

inner faces of the panel.

T - T
T, =T, + T:_TJE:S m, (2)

coefficient of heat resistance from inner surface to outer surface

T T
alrl+ £ + ¢
m m
Tu - (-] u ,
ip
1.1
mo ml.l
where
a = absorption coefficient of surface
I = intensity of shortwave radiation( W/m?)
T, = temperature of inside air ( °C)
T, = temperature of outside air ( °C)
m, =
m = coefficient of heat resistence of inner surface
m, = coefficient of heat resistence of outer surface
T, = surface temperature of inner surface
T, = surface temperature of outer surface

4. MATERIAL PROPERTIES OF THE PANEL

The material properties of the faces are w
the faces and the core is supposed to be
on of the glue is included into the mate
were done by using the whole sandwich

structure

with the faces glued to it). The core material

dependent on the temperature, the period of lo

ell known because they are metal. The glue between
at least as good as the core material. The deformati-
rial behaviour of the core, because all material tests
(i.e. the core is not tested alone but always
is plastic foam which material properties are
ading and the level of stress.
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The shear modulus of the core is the main parameter when designing the panel. The reduction
of the shear modulus is done following [2] by using the Eq. 3

- GS
6 = T o (3)

where @,= creep coefficient and Gg= initial shear modulus.

The shear modulus of the core material was determined from the maximum deflections of test
beams by means of a four-point bending test at temperatures -20 °C,+20 °C and +60 °C. The
Jevel of stress used in tests was taken as the approximated maximum to be reached in the

ultimate limit state.

The shear modulus was calculated from the equations [2]

U
B 56.34 B,
w, =W - W (4)
G - F L
s 6 B H; w,
where
B, = flexural rigidity
F = total load on test specimen

= length of test specimen

= deflection ( measured ) at mid-span for a load F

Wy = bending deflection

W, = shear deflection

Hg = depth of core material
B = width of test specimen

Deflections were measured at seven time-points during the test, namely 0.1, 1, 2, 10, 100,
500 and 1000 hours. Curve fitting was used to find a time-dependence function for the shear
modulus. The determined redused shear modulus Ggr was verified by running some test using
the general purpose FEM-program,ABAQUS.
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Table 3 shows the determined shear modulus G and the creep coefficients @, at temperatures
-20 °C,+20 °C and +60 °C as a function of time t.

Tempe- | shear creep  coefficient

rature modulus ¢,
°C MPa |t=50h | t=100h t=500 h t=2000 h | t=100000 h
-20 5.1 0.3 0.35 0.45 0.5 0.6
+20 24 0.6 0.7 0.9 1.0 1.2
+ 60 1.2 0.6 0.7 0.9 1.0 1.2

TABLE 3. Initial shear modulus G (at t=0 h) and creep coefficient ¢, [7]

5. DESIGN OF THE PANEL

The design criteria of the panel are at the ultimate limit state: yielding in a face, wrinkling in
a face, shear failure of the core and crushing of the core at a support and at the seviceability
limit state: first yield or wrinkling at a support or a single point and the attainment of a
specified limiting deflection .

5.1 Ultimate limit state. The yield stress of the face material is the guaranteed minimum
value for the metal quality. The wrinkling stress may be calculated [3] using

o, = 0.823 %/E E,, G,, (5)

where
E = elastic modulus of metal face
Eg = characteristic value of the elastic modulus of the core
Gs = characteristic value of the shear modulus of the core

Egr and Gg; are characteristic values of the material properties of the core at the relevant
temperature [7]. The value of Eg; is taken from the tensile tests [7]. Tests also showed that
the shear failure of the core would not be the critical design criterion. Other criteria are
explaned in the next chapter.

5.2 Serviceability limit state. In a flat face, the wrinkling stress G, may be calculated using
equation 5. The specified limiting deflections are span/100 concerning the wind loading and
span/150 concerning the temperature loading.
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6. DESIGN OF THE JOINT

As it can be seen from Fig. 1, the behaviour of the connection of a fastener to the panel and
to supporting Z-profile is not linear. When the support reaction is tensile, only the fasteners
are in contact with the supporting Z-profile (point supports, prying effect), but when the
support reaction is compressive, the panel lies on the Z-profile and the fasteners are not active
(line supports).

The ultimate tension capacity of the joint was verified by tests. The material and sizes of the
rivets were as variables. The pull-out capacity of the rivet from the steel face (1= 0.6 mm)
was the critical value. The mean capacity of the joint was approximately 780-930 N. The
compression capacity of the joint can be calculated by using the equation 4]

Y. 10 fy‘_‘ (6)

where y;= load factor (Table 1.), Yu= material factor (Table 1.),f,= characteristic valuc of
compression strength of core (information from the fabricator) and O = compressive Stress
from the support action i. The last variable can be calculated from

c, = — M

where R;= support reaction, L= width of the support and h= thickness of the panel. The
interaction between stresses of the compressed panel face due to bending moment ( eq. 5) and
the compressive support reaction (Eq. 6.) must be taken into account €.g. by using the inte-
raction diagams of [5].

7. DESIGN PROGRAMMES

The panel was first considered as a beam structure. A calculation program based on the exact
finite element method for linear elastic analysis of the continuous sandwich beam [6] was
implemented on a PC-computer. The program was extended by an iteration prosedure which
took into account the special action of the fasteners, when the support reaction is tensile.

The program prints maximum deflections, maximum shear stresses of the core and maximum
normal stresses of the faces at each span of the beam. The temperature, the period of loading
and the level of stress are taken into account by using the reduced shear modulus Ggp of the

core ( Eq. 3.).

The second calculation program was based on the linear elastic analysis of the sandwich
plates. The program is based on the plate theory of Reissner and Mindlin and it is a finite
element program, which uses eight-node plate bending elements ( A1Z- elements) with three
degrees of freedom per node. The fasteners are implemented by using special elements. The
program generates automatically element mesh and takes into account the iteration of the
tensile support reaction when needed. The user interfaces of the program are made by the
company Terdselementti Oy. It runs on a VAX-computer. The calculation results were
verified by the general purpose FEM-program, ABAQUS.
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8. CONCLUSIONS

This product development of a new sandwich panel will be continued. It can be concluded
that in this kind of geometrically very simplified structural unit there are many interesting
details when considering the research activity. It can also be concluded that the sophisticated
methods such as the solution of the contact problems and the behaviour of the time and
temperature dependent materials are needed. It is our belief that the product developed shows
its competitiness on the domestic market and abroad.

REFERENCES
1. D. Bjoérkholtz, Lampb ja kosteus: Rakennusfysiikka,Rakentajain kustannus,Helsinki, 1987

2. European Convention for Constructional Steelwork Commetee TWG 7.4, Preliminary
European Recommendations for Sandwich Panels,Part I: Design,ECCS Publication No.
66, 1991, Brussels

3. P. Hassinen, Evaluation of design stersses in the compressed face layers of sandwich
panels, Proc. of Nordic Composites and Sandwich Meeting - Nov. 19-20,1991

4. P. Hassinen, Metalliohutlevypintaisten sandwich-elementtien staattinen mitoitus,
Rakentajain kalenteri, Rakentajain kustannus, 1993

5. P. Hassinen and L. Martikainen, Jatkuvan sandwich-palkin kestdvyys vilituella,
Rakenteiden Mekaniikka, Vol. 27, No. 1,1994,pp. 14-25.

6. M. Heinisuo, An exact finite element technique for layered beams, Computers and
Structures, Vol. 30, No. 3, 1988, pp. 615-622.

7. M. Hikkinen, S. Malmi, M. Heinisuo, 1. Hiekkanen, T. Tiainen, Composer-levyn
lujuustarkastelu ja pitksaikaiskestivyys, Tampere University of Technology, 1993

8. 1. Hoglund, Rapport: Metod for berikning av extrema yttemperaturer hos isolerade
ytterkonstruktioner, Stocholms Statens rad for byggnadsforskning,1973



37

NONLINEAR FEM-ANALYSIS AND DESIGN OF COMPOSITE
BEAM-COLUMN
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ABSTRACT

This paper presents nonlinear FEM-analysis of concrete encased steel columns subjected to
combined axial compression and bending. A materially and geometrically nonlinear model is
used to analyse the ultimate strength of columns. The results of FEM-analysis are in a good
agreement with test results. Different combinations of axial and transverse loads are used in
FEM-analysis in order to determine the M-N-interaction curve of the column. Comparison is
made with the results of FEM-analysis and the design resistances based on the Finnish design
code for composite structures. It was observed that the design method based on the code for
composite structures underestimates the strength of columns due to overestimated
eccentricities of the compressive axial force. A corrected design method is proposed. Results
calculated according to this method are in a good agreement with the test results and the
results of FEM-analysis.

1. INTRODUCTION

During the years 1990 and 1991 tests on the strength of composite columns were conducted at
the University of Oulu. Tests were carried out with five different combinations of axial and
transverse loads in columns. Due to the practical limitations of test equipment, the bending
moment (M) caused by transverse loads was relatively high compared to the axial force (N),
i.e. the eccentricity of the normal force (e=AM/N) had a relatively high value.

In this study the columns tested are analysed by using a materially and geometrically nonlinear
model. A nonlinear FEM-analysis using several eccentricities (¢e=M/N) of normal force is
carried out in order to determine the M-N-interaction curve as a whole. In this way more
information is gained on columns tested earlier especially under loading conditions when the
normal force eccentricity is relatively small. Comparison is made with the strengths obtained by
the FEM-analysis and the design strengths based on the Finnish design code for composite
structures. The observation of the earlier study [6] is confirmed. The design method based on
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the code for composite structures underestimates the strength of columns. In this study a
corrected design method is proposed.

Consider the strength of a slender composite column under combined axial compression and
bending in a plane which is parallel to the loads (Figure 1). In the ultimate limit state the
strength of the column is equal either to the flexural buckling strength or the cross-sectional
strength of the column depending on the slenderness and the loading condition of the column.
If the eccentricity of the normal force (e=M/N) is small the flexural buckling is obvious to
happen. When the eccentricity e is great the cross-sectional strength is dominant. An additional
secondary bending moment due to the deflection of the column and an eccentric normal force
(Figure 1) have to be taken into account in an exact analysis.

Side view of loading Cross-section of column
| * |y
N 4 . h

Figure 1. Composite column under combined compression and bending.

In this study a nonlinear FEM-analysis is carried out on the following basis: A bending theory
with the assumption of plane cross-sections remaining plane and normal during bending is
used. The plasticity of reinforcement steel and the nonlinear stress-strain relation for concrete
in compression are taken into account. Tensile resistance of concrete has a significant meaning
in estimating beam-column deflections and secondary bending moment due to the eccentric
normal force. Tensile strain softening of concrete is taken into account. Tension stiffening of
steel bars is neglected.

The above described model has been used recently in analysing deflections of non-prestressed
and partially prestressed concrete beams [3], [4]. Results of these analyses are in a good
agreement with test results. In this study the above described model is used for the reinforced
concrete part of the composite column. In the concrete encased composite columns under
consideration both the concrete part and the structural steel are located symmetrically about
both axes of the cross section as indicated in Figure 1. Full composite action is assumed
between structural steel and concrete. An ideally plastic material model is used for structural
steel. Geometric nonlinearity and second order effects are taken into account.
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2. FEM-ANALYSIS MODEL

Calculations of the analysis were carried out by using a finite element program ABAQUS. The
modified Riks-method was used in FEM-calculations to obtain the load-displacement relation
of the columns up to the ultimate limit state and beyond it. A local unstability is not possible
for the columns under consideration. When the eccentricity of compressive normal force
e=M/N is small a flexural buckling of the column is possible at the ultimate state. When the
structural behaviour of columns is studied with the finite element method an initial effect must
be added for the centrally loaded and ideally straight element model to take into account the
possible loss of stability of the column. An initial deformed shape of the column can be used to
model the geometrical imperfections and the small eccentricity of loads due to the construction
tolerances and the residual stresses in the actual column. In the tests [6] the columns were in a
horizontal position (Figure 4). In this study the transverse self weight load of the structure will
cause the needed perturbation in the perfect geometry of the model.

The columns were modelled with three node 3-dimensional beam elements. The I-section beam
elements shown in Figure 2 were used to model the structural steel part of the columns. The
concrete part was modelled with a rectangular cross section element. Steel ribs, welded in the
structural steel, were used as additional shear connectors in the tests [6). The ribs were model-
led with eccentric rectangular elements. Part of the ribs have holes as shown in Figure 4. These
ribs were modelled with narrower rectangular elements having the same cross-sectional area as
the ribs. The elements for the concrete, the structural steel and the ribs have common nodal
points. The integration points used in the cross sections of elements to take into account the
material properties, strain and stresses, cracking of concrete and plastification of concrete and

steel are shown in Figure 2.

Cross-sections of elements Side view of element model
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Figure 2. Element model of the composite column.

When analysing a reinforced concrete beam by the finite element method with beam elements
the constitutive laws with strain softening are shown to lead to false sensitivity of results to
the chosen finite element size [1], [2]. According to references [1] and [2] the finite element
length, L,, may not be smaller than approximately the beam depth /. At the same time, to
include the effect of full curvature localization, the minimum element length must be used in
the softening regions of beams. In this study the strain softening constitutive laws are used for
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the concrete part of the columns. For this reason the element length 250 mm was chosen, the
depth A of the columns being 240 mm. The element model is shown in Figure 2.

The stress-strain relation used in [3] is adopted for concrete in tension:

For ¢ <¢g,: o =Ec¢ 1)

For ¢,<e <g: o =f'"—(¢ -&,)(-E,) 3]

For & 2¢,;: o =0 3)

£ = ~OM8E, @
0,39+ f,'

where o, & are uniaxial stress and strain, S is direct tensile strength, E, is modulus of
elasticity of concrete, E, is tangent strain softening modulus of concrete, £y is strain at peak
tensile stress, &, is strain at zero stress after strain softening. In formula 4) E, f, and E, are
in MPa. According to reference [8] E = 5000vK , where K is the cubic strength of concrete.

The stress-strain relation in figure 3 for concrete in tension is obtained from equations (1) - (4).
For concrete in uniaxial compression, the well known expression is used [10]:

o = Ee ®)

2
Op &p Ep

in which o, is peak stress (compression strength f;) and &, is strain at peak stress. For the
FEM-analysis the stress-strain relation of equation (5 ) is modified to a curve that is composed
of several linear parts (Figure 3). In the curve the compression strength [8] £, =0,7K is
reached at the strain value Ep = -2.0 %o. As the strain exceeds &, concrete will exhibit

compressive strain softening. The reinforcement steel and the structural steel are assumed as
elastic - plastic, characterized by modulus of elasticity £ and uniaxial yield stress Jy (Figure 3).
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(-2.0, -23.8)
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Figure 3. Stress-strain relation for concrete Stress-strain relation for structural
steel and reinforcement steel.
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2.1 Verification of analysis model. The model used in FEM-analysis is verified by comparing
the test results in reference [6] and the results of FEM-calculations in the Table 1. The loading
arrangement and the dimensions of the columns for both test series are shown in Figure 4.

Steel rib 350 Holes ¢ 27

550

HE 100A
73 a [ a » S S ——
1 1 1 1 p S
¢ VI LV 9% _ 240 50
Lﬁ——% $10
i 7 30
41600 1000, 1500 o%
L

Figure 4. Loading arrangement and dimensions of the columns in the tests [6].

Columns 1/7, 2/5 and 2/6 were all tested with the same nominal eccentricity of the normal
force e, = 0.06. The large difference between the test results of those columns indicates that
the test of column 1/7 was unsuccesful. The comparison below shows that the strength of
columns obtained by the nonlinear FEM-analysis using the model described in this paper are in
a good agreement with the strengths observed in tests. The model is also relatively good in
predicting the deflections of the columns.

Ultimate limit state
Test results Results of FEM-analysis FEM/Test
Test |e N Y M@L7?2) [v@L72) [N v M(/2) [ v(L72) | Nepw | Veewm | M | Veem
n:o [m] (kN] |kN] |[kNm] |[mm] |[kN] [kN] |&Nm] |[mm] Nyw Via Mra

1/4 0.6 107.5 |43 7347 537 [1109 [44,36 7491 |4674 (1032 {1032 |1020 0,870
173 0.6 95 38 65,56 |564 [9933 [39.74 [6752 47,57 [1.046 (1046 |1,030 0,843
22 0588 (100 [392 [6872 |67,20 |106.1 (4163 7069 |47.36 |1,061 |1.061 |1.029 [0,705
1/6 0,2 3525 |47 93,76 56,9 |332.3 [44.31 [82,76 40,03 0943 |0,943 |0.883 | 0,704
2/1 019 [307,5 [389 [79,78 [59,3 13222 [40,79 |78.48 [43,79 |1.048 1,048 |0.984 |0,738
23 0,195 1296 [385 [79.92 [64,1 |3140 |40.85 |7821 [43,79 |1061 1,061 (0,979 |0,683
12 0,1 540 (36 8231 |465 [599,1 [3994 [86,18 (3878 |1,109 |1,109 |1.047 |0.834
171 0.1 570 |38 78,16 315 [5480 [36,54 |8125 |4248 10961 10,961 1,040 |1.349
2/4 0,093 [540 [333 [8301 [s553 [583.4 [3598 8320 |44,66 11080 [1.080 |1.002 0,808
26 0053 775 (276 (7599 [405 [9154 |326 |78.84 (2925 |1,181 |1181 |1,038 |0.722
17 0,06 |55 |22 6321 491 [769.2 [30,77 |75.06 3345 |1399 [1.399 |1.187 |0,681
25 0,055 1720 (26,3 |69.94 [37.90 |8169 [29.84 |7531 33,52 |1,135 [1,135 |1,077 (0,884
28 0,046 | 925 28.1 [82,17 [398 |1010 [3068 [74,79 [2535 [1.092 [1.092 |0910 |0,637
1/8 0,036 1950 |23 64,11 [278 [1054 [2529 |64.28 12220 |1,109 |1,109 |1,003 |0.799
27 0,038 [927 [23.69 [7201 [359 |1015 [2594 67,54 |2508 |1095 (1,095 |0,938 |0.699
/5 035 1543 |36 6596 |568 [170,2 [3971 16994 (42,28 1,103 [1,103 [1,060 |0.744

FEM/Test average value (excluding test 1/7) 1,070 |1,070 [1,003 [0,801
FEM- test| - . 832 |832 |4,65 |243
o average value (excluding test 1/7) % | 1% |[%] [%]

Table 1. Comparison of the test results [6] and the results of FEM-calculations.
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The strength of materials of columns in the tests [6] were on average:

test series 1 test series 2
Cube strength of concrete X 34 N/mm2 33 N/mm2
Structural steel, I-beam HE 1004, yield strength fy 293 N/mm2 311,2 N/mm2
Structural steel, ribs 50*3 mm, yield strength Jy 293 N/mm2 293 N/mm2
Reinforcement steel bars yield strength Ly 565 N/mm?2 634 N/mm?2

3. EVALUATION OF COMPOSITE COLUMN DESIGN

A nonlinear FEM-analysis of the concrete encased composite column under combined
compression and bending was carried out using the model described and verified earlier in this
paper. The M-N interaction curve of columns was determined in the analysis by using twelve
loading cases with different combinations of axial and transverse loads. In the analysis were
used the dimensions and materials of the columns in test series 1 in reference [6]. The tests [6]
showed that the steel ribs with holes, used as additional shear connectors in the columns, have
no significant effect on the strength of the columns. In this study the ribs were not used. The
results of FEM-analysis are used to evaluate the validity of the design method in the Finnish
code for composite structures by comparing the strengths of columns calculated according to
the code with the strengths obtained by the FEM-analysis.

3.1 Design method of code for composite structures. According to the code for composite
structures [11] ultimate compressive (N, )and bending (M,) capacity of a composite column
must fullfill following conditions:

Ny<N, =iN, (6)
Md < Mu (7)
2
M M
k =k —(k -k,-4k,)—2 4k, | 24
1 ( 1 2 S)Mu S(MHJ (8)

where N, is the ultimate compressive capacity of the column, M, is the ultimate (plastic)
bending capacity, when N = 0, N p is the ultimate plastic compressive capacity, N, and M, are

the design axial force and the design bending moment.
While acting combined with the axial load, the bending moment M, reduces the compressive

stren.gth of the column according to the formulas (6) and (8). In the case of the columns under
consideration factors &, = 0 and k, = 0 and the formula (8) reduces to the form

k =k (I—AA;") 9)

The factor £, is also used in the code for steel structures [9] in calculating the compressive
strength of an axially loaded steel column, With factor k, the possible instability, buckling of
the column, is taken into account. Also, in factor , are included possible inaccuracies in the
geometry of the column and initial stresses for example due to welding. This method of
calculation is based on large test programme made by the organisation of the European
Convention for Constructional Steelwork (ECCS).
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According to the code for composite structures [11], [12] in the calculation of a concrete
encased composite column, the eccentricities of the normal force are taken into account as for
the concrete column in the code for concrete structures [8]. Then the design bending moment

due to the loads is
M, = My +4M, (10)

where M, = N*e, is the primary bending moment due to the loads by first order theory, N is
the normal force due to the loads, e, is the primary eccentricity, AM = N=*(e, +e,)is the
secondary bending moment due to the eccentricity (e,+e,;) of the normal force,

e,= 5—f)‘5+—h— is the eccentricity, which takes into account the initial geometrical imperfection

L : h AN, . e
of the column | —— | and the construction tolerances | —— |, €, =| 77 * b is the eccentricity
500 20 145

which simulates the deflection of the column at the ultimate state.

In this method the eccentricity of the normal force is taken into account twice:

- The formula (8), used in the calculation of the strength of the column under combined
compression and bending, is based on the theoretical analysis and tests of the columns [7].
The equation takes into account the effect of the initial geometric imperfections and the
construction tolerances and the deflection of the column and also the initial stresses.

. On the other hand, the eccentricities (e, +€,), which are placed on the normal force due to
the loads, take into account the construction tolerances and the geometric imperfection and
the deflection of the column. The secondary bending moment (4M,) due to the eccentric
normal force is used in the formulas (10) and (8) in the calculation of the strength of
column. This leads to an underestimation of the strength of the concrete encased composite
columns.

The column strengths obtained by FEM-analysis with the strengths calculated according to the
Finnish code for composite structures [11] is presented in the Figure 5. One can see from
Figure 5, that for the small eccentricity ey, the strengths calculated on the basis of the code for
composite structures are much lower than the strengths obtained by FEM-analysis. These
results confirm the observation of the earlier study [6]. The design method based on the code
for composite structures underestimates the strength of columns due to overemphasizing the
normal force eccentricities (e, +e,).

3.2 Modifications to the design method. If the eccentricities (e, +e,) are neglected in the
design method based on the code for composite structures, the calculated strengths of the
columns agree closely with the test results [6] and the strengths obtained by FEM -analysis, as
shown in Figure 5. The neglecting of the eccentricities e, and e; is supported by the facts, that
already into factor k; in formula (8) the effect of construction tolerances and geometric
imperfections and initial stresses are included, as when calculating the strength of the steel
columns. Also the effect of the eccentricity due to the deflection of the column is included in
formula (8), as the formula is adjusted to the test results and theoretical analysis, which takes
into account second order effects. When the eccentricities are neglected, the design method
would also have the same basis as the method in the ECCS model code [5] (Commentary
16.4.2 and 16.5.3 Method A).
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Figure5.  The M,-N-interaction curves determined by the FEM-analysis and the code for
composite structures [11].
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LARGE DISPLACEMENT FINITE DIFFERENCE ANALYSIS OF RECTAN-
GULAR WINDOW PANES IN DYNAMIC SHOCK LOADINGS

KARI IKONEN
VTT Energy
P.O. Box 1604, FIN-02044 VTT, FINLAND

ABSTRACT

Basic equations for large deformations of plates (von KARMAN, 1910) are solved by finite dif-
ference method. A code for calculating dynamic analysis of a rectangular plate with large de-
flections was developed. The code is applicable for both window-panes with single glass and
multi-layer panes made of glass or polycarbonate. The time integration is done by straight ex-
plicit scheme. The code was verified by the results from tests made for window single glasses
abroad. The results show that maximum stresses are encountered near corners in case of large
deflections, whereas in case of small deflections maximum stresses appear in the middle of

panes.

The code is also capable to calculate multi-panes in a wooden framework. Wooden parts are
modeled as beams having large deflections and time integration of the bars is carried out simul-
taneously and coupled with calculating the deflections of the glass panes. In case of multi-layer
panes the air pressure at every time step is calculated from the volume change between panes
according to the adiabatic equation for air compression and applied as load to the panes. Dif-
ferent types of supporting conditions on the edges of the panes are possible to model. So called
rebound effect was studied. The strength of existing window-panes under pressure loading
can be estimated and the dimensioning of the window-panes can be done against pressure wave
loading (explosions) in planning phase.

1. INTRODUCTION

The failure depends e.g. on the size and thickness, the distance and direction to the explosion
centre, supporting of the edges and the microcracks in the material. Most of these effects can be
taken into account in numerical analyses. The pressure load acting on a window can be idealized
as in Fig.1. After an explosion in a typical shock pulse the pressure maximum against window
is about P, = 5 - 50 kPa and lasts about Ar = 0,01...0,1 s. The pressure over the window plate
can be considered to be constant at a certain moment.



46

Ps

Ar B At .

shock wave pressure wave

FIGURE 1. Idealization of a pressure pulses.

2. CALCULATION THE DYNAMIC RESPONSE OF THE WINDOW PANE
BY FINITE DIFFERENCE METHOD

Because of simple geometry of a window a finite difference method was adopted making it
possible to construct an efficient computer code. Tens of thousands of time steps are typically
used, but the run time is small (some minutes) in modern computers.

a, length

p
pressure loading :

) on the plate b, heigh
hinged ___
edges

NNNRENANRRARR

FIGURE 2. Simply supported window plate.

The maximum deflection wy,q, in the middle of a window is typically several centimetres.
Usually wpa, > 0,10...0,50h (h thickness of a plate) and the membrane stresses carry part of
the load. Large deflection theory is thus needed. The basic differential equations for the plate
are

ow *w d*w a“w:l
Ph —=qxyt)-K +2 +
oz 0D [ax‘* x2y2 oyt
. otw 82¢+82w ¢ tw 90
ox2 dy2 Jy? 9x2  dxdy oxdy |’

(1)
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9w
oxdy

2
_ 9w a2w] (2)
ox2 dy?

4

do, , 30 +a4d>=E[
ox4 ox20y?2 oy*

where @ is stress function, x and y coordinates of a rectangular plate, E elasticity modulus, p

the density, h thickness of a plate, ¢ time, q(x.y,r) time dependant pressure load and K plate
constant (K = ER3/[12(1—?)]). If the time derivative on the left side of the Eq. (1) is written as

AL t. _l—.Al
2w wit = 2wl i+ wi

(3)
or? (A1?

This makes it possible to extrapolate the deflection wij'*4 explicitly from the Eq. (1) for the
difference points inside of the plate. The right side of the Eg. (1) is known before time step.
After solving the new deflection new values of stress function are calculated from the Eq. (2).
Next time step is handled in the same way. To express the spatial derivatives in Egs. (1) and
(2) with differences the plate is divided into rectangular difference mesh. Second differences of

the deflection for a point i,j are

A__Z_w_ _ Wi~ 2wijt+ Wi, j
Ax? (4x)?
Ai\i _ Wi i1~ 2w j+ Wi
Ay? (4y)?
Alw Vil 1T Wint, Wil je WL L (4)
Ax Ay 4AxAy
The fourth differences are
Ahw Wi AWy i Wi ) Wisg it Wik, )
(At (4
Alw - 6wi, j—4(w; iy + Wi iy )+ Wi i+ Wi js2
(Ay)* (ay)*
2 Alw 8w —A(Wi Wiy Wil AW DT2ZWi Wiy o1 Wis e T Wi 1)
(4x)*(4y)? (Ax)%(4y)?

(5
Corresponding expressions can be written for the stress function by replacing w with @in Egs.
(4) and (5). In applying Egs. (1) and (2) by turns for calculating deflection and of stress func-
tion values new deflections are straightly solved from Eq. (1) without connections between new
values of deflections (explicit scheme). The values of stress function in Eq. (2) have connec-
tions leading to system of equations for unknowns. The coefficient matrix depends purely on
difference mesh (Ax and Ay) being constant and symmetric. Thus the coefficient matrix (4]
can be reduced by Cholesky decomposition method to the form [A] = (S1T[S], where [S] has
nonzero elements only on and above the diagonal. A lot of computing time is saved.
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3. BOUNDARY CONDITIONS

Before pressure shock at all internal and external difference points w = @ =(0. Because the
edges of the plate are hinged the bending moment around the edges vanishes. This is taken into
account so that the deflection on an auxiliary point is equal but of opposite sign than in the in-
ternal point. Because of no membrane stresses on free edges of the plate, the stress function @
and its derivatives in the direction and perpendicular to the edges vanish. The condition con-
cerning the derivatives are fulfilled, if at the auxiliary points the stress function @ is continu-
ously zero. The right sides of formulas (1) and (2) are vanishing on the edges having no de-
flections. The edges of the plates can be simply supported or fixed (free movement in the plane
of the window).

4. WINDOWS WITH WOODEN FRAMEWORKS

The calculation system was enlarged by takin g into account bars between window panes. It is
assumed that there are no membrane forces in the plane of the plates between a bar and the
plate. InFig. 3 auxiliary points are for fulfilling the boundary conditions. The deflections of
plates are antimetric. The deflections of an auxiliary point row are solved from the relation that
the deflections of the plate and a bar are equal and the bending moment vanishes. If we look at
a beam in y-direction we get first

2 2
x=—K(a_+V—)=0. (6)

At the positive edge of the plate the reduced shear force is

- 3w 3w
x =_K — 2_ . 7
¢ [8}:3 t@2-v Eixay?J @

On a negative edge the minus sign on the right side is omitted. The forces acting on the edge of
the plate and a beam are opposite. The deflection of the beam in y-direction is

4 2

d -
oy* or? (8)

By taking into account the effects on both sides of a beam we get for a beam in y-direction the
equations

92 3 3 3 3 4
pA—‘:= B—’:+(2-v) a“’zJ —K[a—w+(2—v) an _ g%
ot X axay left plate ox3 dxdy? right plate ay“
2 2
a_w <+ Va_w = 0 .

ax2 8y2 (9)
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FIGURE 3. Modelling the connection between window panes and wooden bars.

Corresponding equation for beams in x-direction are valid. The equations are applied as fol-
lows. First from the first equation new deflections are calculated explicitly using old deflections
on the right side. From the latter equation new deflections of points on the auxiliary row are
calculated using new deflection values. Finally deflections of the points outside of the rect-
angular area are calculated. Third derivative of the deflection in Eg. (9) is extrapolated from in-
side direction in perpendicular direction of a bar. For example for a beam in y~-direction third
derivative for point i =/, j approaching from left x—direction is

Pw 1 3
T =(Lwia  —3w, i+ 6wy = 5Swrj+ 2wy WAX3 .
ox3 L (2 1-3,j 1-2,j -1, 1,] 2 I+1,) ) (10)

The deflection of the crossing of two beams is calculated as an average on deflections

_1
WLy =€ (4 Wiy, 7+ Wi, ) — Wiea, 7~ Wria, 1]

Wi = % [4 (Wp,s1 + Wy, 141) — W02 = Wi, 0s2) (11)
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following from the continuity requirement of the slope of the beams. As an effective stress the
maximum principal stress on the surface of a plate is used and it is calculated from the equation

om:%(ox +0y) i%-'\f(ax— 0y)? + 417 (12)

where o,, oy are normal stress components and T4 is the shear stress. Maximum principal
stress is compared to the ultimated stress of the material. The greatest principal stresses are en-
countered in middle of the plate, in the middle on edges or close to comers depending on the
case. A typical critical value for normal glass is in dynamic loading about 70 MPa. For a hard-
ened glass it is about three times higher.

In explicit time integration procedure the time increment At must be small enough. The condi-
tion for stability for a vibrating plate with small deflections is /1/

Ar<lqf30-vp 1 ] , 13)
2 E h_J__,__l_

(Ax)?  (Ay)?

where E is elasticity modulus, / is the moment of inertia around an axis in the plane of the win-
dow, p density of glass and h the thickness. For a bar with small deflections the condition for
stability is

where E,, is elasticity modulus of the bar, / is the inertia of moment in bending in the plane of
the window, p, density of of the bar material and A the cross section of the bar.

The panes can fail also in returning from the maximum deflection position, if supported un-
evenly form the boundaries, when there are wooden nailed beams on the edges of the panes.
The computer code was enlargened to handle also this kind of so called "rebounding” -cases.
It was found that failure of a pane in rebounding phase is more probable in rapid shock than in
other loadings.

In case of multi-panes window the pressure between the panes is calculated from the adiabatic
equation and the pressure load is applied to the panes. The volumes are calculated after every
time step. The pressure between panes can be assumed to be spatially constant, because the
maximum perpendicular speed of about 10 m/s is small compared to the the speed of sound
(about 340 m/s) in air.

Example 1: In a single paned window the dimensions are @ =b = 1 m and the thickness of
glass h =5 mm. The shape of a shock loading is as in Fig. 1 having P; =11 kPa and duration
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At =0,01 s. The elasticity modulus is E = 69 GPa, Poisson's ratio v = 0,25 and density p =
2500 kg/m3. The plate was divided into 10 x 10 —mesh and for a time step a value 0,00001 s
was chosen. The analysis was done by small and large deflection theory. The frequency of
first eigenmode was two times higher and the deflection at the middle point of the plate on half
that with small deflection theory. Further, the maximum principal stress was 107,3 MPa at the
middle point of the plate with small deflection theory, but 77,8 MPa with large deflection theory
and close to the corners (Fig. 4).

FIGURE 4. Principal stress distribution at time 0.009 s, when the highest stress was
achieved close to corners (large deflection theory).

Example 2: In a double-panes window with identical external and internal panes, the dimen-
sions are g = 1 m @ = 1.5 m and the thickness of glass A =3 mm. The loading and the proper-
ties of glass are as in the example 1. A window consists of six square panes mounted in a
wooden framework consisting of one horizontal and two vertical bars. The elasticity modulus
of wooden bar is assumed to be E, = 12,0 GPa, the width b = 2 cm and the height # = 3 cm.
The moment of inertia is / = bh3/12 = 0,020,03%/12 m* = 4,5-108 m* and bending stiffness EJ
=540 Nm?. The density is assumed to be pp = 830 kg/m3 and p,A = 0,5 kg/m. One pane was
divided into 14 x 9 —mesh and for a time step a value 0,00001 s was chosen. The analysis was
done by large deflection theory. For the outer pane the maximum principal stress was 114.0
MPa at time 0.0141 s and for the inner pane 56.3 MPa at time 0.0300 s, both close close to the
corners (Fig. 5). With small deflection theory the maximum principal stress would be obtained
at the middle of the panes. The maximum deflection was 25.7 mm for the outer pane at time
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0.032 s and 30.8 mm at time 0.0131 s for the inner pane, both in the middle of the panes. The
maximum air overpressure between the panes was 6.5 kPa about a half of the maximum exter-
nal load pressure.

N1 ¥VSASTE 1KKD

FIGURE 5. Principal stress distribution attime 0.0141 s for the outer pane with two vertical
and one horizontal wooden bars, when the highest principal stress 114,0 MPa
was achieved (close to the corners).

5. CONCLUSIONS

In the article dynamic analysis of a rectangular plate with large deflections is described. The
analysis method is based on finite difference method. To perform the analyses in practice a
computer code was developed. The strength of existing window-panes under shock pressure
loading can be estimated and the dimensioning of the window—-panes can be done against pres-
sure wave loading in planning phase. The code is applicable for both window-panes with sin-
gle glass and multi~layer panes. The intensity of an unexpected explosion can be estimated af-
ter accident from the failure rate of windows.
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ABSTRACT

Non-linear interactions between buckling modes, representing one type of coupled instabilities of
structures, are practically important since if these occur, the post-buckling response may differ
significantly from the uncoupled situation. Analysis of structures exhibiting interactive buckling
phenomena is not simple. Using conventional tools for non-linear numerical analysis, one may
need several runs with different imperfection patters, in order to verify the response in the
post-buckling regime. However, a shorter and usually more informative route to understand the
interactive buckling behaviour is to use an asymptotic approach prior a full non-linear analysis.

In the asymptotic initial post-buckling theory, the analysis is reduced to solving a small
equation system for the amplitudes of the buckling modes involved. It was developed as an
analytic tool, but it can also be utilized as a part of a numerical procedure, for instance the
finite element method. Due to the lack of generality and the difficulty of use, it has not gained
popularity among' engineers and developers of numerical software. However, it can provide
some vital information about the nature of the problem and it has some connections with the
continuation procedures of multiple parameter systems.

This paper shows an example of the use of the asymptotic approach in an interactive buckling
phenomenon. Interaction of an overall lateral-torsional buckling and a local flange buckling in
a prismatic T-beam structure is studied. Both experimental results and numerical solutions are
presented.

1 INTRODUCTION

Concern with non-linear buckling mode interactions has been stimulated by increased in-
terest in optimal structural design. Safety of a structure against collapse under buckling,
is not only determined by the critical load itself, but rather by the behaviour in the post-
buckling region. If the post-buckling response is stable, like in the single mode buckling of
a simply supported plate, this information provides the engineer with extra safety which
possibly can be utilized in the design. However, the situation is completely different in
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multi-mode buckling when non-linear interactions between buckling modes occurr. These
interactions can completely change the post-buckling behaviour from the uncoupled sit-
uation. A common example is a stiffened compressed plate where the ‘naive’ optimum
design philosophy would suggest to make equal the local and overall buckling loads. Both
of these buckles exhibit stable post-buckling behaviour, when appearing separately, but
change to imperfection sensitive unstable behaviour when the modes interact with each
other.

Koiter was the first to formulate a general theory of mode interactions for continua
[1]. He established that mode interactions have a destabilizing influence, which for certain
types of structures gives rise to a significant reduction of the load-bearing capacity. This
in turn explained the discrepancy between critical loads obtained from bifurcation theory
and critical loads observed in experiments, particularly for shells. Koiter’s approach
provides a strongly reduced potential energy function, the variables being the amplitudes
of the relevant buckling modes. A comparable theory was developed independently by
Thompson and Hunt for a prior: discrete systems [2].

Koiter’s approach was asymptotic in nature. It gives important qualitative answers
of the type of post-buckling behaviour and also quantitative results for the initial post-
buckling response. However, it has gained little footing in computerized buckling analyses.
One of the first attempts to implement Koiter’s asymptotic initial post-buckling theory
was the work by Haftka, Mallett and Nachbar [3]. However, their attempt was somewhat
unorthodox, focusing only to the snap-through instability. The non-linearities in the pre-
buckling state were considered as generalized initial imperfections of the perfect structure.
Later, implementations which are more faithful to the original theory were presented
e.g. by van Erp and Menken [4].

The main stream of computer analyses of non-linear structures goes with the incre-
mental approach. It allows the handling of fully non-linear equilibrium equations without
any restrictions to the kinematics. Therefore the problem of assessing the validity of the
asymptotic approach is overcome. However, it is not easy to locate the singularities and
to switch onto the post-buckling branches in a reliable, robust way. In addition, the litter-
ature deals mainly with simple critical points. Therefore it seems to be ideal to combine
some of the features of the asymptotic analysis to the general continuation procedure in
order to handle mode interactions.

In comparison with the widely used continuation procedure, the asymptotic approach
can provide some additional information such as the shape of the worst imperfection;
it also enables classification of the buckling problem in terms of catastophe theory as
described, for example, by Thompson and Hunt [5], so giving insight into the mechanism
of the non-linear mode-interaction.

In the original theory, the number of discrete equilibrium equations derived from the
reduced potential energy expression equalled the multiplicity of the buckling load. The
early analytical investigations concentrated predominantly on interaction between local
and overall buckling for compressed structural members; consequently the number of
discrete equilibrium equations in most cases was two [6].

When combining the asymptotic approach with a finite element discretization, many
critical loads are involved. Koiter suggested a method to handle nearly coincident critical
loads, while Byskov and Hutchinson presented a formulation for well separated critical
loads [7]. It has also been shown experimentally that interaction between well separated
critical loads can occur [8]. It was also conjectured that a limited number of modes might



55

suffice, an idea which is supported by the following statement of Potier-Ferry: “The most
typical feature of instability theory is that its fundamental characteristics can be found in
very simple models. Moreover, any complicated structural system is equivalent in some
sense to one of these simple models, at least in the neighbourhood of a critical state” [9].

2 INTERACTIVE BUCKLING PHENOMENA

The classification of multiple bifurcation points is much more complex than in with the
simple critical state. According to the theorem of Bezout, the number of emanating post-
buckling branches grows (at maximum) in the power of the multiplicity of the critical
point. Problems with two coincident modes fall in the category of umbilic catastrophes.
One way to classify two-fold bifurcations is by their symmetry properties; either full
asymmetry, symmetry in the presence of the other (semi-symmetry) or symmetry of each
mode in the presence of the other (full symmetry) [5]. In the catastrophe theory the
classification is more subtle. The hyberbolic and elliptic umbilic embrace both of the
first two categories above, the double cusp relates to the third, and the parabolic umbilic
involves symmetry in each mode independently, but broken symmetry in combination.
The example below can be classified to be a form of a parabolic umbilic catastrophe
(8], which is regarded to be the most complex of the seven ‘elementary’ forms explicitely
listed by Thom in 1975 [10]. It requires six dimensions for its complete mathematical
description, two independent state variables and four dimensions of control. Thus the
present discussion is only limited to one control parameter, i.e. the load parameter.

3 ASYMPTOTIC APPROACH

The basic steps of the asymptotic analysis are reviewed. The system is described by a
potential energy expression that is expanded up to and including fourth order displace-
ments terms. Bifurcation points are characterized by the vanishing of the quadratic terms
of the potential energy. Thus, the first numerical step involves the solution of the linear,
generalized eigenvalue problem

(K + XG)u; = 0, (1)

and provides a (pre-selected) number of critical loads ); and pertinent buckling modes
u;. K ja S are the linear stiffness matrix and the initial stress matrix (from unit reference
load), respectively.

According to the asymptotic theory, the initial post-buckling field Au can be written
as

Au = a;(A)u; + ai(N)a;(A)u(N)ijy (2)

where the second order fields u;; and the amplitudes a; have still to be determined.
It is assumed that the contribution of the second order fields is small in comparison
with the first order contribution. Koiter’s original formulation was based on coinciding
critical loads. All pertinent modes should be inserted into (2). Thus, theoretically there
was no problem of choice. The same held for the (semi)analytical analyses of uniformly
compressed structural members, where at least two, sometimes three, sinusoidal modes
were taken into account a priori. In a more general finite element analysis, however, a
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whole spectrum of critical loads may occur, and the question arises which modes should
be put in the linear part of the post-buckling field. This question will be discussed later.

The second numerical step involves determination of the second order fields u;; at
fixed amplitudes a; and expansion load ),. Usually the following orthogonality condition

ufKu.-_,- =0 (3)

between the modes u; and the second order fields u;; is imposed. This constraint is
conveniently taken into account by means of Lagrange multipliers. The requirement that
the resulting Lagrangian functional be stationary leads to the following linear equation

system:

K+ APG M u;; - f,'j (4)
MT 0 Pij 0

where the vectors p;; contain the Lagrange multipliers; the constraint matrix M and the

‘load vectors’ f;; result from the potential energy expression now augmented with cubic
and quartic terms. The constrain matrix follows from the orthogonality condition (3):

M = KU, U=[w u - uy |.

The appearance of the stability matrix K + ApG in this set of equations indicates that
the solution requires specific care if the perturbation load factor Ap is close to some of the
critical loads );. Once the second order fields have been obtained, the potential energy is
only a function of the amplitudes a; and the load parameter A, and looks like:

1M A
V[a.-; /\] = 5 2(1 — /\—I)a]a] + A.-j,.a.-a,-ak + A.-,-ua,-aja,,at, (5)
=1

where A;;. and Ajjie are the the cubic and quartic order coefficients of the potential
energy.

The third step involves the solution of the equilibrium (amplitude) equations generated
from (5). Koiter described how the direction of the equilibrium path with the steepest
descent or smallest rise could be found [11].

Ifit is admissible to insert a small number of modes into (2) in the case of a general FE
post-buckling analysis, the FE model initially comprising many degrees of freedom would
be reduced to a very simple model as described by (5) too. This could correspond to
the aforementioned statement of Potier-Ferry. The simple model would make the initially
complicated model more tractable for interpretation; the mixed coefficients Aije and/or
Ajju, for instance, indicate whether there is coupling between buckling modes or not.

4 EXAMPLE

A simply supported aluminium (E=70 GPa, v=0.3) T-beam was analyzed as a test case
(flange: width 30 mm, thickness 0.5 mm; web: height 50 mm, thickness 2 mm). Di-
mensions of the cross-section were chosen such that for the shorter beams local flange
buckling would occur first, while buckling is initiated by an overall lateral-torsional mode
for the longer ones. Dimensioning of this beam was based on estimates of the behaviour
by assuming distortion free lateral-torsional buckling and sinusoidal local buckling. For
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TABLE 1. Lowest buckling modes of the 520 mm and 620 mm long T-beams.

symm. prop. w.r.t. symm. prop. w.r.t.
load type midspan web load type midspan web

1183 N local symm  asymm | 924 N overall symm -
1184 N local asymm asymm | 975 N  local symm  asymm
1211 N local symm symm | 976 N local asymm asymm
1212 N local asymm symm | 998 N  local symm symm
1331 N local asymm asymm | 999 N local asymm  symm
1331 N local symm asymm | 1083 N local asymm asymm
1356 N overall symm - 1083 N  local symm  asymm

- D O b O DN e

experimental results see Refs. [12], [13]. Since the local buckling load is strongly influ-
enced by the free width of the flange, the overlap between flange and web consisted of
orthotropic elements having high rigidity in transverse direction. The beam was loaded
by a transverse force at midspan and in the direction that induced compression in the
flange.

The computational model consist of 22 spline finite strips divided into 40 sections
resulting 3549 in degrees of freedom. All displacement quantities are interpolated by the
basic Bs-splines in longitudinal direction. In transverse direction linear interpolation is
used for membrane displacements and the cubic Hermitian polynomials for the out of
plane displacement. The classical Kirchhoff-Love plate model is used.

The generalized eigenvalue problem (1) is solved using a subspace iteration method
[14] where the projected eigenvalue problem is first reduced into to a standard form
and the resulting matrix is tridiagonalized using Householder transformations and finally
the eigenvalues are determined by using the QL-algorithm [15]. Since the procedure for
selection of the initial iteration vectors in Ref.[14] is designed for wibration problems,
random initial iteration vectors have been used instead in the present case.

Beams having the lengths of 520 and 620 mm were modelled, and the computed buck-
ling loads are shown in Table 1. It is obvious that the lowest mode must be taken into
account in describing the post-buckling behaviour of the perfect structure. If one looks
only at the magnitude of the critical loads, at least the second mode could linearly con-
tribute to the post-buckling field and the other modes would be ‘passive’ in the language
of Thompson and Hunt. Table 1 shows the symmetry properties of the local modes too.
In Fig.1 the two local modes 1 and 3 for the shorter beam are shown. From previous
experiments (in pure bending) and the simple discrete model (with two coinciding .Ioca!
critical loads), it is known that local flange buckling triggered overall lateral-torsional
buckling, leaving one flange half unbuckled [8]. A comparable phenomenon cannot hap-

pen by adding the second mode to the first one. Only a combination of the ﬁrslt and third
mode can lead to a similar phenomenon. In theory the local critical loads will have the
pairwise the same value. However, the numerical model produced a .spectrum of nearly
coinciding critical loads. Two different approaches were used for solving the reduced set

of equilibrium equations:

1. The small difference between the critical loads is taken into account, leading to a
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FIGURE 1. Local buckling modes 1 (below) and 3 (above) of the 520 mm beam.

secondary bifurcation on the path corresponding purely to the lowest local mode.

2. The value of the second local critical load is replaced by the value of the lowest one,
leading to a compound bifurcation point.

Results of both approaches are reproduced in Fig. 2 for the case of the 520 mm beam where
the results of the first approach are drawn with solid lines, while dashed lines indicate
the second approach. The figure shows that the amplitudes of the asymmetric mode 1
and the symmetric mode 3 become identical, thus leaving one flange half unbuckled. It
is interesting to note that the interaction between the two local modes js comparable to
the behaviour of the well known Augusti model (16]. Also the amplitude paths from the
2-mode and 3-mode analyses of the 620 mm long beam are shown in Fig. 2.

The load deflection curve for the longer beam depicted in Fig. 3 shows dramatic shell
like behaviour. Even though the interacting loads are quite well separated the secondary
bifurcation occurs almost immediately after the first one.
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FIGURE 3. Displacements at the load point of the 620 mm beam.

Since overall buckling is also involved in this problem, it remains to be decided whether
the critical load can be considered to be close to the lowest one or not. Strictly speaking,
if mode interaction occurs, a mode pertaining to a separated critical load will be passive.
On the other hand, one could consider this situation to be a perturbation of the case
of coinciding critical loads. The latter approach was chosen and the overall mode was
added into the linear combination, which after ignoring relatively small terms gave for
the potential energy

1 A A A
Vomanen = 3[a- Dyt D3] +
+Ansmazar + Annat + Aussa:{ag + Aaaaaag- (6)

The cubic cross-term shows that all three modes are coupled.

1t is numerically verified, that omission of the ‘passive’ global mode from the eigenmode
expansion (2) lead to its appearance in the mixed second order field. However, omission
of a relevat mode from the contributing eigenmodes will narrow the range of validity of
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the asymptotic approach. This can be seen clearly from the figure 3, where the post-
buckling paths are drawn from both 2- and 3-mode analyses which diverge rapidly after
the secondary bifurcation point.

10.

11.

12.

13.

14,

15.

16.
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ACCURACY OF COMPOSITE SHELL ELEMENTS IN TRANSIENT ANALYSIS
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ABSTRACT

The accuracy of composite shell elements in linear transient analysis involving multiple
impacts was studied. Results obtained by finite element method and by an analytical solution
were compared with each other. The previously developed analytical solution for the impact
problem was in closed form only until the end of the first contact. In this work the solution
has been extended to multiple impacts in closed form. Therefore, it has been possible to solve
problems with several successive impacts. Comparisons revealed that the composite shell
elements of commercial FEM software give very accurate results with specially orthotropic
laminates in transient analysis involving flexural and shear wave propagation. The accuracy
begins to deteriorate in problems where multiple impacts occur. There are difficulties even in
finding subsequent impacts. Also, it was noticed that commercially available finite element
programs may have serious problems in the analysis of composite structures, €.g. in
calculation of stresses.

1. INTRODUCTION

The aim of this work was to study the reliability of the composite shell elements in linear
transient analysis. The properties and restrictions of the element and accuracy reached in
practise were under consideration. The work was done by comparing the results obtained by
FEM and an analytical solution with each other. Both of the solution methods are based on
first order shear deformation theory and precisely same calculation models (geometry,
boundary conditions) were used. Thus, the differences in the results are solely caused by
discretization and time integration methods used.

Analytical solutions used were developed by Dobyns [1] and Christoforou and Swanson [2].
The solutions are for specially orthotropic rectangular laminated plates, which are simply
supported. Dobyns solved the problem for a known force history. Christoforou and Swanson
extended the solution also for an impact problem.

The solution for the impact problem was in closed form only until the end of first contact in
reference [2]. In this study the closed form solution has been extended also for multiple
impacts. Therefore, it has been possible to solve problems with several successive impacts.
Furthermore, second shear correction factor has been added to the solution, because of obvious
need of two factors with composite materials [4].
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2. SOLUTION FOR MULTIPLE IMPACTS

The previously developed analytical solutions will not be presented here, because they are well
documented in references [1, 2]. Solution starts from equations of motion, which are reduced
to a simpler form because a crossply laminate is specially orthotropic, i.e. stiffness terms
A 4=A,=D(=D,= 0 and all coupling terms B;= 0. The solution is for a simply supported,
rectangular plate of uniform thickness. In these solutions the shear deformation factor is
assumed to be x%/12.

The solution is based on expansions of the loads, displacements and rotations in Fourier series,
which satisfy the boundary conditions of simple support. Each expression is assumed to be
separable into a function of time and function of position. Furthermore, by neglecting in-plane
and rotary inertia the problem becomes a second-order ordinary differential equation in time
for the Fourier coefficients of the lateral deflection. The impact force is computed from the
deceleration of the impactor mass. This involves the equilibrium equation between the
impactor and the plate during contact. [2]

The geometry of the problem is presented in figure 1. Load of the plate is acting on a
rectangular area, which size and position can be changed. Pressure load is uniform in the
loading area. Also, in impact problem the loading is transferred in a similar way, except that
the loading area must be located in the middle of the plate. In a real impact problem that kind
of load transfer would be inadequate, but for our purpose it applies.

F(t)/(uv) h
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P
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y

Figure 1. Geometry of the problem. [2]

The solution of the deflection response of the laminate becomes into the form

ab P . mmx_. nn g .
wxyt) = mxzﬂ:zﬂ: wmsm sin by {F(t)smmm(t—t)dt , )

where m, is mass of the plate, w,, are the natural frequencies of the plate and factors P,
depend on size and position of the loading area [2].
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Dobyns, [1], solved the convolution integral of equation (1) for a few known force histories
in closed form. Christoforou and Swanson formed an equilibrium equation between the
impactor and the plate and solved the contact force by Laplace transform techniques. The
response of the plate was then obtained by using the same technique as for equation (1).

In a real impact loading multiple contacts may occur between the impactor and the laminate.
After the first contact, solution for laminate response is obtained from equation (1), in which
the upper limit of the integral is replaced by time t,, (when the first contact is lost). Now the
contact force in the convolution integral is known and the equation (1) can be solved in closed
form. This solution is valid until the second contact begins.

The response during the second contact can be solved in the same way as previously. To make
the solution easier, a new time coordinate will be taken from the beginning of the second
impact. Now, the laminate response of the first contact must also be added to the equilibrium
equation between impactor and laminate. After that the solution is obtained by following the
operations done in references [2, 3]. This procedure can be continued for subsequent contacts.

The solutions for the first and second contact look different. Only at the third contact the
response equations find their final and general form. Therefore, general equation forms will
be presented for the i'th contact. When the i'th contact begins at time t; (and will end at time
t,. ), the impactor has a position W, and velocity V,. A new time coordinate will be taken for
equations concerning the i’th contact. All previous laminate responses will be superposed to
the solution of i’th contact and they all have different time coordinates. The equilibrium
equation at the beginning of i’th contact will be

4
1 F(7)
w, + Vit - — [F()e-o)de - —— =
° "‘z'!; K,
Yt
ab P, .mn_.n=x .
—_— Zmein®rsin—— | F(Dsinw,,(t+1,-t -NdT + .. +
mlgzn: mm 2 2 '!). - b (2)
ab P m fa-ne -1
mn_: T . NN .
—_ M gin——sin— F t+t, —t,._,—DdT

1
ab P, . mr_.nn .
_— _Micin——sin— | F(t)sinw (-
uvmlg,:; w0, 2 2‘£ (e)sine (8- 5)de

Here K, is a linearized contact area stiffness. In equation (2) the time used in the response
equation for the first contact is t+ty-ty, and the upper limit of the integral is ti-ty In the
response equation for the second contact the time is t+t,-ty, and the upper limit is 1,1z €CL.
Next, a Laplace transform of equation (2) will be taken and the contact force can be solved.
After an inverse Laplace transform the contact force obtains the form

F@ = Y (Fsinog + Fycos0,8) 3
J

where w;; are the response frequencies and they are, of course, exactly the same as during the
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first contact [2]. In every new contact only F,; and F,; must be calculated. The subscript i
means the number of contact and j is the index used in summation in each contact. The

subscript i is used in summation to separate different nested summations with index j. In
equation (3)

abm2

uvml -

c m, abm, w2 “
. Mm% _. n% mn

wu{z+uml¥;}’msm 5 S _—(wf.,. _02)2]

) (o
y PTsinT 4,

and
, abm, P 0; . MT_. A%
T 22 s ((:; w’)sm 2 "2
m n bt Y
Fy = o v - )
IQ wm, &5 2 (® f,,,-mﬁ)’

During the first contact the impactor position wy= 0 and A,= B,= 0, in which case also F,=

0. Then equations (3) - (5) reduce to the form presented in reference [2]. For subsequent
contacts

i-1 20
A=Y [ ) %Fw { ”2 COSW (£~ 1y)

1
m”+mmcos[(w g Q) (B 1) 00, (8, 1))

-;cos[(m,d—(om)(tk-tu)+(om(t,.b-t»)]}
(.l)v_ﬁ)m

(6)
-2
Y %Fw ( w"’: sinw, (8,1,

mb-_(l)m

sm[((o,g+o) )2, ) =0 ()]
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and

1 20,

=1 wb-"(l)m

1
Wt Oy
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Here the response frequencies are now denoted by w,;. During the second contact F, =0,
which means that only first parts of equations (6) and (7) are needed.

Next, the response of the laminate during the contact can be solved using again Laplace

transformation technique with the general form of contact force (eqn (3)). The procedure used
is similar to that in references [2, 3]. The solution for the i’th contact is

way) = 23 TP, sin—”':"sin"—"y

1 n b
X Fiy (0,8000,,-0, sneh* Py (coswt-coso D} (g
J om(wz--w:m) - mﬁ-mf“ » ’ ®

ab P, . mnx_. nmy
22' sin sin C
wm T 0, a b '’

where C, is the contribution of previous contacts to the response. C, is almost the same as B,
except that now (t,-t,) is replaced by (t+t-t).

Now, the equations during the contact has been examined. Next, the equations between the
contacts are presented. The response of the laminate after any contact is obtained by
substituting the contact force (eqn (3)) to equation (1). The convolution integral can be solved
again in closed form. Therefore, the response of the laminate after i’th contact is



66

ab Py . mnx_. nmy
M) = —— D, , 9)
wixy0) uvml;z,,: wmsm L Sin—= D,

where D; is again almost the same as B; except that now the first summation is made from k
=1tok=1and (t;-t,) is replaced by (t+t,-t,,).
Once the contact between the impactor and the laminate is lost, the position of the impactor

must be followed in order to find out the initiation of the possible subsequent contact. The
impactor moves with constant velocity

8By v ve - LR (10
WSioh) = W + Vot . {F(t)(t t)dc

and after substitution of the contact force and integration, the position of the impactor after
i’th contact is

F,t F, F, Fyt Fy .
w(g,g,:)wowo,_in‘+_=u-(ﬂ+i-e_mi‘)smwy,k

F, F. F.
- ( lf wrk _wt) cmmdtk
@y Oy Oy

Equations presented here may look complicated. One must take care not to mix nested
summations over j. However, they are quite straightforward to program for computation. There
are now two factors influencing to the accuracy of results. The first one is the number of
Fourier terms (m,n) used in calculation. This was discussed in [2]. The second one is the
determination of the instants, when the contact will begin or end. Those instants can be
searched during calculation, for example, by bisection method.

During the study the response of the plate for the multiple impact problem was solved both
analytically and numerically. In the numerical solution the convolution integral was integrated
by Newton-Cotes method. In the numerical solution also the time step influences the accuracy
of the response. The time step will be limited such that, the more Fourier coefficients are
present in calculation, the smaller time step is also needed. That makes the numerical
integration inefficient compared to the analytical solution for multiple impacts.

3. COMPARISON OF RESULTS WITH FINITE ELEMENT METHOD

The analytical solution is valid only for specially orthotropic laminates. Therefore, only
symmetric crossply laminates were considered in the test problems. In this case the behaviour
of the laminate is simplified remarkably, because there is no coupling between bending and
membrane state. In comparisons the shear correction factor /12 was used, because the shear
correction is not wanted to influence on the results in the same time with discretization and
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time integration.

One of the problems used in comparisons is called impact problem. Standard notations are
used for the material properties and the meaning of the geometric variables can be seen from

figure 1.

Impact problem: Simply-supported [0/90/0/90/0),-laminate of dimensions a = b = 0.16m,
h = 0.00269m, with material properties of lamina E,;= 141.20 GPa,
E,= 9.72 GPa, G;,;= 5.53 GPa, G;= 5.53 GPa, G,;= 3.74 GPa,
v,,= 0.30, @ = 1536 kg/m’,
is subjected to impact loading, with impactor velocity 3.00 m/s
and mass 8.4 g. Contact area stiffness is 5413000.0 N/m.
Analytical results at time t = 52.0 ps at position (0.04, 0.08),
when number of Fourier coefficients is m = n = 300:
F = 272.38 Nw = -0.4904%10° mo,, = -15.28 MPa

The results obtained by the finite element method were compared with the analytical solution
and the percentage error was calculated from equation

FEM - an.alytical s'olution 100% .
analytical solution

In the work the effects of the element type (program used), mesh density, length of time
integration step, number of natural frequencies used and lamination parameters to the accuracy
of the results were systematically studied. The field variables under consideration were
displacement, strain, stress and contact force histories. Also, the computing time was one
parameter considered.

Three commercial finite element programs were used; ABAQUS, ANSYS and MSC/NAS-
TRAN. The purpose of the present work was to examine properties of the finite element
method, test different finite element programs, investigate their solution methods and
efficiency, as well as to compare the programs with each other during the analysis of transient
response with multiple impacts.

The elements used were typical composite shell elements of each program, i.e. S8R5 in
ABAQUS, STIF99 in ANSYS and QUAD/8 in MSC/NASTRAN. All the elements are based
on the first order shear deformation theory. With S8R5-element the shear correction factor is
by default 5/6 and with QUAD/8-element /12. In ANSYS (and STIF99-element) the factor
is 5/6 or 1/(1.0+0.2*A/(25%1%) (A=area and t=thickness of the element) depending on which
one is smaller.

Uniform element meshes have been used to avoid numerical dispersion caused by element
mesh in wave propagation problem. Also, symmetry was employed by modelling only one
quarter of the laminate. This is possible due to specially orthotropic material properties,
crossply laminate, symmetric boundary conditions and loading. The boundary conditions for
simply-supported laminate are the same as used for the analytical solution, i.e. along edges
parallel to x-axis u,= u,= 6,= 0 and along edges parallel to y-axis u= u= 6,= 0. Here 0, and
0, denote rotation about x- and y-axes, respectively. On symmetry axes the symmetric
boundary conditions were used.
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The impact problem was quite demanding for finite element programs. The percentage errors
for contact force, displacement and stress were in ANSYS results (0.05, 0.42, 1.78) %, in
ABAQUS (1.81, -14.91, -8,97) % and in MSC/NASTRAN (-0.56, -0.62, -32.72) %,
respectively, when the time step was 1.0%¥10 and the number of elements was 400.

The results calculated by ABAQUS diverged as time step decreased (figure 2). Also, ANSYS
had peculiar deviations in results with small time steps. MSC/NASTRAN did not show any
attempt of divergence, not even with time step 0.25%10%. That is why, the influence of
damping coefficient was examined. It was noticed that the results obtained by ABAQUS were
best with maximum numerical damping.

10 1 r : ! i !
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size of time step (s) x10+%
Figure 2. Errors in displacement obtained in the impact problem.

Another interesting observation was stress results obtained by MSC/NASTRAN, which had
usually about 11.0 - 12.0 % error in 0,, and even 170.0 % in o,,. These results caused some
confusion and calculations were checked carefully without finding any explanation.
Displacements and strains were found very accurately by MSC/NASTRAN, but stresses were
always erroneous. These results were obtained with program versions V65C and V66A.

As the analysis of the impact problem continues, two separate contacts will occur. This was
. solved with finite element method by using a gap element and nonlinear solution procedure.

ANSYS and MSC/NASTRAN found the second contact, but for some reason ABAQUS did
not. The results for contact force obtained by ANSYS is shown in figure 3.

According to figure 3 the result correspond well with the analytical solution. At the maximum
of the first contact the error percentage was -0.85 % with ANSYS and -1.49 % with MSC/-
NASTRAN, while at the maximum of the second contact the errors were -6.69 % and -13.93
%, respectively. It seems that the longer calculation continues the larger errors occur. The
errors in displacements were smaller than in stresses. There the percentage error was all the
time below 2.00 %.
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Figure 3. Contact force history.

The accuracy of the finite element results can be improved by increasing the number of
natural frequencies involved in problem. Theoretically the size and the number of elements
used in the model do not have any limits. However, in practice the computer resources are
very often the restriction. For example, in a case when a laminate is subjected to a sudden
impulse the percentage error in displacements grows significantly, but the results are still quite
reasonable. Another example is the problem where three successive impacts appear. The
problem was found by increasing the contact stiffness and making the laminate smaller. In this
problem none of the finite element programs could follow the analytical solution with a
reasonable finite element model.

4. CONCLUSIONS

In spite of observed shortcomings, it has been noticed that the composite shell elements can
reach very accurate results with specially orthotropic laminates in transient analysis involving
flexural and shear wave propagation. The accuracy is very good in problems where a small
number of natural frequencies are present and in impact problems with low contact stiffness.
Even in a problem with impulse loading, where a large number of natural frequencies are
excited, the elements can reach quite good results. The accuracy begins to diminish also with
problems where multiple impacts occur. There are difficulties even in finding the subsequent
impact.

The finite element method programs used in comparison were ABAQUS, ANSYS and
MSC/NASTRAN. They all are very well known and respected, but hardly infallible. ANSYS
was the only one, which managed to solve all problems without serious errors. With
MSC/NASTRAN we had problems in stress calculation and with ABAQUS in convergence
of implicit time integration. Also, calculation with ABAQUS was generally time consuming.
This comparison indicates that the user should be aware about the properties and shortcomings

.

involved in the program, especially in analysis of composite structures.
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AN APPLICATION OF THE GAUSS-SEIDEL ITERATION METHOD INTO THE
ANALYSIS OF FLEXURAL COMPOSITE MEMBERS
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ABSTRACT

The so-called Gauss-Seidel iteration method is normally used in the analysis of
statically indeterminate frame structures. It is simple, avoids solving of simultaneous
equations and has clear physical interpretation, which also guarantees the
convergence of the iteration process. In order to utilize these advantages the authors
are applying the physical principles of the Gauss-Seidel method into the analysis of
the flexural behaviour of a composite member in setting up a numerical model for
such kind of structural members. First description is given for the basic principles
and formulations. Then an effective algorithm for accelerating the convergence is
developed. Finally the possible errors of this process are briefly discussed.

1. INTRODUCTION

Steel-concrete composite flexural members, like beams and slabs, are composed of
steel and concrete parts and some means of connection to activate the composite
action for the two components. Generally the connection can not be fully rigid, i.e.
the composite action is usually incomplete. To investigate this incomplete composite
behaviour is one of the main subjects in the studies of composite structures.

In order to study the incomplete behaviour it is important to set up some analytical
mode! for investigating load effects (i.e. stresses, strains and deflections) on the
member from the commencement of loading up to the ultimate strength state of the
member. Because composite members involve different material properties and
steel-concrete interaction behaviour, to set up an accurate analytical model is proven
to be a difficult task. In the pre-computer era, the differential equation method[3)
served as a good tool. But this method is not able to deal with nonlinear material
problems. This greatly degrades its practical importance because in most practical
cases material nonlinearity is an important factor to be considered. Ansourian and
Roderick [1] have set up a method, which may be called the equilibrium method. This
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method takes equilibrium for discrete sections. The compatibility condition among all
sections is realized by defining a slip strain, the interface slip rate in the axial
direction of the member. In principle, this method is able to take in to account any
nonlinearities, including the nonlinear steel and concrete material properties and the
nonlinear load-slip relationship of connectors. But in reality to solve the simultaneous
equations involving these three sources of nonlinearities is difficult. Untill these years
some different ways of solving the equations have been presented [1], [2], [4] but non
of these ways is universal. In order to solve the nonlinear simultaneous equations
they have to satisfy some additional conditions. This leads to some limitations on the
applicability of those methods. A method will be described in this article offering a
way to solve the problem without losing any main parameters.

Suppose there is a composite beam of an arbitrary mono-symmetric cross-section
shape (for the sake of convenience the flexural members will be referred as beams
unless in case of necessary to differentiate beams and slabs) as shown in Fig. 1.
Under the action of known external bending moment M(x), in a cross-section i the
following equations must be satisfied:

=

------ n =
Mo T A=
< \ [ Fs '\ [

y'so

T 121 1 13377 Tl T T Tn] x_

1 2 i—1 i i+1 n n+l1
\Ji xCi) J
I

Fig. 1. A beam divided into n elements and the stress distribution in a section.

Fc()+Fs(i)=0 (1)

M (i) = Mc(i)+ Ms(i) (2)

Fe(i)= [ Ec-pGi) [y-yeo(i)]-aA (3

Fs(i)= [ Es-p(i)-[y~yo()]- dA (4)
As

Me(@) = [y-Ec-p(i)-[y=yeo(i)]- da (5)

Ms(i) = [y Es-p(i)-[y - yoo(i)]- dA ()
As
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where p(i) _ Curvature of the beam at section i,
Ec, Es _Tangent moduli of concrete and steel, respectively;
Yeo(), Yso(i) _ Height of the neutral axis for concrete and steel,
respectively.

In the case of complete action, equation Yeo()=Yso(i) holds. There are all together 6
unknowns Fe(i), Mc(i), Fs(i), Ms(i), p (i) and yg (i) with & equations. The problem
can be solved for any individual section. However, for incomplete composite cases
yeo(i) # ys0(i). Thus there are 7 unknowns with 6 equations. In these cases it is not

possible to solve the problem on the basis of individual sections.

Suppose that the beam is divided into n segments of beam elements by n+1 sections
as shown in Fig. 1. Let us define the slip strain g, as:

s(i)—s(i+1)
L L AL S 7
Xi+l—Xi ( )

e (i)

Assume that the concrete part and the steel part are only connected by connectors
and the connectors are concentrated at those n+1 sections. Denote the connection
force in connector i as Fconn(i) . The following relationship must exist:

Fc(i) =tionn(j) (8)
=

or Fconn(i) = Fc(i)—'tionn(j) (8"

j=l

On the other hand, the connector force Fconn(i) is a known function of the slip s(i):
Fconn(i) = ¢[s ()] )

In eq. (9) the function ¢[s(i)] can be obtained from connector tests or is defined by
design specifications.

gc If the commonly used Kirchhoft or Bernoulli-

Navier assumption (cross-sections remain
¢ planes in bending) is adopted (Fig 2.) the
— = gsp following eq. (10) can be derived:

s(i)=-s@i+1) _
Xi+1—Xi

Esp()

T_ - Ae(i) =

Fig. 2 Strain distribution over

the cross-section. se(i)=p(0)- &y = P (o) = y0(0)

s(i) = s(i +1) = p(i) - [yedi) = ysoi)] (10)

Xi +1 — Xi
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Now for each section there are 2 unknowns S(i), Fconn(i) and 3 equations (8), (9)
and (10) have been added. So the problem can be solved but the simultaneous
equations coupling all the n+1 sections are involved. Note that when steel and
concrete adopt nonlinear properties the integrations in eq.(1) to eq.(6) can not have
closed form. They can only be numerically integrated. If load-deformation function ¢
of connector is also nonlinear solving of this set of simultaneous numerical equations
will be extremely difficult. That is why in previous works [1], [2], [4] some linearizations
or localized linearizations have to be taken. It is seen that the difficulty of solving the
problem is mainly because all sections are coupled. If a way can be found to
decouple all the sections the solution will be easier.

2. APPLICATION OF THE GAUSS-SEIDEL ITERATION METHOD

In order to avoid solving nonlinear simultaneous equations, the physical principle of
the Gauss-Seidel! iteration method can be applied here.

a. Assume complete interaction for the -

whole beam, from equation (1) to (6) FeG-1)  |'Fe®  Feonn(d
Fe(i) and p(i) are obtained for every S ———
section. This corresponds to the s®

‘clamping' stage in Gauss-Seidel DG-1) [510)
iterations.

b. For each section there is an Fig. 3. Section equilibrium.

unbalanced force Fc(i-1)-Fe(i). This

unbalanced force tends to cause section i to slip. If the 'clamp' is released,
section / will slip. When section i has a slip increment a s(j), neutral axis of
section / and section /-1 are changed according to eq.(70). From eq. (1) to (6)
the new F(i) and p(i) are obtained. Condition for a stable state of section i is

that eq.(717) is satisfied.

Fe(i—-1)~Fc(i)y—Fconn(i)=0 (11)

This is the 'releasing’ stage for section i.

c. Apply step b. for every section consecutively and repeat along the beam
untill balance is reached for all sections. Criteria for the balance of a section is
as follows:
i-1
Fe(i) -’ Feonn(j) < (specified accuracy) - Fc(i) (12)

j=1

When (12) is satisfied for every section the process is converged. pG), Yeoli)
and y« (i) are obtained for all values of i.

After the convergence deflection y(x) of the beam can be integrated as:
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y(x)=j'[}p-d§]-dn+j‘C1-dx+C2 (13)

where C1 and C2 are constants determined by boundary conditions of the
beam.

3. ACCELERATION THE CONVERGENCE

The process converges fast in cases when there are not many elements or when the
stiffness of connectors is comparable with the axial stiffness of concrete component.
Whenever the connector stiffness is very low or the connection level is low the
process converges very slowly. It can be as slow as to make the process practically
worthless. The reason for this is as follows: when a section is released all the rest
sections are still fixed. Axial stiffness of the concrete part prevents the section from
moving to its ‘expected' place. So the slip increment in one round of iteration is very
limited. In the case of low connection level slips can only propagate from the ends to
the central part of the beam. In order to make this method practically valuable an
algorithm accelerating the convergence of the process has to be developed. In view
of this the authors have developed an algorithm to accelerate the convergence. By
applying it in to different cases it has shown significant efficiency and universality.

The principle of the method is to apply the extrapolation technique in the iteration
process. The algorithm predicts the final slip pattern by making use of the finished
iteration results. It goes in the following way: Beginning from iteration round k let the
programme iterate a further m round of iterations. Record the values of unbalanced

i=1
torces Funsaiancea(i) = Fc(i)—ZFconn( j) and slips slip(i) for every section at iteration
j=1
round k and iteration round k+m. The changes in slip(i) during this m round of
iterations are:

aslip(i) =[slip(i)]e+ m —[stip®]e i=1,2, ... n+1, (14)

Whereas the unbalanced force changes in this m round of iterations are:
AF unbai ‘(i) B [F bal “(i)]k+m —[Funbalam:ed(i)]l’, i=1,2, e n+1, (1 5)

The present unbalanced forces are:

Funsatanced(i) = Fusatanced(D)]k+my  i=1,2, ... N+1

Then, the expected final slips slip(i) are:

aslip(i)

R o 'Fu alance j y .=1,2, s
Fosatmeet(0) nbatanced(1), | n+1, (16)

slip(i)= [slip(i)]k +m+

In this way, a pattern of slips along the beam is prescribed. The process can go on
with iteration from this prescribed pattern of slips. This process can be repeatedly
used untill the convergence of the iteration. Sometimes in the calculation process
sFunsaianced(i) May approach zero. In such cases just omit the second term on the right
side of eq. (16).



76

Eq. (16) works like a penalty function. It ‘pulls’ the slips to their equilibrium state. The
value inside the absolute sign determines how much the 'fine rate' will be. Because it
makes use of previous iteration results, the algorithm is robust and efficient.

Now the problem is to choose a suitable iteration interval m. If m is too small, the
process may jump back and forth (finally it will converge, though) because iteration
process can not give a good prediction for convergence. If m is too large, the
process converges slower because less accelerating algorithms have been used.
Experience of the authors shows that a value of m=5 is good for many cases except
for cases of unevenly distributed connections. A value of m=10 is satisfactory for
" most cases.

Experience shows that the developed algorithm is very efficient. The authors have
experienced a case of nonconvergence after 10000 rounds of iterations without
applying the accelerating process. With the help of this algorithm convergence can
be reached within 100 rounds of iterations for one load step for most cases. One
other advantage of this algorithm is that it only slightly add extra work for the
computer.

4. ERRORS

The errors of the process itself are controlled by the given accuracy of sectional
equilibrium. It is very easy to check if eq. (1) to (6) and eq. (8), (9) and (70) are
satisfied. Apart from this, there are two main sources of errors for the process. The
first error source is in the basic material and sectional assumptions, e.g. the
Kirchhoff assumption, which is totally independent of this solving method. The
second basic error source originates in the calculation of the forces Fe(i).

For the convenience of calculation, steel and concrete components are assumed to
be connected with each other only by connectors concentrated at discrete sections.
So, Fcfi) is constant along element for every i. But the curvature along the element
varies because the external moment M(x) is not constant. For the sake of simplicity,
it is much easier to calculate p(i) and Fc(i) by assuming that steel and concrete are
continuously interconnected along the element, and to use Fc(i) and p(i) calculated
in the section on the immediate right side of section i for the element i. The errors
caused by this simplification increase as the element length increases for a given
load (in the case of pure bending there is no error whatever the element length is).

For slabs without actual 'connectors' like composite slabs, concentration of the
connection on to every section also causes errors. Anyway, considering the physical
differences between the assumption and the actual situation, it is not expected to
have significant effect, especially when the element length is chosen to be small.

It must be indicated that the second source of error discussed above is not an
inherent error of the described iteration method. It is an error caused by simplification
of the calculation. Adoption of continuous interconnection model (for members
without real connectors, like slabs) or calculation of the actual axial forces in
elements (for members with connectors) does not prevent the application of this
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method. It is a matter of balance between the amount of calculation work and the
amount of gained accuracy. The accuracy of the simplified calculation can be
increased by using smaller element length. But no matter how accurate the
'accurate’ calculation is, the element length can not be chosen to be longer than the
actual connector spacing. So the simplified calculation is more flexible in controlling
both accuracy and amount of calculation work.

5. DISCUSSIONS

The principle of Gauss-Seidel iteration method is applied into the analysis of
incomplete composite flexural members. The algorithm developed for accelerating
the convergence makes this concept practically applicable. introduction of the
Gauss-Seidel iteration principle makes it possible and easy to solve the nonlinear
simultaneous numerical equations. The main advantages of this method can be
summarized as follows:

a. Simple and accurate

The whole process and formulations are simple. The physical idea is clear.
These two together make the programming easy. Further the simplicity does
not cause a lose of accuracy.

b. Broadly applicable

Former works have been specifically devoted to composite beams or composite
slabs. In the process of solution there might be a need for further assumptions
which are not applicable for general cases. The process introduced here can be
easily applicable to both beams and slabs. No extra assumption is needed for
important factors such as material properties. Factors like geometrical
variations of sections along the beam axis, uneven distributions of connectors,
end posts (for slabs) or endplates (for beams) and additional reinforcement can
be easily taken into account.
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ABSTRACT

Sandwich panels subjected to localized loads are often analyzed by modelling the locally
loaded face as a beam on an elastic foundation. This paper introduces two problems related to
such analysis: modelling of the core to find out the foundation parameters and a mathematical
formulation of the local load. The foundation model representation of the core is formed by
VlasoV's variational method. The treatment enables determination of the foundation parameters
by means of the elastic constants of the isotropic core material. The degree of concentration of
the localized lateral load is estimated by a function in which one constant regulates the shape of
the load distribution.

1. INTRODUCTION

Sandwich panels consisting of two thin faces and a soft core which is made of plastic foam or
mineral wool and glued between faces have become increasingly popular in structural
applications. These panels are often subjected to localized loads such as point loads, line loads
or distributed loads of high intensity. The loads can cause significant local deflections of the
face associated with high stresses in the core and the face. Stress concentrations can lead to a
failure of the panel due to yielding or buckling of the face or crushing of the core. These
failures violate the bearing capacity of the panel and might be crucial to the safety of the whole
structure.

The action of localized loads on sandwich beams with vertically flexible core is approached by
considering the deflection of the loaded face against the not loaded one, i.e. the model of a
beam on an elastic foundation. Different representations like Winkler's foundation, two-
parameter foundation and elastic continuum models are used to describe the behaviour of the
core [1],[2],[3]. Winkler's model approximates the response of the core by linear translation
springs and thus completely neglects the shear stiffness. This simple model may be contrasted
with continuum models that permit an accurate description of the physical properties of the
core but are mathematically rather complicate. Between these models lies a two-parameter
foundation model which is physically more accurate than Winkler's model but mathematically
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simpler than the elastic continuum. A two-parameter model approximates the response of the
core by simple describtion in governing differential equation of the face including two
foundation parameters whose determination has proved to be problematic. The first part of this
paper deals with the modelling the core by Vlasov's two-parameter foundation [41,[5]. The
procedure, based on the variational method allows the foundation parameters to be determined
directly from the elastic properties of the core.

For the analysis of local stresses and deflections of sandwich panel the external localized load
has to be modelled mathematically, also. Often the resultant and the contact area of the load is
known or can well be approximated. The shape of the load distribution has a significant effect
on the stresses of the sandwich panel near the loaded region. It would be desirable to find a
simple function to estimate different degrees of concentration of the total load. For that, a
simple mathematical formulation of the local load is introduced in the second part of the paper.

2. MODELLING THE CORE BY A TWO-PARAMETER FOUNDATION

The well known names, Filonenko-Borodich, Pasternak, Wieghardt, Reissner, Hetenyi and
Vlasov [6] have proposed foundation models that involve more than one parameter for the
characterization of the supporting medium. One way to develop a two-parameter model is to
improve Winkler's model by introducing some kind of interaction between the springs. Another
way is to simplify the continuum model by assuming certain restrictions for the displacements
of the continuum. The response function of the foundation is stated using the vertical
displacement w(x) on the surface of the foundation. Mathematically two-parameter models
lead to the equivalent expression for the foundation pressure p(x) [7]:

dz
Py =hyw—k T M

where ky, is the Winkler’s foundation modulus and k= the second foundation parameter. The
only difference between the various two-parameter models is the definition of the second
parameter. For example, Filonenko-Borodich's foundation parameter k; may be considered as
4 constant tension in the membrane that connects the tops of the springs of the Winkler
foundation. In the case of Pasternak foundation the existence of shear interaction is assumed
between the spring elements. The parameter k) characterizes the assumed shear layer. It should
be noticed that Winkler's model can be recovered as a limiting case when the parameter k;
tends to zero.

The properties of typical core materials can vary very much in different directions. Calculation
models are usually based on the assumption of the isotropy, in which only two elastic constants

Vlasov and Leont'ev have based their two-parameter foundation model on the application of a
variational method. By assuming some simplifying restrictions upon the displacement field in
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an elastic layer, the formulation (1) for the foundation reaction can be achieved. Let us
consider the state of plane strain in a system consisting of 2 beam and an elastic layer shown in
Fig. 1. The layer is assumed to be isotropic with the modulus of elasticity E., the shear
modulus G, and Poisson ratio v. The thickness of the layer is H. The beam has an infinite
length and a bending stiffness By. The lateral load q(x) is distributed symmetrically with respect
to the y-axis within the length of 2¢ along the beam.

(0)=1
—

/

AR A%

/— exponential
deca

/— linear decay
/
, ®(H)=0

Elastic foundation
EclGe Ve

FIGURE 1. Beam on an elastic layer. Example of the vertical displacement profiles are shown
in the picture; v(x,y)=w(x)P(y).

The use of the minimum potential energy theorem [5] is very useful when deriving the
governing equations for a beam on an elastic foundation. The total potential energy of the
system is

M= -;-i(Bfw',z) dx +§_:|i£ (0, +0,E,+1,Y,)dydx _l[(qW) dx (2)

For brevity, the differentiation with respect to axial coordinate x is denoted by the prime. The
elastic stresses in the foundation can be expressed by the constitutive equations and the
kinematic relations between the displacements and strains:

o, & 1 v, 0 2
o, =(1_;2) v, 1 0 2 ?3)
) 470 o llger

where E,= Ee v, =—<— for plane strain state in the x-y plane.

a2 1-v,
The horizontal displacement u(x,y) is supposed to be negligible when compared with the
displacement v(x,y) and assumed to zero everywhere in the core. The vertical displacement
field v(x,y) is described by the product of two independent functions:
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u(x,y)=0 @)
v(x,y) = w(x) ®(y)

The function ®(y) describes the profile of the vertical displacement in the direction of the
thickness of the foundation (Fig.1). It is chosen so that ®(0)=1 and ®(H)=0. An example for
the function d(y) is given later. The function w(x) depends only on x-coordinate and can be
interpreted to be the deflection of the beam.

Substituting the displacements (4) to the stress components (3) and further into the expression
of the total potential energy (2), one can get

o c e H
1 . Eb (-v) o dD., N2epy?
n=;j(3,w zm_j(qw)abc+7_u{mw ) + gy (W)@ }dydx ©)
By applying variational calculus, the equilibrium condition SI1=0 leads to the following
differential equation for the beam in the region [x[<¢ :
BwO—kw"+k,w=q ©)

where the parameters ky, and k; are

_t Ebx .,
e e "’
_f _Ep(1-v) do,
Sl oy R ®

For k, < 1/4k,,,Bf the general solution for the homogeneous part of the Eq. (6) can be written as

w=(CeP* +C,e™%) cos ax +(CeeP* + Cie®*) sin o,X , ©®
where
o, = ﬁ*.’.__i s B0= i.;.i (10)
4B, 4B, 4B, 4B,

The complete solution of Eq. (6) is obtained by superponizing the particular integral
corresponding to q(x) to the solution (9). For ¢ < x < oo, where q(x) equals to zero, the
solution (9) can be applied directly with no particular solution. The constants C; in the
expression for deflection can be determined from boundary conditions of the problem.

The solution of the beam subjected to a single force proves to be very useful. The solution can
be expanded by integration for any distributed loading on an infinitely long beam. The
expressions for the deflection and the bending moment due to a point load P at origin can be
expressed as follows:
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w(x)= pe {a, cosax +P, sin ax} (x20) (11)
4B,oPofkwB,
_ Pe e e -0 "
M(x)= 2o, {ot, cos0tex — B, sin Ogx } (x20) (12)

The vertical decay of the displacements in the continuum is still unknown. Different shape
functions for the displacement are presented by Viasov [4] including linear, hyperbolic and
exponential decrease of vertical displacement. The last two are suitable for analysis of thick
foundations. In the analysis of the local instability of sandwich panels the core is often treated
as a semi-infinite medium (H—o0) in which the displacements decrease exponentially. Because
of the localized nature of the problem studied in this paper, the exponential decay is applicable
here, too:

. 2B,(1-0,
d(y)=e L’ where L= —f-(b—E—o—)' (13)
0

The displacement shape function ®(y) includes a dimensionless constant y, which regulates the
shape of the chosen displacement profile. The bending stiffness of the beam is incorporated to
the shape function ®(y) via the characteristic length L, defined by Vlasov [4].

Using the relation E=2G(1+v) between elastic constants of an isotropic material and the
exponential decay of the vertical displacement (13), the foundation parameters expressed by
(7) and (8) can be written as follows:

5G ’zBf E-3
ko=deg |2 L2 = 14
'y Vb G, E-4 (14)

G, |G, E-4.,
k = c c . 15
R Y (15)

where £=E /G, Theoretically the ratio E for an isotropic medium varies between two and three
according to the value of Poisson ratio of zero and a half, respectively. For typical core
material, the value of & is closer to two than to three. The Poisson ratio V=0 (§=2) is chosen
in many cases because of the lack of better information.

3. MATHEMATICAL FORMULATION OF THE LOCALIZED LOAD

The load distribution q(x) has to be described mathematically to apply it in Eq.(6). In practice
the exact load distribution is unknown and relatively difficult to determine. However, it is often
possible to determine the resultant of the local load. Also the size of the loaded area (Fig.1,;
-c<x<c) is conceivable. Then the effect of the distribution of the load can be demonstrated
through different types of pressure patterns. Thomsen [2] has taken a so called ‘generalized
function' to illustrate the load distribution. A 'generalized function' is a function with the ability
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to approximate the Dirac Delta Function. For example, a load configuration symmetric about
y-axis could be described using the function

(1‘.{0;)e_ﬁ4 S =£' £

q(x)=

If R and c are constants, £ determines the maximum value of q(x) and its location. It should be
noticed that the integral of q(x) over the length [-c,c] is independent of the parameter €:

2jq(x)a§c =R. 17)

One practical application for the function (16) is the description of a symmetric support
pressure at the intermediate support, when R corresponds the total support reaction and q(x) is
the contact stress distribution between the sandwich panel and the substructure. Thus the load
(16) acts only on the length [-c,c] and is zero elsewhere. The parameter € could be associated
with the flexural stiffness of the sandwich panel and the support. In principle, the support
pressure depends on the ratio of the flexural rigidities of the panel and the support plate. In the
case of a very stiff substructure (e—e<), like a steel profile or a concrete column, the
distribution concentrates near the edges of the support area. Another extreme case is a very
flexible support (€—»-e<) when the load is concentrated on the centerline of the support width.
When the support plate and the sandwich beam have the equal stiffness (e-0), q(x) is
uniformly distributed over the support width.

The load function (16) is illustrated by a numerical example of a beam on a two-parameter
foundation. The deflection and the bending moment of the beam for five distributions of the
total load R are shown in Fig. 2. Because of symmetry only one half of the x-axis is shown in
the picture. The values of the vertical axes correspond to the ratio of the deflection (moment)
and the maximum deflection (maximum moment) due to the point load R (reference load case).
The numerical values used in calculations are shown also in Fig. 2. The geometry and the
material data correspond to realistic properties of sandwich panels used in building
applications. The foundation parameters are calculated using formulae (14) and (15). The
decay factor v is fixed and has the value of unity. The results are calculated from the solution
for a point load (11) and (12) by integration.

The solutions corresponding to the five different values of € are presented in Fig. 2. The results
for &= -100 are very close to the results obtained for a point load which is applied to the beam
at x=0. In the case of e=100 the total load is concentrated near to the edges of the loaded area
and the maximum values are reduced to about a half of the case £=-100. To illustrate the
behaviour of the load function the results are calculated using the values €=-5 and €=5, too.
The load distribution corresponding to the value =105 resembles a uniform distribution over
the width [-c,c]. The maximum of the bending moment is much less compared with other given
cases. The calculated example shows the significant effect of the shape of the load distribution
on the behaviour of the loaded region. By changing the degree of the concentration, i.e. the
value of €, in the load function (16), the behaviour of the sandwich panel near different load
patterns can be examined.



85

0
& 10 =0
E=S
0.25 +
g £=107
g osy C :
2
:':\'11‘ : s
o REFERENCE LOAD
7 — M(0)=Mg. w(0)=wg

075 1

E.= 10MPa, t= 0,50mm
G.= 5 MPa, H= 100 mm
E, =210MPs, ¢ = 30mm

M(x/c) / Mo
o R
[4,] o

REFERENCE LOAD
—» M(0)=Mq. w(0)=w,

0.76 - Ec= 10MP2, = 0,50 mm
G,= SMPs, H= 100mm
E,=2I0MPa, ¢ = 30mm
1 f + | } ' 4
0 0.5 1 xlc 45 2 25

£< 0
TR
e

FIGURE 2. Distribution of the deflection and the bending moment of the face in the vicinity of
the localized load. Different pressure shapes obtained from the function (16) based on different

values of € are shown in the figure.

4. CONCLUSIONS

Two problems related to sandwich panels subjected to localized loads are considered. The first
problem concerns the modelling of the core layer when the panel is loaded in vertical direction.
The Vlasov's two-parameter foundation model is applied for the analysis of local stresses and
deflections of the face in a sandwich panel. Foundation parameters are derived by the variational
approach using the exponential decay for the displacements in the core depth direction. The
exponential decay is chosen because it is usually applied in the local buckling analyses of the
face, too. Parameters are expressed as functions of the elastic properties of the sandwich panel

and the decay factor y.
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In the second part of the paper a mathematical description for the localized load is presented.
The total load distributed within a certain length, is expressed in the form of a generalized
function. The function is capable to simulate different distributions of the load. A simple
example is calculated to show that the shape of the load distribution has notable effects on the
behaviour of the face close to the loaded region.
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ABSTRACT

In the present paper the problem of lateral buckling of a straight beam with a thin-
walled cross-section is investigated. The principle of stationary potential energy is
applied in the derivation of the equilibrium equations. It is shown that the energy
principle results in the equations deviating slightly from those derived traditionally by
use of the equilibrium consideration. The reasons for the deviation will be speculated
as well.

1. BASIC KINEMATICS

A beam with an arbitrarily shaped thin-walled cross-section is considered. As a frame
a global Cartesian coordinate system z,y, 2z with unit vectors €z, €y, € is defined. The
axial coordinate z coincides with the beam axis, i.e. goes through the centroid of each
cross-section plane. Coordinates y and z are the principal axes of the cross-section. In
addition, coordinate s with unit vector €, follows the middle line of the cross-section’s
wall and coordinate n with €, is its normal. For the simplicity, the beam is assumed to
be composed of planar plates so that the cross-section is formed of piecewise straight
sections as shown in Fig. 1. The displacement components of the shear center in the
directions of the coordinate axes are u, v, w and the rotation of the cross-section ¢. The
displacement vector of a point of the middle surface of the wall follows from the usual
assumptions made in the theory of thin-walled beams,

€= (u—yv' — 2w —wg")e + (v = (2 = 2)8)8 + (w + (y —9)9)&z. (1)

It means that the linear part of the shear strain v;, disappears at the middle surface of
the wall and that the cross-section does not distort in its plane. Here, w is the sectorial
coordinate and y,,2, the coordinates of the shear center. The loading is assumed
to include an axial centric compressive load p2(z) and distributed loads py(z) in the
principal zy-plane and p?(z) in the zz-plane.
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FIGURE 1. Thin-walled cross-section and

coordinate systems.

axial normal strain e; and the shear strain
Yzs at the middle surface of the cross-section,
including the second order terms, are

_0d, , 1 Ou, 0u,
" T3 E @)
ou, _, Ou, , 0Oid, 0Oi,
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The derivatives needed to define the strains (2) are calculated from the displacement
vector (1)

n
\ Z
Under these assumptions the expressions of the \"
S
y o

€z

%1;0 = (u' - yv" —zw" — w¢")é', + (v' -(z— zv)¢l)€y + (w, " (y - yv)¢’)€n

ou, _ , Ow . B

5y = (V' = 5046 + 42, ©)
od, , Ow . -

5z = (v~ 405~ 48

To obtain the correspondence between the coordinate systems y, 2z and s, n in the cross-
section plane with angle a, the unit vectors

- = 5 -
€s = COS o€y + sinwe;,
g . o - (4)
€n = —SsIn aey + cos ae;,

and likewise the transformation between the derivatives

0 .
= cosa— +smma—
Oy 9z’
(5)
= —sina— + cosa—

Oy 0z’

are required. The normal strain will get the expression

ds
9
on

ez - (ul - yU" . zw" _ w¢ll) + %[(ul _ y'l)” _ zw" _ w¢ll)2
+ (V' = (2= 2)¢')2 + (v + (v — wu)¢')2).

The shear strain is calculated by applying the coordinate transformation in (4) and (5)

(6)

i, - 2 = 0t, T
Y= L (cosagy + sin ae;) + (cos a——u— + sin a o ) €z
oz oy 0z -
O (0 (O 0, (7)
e —ay sin o 3, )
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which will obtain the form
Yzs =(v' — (2 — zy)$') cos a + (w'+(y - yv)¢')sina
+(=v' = a—wd)')cosa +(-v' - i‘3—"‘—":;5')sinar
Oy 0z . (8)
+ (v — " — 2w —wd")[(—v' — %%qﬁ') cos a + (—w' — a—tgﬁ')sin al
£ Ol = (2 = zo)¢) sina + (' + (4~ w)é) cos .

The linear part of the shear strain in the middle surface of the cross-section vanishes
which is in accordance with the assumption involved in the expression of displacement
(1). This can be seen directly from the definition of the sectorial coordinate

dw = —(Z - Zv)dy + (y - yv)dza (9)
resulting in expressions
Ow Ow
O e X (= 1,). 1
T w) 5 =W w) (10)

Assuming further that the normals to the middle surface of the cross-section remain
normal the displacement vector of the point at distance n from the middle surface is

@ = @, — nv,, € — NPEy, (11)

Here v, is the displacement component in the direction of the normal which can be
found by use of the coordinate transformation. Then the expression (11) obtains the
form

T = iy — n[—(v' — (z — 24)¢')sina + (v’ + (y — y»)9') cos a]éz — ngée,. (12)

Using the definition of strains (2) yields additional linear terms both of normal and
shear strains which describe the deformation at distance n from the middle surface

ez =nl(v ,— (z — 2,)¢")sina — (w" + (y — yv)9") cos o] , (13)
Vs = —2n¢ .

The additional term in the normal strain is related to the bending of the walls of the
cross-section and will be dropped in the continuation. The shear strain is associated
with SAINT VENANT torsion.

2. PRINCIPLE OF MINIMUM POTENTIAL ENERGY
The procedure follows exactly the linearized theory, called also EULER method, presented

for example by NovozaiLov [1] and WasHizv (3], according to which the increment of
strain energy of the beam is

AU = Uy + Ung = } / (006 + Toery)dV + / (%€ +re2)dV.  (14)
Vv Vv
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Here, the linear relationship between the incremental strains €% and v}, and 0., T.,,
respectively, is assumed so that Uy includes only the linear parts of expressions (2) for
strains and the higher order terms are neglected. o2 and 72, are the initial stresses in
the initial position the stability of which will be studied and the strains eX* and 2.
The expression of the strain energy is thus separated into two parts, of which the other
UL represents the energy due to the linearized deformation and the other Uy takes
into account the initial stresses and the second order terms in the expressions of strains.
It is, of course, also assumed that the initial deflection v° is negligible.

HoOKE’s law between strains and stresses in Uy, is adopted. Thus, the first variation of
the strain energy Uy, takes the form

L
UL = / dz/ [E(u’éu' + y20" 60" + 22w" bw" + w2 E4") + 4Gn2¢'6¢'] dA
0 A (15)
L
= / (EAY'8u' + EIv" 60" + EIyw"éw” + EI¢"6¢" + GI¢¢'5¢')dz,
0

in which the familiar notations for the axial, two bending, warping and torsional
rigidities

/ dA = A, /ysz =1, / 22dA = I, /wsz =1, /4n2dA = I, (16)
A A A A A

are introduced. In addition, due to the assumptions concerning the coordinate system
the following integrals over the cross-sectional area vanish

/ydA=/sz=/wdA=/ysz=/ywdA=/ zwdA =0, (17)
A A A A A A

Consider the nonlinear part of strain energy Uny. The part involving linear strains
Unip,1 will disappear since the stresses 62 and 72, satisfy equations of equilibrium. The
part containing nonlinear part of strains is

Uniz = /V Lo2[(w' — yo" — 20" — wg" + (' = (2 — 2)8')? + (W' + (y — yo)¢ )V

o '_ II_ "_ n _I_a_wl _’ a_wl 0
+/v'r”{(u yv' — 2w’ —weé")[(-v ayd))cosa-f-( w — az«yﬁ)smoz]

+ 8- = (z = 2)¢)sina + (' +(y ~ )¢') cosa] }aV, (18)

It is easy to show, NovozriLov (1], that the underlined terms above describe the effect of
pure deformation. In stability analyses they usually are assumed to be small compared
to the terms due to the rotations, i.e. the terms without underlining, and are neglected
as insignificant. The following form for the first variation is thus obtained

8Unpa = /V ool(v' — (2 = z4)¢") (60" — (2 — 2y)64")
+ @+ (= ))60' + (v - )60V
+ [ 72 {8610 = (e = 2 sinec + (' 4 (u = o)) cosal

+ $[—(8v" — (2 — 2,)6¢') sin @ + (6w’ + (y — y»)6¢') cos a]}dV,

(19)
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The stresses at the initial position are determined according to the simple beam theory
being
Q28,(2)
o ¥ = 2 ; 20
Jz A + I; y + Iy Z, TIS I;t + Iyt ( )

These are substituted into equation (19) resulting in the final formulation for the
nonlinear part of the strain energy

N M2 M) o QyS:(y)

L
§UNL = / {N"[(zvv’ _ o +17¢)68" + (v + 20¢")80" + (w' — o' )ow']
0
+ M2[(w' + 28,¢")6¢' + ¢'6uw'] — M;[(v' —2B,4")6¢" + ¢'6v'] (21)
+Q°[B,(¢'66 + 660" + ('8 + pbw')]
+ QB89 + 95¢') — (59 + 960')] }da.

Here the notations

1 1
IBL‘ = / y(y2 + zz)dA = Yu, ﬂz =37 2(22 + yz)dA — Zy,
2Iz A 2Iy A (22)
I,+1,
oDt e,

arising in the integration over the cross-sectional area are used.

The increment of potential energy of the external loads is correspondingly

L
V=- ]0 [p5(v — L ey8?) +p3(w — § e:4%) + pyulda, (23)

in which e, and e, are the eccentrities of the distributed loads from the shear center.
The first variation of the external potential is

L
5V = — / (P60 — e 886) + p3(6w — €:$69) + pydulda (24)
0

and the variation of the total potential energy is summed up of the three terms calculated

6T = 6Uy + 8Un1 + 6V = 0. (25)

Substituting now the expressions (15), (21) and (24) into (25), integrating twice by
parts yields first the equations of equilibrium of the initial state, which are of course
satisfied, and secondly

/0 - {bul-Bau")

+60[ELv"™ — (N°v') — 2,(N°¢") + (M5 ¢') +(Q79)]
+6wELw"" — (N°w') +yo(N°9') — (M7 ') — (Qy4)] (26)
+6¢[EIW¢”” _ GI1¢,I _ ZU(NO’U’)’ + yv(Nowl)l _ T‘Z(NDQSI)’ _ M;’w" + M;’U”

—28,(M29'Y — 26.(M¢'Y — B(Q3)'6 + Byeyd — B:(Q2)'6 + plesd] fdu =0.
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This results in the differential equation system of lateral buckling of a thin-walled beam

EAu" +p° =0,
ELv"™ — (N°'Y - 2,(N°8") + (M24)" — pS = 0,
EIw" ~ (N°w') + y,(N°¢") — (M?)" — p2 = 0, 27)

EIw(b"" _ GIt¢’, _ zv(NovI)l + yv(Nowl)I _ T2(No¢l)l _ M:’U)"
— 2By (M7¢') + Myv" —28,(M;8') + pyByd + pyeyd + p2B:¢ + ple:d = 0.
The underlined terms do not appear in the traditional equations of lateral buckling, for

example in [2,5]. Integration by parts produces further the boundary conditions at the
ends of the beam z = 0 and z = L, which are

if bu#0, EAu' =0,
sv' # 0, ELLv" =0,
6v #0, —ELY" + N°(v' + 2,¢") — (Mg ¢)' =0,
Sw' 40, ELw" =0,
bw # 0, —ELw" + N°(w' - yu¢") + (M7 ¢) =0, (28)
§¢' £ 0, EL4" =0,
66 # 0, —EL,¢" + GLi¢' + N°(2v' — ypw' +r2¢')

+ M7 (w' + 28y ¢') — My(v' — 26.4") + Q3 By + Q2B:¢ = 0.

The corresponding additional terms are visible also in the boundary conditions. It is
easy to see that the terms dropped out from (13) and (18) cannot include terms which
could cancel the additional terms in (27) and (28) since they depend at least on the
first derivative of the rotation.

3. EQUILIBRIUM CONSIDERATION

The equilibrium consideration is performed in a usual way, following the procedure
of VLAsov [2], by separating it to stages where at first the resultants of shear forces
and twisting moment due to initial stress components oz and 72, in the deformed
configuration are evaluated. The role of these resultants is to work as a fictitious loads
which are inserted into the equilibrium equations. The stress resultants due to o? are
simply integrated over the cross-sectional area as

AQF = /A(a‘; +A02) [w' + Aw' +(¢' + Ag')(y — y, )] dA - /A oz [w' +¢'(y — yu)] d4,
AQy = /A(a: +A02)[v' + Av' — (¢ + A¢')(z — 2,)] dA — /A”i [v' — ¢'(z ~ 2,)] dA4,

AMEE = — / (02 + A2 {[v' + AV — (¢' + A¢)(z = 20)](= — 2)
—[w'+ Aw' + (¢’ + Ad")(y — y»)]} dA (29)
+ /A 02 o' = ¢'(z = 2)](2 = 20) — [’ + ¢'(y = o))y — yo)} dA,
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producing after integration
AQT = A(N°w') -y A(N°9') + A(MZ¢),
AQTF = A(NY') + 2, A(N°¢') — A(M7¢'),
AMT? = 2, A(N°V') = y, A(N°w') + T2 A(N°4')
+ AM2w') = A(MOV') + 2B A(M¢") + 28, A(My ¢').

(30)

Correspondingly, the stress resultants due to the initial shear stress 77, are
8QF = = [ (12, + AT2)(@+ Ad)cos(a+ 9+ D8)dA + [ rasdcosta+ 4)d,
A A
AQF = / (2, + AT2,) (¢ + Ad)sin(a + ¢ + Ag)dA — / 72,4 sin(a + ¢)dA,
A A
AM* = / (12, + AT2)[—(2 — 2y) —w — Aw — (¢ + Ad)(y — yv)] cos(a + ¢ + A¢)dA
A
= [ e = 2 = w = 8y = wlcos(a + )da (31)
A
+ [ (2, A2 =) + 0+ Ao — (¢4 Ag)(z — 2] sinla + 6 + A¢)A
A
= [ v =)+ v = 8z = o)) sin(a + 9)dA.

The trigonometric functions are here linearized by

cos(a + ¢ + Ad) ~ cosa — ¢sina — Adsina,

32
sin{fa + ¢ + A¢) ~ sina + ¢cosa — Adcosa. (32)

The most critical term with respect to the difference between the results of the energy
method and the equilibrium consideration is the twisting moment due to the initial
shear, i.e. the last expression in (31). In the integration, the fact that there is no
torsion in the initial state is utilized validating the condition

AAT:S[—(Z —zy)cosa+ (y —yy)sinaldA = 0. (33)

The integration results in the relation in which the dependence on the angle of rotation
disappears

AM,T:‘ — / 72, (—Awcosa + Avsina)dA + / Ar.(—wcosa+vsina)dA. (34)
A A

Hence, the three additional stress resultants are

AQF = —A(Q3¢) = —(Q29) Az,
AQF = A(Q2¢) = (Q24)'Ax, (35)
AMP* = —A(QSw) + A(Q2v) = (—Q%w + Q2v)' Ax.
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According to the theory of thin-walled beams the shear forces and twisting moment due
to additional displacements are

Qy=—-EIv"; Q.,=-ELw"; M;=-EI¢" +GIL4¢'. (36)
Further, they must satisfy the equilibrium equations

A(Qy + Q" +Qy*) =0,
A(Q: +QF + Q) =0, (37)

A(M; + MJ* + M=) = 0.
Together with (30), (35) and (36) these yield the differential equation system (27) in
which the underlined terms are absent. As a conclusion, two possible reasons for the
deviation in the equations are deduced. Firstly, the equilibrium consideration in the
deformed curved configuration is not complete, or secondly, the kinematics of the beam

(1) is in some sense inconsistent either adding some terms in the energy approach or
leaving them out in the equilibrium approach.
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COLUMNS
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ABSTRACT

A method for the structural analysis of eccentrically loaded columns in fire conditions is
presented. A pin-ended column is studied. The spatial discretization in the axial direction is
carried out by uniform difference mesh. One dimensional hypo-elastic material models
developed for Eurocodes and in Technical University of Brunswick are used. Integration of
forces in the cross-section is carried out using finite element discretization and Gaussian
quadrature.

Some experimental studies have been carried out to determine the fire resistance of loaded
square hollow structural steel columns filled with reinforced concrete. Calculation results are
compared with results of other programs and also with full scale fire resistance tests of
composite columns and with steel column test results.

1. INTRODUCTION

Calculation of the fire resistance of column is carried out in various steps. It involves
calculation of the fire temperatures to which the column is exposed, the temperatures in the
column cross-sections and deformations and strength of the column during the fire exposure.

Program used in the present paper for temperature calculations is LIPA-program developed
by Subnic OY. In LIPA-program finite element method in connection with conditionally
stable time integration scheme is used to calculate the temperature distribution in the cross-
section. Convective heat transfer is calculated by using Newton’s law and radiation heat flux
from surface is calculated using by Stefan-Boltzmann equation. Heat conduction is described
by the heat balance equilibrium equation and with Fourier-law. Consumption of energy for
vaporizing the water are taken into account in a simplified way by suitable design values for
the specific heat-capacity of concrete with up to 200 °C.

In VTT Fire Technology a simple method for the structural analysis of eccentically loaded
columns in fire conditions is developed. The method is valid only for pin-ended columns.
Results of the thermal analysis are used as input for the method.
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2. STRUCTURAL ANALYSIS
2.1 Equilibrium equations

Equilibrium equations for pin-ended column are following

N‘I * =N,

(1)
M =N, (e+vi-v])

is external normal force,
deflection at node i at Picard iteration step j
deflection at the end of the column at Picard iteration step j
eccentricity of the external load,
M moment and normal force at Picard iteration step j+1

where

hﬁ; ® ﬁ._isu_oz

Here origin of the co-ordinate system is assumed to follow the deformed column at midspan.
2.2 Discretization of the column

The spatial discretization in the axial direction is carried out by uniform difference mesh (fig.
1), with mesh sizz Ax . In an arbitrary finite difference node the deflection is v, .
Normal force is increased incrementally, and to find out if an equilibrium state is possible for
an axial load and a given eccentricity a Picard-type iteration is used inside the force
increment step. Reasonable starting values for deflections are the deflections of the previous
equilibrium state.

The curvature x at certain point may be approximately calculated as follows:

x= —lle ~ V1 "2VitVy, (2)
(Ax)?

With boundary conditions in the middle of a pin-ended column v,=v_, and v,=0 we
get the following recursive formulas:
__ (Ax) 3k,

. . (3)

Vi =2V;-vy - (Ax) 2%, (4)

Axial displacement of each point is solved by von Karman formula from the deflections

1 (Vivl_vi)z

2 (Ax)? )

U1,1=U1+AX 81'
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FIGURE 1. Spatial discretization of the column and its cross-section.

One quarter or one half of the column cross-section is divided to 4-node linear elements
(Fig. 1) with the same element mesh as in the thermal analysis by LIPA program. Moment
and normal force are calculated at each element by using one or four point Gaussian
quadrature. For the temperature field T¢(z,y, t) =E : Ny(z, y) Ty (t) linear Serendip-
type shape functions are used.

2.3 Calculation of strain
The problem is geometrically and also materially nonlinear and therefore one has to calculate

iteratively the magnitude of curvature %] and strain e at central axis of the column cross-
section. This is done by using modified Newton-Raphson method in a following manner:

onj-* ong*
Ni-lvz’k - T Tok 681"“1 (6)
Mij_Mz,k BME"" aMg.k ax_z,ku
de ok

where NJ'*, MJ'* are normal force and moment in finite difference node i at k:th Newton-
Raphson iteration step during j: th Picard iteration step.

Inserting equations of internal forces and strain

N;=[ oda
Ay
M, = f oydA (7)
Ay
€ COC=8 +€ Ch+Ky
where €0t is total strain
e force induced strain at central axis of the cross-section
Cen is thermal strain

X force induced curvature
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to the matrix equation (6) one gets a matrix equations (8, 9) from which strain and curvature
corresponding certain moment and normal force N7, Mj’ can be solved iteratively.

do da o=
(aez"“] [sean  [razoa [Ni-Ni"‘] (8)

axd-*t] |90 do MI-plok
! fayaedai fayzaedai +

gl kil o gdikiged b

9
‘d,ku = d,k+6d,k+1 ( )

3. CONSTITUTIVE MODELS FOR MECHANICAL PROPERTIES

In Eurocode No.4, Design of Composite Structures [2] one dimensional nonlinear elastic
model for strength and deformation properties of uniaxially loaded concrete in compression
at elevated temperatures is presented. Values for model parameters, relation between
compressive strengths and strain are given for both siliceous and calcareous concretes.
Strength and deformation properties of steel at elevated temperatures and a hypo-elastic
constitutive equations are also given.

A nonlinear elastic one dimensional material model developed at Technical University of
Brunswick (TUBS) is used for stress-strain calculations of both siliceous concrete and diffe-
rent steel qualities. Coefficients of the model for siliceous concrete and several structural and
reinforcing steel qualities are given in [3]. Both models are developed based on transient tests
and take into account transient creep approximately.

4. NUMERICAL EXAMPLES
4.1 Euler buckling at ambient temperature
During the calculation load is increased stepwise. Calculated axial force-displacement is
dependent on the load increment that can be seen in Fig. 2, where midspan deflection w and
axial deformation u of an elastic column at ambient temperature has been calculated by using
two different load increments.
4.2 Axially loaded steel columns at elevated temperatures
In a paper by Vandamme and Janns [4] a series of full scale tests made at the University of
Ghent as well as tests made by Olesen at Aalborg University on centrally loaded steel
columns at elevated temperatures are described.
Figure 3 shows the stress results of 29 tests against the theoretical results obtained by
presented method. Half of the column was discretized lengthwise with 22 finite difference
points. Eurocode steel model was used.

4.3 Composite columns

In the following, results have been compared to the results calculated with LIPA-program,
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FIGURE 2. Force-displacement curves of a pin-ended column, P, = Euler buckling load.

which adopts the European buckling curve ¢ [2] in the analysis of composite columns. In the
analysis LIPA needs functions for compression strength of concrete and yield strength of both
structural steel and reinforcement. Temperature dependence of tangent modulus (for zero
stress) derived from the Brunswick model has been used for both concrete and steel. Thermal
properties have been those used in the Finnish Fire Technical Design Manual for Composite
Columns [5]. Calculated results have also been compared to the results of FEM-program
STABA [1] developed in Technical University of Brunswick. In STABA-program the
Brunswick model is used.

The studied composite column is a square hollow section 300 x 300 x 12,5 mm of steel grade
Fe 52 with reinforcement 8 ¢ 20 mm grade ASO0H. Following values of material parameters
have been used; compression cylinder strength of concrete 34 N/mm?, yield strength of
structural steel 355 N/mm? and yield strength of reinforcement 500 N/mm?. Temperature field
calculated by LIPA-program at time t=30 min has been used as input data for the analysis. In
Fig. 6 axial load capacities of the column for a fire grading A 30 are shown as a function of
the buckling length.

4.4 Column test in NRC

Experiments of three square hollow steel columns filled with reinforced concrete and a one
reinforced concrete column were carried out in the Fire Laboratory of National Research
Council of Canada (NRC) in a joint research project sponsored by Rautaruukki Oy. Detailed
description of the tests will be published in report [6]. All columns were 3810 mm long from
end plate to end plate. The hollow structural sections and end plates consisted of steel
meeting the requirements of Finnish Standard SFS 200 grade Fe 52 C. Weldable ribbed bars
meeting the requirements of Standard SFS 1215 grade A 500 HW were used for the main and
tie bars.
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FIGURE 3. The relations of experimental and theoretical result as a function of column
slenderness.

In fig. 5 the measured and calculated axial deformations of one of the composite columns are
shown. In the table 1 a summary of the calculation data is given. The column was designed
to fall at time 30 min. using the simple method of LIPA-program based on moment-normal
force diagrams. According to calculation with finite differences column should fail at time 25
minutes. According to LIPA-program’s axial deformation calculation the column i still going
strong at 80 minutes. The reason for the discrepancy between calculation methods after 20
minutes is that axial deformation calculation in LIPA-program is geometrically linear.

8
LIPA
-
6% ==2s fesceeecesresseioooor.. ... .|Finite differences

3 4 5 6
Buckling length (m)

FIGURE 4. Buckling capacities of concrete filled Square steel hollow section 300x300x12.5
calculated with LIPA, STABA and presented finite difference method,
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FIGURE 5. Axial deformation 3800 mm long square hollow section 150 x 150 x 5.
TABLE 1. Size and strength of 150 x 150 x 5 composite column.
Column Re-bars Kiso f, f,(re- Test Test
size (28 (HSS) | bars) load duration
days)
150x150x5 49 12mm | 375 416 596 MPa | 140 kN | 83 min
MPa
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A METHOD FOR REFINED ANALYSIS OF BOX BEAM CROSS SECTIONS

MIKA REIVINEN*, EERO-MATTI SALONEN* and JUHA PAAVOLA**
*Laboratory of Computational Dynamics and **Laboratory of Structural Mechanics
Helsinki University of Technology
Otakaari 1, FIN-02150 Espoo, FINLAND

ABSTRACT

This article describes first steps in an effort to model monolithic junctions of plate and shell
structures in a consistent way using (almost) conventional frame analysis concepts. The study
here is directed towards the analysis of moderately thick-walled box beams where the cross
sections are considered to act as plane frames. The corners are modelled using n+1 design
parameters where n is the number of beams connected to a corner. For each beam one
parameter gives the position of the theoretical end point of the beam. A deforming core is
included in the model and its area is related to one additional design parameter. The values of
the parameters are determined so that the flexibility matrix of the model is as near as possible
to that of the real corner. The main points of the theory used to create the model are explained
and some numerical results for a simple test problem are given.

1. INTRODUCTION

Figure 1(a) represents a typical monolithic plane frame corner or junction, (b) the kind of
model to be used for it in this study and (c) some details of the model. Traditionally in plane
frame analyses the beams are considered as one-dimensional structural members extending to
a dimensionless node. If the axes of the members do not intersect at one single point, a small
rigid nodal domain is usually employed. The stress distribution in a frame corner is
complicated and the assumptions of one-dimensional beam theory of course cease to be valid
in the comner region. In this study a real corner is simulated using a simple model consisting
of n+1 adjustable parameters or so called model parameters ay,a,, --,a,,; where n is the
number of beams (n22) meeting at the corner. The parameters a;,a,, :*,a, are linear
measures fixing the theoretical end points of the beam axes in the way shown in Figure 1(c).
The last parameter a,,; =1/A. where A, is the area of the so-called core region having
deformations to be described shortly. If a,,; =0, the core is considered as rigid. The idea is
to determine the model parameters so that the flexibility of the model is as near as possible to
that of the real corner. The analysis of the real corner must be performed by a numerical
method, say the finite element method. The final purpose is to determine the model
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parameters for some common geometries in advance in tabulated forms to be used in practical
analyses.

5(_ ( (
(a)?‘_/ (b)

y

——

Q

FIGURE 1(a) Frame corner. (b) Corner model. (c) Details of the model

2. JOINT DEFORMATION MODEL

The origin of a local xy-coordinate system is associated with the corner area defining a
theoretical centroid of the comer (Fig.1(c)). If the extended beam axes intersect at one point,
this is selected as the origin. If not, a weighted average of the intersection points is used. In
the neighbourhood of the centroid the components of the displacement field

u=ui+vj 1)
are assumed to be of the form

u

oY,
dy
v (2)

ay)o')’,

d
u=u0+(a—z)0-x+(

v=vO+(g_:)0'x+(
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that is, to consist of truncated Taylor expansions up to the linear terms in x and y. The index 0
refers to a value at the origin. A rearrangement of the expressions gives the physically more
appealing forms

1
u=u0—0-y+ex~x+5'yxy-y,

) 3
v=y, +0-x+5}'xy "X+EyY
where
1 dv Jdu
LY Ao @
2 (3x 3y)
is the average rotation of the material and
du _ov dv_ du )

Ex=o00 & % y’y=§+3y

are the conventional engineering strain components. The displacement assumptions are
considered to be valid on a certain region — called the core — surrounding the centroid. In
Figure 1(c) the core region is shown as a circle but no shape is actually attached here to the
core, it is only the area A, assumed for the core which matters.

Six (master) degrees of freedom — uy, vy, 6, €;, £, ¥, — are connected thus with a comer
centroid node. The first three are the conventional rigid body motion degrees of freedoms.
The latter three are unconventional consisting of the core strains. To be able to use a simple
frame analysis program they are calculated at this phase iteratively and appear in the analysis
as given load terms. The determination of the core strains is described next. In this section the
values of the model parameters are considered as known.

The position vector

r=xi+yJ (6

n; M;
no g,

X

FIGURE 2 Some notations.

in Figure 2 represents the theoretical endpoint of the axis of a typical beam associated with
the corner. The beams in this study are restricted to have straight axes and at most linearly
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varying depths and are considered as beam elements with cubic deflection, linear axial
displacement and constant shear deformation. The kinematic assumption according to the
Timoshenko beam theory is used: the material fibers originally perpendicular to the beam axis
remain straight but not necessarily perpendicular to the deformed axis. The beam end is now
assumed to be "glued" to the core following its deformation via its normal fiber at the
endpoint. The unit vector

n; =I,-i+mij (7)

gives the direction of the normal fiber. The displacement components %; and v; of the beam
end are obtained from expressions (3) with the coordinates x; and y;. The rotation of the fiber
evaluated from (3) is found to be

1
01 =0+ (8y = £y + VU = ). ®)

The slave degrees of freedom of beam end i — determined by the master degrees of freedom
of the centroid node — are u;,v;,¢;.

Consider an analysis of a frame performed starting say with £, = €, =¥,, =0 at the cores.
The stress resultants N;,Q;,M; (Fig. 2) at the ends of each beam are now known. Here it is
convenient to operate with the x- and y-force components and so the notations

N;+Q;=H;i+V,j, M,=Mk 9

are used. It is obvious that the state of stress and strain in the core region must depend
somehow on the stress resultants of the beams meeting at the comer. The principle of virtual
work is a suitable tool to give some sensible average values for the strains corresponding to
the stress resultants.

It is assumed that the core material is isotropic and homogeneous and that plane stress state is
here valid. Because of the homogeneous strain state implied by assumption (2), the stress
state in the core is then also homogeneous. The principle of virtual work in the form

(0,86, + 0,86, + 1,67, )bA, = > (Hiu; +Viv; + M;50;) (10)

i=1

is applied for the core material. The left hand side is the negative virtual work of the internal
forces in the core region. Quantity b is the breadth of the frame in the z-direction and bA, is
the core volume. The right hand side is the virtual work of the external forces which is
considered to consist of the work of the stress resultants at the beam ends acting through the
normal fibers. Variation of expressions (3) with respect to €, €, and Yxy 8ives three
independent virtual dispacements and homogeneous virtual strain states from which the three
unknowns &, €,,7, can be determined using (10). The results are



107

1 n
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EbA, =
1 n
&= EbA, E;[Viy,'—vﬁixﬁ(H")Mi’i'"i]’ o
Yy = 1 i[Hiyi +Vixi+Mi(l"2 -m)]
» 2GbA

¢ =1

where E is the Young's modulus, G the shear modulus and v the Poisson's ratio of the
material. After the core strains have been evaluated, they can be introduced in (3) as given
quantities and the next analysis be performed. Good convergence is to be expected as the
beam end stress resultants probably do not change much; in statically determinate cases they
do not change at all and the second analysis gives the final results.

3. DETERMINATION OF THE MODEL PARAMETER VALUES

(b
FIGURE 3(a) Corner cantilever structure. (b) Comer cantilever model.

The corner region of the frame is isolated from the rest of the structure (Fig. 3(a)) so that
conventional beam theory stress distributions can be assumed to be reasonably valid at the
cuts. It was estimated that a flexibility analysis based on certain beamtype tractions on the
cuts would be more realistic than a stiffness analysis based on beamtype displacement
distributions. The resulting cantilever type continuum structure is supported at one cut, say
the one belonging to beam n, so that just the rigid body motions are prevented. Figure 3(b)
describes the same configuration for the corner model. The corner model stucture has
k=3(n—1) degrees of freedom ¢, =u;,q; =V,,43 = @1,44 = Up,"-- and the corresponding
generalized forces are Q) =U,,0, =V;,03 = M,Q4 =U,,-+-. It should be noted that in this
section the notations refer to the values at the cuts and not to the beam end values studied in
section 2. The flexibility relationships
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{g}=I[cl{o} (12)

kx1  kxk kx1

are generated for both the continuum structure and the model. For the model this is
straightforward. Quantities Q), 0,05, - are applied consecutively as loads and the
corresponding displacements give the elements of the flexibility matrix. The continuum,
however, has in fact infinite number of degrees of freedom and some assumptions have to be
made to proceed further. The continuum cannot accept point loads or couples; only
distributed tractions.

A

M

h/2 N N
g _=I__x

h/2 -
&
— |A
y

FIGURE 4 Some notations for a beam with varying depth.

A beam theory for smoothly varying beam depth [1] gives after a slight modification the
stress distributions (Fig. 4)

N
o =2+2y. 1, =200+ w00+ 2 hy0) (13)
where
3 6y? dh/dx 3dh/dx , 1dh
W o=z 2 = , = iy 14
=772 N==p 0 MY TRk (14)

The meaning of the notations should be obvious from the conventional beam theory.
Tractions (13) are used in the calculation of the continuum model flexibilities. For instance
for the loading case M =0 at a cut the tractions 0, = My/I and Ty =Mh'¥)y, /I are used.
Simultaneously the tractions corresponding to the stress resultants mduced on the restrained
cut must be introduced. One question still remains: what are the corresponding beamtype
displacements and rotations at the cuts? The continuum does naturally not in general respond
to the loadings by exactly showing the Timoshenko beam theory displacement behaviour.
Using the notation of Figure 4 the following expressions for the average displacement
components and average fiber rotation

= I h,: ,2 blu(y)+¥n (Y)v(y)ldy/ A,
v=[" bE WO/ A, -

= _[h,: 12 PO+ BEY GWldy/

:
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at the cuts are introduced. The distributions u(y) and v(y) are obtained by a finite element
analysis. Expressions (15) are found by equating the work done by the tractions on the
continuum displacements in a cross section to the work done by the stress resultant on the
average displacements and rotation. Now the the flexibility matrix of the continuum structure
can be determined. It is denoted here by the symbol [C].

The flexibility matrix elements c; of the model are functions of the model parameters:
¢;j = ¢jj(a1,a2," -+, @y41) - The purpose is to select the parameters so that the ﬂc?cibiligy matrix
[C] of the model structure is as close as possible to the flexibility matrix [C] of the
continuum structure. For this goal the least squares expression

13,02, ++,841) =5 3, 2 @ = )" (16)
i=1 j=1

is formed and minimized in principle with respect to the model parameters. As the
dependencies are very complicated, this must be performed numerically and iteratively. Some
starting values, say zeroes, are taken for the parameters. The flexibilities are determined.
Then consecutively each parameter is given a small fixed change and the altered flexibilities
are determined. In this way the so-called sensitivities

sb="8, |=1,2,,n+l a7

can be found approximating the derivatives dc;;/ da;. Thereafter using obvious notations the
relationships

n+l
it = c}}ld + zs,'j Aq (18)
1=1

can be written down. This expression is substituted in (16) and minimization with respect to
the changes Ag; is performed leading to a linear system of equations from which the changes
needed can be determined. The procedure described is repeated with the new parameter
values

a™ =g +Aq; (19)
until the changes are small enough.
4. NUMERICAL EXAMPLE

In the small number of test cases gone through this far the minimization procedure has
converged. Figure 5(a) shows a cantilever geometry considered here to represent a corner
(n=2). The structure (Poisson's ratio v=0,2) has been analysed simply as a two-element
beam just to obtain a target flexibility matrix [C]. The model in Figure 5(b) consists of two
uniform beams of height h. Shear correction factor value x=5/6 has been used. The



110

optimized model parameter values were a; =a, =0,0384 and a; =43,7/ K2 corresponding
to a core radius r, = 0,0854. Three iteration steps were needed for acceptable convergence.

-,
o 1’4h 2 @ h
2 1

@ (b)

FIGURE 5 (a) Comer cantilever structure. (b) Corner cantilever model.

As arelative error measure the number

Jic1-1c1]
= — 20
= e o

was used where || is the Frobenius matrix norm. With the starting parameter values
a; =@, = a; =0 the value of e was 0,48 and after the minimization only 0,0026. It should
be noted, however, that for formulas (16) and (20) to be physically meaningful the flexibility
coefficients must actually be represented before the calculations in a dimensionally
homogeneous form. How this is done best in a logical way is not yet clear for the authors.
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AN EQUIVALENT BEAM FOR CALCULATING SLENDER TRUSSES

LASSI A. SYVANEN
Laboratory of applied mechanics
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ABSTRACT

An equivalent beam element has been developed for calculations of 3-D slender trusses. It
includes the shear deformation and the non-linear coupling between flexural and axial
deformation and the non-linear coupling between torsional and axial deformation. Exact
equations has been derived for the displacements and the rotations. Also the internal force
vector and the tangent stiffness matrix can be calculated exactly according to the theory. An
approximated solution is also presented for the axial force to obtain non-iteratve formulation.

1. INTRODUCTION

Detailed modelling of trusses is not often necessary. For example the shaft of the guyed mast is
quite slender, when it is compared to the height of the mast. In the present work a beam
element is developed which can take the most significant effects into account in the guyed mast
and other slender truss structures with only few elements.

2. THE CROSS SECTIONAL PARAMETERS FOR THE EQUIVALENT BEAM

The equivalent beam is a straight line in the center of the truss, but it must include all of the
most important features of the truss. If it is assumed that only the webs carry axial and
bending forces, and only the diagonals carry shearing and torsional forces, the following
equivalent parameters are obtained for the cross section of the structure in the figure 1: area A,
moment of inertia / (same in the y and z directions), moment of inertia in torsion /, and shear
area A, (same in the y and z directions).

3b%A 204 o 2
A=Eﬂd§, 23074 _3b7EAssin(B)cos (B)

; = 3sin(B) cos*(B)EA, ’

2 Y 4G : 2G

)

where A, is the area of the cross section of one web, A, the area of the cross section of one
diagonal, b the distance between the center of the web and the center of the whole cross
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section, E the Young's modulus, G the shear modulus and B the angle between the horizontal
plane and the diagonal.

L, © ] .

Y I s X7

S

7

|

Figure 1. A typical truss structure in guyed masts

3. ADDITIONS TO CONVENTIONAL TIMOSHENKO BEAM ELEMENT

In the previous research [1] it was found that the error in the torsional deformation can be
about 20% if the truss is twisted and axially loaded. Therefore the connection of the torsional
and the axial deformation is included. If the length of the webs and the diagonals is assumed to
maintain constant in torsion, the axial shortening per length, €, of the equivalent beam can be
written for the structure in the figure 1 from the deformed geometry.

@ L][b2+eT(L§—b2)Jz ‘

o
2 J3Lb

gr=1- 1—4sin2( (2)

where @ _ is the angle of twist per unit length and L, the length of the diagonal. €1 can be
solved approximately by the serial expansion of the equation. If only the first term is included,
b2

Er= > (3)
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Because the radius of the gyration i, is

2
(3674, /2)
- r 2(3b Apf "

the axial shortening due to the twist A, can be written
L2
A, =[2olax S ®
0 2

which is the same result as derived in the reference {2] for the ordinary beam element.

The bowing effect must also be taken into account if the beam element is long. It is easy to
show that the axial shortening due to bending in the xy-plane A, and in the xz-plane A, is

Twidx, ©)

X

L
A, =[4vidx, A, =
[

© Gy 1~

where v and w are the deflections in the y- and z-directions.
4. TOTAL POTENTIAL ENERGY FOR THE BEAM ELEMENT
The total potential energy Il is
n=v-v, ’ €))

where U is the strain energy and V is the potential of the external loads. The strain energy for
the TIMOSHENKO beam [3] by appending the phenomena mentioned in the chapter 3, is

=—j51 W2 4 £, 0% +GIO% + EA(u, +4v2 + 4wk +1i20% ) + (8)

+GA,y(v ~w)* +GA(w,—0) dx,

where u is the displacement in the x-direction, and ®,© and ¥ are the rotations in the x-,y-
and z-directions. The potential of the external loading consists the potential of the nodal forces
as shown in the figure 2 and the distributed loading in the y- and z-directions q, and q,, now

V = Pug— Pup = Q,vo + Qv — QoW + 0y W — My0Oq + M, 0 +

L
9
+M ¥y — My W) ~Td, +TO + [(g,v+q,w)x . )
0
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Figure 2. Coordinate system and nodal forces, displacements and rotations for the beam

5. SOLUTIONS FOR THE INTERNAL FORCE VECTOR AND THE TANGENT
STIFFNESS MATRIX

Solutions for the displacement functions can be derived from the first variation of the total
potential energy. The first variation 8I1 must vanish. The variation is

L
8T = J.[EIZ‘PJS‘P_, +E1, 30, +GI,® 50, + EA(u, +1v2 +1w? +1i2d2). (10)
0
(8, +v,8v, +w,Bw, +i20 50 )+GA (v, - ¥)(dv, - 5%) +
+GAn(w.x - G))(Sw_x -30) Jax+

—P8u0 + PauL + Qy08v0 . QyLSVL + QZOSWO - QZLSWL + My08®0 e MyLSG)L +

L
—M 8%, + M, 8%, +T50, ~Tod, - [(g,v+q,8w)dx =0.
0

The normal force of the cross section, N, can be found from the above equation, that is
N = EA(u, +4v2 +3w? +1202), (11

The field equations of the displacements are found by integrating the equation (10) by parts. If
the variations are non zero, then
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a) ELY.+GAy(v,-¥)=0
b) ELO, +GA,(w,-0)=0
¢) GL®, +(Ni2®,) =0

d) (Nv})'x+GAsy(vﬂ—‘l"x)—qy=0
&) (Ww,) +GAy(w.~0,)-q,=0
f) N,=0.

(12)

The boundary conditions for the beam are found from the substitution terms of the partially

integrated form of the equation (10). If the variations are not zero at the nodes then

a) ELY, (0)+My,=0

b) ELW,(L)+M, =0

¢) —ELO(0)+My=0

d) ELO,(L)-M, =0

e) GI® (0)+Nii® (0)-T=0

) GIL®, (L)+Ni® (L)-T=0

g) M, (0)+GA,(v,(0)-¥(0)) -0y =0
h) Nv,(L)+GA, (v (L)-¥(L)-Q, =0
D) Mw,(0)+GA,(w,(0)-6(0)) =0y =0
) M (L)+GA,(w,(L)-O(L))-Qyg =0
k) N(0)+P=0

) N(L)+P=0.

(13)

The functions v and ¥ can be solved from the equations (12 a&d ). If the transverse loading

qy is assumed to vary linearly between the node values g, and g5, , that is

Qyz -t le
L

qy=qyl+ X,

then the displacement v is

v=A, sin(ky x)+ 8B, cos(ky x)+Cyx+ D, +

1]

‘:hel'r2 + (qu —qy])'x3
P 6PL

and the rotation ¥ is

(14)

(15)
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PAC, + 4k - Bk, sin(k
‘i’:Aykycos(ky x)-Bykysin(ky x)+Cy— ( y +A yCoS(/;,Ajy) ), 'sm( yI))+

2,4 Gya—0qy 22 .
¥ ¥
C,ELGALL! +-~z—ﬂ(GA,, +ELKY) anx, (4,2 -a,) %2

+
GA2k(GA,, +ELK?) P 2LP

L]

where the unknown constants A, By,Cy and Dy can be solved from the boundary values
v(0)=v,,v(L)=v_, ¥(0) =¥, and ¥(L)="¥, , and the coefficient , is defined by

[ S d— an
’ P
El|1=——
G,
The solution can be found in the same way for u,w,® and ©. The equation (12 f) shows that
the normal force is constant over the beam. The compressive force P is then solved from the

equations (11, 12 f, 13 k&l). By integrating the axial deformation and by using the boundary
values #(0) = u, and u(L) = u, , it is easy to obtain

L
_EA ¢, 2 242
P—T(uo—ul_—g‘!v_x+wl+1P<D_xdx . (18)

As we can see P depends on the deflections and the deflections depend on P, so the iterative
solution is needed to solve the desired displacements. A non iterative solution is also possible,
but some approximations are needed. The non iterative solution is discussed in the chapter 6.

The tangent stiffness matrix can be obtained from the second variation of the potential energy.
By marking the first variation with » -mark and by performing the second variation yields

L
511 | [EIZS‘PJS ¥ o+ E1,50,86,,+GI,50 5. +GA, (v, —8‘}’)(8v_x— 5\{')+
0
+GAn(8w_,—8@)(5;;,;—5@)+5N(5a,x+v'x83‘,+w'x5®.x+i§d>,x5</l\)_,)+ (19)

+ N(Bv_,ﬁ Vi Ow S+ 250 56 ﬂdx ,

where SN = EA(Su.x v, 0v, +w dw, +i;¢.x6¢.,). If the variations are written in the form

. 9D(i) oD(i) aD(i) oD(i) aD(i) aD(i)
D) = 3 5 ik =N
0) i Uy + v, Vo + -~ dwy + 30, 3, + 30, 30, + a7, oM, +
, DG) 20)

su, + 205, (DD, DAy | DDy | IG) 5,
v owy. ’

du, 9D, 30, v,
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. : . : D (i aD (i
aD (i) ug + aD (i) v, + oD (i) g + aD,, (i) 50, + d ,',(1)860 L 90 (£) 5%,
g vy awy 9P, 0 9%, (21)
aD,, (i) aD (i) oD, (i) aD,, (i) aD , (i) aD, (i)
+ oy ouy, + 5 dv, + - dw + 30, 20, v,

8D, (i) =

5, .

&0, + 30, +

where (i=1,..,6) and the vector D contains displacement functions D = {u,v,w,®,0,¥}. The
equation (19) can be written in the following form if we collect and sum the same variations

821-[ = {suo,SVO,SWo,wo.seo,a\yo,aul‘,avLyswL’SQLQSGL,S\}‘L}'[K]'

A A A A A A A A A A A A T (22)
-{5uo,5vo,8wo,8¢o,5@0,8‘?0,8ux_,8v1_.8w1_,8d>1_,8®1.,S‘YL} ,

where [K] is the stiffness matrix. The developed stiffness matrix is always symmetric regardless
the displacement functions. It is also exactly tangential if the same displacement functions are
used in (12,13) and (20,21).

6. SIMPLIFIED EQUATIONS

The exact solution of the displacement functions must be iterated. The displacement functions
can be simplified by serial expansion with respect to parameters k L and k,L. If the first two

terms are maintained (that is Oth and 2nd order) in the displacement functions the compressive
force P can be calculated from the third order equation directly with the CARDANO's
equation. The functions of the internal force vector and the tangent stiffness matrix can be also
expanded into the serial form. The benefit of the serial form is also that it is not necessary to
develop the solution equations for tensile force and small compression. The accuracy of the
element can be viewed by calculating the value of the terms k,L and k,L. In some examples the

value 0.5 has been appropriate. If the value is too large, the number of the elements should be
increased.

7. NUMERICAL EXAMPLE

The present element with the non iterative solution scheme has been compared to exact
solution and to the results of the ANSYS-program with different meshes. The analysed
structure is shown in the figure 3. The properties of the beam are: EA=1.2370e9 N,
El,=9.8960e7 Nm?®, EI,=9.8960e7 Nm®, GA=3.7110c7 N, GA,=3.7110e7 N,

Gl,=2.9688e6 Nm?, L=21 m and b=0.4 m. The results are presented in the figure 4, where

ans.3 means ANSYS-results with three BEAM3 elements, ans,4 and ans, /00 the same with four
and 100 elements. oma means the present formulation with one element without iteration and
exact means the present formulation with iterated solution.
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7. CONCLUSIONS

The exact expressions for the internal force vector and the tangent stiffness matrix have been
developed for the 3D equivalent beam element of the slender trusses. Conventional
TIMOSHENKO beam is generalized to consider the flexural and torsional bowing effects and
the contribution of the compressive force to the bending and torsion. Non iterative solution of
the equations has been presented. The beam element with the non iterative solution is tested up
to now only with one example, but it seems to correspond about three or four ordinary
elements. However, the stiffness matrix for one element is full, and the expressions are quite
long (without simplification), so the computational efficiency cannot be justified yet.
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WIND INDUCED VIBRATIONS AND THEIR INVESTIGATION IN WIND TUNNEL

LAURIHELLE
VTT Manufacturing Technology
Aerodynamics
P. 0. Box 17052, FIN-02044 VTT, FINLAND

ABSTRACT

The paper presents the main wind induced vibration types; galloping, flutter, vortex and
turbulence induced vibrations. The physical background of different vibration types is
described. The basic structure of wind including velocity distribution, turbulence intensity and
turbulence spectra is presented. The simulation of the neutral atmospheric boundary layer in a
wind tunnel is described. The new wind tunnel of VTT is presented. It is the first wind tunnel
in Finland designed for wind engineering. Different wind tunnel test methods are described.
They include dynamic force measurements of rigid models, section and taut strip model test of
bridges and tests of full aeroelastic models.

1. INTRODUCTION

Wind induced vibrations can cause severe damage to different type of structures. Due to the
complex shapes, a mathematic treatment of the flow around the structure does not give
satisfactory results. Wind tunnel tests with scale models and simulated atmospheric boundary
layer helps to solve these problems. The most important phenomenon in the simulation of
wind is the structure of atmospheric turbulence, mainly the turbulence intensity and the
spectrum.

2. VIBRATION TYPES

The main vibration types are galloping, flutter, vortex and turbulence induced vibrations. In
practice a structure is affected by all these different vibration types. Galloping and flutter are
caused by the deflection of the structure while vortex and turbulence induce forces to a rigid
structure.

2.1 Vortex induced vibration. After the largest cross-section of a bluff body the boundary
layer separates from each side of the surface and forms two free shear layers that trail aft in the
flow. These two free shear layers bound the wake. A cylinder is a classical example but any
structure with a sufficiently bluff trailing edge sheds vortices. The vortices induce an oscillating
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force normal to the wind. Figure 1 shows a typical wake of a cylinder. The frequency of the
vortex shedding is

f,=SU/D
where
fg shedding frequency
S Strouhal number
U wind velocity
D diameter of the cylinder

For a cylinder, the Strouhal number is about 0.2.

D ——
— _ ’@7—/
= —

v/

time “t” time "t o 6t
Figure 1. The wake of a cylinder [1].

If the frequency of the vortex shedding is near the nominal frequency of the cylinder, the
vibration of the cylinder increases the vortex strength {2]. If the amplitude of the vibration
reaches about 1 D, three vortices are formed instead of two per cycle of the stable cylinder .
Thus the vortex induced forces on a cylinder are self-limiting at cylinder vibration amplitudes
on the order of one diameter [3].

2.2 Galloping and flutter. If a structure vibrates in a steady flow, the flow in turn oscillates
relative to the moving structure. This induces an oscillating aerodynamic force on the structure.
The structure is aerodynamically unstable if the induced aerodynamic force tends to increase
the vibration. Figure 2 shows one-degree-of-freedom galloping models for plunge and torsional
stability.

Fy
FL=~ou2 DC
. L™7
) Ut ¥ 2 ! L
¥ |
(W] un'i
A . Ry6 SIN v /By
r X‘?PULD:D Lv 6-a
Yok

U Abcosy

Figure 2. One-degree-of-freedom galloping models [2].
If the model has a vertical velocity y, the angle of attack is
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a=am(y/U)

The velocity relative to the model is
UL, =U"+y’

The total vertical force per unit is
F,=5pU’DC,

The vertical force coefficient is

2
C = %‘}(CL cosa+ Cpsinct)

The equation of the motion is
my+2mE @ y+ky=3pU’DC,

where the natural frequency of the model is

For small changes in angle of attack near o=0

_ ac, . aC, (0) ] y
C,=C,0)+ e 0) a—C,_(O)+[-————aa +Cp(0) =

The term Cp (0) produces a static displacement and has no effect on the instability.
The linearized equation of motion is

y=280,5+a;y=0
where the net damping coefficient is

1 UpD? 9C,(0)

2§,m, . 25,0')y + " m e

The instability occurs when & becomes negative. The minimum velocity for the onset of
instability is
4m(27E )
U pD2

a aC,
5D SL+Cp)
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For the same manner- the linearized equation for the torsional motion can be formed

9Cy (0) o _RO

Jo U)

1,6 +21,E,0,0+ k0 =1pU*D’

The minimum critical velocity for the torsional instability is

—41,(2mE,)
U _ pDR
7D 9C,, (0)
Jo

In practice any real structure is a two-degree-freedom model having both plunge and torsional
movements. If the two natural frequencies of the plunge-torsion system are well separated and
the aerodynamic forces are small compared to inertia forces, then the aerodynamic coupling

between torsion and displacement is weak [2].

Galloping is a vibration mode of cables, electrical transmission lines etc. It is most common in
cold areas when icing of the cables changes very strongly the aerodynamic derivatives.
Galloping of the cables of a guyed mast can induce a strong vibration to an originally stable
mast.

Flutter was originally recognized in the wings of aircraft. In wind engineering it is a problem of
bridges, mainly of long-span suspension bridges. Many suspended spans have been damaged by
storm winds and the awakening for aerodynamic investigations did not come until the very
light and slender Tacoma Narrows Bridge was destroyed by a relatively low 20 m/s wind in
1940 {4]. ‘

2.3 Vibrations induced by turbulence. The turbulence of the wind causes vibrations and if
the natural frequency of the structure is near the peak of the turbulence spectrum high energy
from the wind is induced to the structure.

An effective surface pressure on a slender structure is defined
=1pU*D+pAU/D
The instantaneous velocity can be expressed
U=U +u,sinwt
If upy, is small compared to U then
p=5pU*C, +pu, UCpsinwr

The dynamic response of a structure to turbulent wind can be seen in figure 3.
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Figure 3. The response of a structure to turbulent wind.

3. THE STRUCTURE OF WIND

The wind can be divided to mesometeorological and micrometeorological parts. An idealized
spectrum of the wind is presented in figure 4. Due to the friction of earth a boundary layer is
developed on the lower part of the atmospheric wind Its shape and height depends on the
roughness of the terrain. Figure 5 shows typical values of the atmospheric boundary layer.

A Mesom eteorological | Microm eteorological

| Mean wind Gusts

o - aal aadd & . Adhb andsal e ad aaaaad o o 2k aaaasal
000001  0.000% 0.001 001 100 1000

0.
i Cycle‘s /Hour10

Figure 4. An idealized wind spectrum
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Figure 5. Velocity profiles for different terrain types
4. WIND TUNNEL SIMULATION

For proper simulation of the atmospheric wind in wind tunnel the mean velocity profile, the
turbulence intensity and spectrum must be scaled. Figure 6 shows the aim of the simulation.

%Y

o
i
Full scale ®odel

Figure 6. Similarity of flow fields.

The most common method of simulation is to use spires and roughness-element in a long test
section before the model. Figure 7 shows a typical arrangement. By varying the size and height
of the elements different boundary layer profiles can be achieved.

uy

Figure 7. Arrangement for the simulation of atmospheric boundary layer.
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5. VIT BOUNDARY LAYER WIND TUNNEL
The new wind tunnel of VIT Manufacturing Technology had its first test run in November
1993. It is the first wind tunnel in Finland designed for wind engineering and being capable for
proper simulation of the atmospheric wind. Its test section is 12 m long, 2.5 m wide and 1.5 m

high. It is driven by a ¢2500 fan powered with a 75 kW AC-motor. Figure 8 shows the basic
lay-out of the wind tunnel.
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Figure 8. VTT Boundary layer wind tunnel (dimensions in meters).

-3

The control of the wind tunnel is done with a PC. The reference velocity is measured using a
differential pressure transducer, an electronic barometer, temperature and humidity probes. The
wind tunnel is equipped with a turn-table and a six-component balance, a three-axis traversing
mechanism, high-frequency velocity anemometer, multi-port pressure measuring system and
flow visualization equipment using either smoke or helium filled bubbles. A small high-
frequency balance can be mounted inside a model or under the tunnel floor.

6. TEST METHODS

The main methods in wind tunnel testing are force and motion measurements. For tests of
vortex induced vibrations, the model can be rigid and connected straightly to a high-frequency
balance. Galloping is not a very widely tested topic. The most challenging test area is the tests
of flutter. These tests are made mainly for long span suspension bridges. The wind tunnel
model can be a rigid model fastened to a spring-damper system and the motion of the model is
measured. The model can be a two-dimensional part of a bridge deck or a three-dimensional
model of a flexible structure.

A new technique for bridge tests is the taut-strip method. The model is an elastic two-
dimensional model of the bridge deck. The structural similarity is achieved with two tight wires
inside the model. The chord of the model is quite small and is chosen so that the turbulence
length scale is simulated properly.

The best and unfortunately also the most expensive test method is a full aeroelastic model of
the structure. The mass distribution, inertia forces and stiffness of the model are scaled using
similarity laws.
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7. DAMPING OF WIND INDUCED VIBRATIONS

The damping of wind induced vibrations can be done either with aerodynamic design or with
conventional mechanical methods. The most common aerodynamic damping device is a helical
spiral on the top of cylindrical towers and chimneys. The idea of the spiral is to break the two
vortex system to smaller vortexes that separate at different time at different height of the
chimney. A modified shape of the whole structure can change the aerodynamic stability
derivatives so that the critical wind speed rises over the expected wind speed.

Beside the mechanical damping, hydraulic dampers have been used. A new method is a tuned
liquid damper (TLD). It is a passive damper, which relies on shallow liquid sloshing in a rigid
tank to suppress the horizontal vibrations [6]. In a 150 m high round hotel building the
response to wind induced vibrations could be reduced to half. It was done with 30 dampers
each having a stack of 9 cylindrical containers 2 m in diameter and 22 ¢m high. The liquid
depth was 12 cm.

Also active dampers have been used. A massive bi-axial tuned mass damper has been installed
on the top of Citicorp Centre in New York. The mass of the concrete block is 373 tons.

8. CONCLUSIONS

Different types of wind induced vibrations can be studied in wind tunnel. So far the
mathematical treatment of complex shapes does not give satisfactory results. With good design
and suitable dampers the vibrations can be reduced to acceptable level.
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ABSTRACT

The increasing speed of paper machines and electric motors sets new demands on the manufacturing accuracy.
The final goal is to find specifications for the fabrication process sufficient to keep the unwanted effects below a
desired level. This paper concentrates on the dynamics of spinning elastic shafts, e.g. the roll tube of a paper
machine or the rotor of an ultra high speed electric motor. The equations of motion for the spinning shaft,
including gyroscopic coupling, asymmetrical perturbations, rigid end plates, elastic journals and non-constant
spin rate, are presented. A modal analysis method employing the orthogonality of the eigenfunctions is proposed
for the solution of this non-self-adjoint problem.

1. INTRODUCTION

The dynamics of spinning structures is of great technological importance in the design of
rotating machinery. In the Paper Machine industry the constant demand for higher production
speeds, quality and reliability arises new challenges in the roll design and manufacturing.

There are a large number of papers dealing with transverse vibration of rotating beams
covering topics such as balancing of flexible rotors, asymmetrical inertia and stiffness
properties, gyroscopic coupling and non-constant spin rate. The modal balancing was
proposed by Bishop [1] in the 1960s and the influence coefficient balancing by Kellenberger
[2] in the 1970s. Kammer [3] introduced a non-constant spin rate in the analysis of rotating
beams, but his treatment was limited to small periodic disturbations around the steady-state
spin rate. Bauer [4] investigated uniform rotating beams including all possible combinations
of free, clamped, simply-supported and guided boundaries. Han and Zu [5] studied uniform
spinning Timoshenko beams using modal expansion techniques. The formulation was based
on a body-fixed axis reference system. The corresponding treatment in an inertial reference
frame was given by Han and Zu in [6). Jei and Lee [7] performed the modal analysis of a
spinning, asymmetrical rotor-bearing system using the Rayleigh beam model. The effects of
the gyroscopic moment were properly taken into account in the paper.

In this work a realistic approach has been made to model a spinning roll, including the
asymmetrical roll tube, end plates, journals and an arbitrarily time dependent spin rate. The
asymmetry of the roll tube is taken into account in a general way, allowing the variation of
the principal axis and moments and products of inertia along the tube. A modal expansion
technique for the solution of the equations of motion is proposed. The general orthogonality
relation according to Riity et al [8] may be utilized to partially diagonalize the equations.
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The present paper is organized as follows. In section 2 the Lagrangian function of the
system is developed and in section 3 the equations of motion are presented. The modal
analysis is outlined in section 4 and in section 5 the concluding remarks are drawn.

2. THE LAGRANGIAN OF THE SYSTEM

Let us consider a flexible roll tube of length / carrying rigid end plates resting on flexible
journals of length a as shown in Figure 1.

LM  pAEIL.LIL

Figure 1. Spinning roll tube carrying rigid end plates resting on elastic journals.

The density, cross-sectional area and modulus of elasticity of the tube are p, A and E,
respectively. The moments and product of area of the tube cross-section relative to the
centroid of the cross-section are /, /, and I, respectively. The matrix of the inertia tensor
of the end plates relative to the plate-fixed center of mass frame of reference is J and the
mass and the thickness of the end plates are M and 2d, respectively. The density, cross-
sectional area and modulus of elasticity of the journals are p,, A; and E, respectively, and
the diametral moment of area of the symmetrical journal cross-section is /,. The acceleration
due to gravity is g.
The generalized coordinates of the system are defined according to Figure 2.

Figure 2. Coordinates used in the problem.

The displacement of the center line of the tube and the journal from the Z-axis of the inertial
frame OXYZ along the X- and Y-axis are U and V, respectively. The orientation of the frame
Cxyz fixed in the infinitesimally thin slice (or disk) of the tube relative to the frame OXYZ is
determined by the Euler angles @, 8, v shown in Figure 3.
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Figure 3. Definition of the Euler angles uscd.

The angular velocity of the disk relative to the frame Cxyz can be written as

o, = d.cos Bsiny + Bcosy
w, = d.cos Beosy — Bsiny 1)
w,=—-asinf+y,

where 7/ is the angular speed of the shaft and o and 3 are the deviations of the normal of the
disk from the Z-axis. For small deviations one obtains the kinematical relations

asa—g=U', @
v,
ﬂ:—a—z— V. (3)

We obtain for the kinetic energy of the tube in the generalized coordinates U and V the
expression

I
T = %J'p{A(U2 +172)+1(U’2 + V’2)+21(u'/2 +2('J'V'u'/)+
[v]
+ Al [(V’2 - U’z)cos2u/ —2U'V’sin Zw] +

+1,, [(U’z—V’z)sinZu/—ZU’V’cosZw]}dZ CH]

and for the potential energy

I
Vi = %j{ EI[(U—U,.,,)”2 +(V—Vm)"2]+2pAgV+
(o]
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+ Al[[(v v,y - (- U,.,,)"chos 2y -2(U-U,,) (V-V,,) sin sz +

- HI, [ [(V v, - (- U,«n)”z]sin 2w +2(U-U,) (V-V,)" coszwj } iz,

where the notations 5

I,=I+4l and [,=I-Al, ONQ)

displaying the asymmetry of the tube in a symmetrical way, has been used. The functions U,
and V,, define the initial displacement of the center line due to the initial lack of straightness
of the tube.

The rigid end plates are rigidly attached to the tube ends at Z = 0 and /. It is assumed that
the center line of the tube arrives at a right angle at the cross-section of the tube at Z = 0 and
that the center of mass of the plate lies on the straight extension of the center line of the tube

(see Figure 4).

Figure 4. End plates attached rigidly to the tube ends.

The inertia matrix of the plate relative to the CMxyz-frame is

I Ty Jg
I=(J, 1, I, ®)
sz yz Jz

The center of mass CM of the plate is located at
Rey =(U,-dU))T +(V,-d V)T -dR, )
where

Uy=U@©z) and V,=V(0,). (10)
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We obtain for the kinetic energy of the left plate the expression

Ty = 5 M[U2 V2 20(005 +V05)+ (052 V)¢

(U2 +V2) 45, (57 +20, Vs 0) +

+ 5 AI[[V;2 - U2 )cos2w — 2, V;sin2y |+

+ 31, [([U7 - V2)sin2y - 20, V; cos2y ] +

+ T (U siny = V; cosy) + 1,9 (Ug cosy +V;siny) (1)

and for its potential energy

Vi = Mg (V, —d V). (12)
Similar expressions with —d replaced by d are obtained for the right plate at the end Z=|

The elasticity of the journals may be approximately modeled by equivalent linear and
torsional springs. This leads to the potential energy

Viw =%k(U§ +V02)+%K(U{,2 +V}2), (13)

where the effective spring constants are

EI I
k=3—5% and x‘=3E”.
a

(14

A similar expression at Z = | is obtained. Since the mass of the journal is small compared to
the mass of the tube and the plate, the kinetic energy of the journal is omitted here.

The Lagrangian function L of the system can now be formed by summing up the
contributions of different parts of the system.

3. EQUATIONS OF MOTION

The equations of motion for the system are derived from Hamilton's principle

5J'Ld:=0. (15)

A presentation using complex functions turns out to be efficient in writing the equations of
motion. We employ the complex displacement field

W =U+iV (16)
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and introduce the complex acceleration
A=W=2iyW, a7
the complex asymmetry moment of area of the tube

Al = AT+ il (18)

the complex asymmetry moment of inertia of the end plate

AJ=AT+il, (19

and the complex cross moment of the end plate

Jor=da ¥y, - (20)
Hamilton's principle (15) leads now to the following equations of motion:

PAW - (pIA’) + [EIW -W,)"|" +ipAg+

FiF[pIW =W +eV[pALA'¥] - V[EAIW-W,)* = 0, @)

MW, — MAW); + kW), — pl A, +[EIW - W,)"], +iMg+

+ il (W =W, +e2¥pAl, A, *— Y [EAI(W-W,)"*] = 0, (22)

MW, + MAW| + kW, + pI A} —[EIW - W,,)"], +iMg +

= Wpl (W-W*), —e?¥pAL, A} *+ Y [EAI(W-W,)"*], = 0, (23)
%Mdz"l;f/o'—Md‘I;f/o +x‘14/O’+%Jzﬂg—EI(W—"M{-,,);’—ie Y 9, (W +iv?)+

- ilii%]z(‘W—‘W*); —eVAI AL ¥+ WVEAL (W -W,) %= 0, (24)
4

MW+ MdW,+x ’W,’+—;—Jzﬂ,’+ EIW - W,,){—ie™ I, (i +iy?)+

— Wi T (W-W*), —eY Ag A~ YEAL(W-W,)7*= 0. 25)
Equations (21) - (25) are the complete equations of motion for the tube spinning with a

non-constant angular speed, treated as an asymmetrical Rayleigh beam having a small initial
lack of straightness, carrying rigid end plates and supported elastically by the journals.
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In the case of an ideal symmetric tube with no end plates and no angular acceleration
simply supported at its ends the equations of motion reduce to the form

pAW - (p1A’) +[EIW"] = 0, (26)
W,=W, =0 , Wr=W/'=0. 27) - (30)

Equations (26) - (30) coincide with the equations of motion in Reference [9]. The middle
term in equation (26)

- (p12%) = —[pl(fﬁ/ —ZiI/'I‘W)’]I €]

contains the gyroscopic coupling term

2 (p1W") =2y[p1(-V'+iT")] , (32)

which connects the motions in X- and Y-directions.

The equations of motion (21) - (25) may readily be written in coordinates rotating with
the shaft by effecting the transformation

W=eVYW

=, (33)

It can be seen from equations (21) - (25) that the non-autonomous parts of the equations
are due to the asymmetry of the cross-section and the end plate, the non-constant spin speed
and the initial bending of the tube, manifested in AI, AJ, 7., ¥ and W,,, respectively.
The disturbance due to AT and AJ gives rise to an excitation with an angular speed twice
that of the shaft. The excitation due to the initial bending, on the other hand, has an angular
speed equal to that of the shaft. This follows after putting

_ iWaqqrot
W, =YW (34)
in the equations of motion, where the initial displacement in rotating coordinates W, is
constant in time.

4. MODAL ANALYSIS

The solution of the equations of motion using modal analysis can be performed in two
different ways. One can expand the general state of the system in terms of the eigenfunctions
of the idealized symmetrical problem with or without the gyroscopic coupling term. In the
former case the general state can be interpreted in terms of the coupled, rotating modes giving
a good insight into the rotational phenomenology of the system. However, this approach is
limited to cases of constant angular speed. In a more general analysis, where the run up of the
spinning shaft is also of interest, one must drop the gyroscopic coupling from the modes, thus
treating the X- and Y-directions as independent from each other. The gyroscopic coupling and
the asymmetry terms are then treated as external loads in the general diagonalized modal
equations of motion [8].



134

5. CONCLUDING REMARKS

The Lagrangian approach for the problem of a spinning asymmetric elastic shaft with rigid
end masses has been adopted in the paper. In this formalism the different factors of the
system can elegantly be taken into account. Employing complex notation the resulting
equations of motion may be written in a concise form displaying the contribution of each type
of asymmetry of the system in a transparent way. In the future work the role of the different
asymmetry parameters in the shaft dynamics should be accounted for.
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ABSTRACT

When dynamics of rotating shaft lines are analysed, knowledge of the stiffness and
damping coefficients of bearings is required. This paper deals with with the dynamic
characteristics of hydrodynamic journal bearings. Fluid film bearing characteristics are
determined from the pressure distribution of the lubricant. The pressure distribution is
calculated by using the Reynolds equation derived from the Navier-Stokes equation. When
the rotating shaft vibrates, an additional squeeze film pressure is generated. This pressure
change determines spring and damping properties of oil film and bearing. The values of
stiffness and damping coefficients are evaluated by using the perturbation technique. The
results presented are calculated by the computer code COJOUR which was developed
under funding by the Electric Power Research Institute (EPRI). The calculated results were
compared to the tabulated values published by the Japan Society of Mechanical Engineers
(JSME).

1. INTRODUCTION

A bearing is the vital tribological element of rotating machinery. According to the direction
of the load, bearings that support the rotating shaft can be classified as radial type and
axial type. Bearings that are supporting radial load are called journal bearings.

Fluid film journal bearings can be divided into hydrodynamic bearings, hydrostatic
bearings and hybrid bearings. A hydrodynamic bearing supports the shaft by hydrodynamic
pressure of the lubricant created by the rotation of the journal. In hydrostatic bearings the
load is supported by the hydrostatic pressure of oil fed. Hybrid bearings are using both
hydrodynamic and hydrostatic pressure to carry load.

Hydrodynamic bearings may be grouped into bearings with fixed sliding surfaces and
tilting pad bearings where bearing surfaces rock with respect to the surface of the journal.
Bearings with fixed sliding surfaces can be divided into cylindrical, partial arc, two lobe
without or with offset and multilobe bearings, Figure 1. Tilting pad bearings can be
divided into bearings in which the load is on a pad (LOP) or the load is between two pads

(LBP).
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Figure 1. Fluid journal bearings.

2. REYNOLDS EQUATION

The Navier-Stokes equations of motion in Cartesian coordinates for viscous incompressible
fluids are [2]

@+u@+v.@+w@: —_]'.@-lnﬁ. &-}_6_2‘.‘..4-_6_2{{
o d d " pax plax? ay? &2
W, v v o 10 pFv Fv Fv o)
a ox dy o pdy plax? gy* &?

-a—w+uﬂ+vﬂ+wiw- =f —l@ +£ .az_w.q-..aiw_ +@
ot d&x Oy &k poz plax? ayz A2

where u, v and w are velocity components, p is pressure, p is density, | coefficient of
viscosity, f,, f,, and f, are body forces and t is time. For very small Reynolds numbers, the
inertial forces are much smaller than the frictional force. In cases where the velocity is
low, the derivates du/dx, etc, are small. The nonlinear terms udu/dx, etc, being the product
of two small quantities, may be neglected in comparison with the other terms in the
equation [2]. If we take steady state solution, the time derivates can be removed. In the
case of bearing lubricant, the changes of the velocity profile between the shaft and the
sliding pad, z direction, are dominant compared to the x and y directions. We can thus
omit higher order derivates of the velocities in the x and y direction. If we assume that the
fluid pressure between the shaft and the sliding pad is constant, the equations of motion of
the lubricant film are

P fu B & P, @
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Integrating Equations 2 twice with respect to z, we have
2 2
z2 op _2op 3
u=2"2.c(2+C,(x) , V=o———+Cy(x)z+Cy(x) 3

The functions from C, to C, are to be determined from the boundary conditions

u=uy,v=0, w=w, at 2=0 (journal surface) @)
u=0, v=0, w=0 at z=h (sliding pad surface)

The oil film thickness h is not a constant but as a function of x depending on the position
of the journal and the shape of the sliding pad. Applying boundary conditions to Equation
3, we get

2p_hop, % y-2 P b, Q)

Since the lubricant is assumed to be incompressible, the flows into and out of a small
element, Figure 2, must be equal and we can integrate the continuity over the film
thickness. The net flow is

B [ hudgs 2 [ Pvar-20 9y 0 ©)

Y/«

Figure 2. Element of lubricant film.

After solving Equation 6, we get for the Reynolds equation

2("’ ap]&[’” ap]=6,,0% W, 7
ax\ p &/ oy\ p oy ax

The relative speed u is not necessarily small. It is shown that if the thickness of the fluid
is small enough compared to the width of the bearing, Equation 7 can be used [2]. A
general analytical solution of the Reynolds equation has not been carried out. Analytical
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solutions for bearings of infinite length perpendicular to the direction of motion and
bearings of zero length are available. The film pressure at the bearing edges must be
known before the Reynolds equation can be solved. In the case of the partial arc bearing
with a small arc angle or tilting pad bearing, the boundary pressure is the atmospheric
pressure. The case of the full cylindrical bearing is more complicated because of cavitation
or separation in the oil film.

3. NUMERICAL SOLUTION OF THE REYNOLDS EQUATION

In order to solve the Reynolds equation with the computer code COJOUR [1], the finite
difference method is used. Other numerical methods are the finite element method and
Green's functions.

The finite difference method of the Reynolds equation at node (i,j), Figure 3, gives [4]

1

3 3 3
sz(hm,/ *Piy ~ 2hu “Py t hl-l,/ ) Pg-u)

8
] ®

pay?

+

3 3 3
(hl.i*l .pijﬂ. =y 2hu 'pu + hiJ-l3 'pu_l) = X;(hU¢l - hij-l)

Because the equation is a non-linear function of pressure p, the equation must be solved by
using some iterative method. The computer code COJOUR is using the secant method. The
bearing edge pressure is taken as the atmospheric pressure in all cases.

P

i1, 1 i1, ] i1, j+1
i
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Figure 3. Finite difference mesh.

4. STATIC BEARING CHARACTERISTIC

Static characteristics of the bearing are obtained by integrating the calculated pressure
distribution of the oil film determined from the Reynolds equation, Figure 4. The film
rection force at the static equilibrium F, and its components with respect to the
eccentricity direction € and its perpendicular direction 0 are -
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Components of the film reaction force are shown in Figure 5. The attitude angle is

( F
@ =arctan| -— (10)
& k FE

l,' F,

Qi

__— ¢

hw

Figure 4. Pressure distribution. Figure 5. Components of reaction forces.

5. STIFFNESS AND DAMPING COEFFICIENTS

Vibration with small amplitude is assumed to occure in the vicinity of the static
equilibrium position. When the rotating shaft vibrates, an additional squeeze film pressure
is generated. This pressure change determines spring and damping properties of oil film
and bearing. The values of stiffness and damping coefficients are evaluated by using the
perturbation technique. When F is expanded in Taylor's series and only the first term is
included, we can obtain

F-F=K(X-Xp)+C(X-X,)

oF, &F, oF, OF, dx dx,
{Fx . Fy MR I ) S e an
= . 0_ » = 5 =] s = 5 n:
A A A A AR E R

ax Oy &% oy dt dt

F is reaction force in the vincinity of the static equilibrium point, F, is reaction force in
the static equilibrium, K is the stiffness and C is the damping matrices, X, and X, with
dot are displacement and velocity in the static equilibrium, X and X with dot are
displacement and velocity in the vincinity of the static equilibrium. Perturbation is made
separately in horizontal and vertical directions for displacement and velocity. Force F can
then be defined from the Reynold equation. The stiffness and damping coefficients are
usually presented in dimensionless form [3]
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E=&K , 5=Cﬁc (12)
% W

where C, is clearance, W is bearing load and ® is angular velocity of the journal.
6. EXAMPLE

The example bearing is an elliptic three lobe bearing with oil grooves. The bearing is
analysed with the computer code COJOUR, which was developed under fundig by the
Electric Power Research Institute (EPRI). The calculated results are compared to the
tabulated values puplished by the Japan Society of Mechanical Engineers (JSME) [3].
Table 1. shows the properties of the bearing system as a function of the Sommerfeld
number. The Sommerfeld number is

2
- WNDL S (13)
W \R

where i is lubricant viscosity, N is bearing load, D is the diameter and L is the length of
the bearing, W is the spin speed, C, is the machine clearance and R is the radius of the

bearing.

Table 1.
lubr.visc.Q speed N length L diameter D load W clearanc C, Sommerf. S
Ib*s/in2 mm in in Ib in
1.50E-06 350 3.75 75 5000 0.005 0.027686
1.50E-06 370.2 4 8 5000 0.005 0.037908
2.00E-06 433.6 4 8 5000 0.005 0.059201
2.00E-06 615.3 4 8 5000 0.005 0.084009
2.00E-06 857 4 8 5000 0.005 0.117009
2.00E-06 1179.2 4 8 5000 0.005 0.161
2.00E-06 1640.6 4 8 5000 0.005 0.223997
2.00E-06 2359 4 8 5000 0.005 0.322082
2.00E-06 3736 4 8 5000 0.005 0.510089
2.00E-06 7764 4 8 5000 0.005 1.060045
2.50E-06 12656 4 8 5000 0.005 2.159957
2.50E-06 13000 4 8 5000 0.005 2.218667

Figure 6 shows the eccentricity ratio € as a function of the Sommerfeld number.
Eccentricity ratio is defined

e=— (14)

where e is eccentricity and C, is assembly clearance. Figure 7 shows the attitude angle as a
function of the Sommerfeld number. Figures 8 to 11 shows the dimensionless stiffness
coefficients and Figures 12 to 15 dimensionless damping coefficients as a function of the
Sommerfeld number.
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7. CONCLUSION

The dynamic characteristics of the hydrodynamic journal bearings were studied by using
the computer program COJOUR and the tabulated values puplished by JSME. The example
shows that it is possible to get comparable values for stiffness and damping coefficients
with a computer program and tables. The analysis of the fluid journal bearing is a
complicated problem and there is a lot of parameters which have to be determined. Thus it
is almost impossible to get exactly true dynamic parameters for a bearing by theoretical
analysis. In the worst case the theoretical analysis does not give more than the magnitude
of the dynamic coefficient. It is essential to carry out sensitivity analyses for parameters
before obtaining the stiffness and the damping coefficients for any rotor analysis.
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ABSTRACT

In thermal power plants the main machines are turbines and
generators, whose speeds of rotation are from 25 Hz up to about
250 Hz. A shaft-line may contain many rotors which are coupled
together though designed separately. The line is supported by a
thin oil film of journal bearings whose pedestals transmit
bearing loads to the machine foundation. In this study, the
dynamics of the shaft line is analyzed by taking into account
the whole support system. The basic differences between the
usual beam theory and the theory used in linear rotor dynamics
have also been derived. Applications relate to the shaft-line
of a turbine having a capacity of about 100 MW. Comparisons
have been made between numerical and measured values.

1. XINEMATICS OF ROTOR ELEMENT

In studying the kinematics of a flexible rotor, three rotations
in respect of different coordinate systems have to be
considered. Two of the rotations relate to the bending of the
shaft, whereas the third one is the spin of the shaft around
its longitudinal axis. Without simplifications these rotations
lead to quite complicated equations as shown in [1] and [2]. In
analyzing complete shafts, simplifications are made and two
coordinate systems, namely fixed frame and rotating frame, are
used.

In Fig. 1 reference frames needed for describing the motion of
a beam cross-section are given. XYZ is a fixed frame whose X-
axis coincide with the original undeformed rotor axis. The
rotation & about Z defines a frame X,Y,Z, rotation B about Y
defines a frame X Yazﬂ, and finally a cross-section spin, s,
about X, -axis, de%Enes the frame X,g¥,4Zpg- The orientation of
a beam cross-section is defined by gge guggr angles, &, p and

The next step is to determine angular velocities for a cross-
section in order to calculate the kinetic energy of the beam
element. The angular,évelocity {@} is obtained by summing up the
velocities &, P and ¢:
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Xo ap Reference frames

Figure 1. The reference coordinate systems used.

?‘)-'_'(ololl)ma"'(olllo)xgnzb+(ll°lo)npnﬂzp$ [1]

By expressing the direction vectors of rqtations in the frame
xabYa¢Zﬂ¢ the angular velocity may be written

-ginp 1 o0 &
@={cosPsing 0 cosd ¢ [2]
cosfcos¢ 0 -sing p

The assumption that the mass centre coincides with the elastic
centreline of the rotor element leads to Eg. (3) for the
kinetic energy T

rot
I, 0 0
Tror:""% [@]70 I; 0|[w] [3]
0 0 I,

where I. and Ij are polar and diametral mass inertia,
respectgvely ghe substitution of Eqg. (2) in Eqg. (3) yields the
following expression

Tpor=I, [&281n2B-2&dsinP+¢?] +I,[k2cos?p +H?] (4]

If the angles @ and P are small, we may write

Tzot=Ip[_2¢$p+$Z] +Id[¢2+92] [5]

Assuming a constant spin speed, @,and applylng Hamilton's
principle it can be seen that Eg. (5) gives two terms to the
equilibrium equation of the beam element. One of the terms
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M=I,[&+p] [6]

relates to the mass rotation of the beam element. The other
describes the gyroscopic effect coupling the spin speed to the

angular displacements
0 -INf&
ra o ][ﬁ] [7]
P

The actual finite element matrices are obtained similarly by
describing angular velocities as their nodal point values and
shape functions. Eg. (7) shows that the gyroscopic effect is
dependent on the spin speed. A consequence is complex
eigenvalues which must be calculated separately for each spin
speed. However, in the case of a pure gyroscopic force, the
real parts of eigenvalues are zero since the force is
conservative. Complete derivations of the finite beam element
used in practical rotor dynamics are presented, for example, in
[3] and [4]. A good general overview is given in Reference [5]

G.=

2. MODELLING OF BEARINGS

The other typical feature of rotor dynamics lies in the
modelling of the bearings supporting the shaft. Large rotors
are carried by journal bearings where loads are transmitted
from the shaft to bearing pedestals by the pressure of a thin
0il film. The oil film has two characteristic properties,
namely stiffness and damping, which are modelled by separate
spring and damping elements. These elements are highly
frequency dependent having different values in vertical and
horizontal directions accompanied by significant off-diagonal
terms. The approach in modelling is based on the linearization
of the o0il film behaviour and is only valid for small movements
around the equilibrium position. The modelling technique used
has been concretized by Fig. 2.

Journal bearing Mode!
z
bearing load
bearing shell
shaft
v’/ shatt or
journal
Y
o 3

Figure 2. The modelling of a thin oil f£ilm in journal bearings.

The oil film is another frequency dependent factor leading to
complex eigenvalues. In design, one indicator for the
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instability is that the system has eigenvalues with positive
real parts.

3. NUMERICAL APPLICATION

The example presented relates to the steam turbine whose
foundation is a massive concrete plate resting on helical steel
springs. The total mass carried by the springs is 792 Mg of_
which the mass of the machines, a turbine and a generator, 1is
322 Mg. Thus, the mass of the concrete foundation is 470 Mg.
The average height of the foundation is 1.9 m. Its length is
16.5 m and width 8 m. The generator has an electric power of
106 MW, and a rotor whose mass is 27.3 Mg. Thus, the mass of
the turbine rotor is 23.94 Mg. MSC/NASTRAN was used in the
finite element calculations.

In the first phase, different techniques to model the
foundation were compared. The practice being used is to
describe the plate by using thick shell elements. The accuracy
of this method was tested by a fully three-dimensional model
where several layers of elements were in the thickness
direction. In these analyses the shaft-line was included only
as mass. The comparison of the foundation models was based on
their eigenfrequencies. The foundation models compared have
been presented in Fig. 3.

Figure 3. Compared finite element models.

Since the foundation is on the springs, there are six rigid
body modes whose frequencies are between 2 and 6 Hz. The shell
model gave 12.9 Hz for the first bending mode of the
foundation, and 13.0 Hz was obtained by the three-dimensional
model. The coincidence was not generally quite so complete, but
the results obtained by different models were very similar.
Some local modes given by a shell model disappeared when the
thickness of the structure was described more accurately. The
important fact was that the frequency contents obtained for the
foundation by these two models were almost identical. The
conclusion is that the model based on shell elements can be
used for dynamic analyses of the foundation.

Next the shaft line was modelled discretizing it stage by
stage. A total of 67 beam elements was used for the turbine
rotor. The generator rotor needed 34 elements. The mass was
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modelled both as part of each element and partly by 48 separate
additional masses caused by blades. The lengths of the turbine
and generator shafts were about 7.3 m and 9.2 m, respectively.

The bearing pedestals were assumed to be rigid, but the oil
films supporting the shaft were described by spring and damping
elements whose values were frequency dependent. At 50 Hz, for
example, a vertical spring constant was 1.5 GN/m and a
horizontal one 0.2 GN/m for the turbine front bearing. The
relating damping values were 5.3 MNs/m and 0.2 MNs/m. The off-
diagonal terms of springs and damping elements were unequal
having values of 0.4 GN/m, -0.2 GN/m, -0.03 MNs/m and 0.2 MNs/m
for the turbine front bearing at 50 Hz.

As mentioned earlier, the eigenvalues of shaft-line are complex
valued. The first results are given for undamped system. In
Table 1, the results obtained by analyzing the shaft-line on
0il films have been represented together with the model where
the foundation and its supporting springs are also taken into
account. The eigenvalues are numbered according to the combined

model.

Table 1. Eigenvalues [Hz] for undamped system.

EIGENVALUE | COMBINED FOUNDATION | SHAFT LINE
MODEL WITHOUT MODEL
SHAFT
17.4 12.9 19.9
21.3 15.2
22.8 19.8
10 25.8 20.9 25.2
11 27.1 21.1
12 27.3 22.5 26.8
13 29.4 31.7 28.8
14 35.6 32.7
15 37.9 33.1 37.9
16 43.3 34.2
17 46.5 35.7
18 47.8 45.0
19 56.4 46.5

All the eigenmodes calculated by the shaft model were also
found in the combined model. There are clear differences
bgtween the results of the foundation model where the shaft
line was included only as a mass, and those of the combined
model. From the practical point of view it is useful to notice
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that even the first bending mode of the foundation, mode number
7, disappeared in the combined model, where the 7th mode
relates mainly to the bending of the shaft-line.

Complex eigenvalues were calculated and measured at a frequency
of 50 Hz. Table 2 shows the results. Generally, the measured
values correspond quite well with the calculated ones. The
combined model has more eigenvalues than observed in the
measurements. The eigenmodes in which the shaft-line has a
dominating role have been observed in practice since the
movements relating to these modes are easily identified at the
bearings. Differences are clear in the numeric values between
the calculated and measured damping ratios. One explanation
could be that it is difficult to measure modes with large
damping in complicated systems.

Table 2. Measured and calculated eigenvalues at the operation
frequency of 50 Hz.

FREQUENCY [Hz] DAMPING RATIO[%]
COMBINED | MEASURED | SHAFT COMBINED | MEASURED | SHAFT
MODEL MODEL MODEL MODEL
7 18.0 16.5- 18.0 23 5.1-9.3 19
17.8
8 21.3 21.3 4.2 3.3-4.9
9 22.8
10 | 25.4 25.7 23.6 5.7 3.2-5.1 5.7
11 | 27.2 26.8- 0.6 -
28.5
12 | 27.8 27.7 14.5 20
13 | 29.6 29.5- 29.2 2.7 3.5-4.6 6.3
29.8
14 | 35.9 9.3
15 | 37.8 37.8- 37.0 50 - 57
38.7»
16 | 43.0 45.5 0.8 570
17 | 46.5
18 | 48.8
19 | 56.5 54.7 55.9 0.3 =

The final phase of the analyses was to study the behaviour of
the shaft line for assumed mass unbalance load. The amplitude
of the load was determined by Eg. [8] where m is the mass of
the rotor and Q the spin speed of the rotor.
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_ 0.0025

The excitation forces calculated were put in the centre of the
spans of both rotors. In Fig. 4 and 5 the horizonta} ve}oc1ty
amplitudes have been presented as a function of excitation
frequency in the turbine front bearing and in the centre of the
span of the generator rotor. These figures demonstrate the
influence of the foundation on the dynamic behaviour of the
shaft-line.
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Fig. 4. The velocity amplitude in the horizontal direction at
the turbine front bearing.
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Fig. 5. The velocity amplitude in the horizontal direction at
the centre of the span in the generator rotor.

Table 3 indicates calculated and measured vibration amplitudes
in bearings. As it can be seen, there are differences between
measurements and calculations, but the order of magnitude is
the same. The result was expected since the imbalance is more
or less stochastically distributed over the length of the
rotors and not concentrated at the centre of the span.
Concerning the measurements an interesting point was that the
50 Hz component was not dominating. High amplitudes were also
measured at higher harmonics indicating partly roughness of
surface and other geometrical faults.
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Table 3. Measured and calculated shaft vibrations for the
imbalance load at 50 Hz.

BEARING CALCULATED MEASURED
Turbine, front mm/s 2.64 4.61
Turbine, rear mm/s 3.94 3.54
Generator, front mm/s | 1.84 1.87
Generator, rear mm/s 1.25 2.5

4. CONCLUSION

The general theory of rotor dynamics is complicated. However,
if simplified assumptions are made, standard finite element
programs can be utilized by adding the effect of mass rotations
and gyroscopic forces into the programs.

It is obvious that concrete plates on which the turbines and
generators rest can be modelled by using thick shell elements
without any clear effect on the final results.

It seems to be important also to take into account the
foundation when the dynamics of the coupled shaft-lines of
power machines are studied. The measured and calculated
eigenfrequencies coincide well, but only the order of magnitude
is the same between measured and calculated vibration
amplitudes.
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SEISMIC DESIGN AND ANALYSIS METHODS

PENTTI VARPASUO
IVO INTERNATIONAL OY
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ABSTRACT

Seismic load is in many areas of the world the most important loading situation from the
point of view of structural strength.

In this study there are three areas of the center of gravity: 1) Random vibrations; 2) Soil-
structure interaction and 3) The methods for determining structural response.

The solution of random vibration problems is clarified with the aid of applications in this
study and from the point of view of mathematical treatment and mathematical formulations

it is deemed sufficient to give the relevant sources.

In the soil-structure interaction analysis the focus has been the significance of frequency
dependent impedance functions.

From the methods to determine the structural response the following four were tested: 1) The
time history method; 2) The complex frequency-response method; 3) Response spectrum
method and 4) The equivalent static force method. The time history method was used as
reference in the evaluations of accuracy.

1. RANDOM VIBRATION APPROACH FOR EARTH QUAKE EXCITATION
RESPONSE

The usual power spectrum expression for earth quake excitation is (Filtered With Noise)
FWN expression. The uniformly modulated evolutionary excitation is obtained when the
stationary FWN is multiplied by the time dependent modulation function. In this chapter of
the study we investigate the response of the example structure given in Figure 1 for uniformly
modulated FWN excitation.

The structural response is determined for uniformly modulated FWN excitation. The structural
response is determined in terms of quadratic mean or variance for the response process. The
variance functions are calculated to the horizontal response of points M and F which
correspond to second and fifth degree of freedom of the finite element model of the structure.
The variance function is calculated in 81 points over the time interval of 20 seconds. Only



152

the contribution of three lowest modes has been taken into account in the response
calculations. The response calculations were carried out with the aid of STOCAL-program
[1) for random vibration analysis of structures. The variance functions for degrees of
freedom 2 and 5 are depicted in Figure 2. The square root of the variance function describes
the amplitude of the oscillation above and below the zero mean value.
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Figure 1. The example structure investigated for random vibration excitation
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Figure 2. Variance functions of displacement responses of DOF 2 and DOF 5 of the example
structure



153

2. SOIL-STRUCTURE INTERACTION (SSI) FOR THE EARTH QUAKE
EXCITATION

Soil-structure interaction effect will be illustrated with the aid of an application example
which describes the seismic response of the reactor building of the nuclear power plant. The
foundation slab of the reactor building is embedded in the layered soil and the seismic
excitation is determined as the motion of the free—field. The geometry of the structural model

of the reactor building is depicted in Figure 3.
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Note: Kh = Horlzontal stiffnass ; ch = Horizontel radiation demper;

Kr = Rocking stiffness ; C, = Rocking rediation damper;

K o ®Embedment stiffness; c ¢ ®Embedmant demper ;

Figure 3. The soil-structure interaction model for reactor building of the nuclear power plant.

The free—field acceleration time history consistent with the USNRC 1.60 Reg.Guide [2]
spectrum is the loading of the model. The SSI-analysis takes place in the frequency domain
and the acceleration time history is Fourier transformed before the analysis. The result of the
SSI-analysis are the acceleration time histories and in—structure response spectra in the nodal
points specified by the user. The node where the response of the structure is plotted is the
node 5 in this example. In this node the horizontal response spectrum with the 5 % damping
ration is evaluated. The floor response spectra were calculated with the aid of frequency
independent soil stiffness and damping constants and with the aid of the Beredugo-Novak-
type [3] frequency dependent impedance functions. The soil structure interaction analysis
was carried out using the CARES-program [3]. The results for these SSI-models are
depicted in the same figure in order to facilitate the comparison of the results. In Figure 4
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the horizontal responsc spectra are plotted for the node 5. The response spectra values are
given as fractions of gravitational acceleration (g). The zero period acceleration of the input
acceleration time history was 0.2 g. It can be observed from the Figure 4 that the use of
frequency dependent impedance functions reduces the response. The difference in spectral

ordinates in node 5 is about 25 %.
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Figure 4. Acceleration response in node 5. Top figure: Frequency independent stiffness and
damping parameters; Bottom figure: Beredugo-Novak impedance functions

3. THE DETERMINATION OF THE STRUCTURAL RESPONSE FOR EARTH
QUAKE EXCITATION

The seismic analysis is usually carried out for three mutually perpendicular components of
motion. Two of these components are horizontal and one is vertical. The directions of the
motions are usually assumed to coincide with the principal axes of the building. The response
of the multidegree of freedom system when excited by seismic load can be expressed with the
aid of the following differential equation

M EX+ {0+ [ &+ K X} = {0} ¢))

where [M] = the mass matrix (n x n)
[C] = the damping matrix (n x n)
[K] = the stiffness matrix (n x n)
{X} = the relative displacement vector (n x 1)
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{):(} = the relative velocity vector (n x 1)
{)"(} = the relative acceleration vector (n x 1)
{0} = the ground acceleration vector

Equation (1) can be solved using the time-history method based on the mode superposition.
In mode superposition method the linear equation system (1) is decoupled using the transform
to the so called generalized coordinates. The decoupled equations are then solved

independently of each other.

In the response spectrum method the generalized response in each mode is determined from
the expression

Y,(max) = I}(Sy/w; ) @)

where S,; is the spectral acceleration corresponding to the frequency ; and T is the modal
participation factor for mode j [4]. There are many different methods to combine the

contributions of the individual modes.

For details of the complex frequency-response method we refer to [4]. As an application
example we investigate the scismic response of VVER-91 type reactor building and its outer
containment. The response was determined using four above mentioned methods. The profiles
of the horizontal acceleration determined as described above are given in Figure 5.
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Figure 5. VVER-91 outer containment building
The distributions of horizontal acceleration
The top figure: Time-history method
The middle figure: Complex frequency-response method
The bottom figure: Response spectrum method

4. CONCLUSION

The soil structure interaction shall be always taken into account when the buildings are
founded on soft soil.

In judging of the methods for determination of structural response the time-history method
and the complex frequency response method seem to give very similar results. The response
spectrum method gives results that do not agree perfectly with the results of two previous
methods.
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APPLICATION OF THE FINITE ELEMENT METHOD
TO THE STEFAN PROBLEM IN 1-D
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ABSTRACT

The classical Stefan problem, i.e. the two phase moving-boundary problem, is
considered. A simple version of the two phase Stefan problem is the melting
(solidification) of a sheet of ice (water). The material domain is at some time
divided into two phases (solid/liquid) by a moving interface (discontinuousity
surface) where the phase changes are assumed to occur. Changes in volume are
neglected, so the density is the same in both phases. Possible convection in the
liquid phase are also neglegted. The position of the discontinuousity surface is
unknown and has to be solved together with the heat conduction problem.

This problem is solved using a FE-formulation where the space is discretized using
¢ fized mesh with one ’travelling’ node to track the position of moving boundary.
The global semi-discrete system of ODE together with the evolution equation of the
interface are integrated using a backward-Euler scheme associated to a Picard-type
iteration (a direct interation) at each time step to solve the nonlinear system of
equations.

1. INTRODUCTION

The basic idea in the problem is to solve the temperature field T;(z,t) in two
phases i = 1 and 2 and the position of the interface S(t). The field equations
are the diffusion equation for both phases with one constraint equation for the
temperature, phase changes are assumed to happen at fixed constant temperature
T*, and a jump condition for the energy equation which gives us the evolution
equation of the interface. These equations are complemented with the appropriate
initial-boundary conditions to get a well-posed problem.
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The Stefan problem [1] is initially semi-discretized using the standard Galerkin
finite element method only with the standard 2-node linear element for the whole
domain using a fixed FE-mesh. These elements are called here old elements.
Assuming that at some time ¢; > t* the inteface S(t) is found to reside somewhere
in the old element number i. So, a simple method is used to treat and track
the unknown moving boundary by introducing a ’special’ moving 3-node linear
element to which type the i:th element is immediately changed. This macro-
element is obtained by assembling two 2-node linear elements (fig. 2). The position
of the internal (third one) coincides with the moving unknown boundary. Material
properties of the two phases contained by the element may be different. When the
front attains at some future time ¢; > ¢; an other old element, let say, number
i + 2 this last one is replaced by the new 3-node macro-element and the previous
macro-element ¢ is then reseted to the old one. In this way we obtain a ’fixed’
FE-mesh with only one 'traveling’ node to track the exact position of the moving
boundary. The global DOF-enumeration is done in such a way that this moving
node is given the last ordinal number N + 1. This allows us to eliminate the DOF
number N +1 using the constraint equation for the fixed phase change temperature
in an simple way. This elimination procedure gives arise to banded symmetrical
matrices with a minimal half band width.

The time-integration of the obtained global semi-discrete (ODE) equation is
performed using a backward-Euler method associed with a Picard-type iteration
at each time step to solve the resulting system of coupled nonlinear equations.
Beside the usual possible material nonlinearity an additional nonlinearity due to
the moving boundary is present.

One calculation example compared to its éna.lytica.l solution is presented.

2. MATHEMATICAL FORMULATION

Let the material domain at some instant ¢ € [t*,#**] be devided into two phases
(in general there can be more than two phases). The position of the interface(s) is
(are) unknown. The solid phase occupes the material domain Q; =]0, S(¢)~[ and
the liquid phase repectively Qz =]S¥(t),![. The time interval(s) [t*,#**] is (are)
the one(s) when phase changes take part. Qutside this interval , i.e the case when
only one phase is present (no phase changes) is treated as a simple heat conduction
problem.

The field equations (1 - 7) are written for the case when the two phases are present.
The time when this begins to happen for the first time is choosen as the origin
t* = 0. Initial conditions are either given explicitely at time t* = 0 (when the
problem is at the begining already a Stefan one) or they are the solution of the
one phase heat conduction problem (1 - 4) prior to phase changes (t < t* or
¢t > t**). After times t > 0 the jump condition (6) and the constraint equation (5)
are taken into account. The equations are written for the case when t € [t*,1**]
[1] (see fig. 1)
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FIGURE 1. Stefan problem in 1-D.

pC'_BT.'g,t) ( 'aT(:c t)) —pri, z€Q/i=12 t>0, (1)
T,'(m,O) =Tw(z), z€Qi t=0, (2)
Ti(0,t) = Tu(t), t=0, (3)
gn(l,t) = gn2(t), t20, (4)
Ty=T,=T", z=85(), t>0, (5)

Ty (z,t Ty (z,t ds(t
A2_23(§—)lx=s+(t) - A11(—:1:)|::—S = pL ( )v t>0, (6)
5(0)=S, (7

where the basic unknowns is the triplet (T1(z,t), T2(z,t), S()).

The Fourier heat conduction constitutive relation has already been included into
equation (1). The latent heat L is negative for solidification and positive for
melting. The initial condition (2) and the boundary conditions (3) and (4) given
above are taken as examples. There can be other type of boundary conditions
than those specified in (3) and (4).
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FIGURE 2. two- and three-nodes elements.

The Stefan problem is nonlinear even thought when the material properties are
not depending on the temperature because of the coupling of eq. (1) and (6) via
the unknown position of the moving boundary S(t).

3. SEMI-DISCRETIZATION OF THE FIELD EQUATIONS

The semi-discretization of the diffusion equation (1-2) is performed using the
standard Galerkin method with C° shape functions. The space is discretized
into N — 1 elements with a FE-mesh with 2- or 3-node elements (see fig. 2).
The elementary expression of the temperature field is written as Te(z,t) =

5, Ni(@)TE(2).

Suppose that at the current time ¢ phase changes occur somewhere inside the
3-node element number i at node N + 1, i.e of coordinate zy4; = S(t). The
spatial discretization is achieved by using 2-node linear elements for regions where
phase changes do not occur (elements 1 ... (i—1),(:+1) .. (N —1)). The
nodes1 .. N arefixed. The two external nodes of the i:th element (with global
number 7 and (i 4 1)) are fixed but the internal node (with the last global number
(N + 1)) coincides with the position of the interface and moves with it. This
internal node divides the macro-element into two phases with different material
properties. When at some future time #' this interface moves to an other element
(it can also move but still stay in the same element for a while), let say, element
number (7 + 1) the 3-node element i is reseted to a 2-node element which nodes
are the two external nodes of the 3-node element. Then the new element (i+4+1)
is changed to a 3-node element and so on. In this way a fixed FE-mesh with one
moving node is obtained.
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The moving node is given the last global number N +1. This allow us to get "well’
structered global matrices with minimal half band width (= 2) and to eliminate
the DOF T4, from the global discrete diffusion equation using the constraint
equation Tn41(t) = T* Vt. Before the elimination of the constraint equation
(5) elimination the semi-discrete diffusion equation, a coupled nonlinear system of
ODE is obtained for the case where the interface S(t) in the element number
;. The N + 1:th equation which is here obtained by automatical assembling
of the elementary contributions is not valid and have to be replaced by the
constraint equation Ty4+1(t) = T*(= Tn+1(t) = 0). In this way a reduced system
(8) is obtained with N unknowns DOF, the vector of the nodal temperatures
T(t) = (Ti(t) Ta(t) ... Tn(t) )7 and of the interface S(t). The next coupled,
reduced, semi-discrete initial-boundary value problem (nonlinear ODE-system) (8)
and (9)

C(S(t)T + K(S(t))T +£*(S(t)) =0, t>0
T(0)=To, t=0

Ty (z,t oT (z,t
A2_269:,:_)|:r,'=S'+(t) - Al ‘16(—x')‘|:=

5(0)=S, t=0

(8)

iy =pL—2=, t>0

is then obtained and time-integrated by a Backward-Euler scheme associated to a
Picard iteration to solve the resulting nonlinear system of equations in which the
essential boundary conditions are taken into account. In case when there is no
phase changes the problem is a pure heat conduction one.

The global equation (8) is assembled from the contributions of the elementary
matrices, capacitance C¢, conductivity K¢ and force vector f°, respectively, In the
force vector the boundary term is present if the current element belongs to the
boundary with given natural boundary condition.

In the case of the 3-node element the elementary matrices and vectors depend
explicitely on the unknown position of the moving boundary S(t) .The global
equation (8) is assembled from the contributions of the elementary matrices,
capacitance C¢, conductivity K¢ and force vector f¢, respectively, In the force
vector the boundary term is present if the current element belongs to the boundary
with given natural boundary condition.

In the case of the 3-node element the elementary matrices and vectors depend
explicitely on the unknown position of the moving boundary .S ().

The global matrices in (8) are assembled from their respective elementary matrices
using standard FE-assembling procedure. These matrices can also depend on the
temperature. Their dependency on S(t) is here only emphased. The nonlinearity
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due to S(t) is localized. These matrices are band symmetric. They are the
submatrices obtained from the global matrices by omitting the N + 1:th rows and
columns. The intermidiary force vector f is a subvector obtained by ommiting
the N + 1:th row. The constraint is in fact (re)moved into the global reduced
force vector £*(S(t)) for the case when the phase change front is somewhere in
the element number :. This reduced force vector is obtained by ’transfering’ the
products of the N + 1:th column vectors of the non-reduced capacitancy C and
conductivity K matrices with the N + 1:th component of the vectors T(t) and
T(t), respectively, i.e, Tnv41(t)(= 0) and TN.H(t)( T*) of the respectives nodal
value vectors. The size of the reduced matrices is N x NV and of the reduced vectors
is N x 1.

4. TIME-INTEGRATION OF THE ODE-SYSTEM

The time-integration of initial-value problem, equations (8) and (9), is performed
using a backward-Euler scheme giving the next coupled nonlinear system of
equations of N + 1 unknowns

(C(5(tn)) + AtnK(S5(tn))) T(tn) = —Ataf*(5(ta)) + C(5(tn))T(tn-1)  (10)

Atn [ Topi(ta)=T* . T*—Ti(ts)
S(tn) = S(ta—1) + —7 (*2 @G~ e ) ()

to be solved at each time ¢, = t,_1 + At, > 0. This is done at each time t,, using
a Picard-type iteration scheme starting from known initial conditions. Beginning
from a known value (known from the previous Picard-iteration number j) of the
front at time step t, the position of the front S = S7(t,), the temperatures T is
solved from equation (11) by a Gaussian elimination. Then from equation (10) one
gets an improved estimate SJ*! at the j + 1:th Picard iteration. This iteration
procedure is repeated for t, "uantill convergence is reached (S¥ — S(¢,) or/and

Tk — T(tn), ie. | Ti — T4 = 0 or/and |SiH! — Si| — 0.

After this we move to the next time step t,4+1 = t, + At, and repeat the
Picard-iteration of equations (11) and (10) with starting value S(t1,,) = S(tn)
and so on. In this way a solution (T(t),S(t)) is constructed. Using equation
T(z,t) = N(z)T(t) all the temperature field is obtained.

If, for instance for ¢t < 0, we have only a pure heat conduction at the beginning
of the problem the time t = 0 for which the phase changes begin for the first
time at the node i is found from the condition that the T; = T*. Then in the
first iteration of the Picard-iteration j = 1 at the time t; the equation (11) 1s
integrated explicitely and the jump of the normal of the heat fluxes over the
interface (the second term inside the parentheses in eq. (11)) is calculated at ¢ = 0

as [[gn(tn)]) = 22 (Ti41(ta=1) = T*). For j > 1 the time integration is continued
implicitely.
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FIGURE §. Finite element mesh used in calculations.

5. NUMERICAL EXAMPLE

An example presented in [1], chapter 11.2 pp. 283 - 286 is investigated. The
example consists of the freezing (solidification) for the half space z > 0 initiallly
liquid at constant temperature To(z) with surface + = 0 maintained temperature
at Ty (t) < T* =0 for t > 0 . The analytical solution presented for the front is

S(t) = 2uv/k1t

with k; = Ai/pci the thermal diffusivity of the phase i. The solid phase is
idendified by the subscript 1 and the liquid one by 2. The dimensionless numerical
constant g = 0.056 in our case of data (all from [1]). The intial temperature is
To(z) =T* =0 °C. The boundary condition at z =0 is Ti(t) = -1 °C. The
"‘boundary condition’ at infinity T(z,t) — T** with z — oco. The latent heat
of solidification of ice L = —308.15kJ/kg. The thermophysical data used for the
water and ice are shown in table 1.

TABLE 1. Thermophysical properties of ice and water [1].

Material name A P ¢ K
No (W/mK) | (kg/m®) | (J/kgK) (m?/s)
1 Ice 2.219 1000 1930.1 1.148 x10~°
Water 0.603 1000 4186.8 1.144 x1077

The FE-mesh is shown in fig. 3. Six 2-node elements are initially used. The time
steps are respectively 0.1s,0.05s and 0.01s.

In the numerical calculations the initial temperature Ty(z) = 40.01 °C which is
near the freezing point 7* = 0 °C. The boundary condition at z = 0 is given
‘gradually’. At t = 0.1s we have Ty(t*) = +0.01 °C and grows linearly to the
value Ty (t) = —1 °C at ¢t = 0.1s where it is keeped.
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FIGURE 4. Numerical and analytical solutions S(t)

In fig. 4 the analytical solution and the numerical (for different length of the time
steps At, ) obtained are shown. It is seen that there convergence to the analytical
solution as the time step is reduced.

ACKNOWLEDGMENTS

The author wish to thank Juhani Pitkiranta (TKK/ Mat) for fruitful discussions
and Reijo Kouhia (TKK/Rak) for suggestions during the writing process.

REFERENCES

[1] H. S. Carslaw and J. C. Jaeger. Conduction of heat in solids. Oxford 1959,
Oxford University Press. pp. 282-296.



167
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ABSTRACT

A space-time finite element method for second order hyperbolic problems is proposed. The
Galerkin type of formulation makes use of weakly enforced initial conditions. No tunable
problem dependent parameters or auxiliary functions are needed. The method applies well to
continuum dynamics as the numerous cases arising from different kinematical assumptions
and stress tensor expressions can be handled on the same footing. Numerical results are used
to illustrate the convergence and stability properties in simple 1D and 2D cases.

1. INTRODUCTION

When solving hyperbolic second order problems describing elastic vibrations, one has to rely
on numerical approaches, in particular, when the problem is non-linear or/and the solution do-
main geometry is not simple. The direct simulation may also be competitive on simple geom-
etries when, say, the exact solution is not smooth and a large number of Fourier-series terms
is needed to get an accurate enough representation.

In a conventional numerical approach the original problem is first transformed to a set
of ordinary differential equations using for example the finite element method in the spatial
domain only. Then the remaining initial value problem is handled separately. In the space-
time finite element method no such difference is made between the spatial and temporal coor-
dinates and the time-dependent problems are solved in the same way as the stationary ones.
The only exception is that the same receipt is applied in a stepwise manner. The space-time
solution method for parabolic problems —the time-discontinuous Galerkin method- is known
to possess very good properties [3]. In the second order hyperbolic case it is not so clear,
however, how to write a weak or residual formulation combining simplicity, stability and ac-
curacy in a similar way (for some suggestions see [1] and [2]).

A formulation having the wanted properties to some extent is proposed here. The meth-
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od can be viewed as a standard Galerkin one making use of weakly enforced initial conditions
for the unknown functions and their time derivatives. It is a straightforward extension of the
one used for ODE:s in [4]. In this much simpler case it is relatively easy to show that the sug-
gested way to satisfy the initial conditions gives a method having all the properties attributed
to the discontinuous Galerkin method for the first order ODE:s [5]. Due to the preliminary na-
ture of this presentation no precise results for a given type of problem are given but the prop-
erties are illustrated by numerical experiments.

1.1 Elastodynamic problem. Figure 1(a) shows the solution domain in space and the coordi-
nate system used. The Cartesian X,Y,Z system (Eulerian) is assumed to be at rest. The x, y, z-
system (Lagrangean) is body fixed. In principle the equations of motion can be expressed in
either one of the systems and it depends on the setting which one is more convenient. To keep
things simple the Lagrangean approach, where the solution domain can be taken to be pris-
matic in space-time, is adopted here.

t
Y ' 2Q..
Qe Q oQk
Q.
Z X X
(a) (b)

FIGURE 1. (a) Coordinate systems. (b) Solution domain in one-dimensional case.

The governing equation system for the motion of the body, i.e. the displacement field
u(x,z), is

Cji,j tPfi—PUip=0 Q
w—; =0 0Q_,

Uiy _ai,l =0 oQ_, (1)
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ojnj—h=0 o0Qy

where i,j € {x,y,2}, P is density, G; the stress tensor and the solution domain Q include
both temporal and spatial domains as illustrated in Figure 1(b). The second and third equa-
tions on 9Q_ are the initial conditions. The subscripts g and h refer to the boundary condi-
tions on the boundary 02, L dQ, fixing either the value of displacement or traction.

Besides equations (1), a constitutive equation relating the stress tensor to the displace-
ment field is needed. The relationship depends on the kinematical assumptions about the dis-
placement field as well as the material properties of the body. At this phase the exact form is,
however, immaterial.

2. SOLUTION METHOD

In space-time solution methods the domain is divided into, what are called, time-slabs. A typi-
cal one with related notations is illustrated in Figure1(b). The idea is to concentrate on one
time-slab at a time and determine the solution in the whole domain in a step-by step manner.
Each step is carried out with the same receipt using always the obtained solution as new ini-
tial condition for the next time-slab. Consequently, it is enough to give the weak formulation
for a typical slab only. The problem is to find such u—ge V that

a(v,u) = b(v) )

forall veV, where V is a suitably chosen space of functions ( i ,; ; .1, are squarely inte-
grable in each time-slab, a proper subset will be given later). The left- and righthand side ex-
pressions are

a(v, ll) = JQ (vi'jo,-j - v,-’,pu,-', )dQ - J.aQ_ (vi.l pu,)daQ + -[aﬂ+ (v,- pu,-',)dBQ .
(3)

b(v)= JQ (vif;)dQ+ IaQ_ (vi PR = Vi P ) A2+ -[aQ,, (vik;)doQ .

Integration by parts —assuming that the functions are smooth enough— gives clearly the
original equation system. However (2) and (3) is meaningful under weaker continuity as-
sumptions than (1) and serves well as a starting point for a numerical solution method. Simi-
lar approach is adopted for example in [1], [2], where the second equation (1) is included in
the weak formulation by using the strain energy inner product. It has the obvious drawback
that the rigid body part of the motion is not included without difficulties. In (3) the initial con-
ditions are associated with the inertia term which is more correct from the physical point of
view. It is easy to see that the extreme cases when either elastic or inertial effects vanish are
handled correctly by (3). In the former case one obtains the standard formulation called, for
example, the principle of virtual work.

2.1 About implementation. In practice it is not convenient to use totally unstructured space-
time meshes as the initial values needed in a typical time-slab are obtained from the previous



170

slab. Thus one has to work simultaneously with two time-slabs, which makes the overall solu-
tion procedure quite complicated. Also there are startup problems due to the form of the con-
ditions fixing the value of the function and its time derivative at the initial time level. To get
an easily programmable scheme, the approximation is written in the form of a series

wi(x,1) = zk u,(k)(x)(t -1 )k [k, (4)

where the unknown u,-(k):s are the k:th order time derivatives of the solution at £, . With form
(4) the initial values for the next time-step are directly available. The approximations for the
components u,-(k} are also chosen to be similar for practical reasons. The use of the approxi-
mation type (4) makes it easy to apply the method in the cases where one imposes kinematical
assumptions (or dimensional reduction) to get the beam, plate etc. models. Then the continu-
ity requirements in spatial direction for the approximation are too severe for totally unstruc-
tured space-time meshes,

The integrals over the spatial part of the domain in (3) are evaluated using a scheme
where the sampling points are selected to coincide with the nodal points of the approxima-
tions u,-(k) in each element. Thus a certain amount of underintegration is introduced consis-
tently in all the terms. The purpose is to add a small amount of numerical dissipation for the
cases, where the exact solution is not smooth and only convergence with respect to LQ(E)Q+)
norm (Il Il in the following) is to be expected. This is explained further in the next section.
The selection for the integration rule can also be motivated by simple particle analogy: The
elastic term can be regarded as bonding between the particles constituting a body. If it vanish-
es, there are no internal forces and each particle should move totally independently of the oth-
ers. It is easy to see that the underintegration used disconnects the particles associated with
nodes, and thus mimics the physically correct behavior.

3. NUMERICAL RESULTS

As noted above the way to enforce the initial conditions used in (3) gives a solution method
with properties similar to the time discontinuous Galerkin method for first order equations
[4], [5] when applied to ordinary differential equations. Some examples follow to show that
the proposed selection to satisfy the initial conditions works well also in the present case. As
the problems of practical interest tend to be rather complex, the numerical results are present-
ed only for simple 1D and 2D cases, where the exact solutions are known.

3.1 Vibration of an elastic bar. To study the properties of the solution method (convergence
and stability), the elastic bar problem was solved in the case where the external forces vanish,
the initial velocity is zero and the initial displacement proportional to the first harmonic (for
similar problem and numerical results see [1]). Unit values were specified for the length, area,
density and elastic modulus E. The only non-zero displacement component is Uy (x,1). Sub-
stitution of the stress-displacement relationship ©,, = Eu, , into (2) and (3) gives the weak
form
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fg (vvj,[Eu'Jr + v,,,pu) dxdt + ja Q. (v pu,—v, pu)dx = .[a ~ (v piL, — v, pﬁ)dx &)

where an additional integration by parts with respect to time is performed to show that the in-
ertia term gives only boundary contributions when the approximation is linear in time. The
form (5) is equivalent with (2) and (3) due to the restriction 4).

Figure 2 shows the error in the numerical solution as function of the spatial size of the
elements. The error measures used were llell, lle,land lle, Il at 0Q, and the time interval
studied was T € ]0, 4[. As it does not make much sense to study convergence with respect to
either element length k or time step At only, the selection Ar=0.4h was used throughout.
The bilinear space-time elements gave approximately the convergence rates K2, k% and h for
Nell, e, !l and lle, Il , respectively. Though the asymptotic behavior was obtained a little bit
later when compared to method with exactly evaluated integrals, the use of the underintegra-
tion seemed to not affect the results considerably. The biquadratic elements gave the conver-
gence rates about h4, k> and K? in the same order.

0 Bilinear 0 Biquadratic
-2.54 -5 4
0 2
é -5 -10 4
-y 3
3
-1.5 1 -15+
4
-10 | I UL -20 T I 1 1
55 -5-45 -4 -35-3-25-2 -55-5-45-4-35-3-25-2
Log(h)
FIGURE 2. Error as function of the mesh parameter. The exact solution is
u =sin(mx)cos(nt) x €[0,1], £20.

When the exact solution is not smooth, the convergence rate is dominated by the
smoothness of the exact solution rather than by the approximation order. In these cases spuri-
ous oscillations tend to appear near discontinuities. It is highly desirable that the spurious os-
cillations are localized and do not spoil the solution everywhere. To study the behavior quali-
tatively, two impact type problems with different smoothness in the exact solutions were
solved using biquadratics. The result in Figure 3(a) shows that no problems arise when the
exact solution has continuous first order derivatives. Then one can expect (viewing the figure
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above) convergence for Ile, Il which means in practice that no spurious oscillations arise.
However, when the first order derivatives are discontinuous, one cannot expect that lle . Il
stays more than bounded. The consequences can clearly be seen from Figure 3(b). At this
phase one should note that the elements used were squares in space-time. For other selections
the results for problem of Figure 3(b) are even worse.

Comparison shows that the method here does not localize the oscillations as well as the
method in [2] containing least-squares type of stabilizing terms with tunable parameters. On
the other hand it is quite clear that using terms that introduce numerical dissipation to damp
the spurious oscillations means increased numerical dissipation everywhere (at least if the
method is linear).

10 0 A
1\ :

-4

-6
-5 -8
-10 -10

(a) (b)
FIGURE 3. Numerical results for the elastic bar problem in the case of 100 biqua-
dratic element mesh. (a) Numerical solution for u, at t=19. The exact solution
at t=0isu= cos3[31t(x— 1/2-1t)] when 1/3<x-1/2-1t<2/3 otherwise u=0.
(b) Numerical solution for u, at t=0.3. The exact solution at r =0 is
Uy =10 (H[x -] -1) (Heaviside step) .

(=]

3.2 Vibration of a membrane. The second example describes vibration of a rectangular
membrane located in xy-plane. The only non-zero displacement component is u,(x,y,?).
Substitution of the stress-displacement relationship ( i € {x,y} ) Oj; = Nu, ; into equations (2)
and (3) gives in this case

IQ (v_,-Nu',- + v',,pu)dxdydt + Ja Q, (vpu,, -V, pu)dxdy = -[an_ (v P, ~v, pﬁ)dxdy > (6)

where N is a constant. The problem can be taken as a model for more complicated systems
describing the behavior of elastic waves in solids, propagation of sound etc. Both the density
and the quantity N are given unit values and the boundary conditions are of homogeneous
Neumann type, which means that the solution of the stationary problem is unique up to a con-
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stant only.
A highly desirable property of the solution method is that the components not represent-

able on the grid are damped out. Then, although the solution may be inaccurate, the overall
behavior related to the smooth components is retained. To study the numerical damping quali-
tatively the problem was solved with sinusoidally varying initial condition having three com-
ponents of different smoothness relative to the mesh. In all cases the initial conditions were
such that the average value of the exact solution is zero all the time. The elements used were
tri-linears. The results are shown in Figure 4 at =0 and r= 2 corresponding to 6 cycles of
the fastest component. The number of timesteps used was 100.

FIGURE 4. Numerical results on 20 x 20 element mesh. The exact solution is
u(x,y,t) = cos(nn(x — 1))cos(nr(y — 1))cos(w/§mtt) with n=2,4,6 corresponding to
the first, second and third column.

The figure shows that the components representable on the grid (loosely speaking) do not
show noticeable amplitude decay. In the last case the element size becomes comparable to the
wavelength, and the amplitude decay is fast. Similar behavior can be observed if the stepsize
is too large to catch the solution details in the temporal direction. Consequently as any solu-
tion can be taken to be a combination of the modes like in Figure 4, one may expect uncondi-
tional stability (in energy, say) in linear cases.

4. REMARKS

The formulation described makes it possible to use a simple time-step selection method based
on the jump of the solution between the time-slabs. The numerical solution has the convenient
property that the error at 9, is smaller than at 0Q_. Thus control over the jump at 0Q_ ie
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the initial condition residual gives also control over the local error at d€2,, which can not be
monitored directly.

In practice the use of high order approximation (quadratic etc.) in time is not tempting.
due to rapid increase in the problem size to be solved in each time-step. Even the method
using linear approximation in time leads to a two times larger equation system than the sta-
tionary problem. However, if one wants a method which works for example in the elastic bar
case with any E,p20 Ep # 0, the doubling of the problem size seems to be unavoidable.

The solution method can easily be extended to the cases where also first order time de-
rivative term is present by adding an initial condition contribution used in the time-discontin-
uous Galerkin method into equations (3) (see for example [3]). Then both parabolic and hy-
perbolic problems can be solved on the same footing.

The numerical results show that the proposed method works correctly in simple cases.
The numerical experiments do not, however, give any idea whether the use of the approxima-
tion type (4) is essential or whether the polynomials in time could be replaced for example by
another complete set. Clearly an explanation of the limitations and results obtained in the ex-
amples section would be needed.
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ABSTRACT

In this paper we discuss finite element analysis of plate structures using (stabilized) MITC
plate bending elements. We will briefly review the plate bending model and introduce the
MITC element family. After that, some numerical results are given for two benchmark
examples and for two more complicated engineering structures. The experience of using
these new elements in the SHIPFEM finite element program has been very encouraging.

1. INTRODUCTION

In VTT Manufacturing Technology (earlier in Ship Laboratory) the FEM has been applied
to analyze ship and other complicated structures from late 70’s. Along these calculations
a FE-analysis system called SHIPFEM has been developed.

Ships are large structures with very complex behaviour on many levels of hierarchy
which, in addition, are floating freely on water. Analyzing such structures is a quite
complicated task and the main motivation in developing SHIPFEM has been to make
these analyses faster, more flexible and reliable.

Both static and dynamic analyses can be made with SHIPFEM, but it has been
developed especially for dynamic analyses of ships. It contains analysis features like:
dynamic substructures [1], coupling of local and global behaviour [2], coupling of structure
and fluid [3], and infinite fluid elements [4]. The basic analysis features of the system have
remained about the same from the mid 80’s. Since that, however, most of the code has
been rewritten in order to utilize some new subsystems which have been included; the
error and memory handling routines and the database [5].

A ship, as well as many other engineering structures, is composed of stiffened plates.
The basis of the analysis of plate structures is a robust and reliable set of flat shell elements
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- at least a set of linear and quadratic (triangular and quadrilateral) elements which are
able to handle both ”thin” and "thick” plates.

In the beginning of 80’s the so called "shear locking” problem of the traditional thick
plate elements was recognized - the elements become much too stiff if the thickness of
the plate is small. The locking is usually total if linear elements ase used. For higher
order methods the locking is not that severe; usually it is observed only as a decrease
in the accuracy. The first solution to the locking problem in SHIPFEM context was
the employment of only quadratic elements for thin plates. This was, however, not a
satisfactory solution because the convegence rate, i.e., the accuracy versus degrees-of-
freedom was not optimal. The second attempt to solve the problem was to apply reduced
integration techniques. This led, just as before, in some cases to unsatisfactory results -
due to zero energy modes and problems in solution procedures. The third approach was
to modify artificially the shear energy. This was done by reducing the shear correction
factor in a similar way that Fried and Yang did in their paper, cf. [6]. The disadvantage of
this approach was that the so called "a-parameter” had to be determined through testing
or experience.

In the late 80’s and in the beginning of 90’s, the locking free (stabilized) MITC (Mixed
Interpolated Tensorial Components) plate bending elements were introduced, cf. e.g.
[7), [8], [9], [10]. Since the Laboratory for Strength of Materials in HUT was involved
in the developement of these elements, it seemed quite natural to initiate co-operation
between VIT and HUT, and so bring together the theoretical results and the practical
applications. This co-operaton led to the implementation of the MITC element family
into the SHIPFEM package.

In the next section we will briefly review the plate bending model and introduce the
MITC elements. Due to a limited space, we will concentrate on free vibration analysis of
plates structures only; for static analysis we refer to [11]. After that, we will give some
numerical results for two simple test examples and for two more complicated practical
structures. We finally conclude the paper with some remarks corncerning the implemen-
tation and the usefulness of the new elements.

2. THE THICK PLATE MODEL AND THE FINITE ELEMENTS

Let us denote by w and u(z,y) = (w,B) the natural angular frequencies and the mode
shape functions of the plate. Here w(z,y) and B(z,y) = (8z, fy) are the modal deflection
and the two modal rotations of the normals of the plate, respectively.

In free vibration analysis of thick plates (Reissner-Mindlin plates) the variational eigen-
value problem is [12]: find w and u € U,4 such that

B(u,v) = w*D(u,v) forallv = (v,1) € Usa. (1)

The bilinear forms B and D are defined as

E 3
B(u,v) = mtty—?)a(ﬂ,n)-f-Gﬂt/A(Vw—ﬁ) (Vv —1) dA, )
3
D(u,’u):pt/vadA+%/:4ﬂ-ndA, (3)

where

a(B,m) = [[(1 = v)e(B) s e(n) + v divB diva] dA. (4)
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Here U, is the set of kinematically admissible mode shape functions for which the strain
energy is finite. E, G, v and p are isotropic material parameters and t is the thickness of
the plate. & is the shear correction factor. &( - ) is the linear small strain operator and
"div” stands for the divergence. The midsurface of the plate is denoted by A.

The finite element methods are defined as follows: the problem is to find approximate
natural frequencies wy, and the corresponding mode shape functions up = (wn,Br) € uk,
such that

B (wy,v) = wiD(wn,v) for all v=(v,n) € ut,. (5)

Here U, is the finite element subspace of Uaq. The bilinear form By, is a discrete mod-
ification of the original form B. Both U!, and B will be defined differently for each
element:

2.1 The stabilized MITC3 and MITC4 elements [7], [13], [10]. These elements
utilize standard isoparametric (bi)linear shape functions for the deflection and both com-
ponents of the rotation vector. Hence U}, is the usual finite element subspace for three
or four noded thick plate elements.

The bilinear form By, in the left-hand-side of (5) is defined as
Et 3

o(B.1)+ G Y gy (V0 = Fa) - (V0= Rium) dA, (0

Bh(u,v) = B =) .

where Ry is a special "MITC reduction operator” (see e.g. [11] for the exact definition).
In the shear term of (6) hx denotes the diameter of the element K in the mesh and «a is
a posivite constant called the ”a-parameter”.

The stabilized MITC3 and MITC4 elements were first introduced and analyzed by
Brezzi, Fortin and Stenberg in (10]. They considered the static analysis case and proved
that the elements are stable and optimally convergent for all plate thicknesses. The
numerical examples e.g. in [11] confirm that the theoretical results are in accordance with
the practice.

REMARK 1. With a = 0 one obtains the original MITC4 element of Bathe and Dvorkin
[7] and the original MITC3 element of Hughes and Taylor (13] (in these papers, however,
the name MITC was not used).

REMARK 2. Tt is possible to show that the condition number of the global stiffness matrix
is O(t=2h~%) and O(h™*) for the original and stabilized MITC elements, respectively.
Here h = max hg is the global mesh parameter. Since is practice t << h, the stabilized
elements produce much better conditioned stiffness matrices than the original elements.

2.2 The MITC7 and MITC9 elements [8], [9]. These elements utilize isoparametric
(bi)quadratic (serendipity type) shape functions for the deflection and both components of
the rotation vector. In addition to this, the rotation space consists of hierarcical "bubble
functions” for which the degrees of freedom are given, e.g., by the centre nodes of the
elements. We refer to [9] for the exact definition for Uk,

The bilinear form By, in the left-hand-side of (5) is now

Et?
Ba(u,v) = 57(8,m) + Gt [ (Vo -FRiB)-(Vo-Rim)da, (1)

12(1 — v

where, as in (6), Ry, is the MITC reduction operator (cf. [8]).
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All edges free  All edges clamped

FIGURE 1: The NAFEMS tests FV12 and FV15.

REMARK 3. In this paper, the reduction operator for the MITC9 element is constructed
using the so called ”point tying” technique instead of the exact "integral tying”, cf. [9].

3. SOME NUMERICAL TEST EXAMPLES

In this section two ”standard” NAFEMS benchmark tests for free vibration analysis of
thin plates are considered: the FV12 test for a free square plate and the FV15 test for
a clamped skew plate [14]. A full consistent mass matrix is used and the solution is
extracted using the subspace iteration techniuque.

In both test cases we choose a = 0.2 for the stabilized MITC3 and o = 0.1 for the
stabilized MITC4. The shear correction factor is taken as k = 5/6 and the thickness
of the plate is ¢ = 0.05 m. The material parameters are £ = 200 GPa, v = 0.3 and
p = 8000 kg/m3. The lenght of the edges is 10 m in both test problems. In the FV15
test the skew angle at the obtuse vertices is 135°.

In Figure 1 the 4 x 4 and 6 x 6 meshes for the MITC9 elements are shown. For the
stabilized MITC4 element 8 x 8 and 12 x 12 meshes are used. The triangulations for the
MITC7 and stabilized MITC3 elements are obtained from these meshes by splitting the
quadrilaterals into two triangulars.

3.1 The FV12 test. In this test we calculate the nine lowest natural frequencies for
the test plate. Since the plate is completely free, three rigid body modes will occur. The
"exact” natural frequencies are given by the Kirchhoff plate theory. The results from
the calculations are shown in Table 1. (L.O.E. and H.O.E. denote the low and high
order reference elements for which the results are obtained from [14]. These elements
are actually the four-noded element with selective reduced integration [15] and the eight-
noded semiloof element [16]. STAB3 and STAB4 refer to the stabilized MITC3 and
MITC4 elements.).

As we can see from Table 1 below, all elements perform excellently in this test. No

zero energy modes occur and the accuracy of the elements is always better than 6% for
the stabilized MITC3 and MITC4 and better than 3% for the MITC7 and MITC9.

3.2 The FV15 test. In this test we calculate the six lowest natural frequencies for the
clamped skew test plate. The exact frequencies are again defined through the Kirchhoff
model. For this test the calculated results are shown in Table 2. As we can see, especially
the triangular elements surprise with their seemingly good accuracy. Also the stabilized
MITC4 and the MITC9 elements work very well compared to the L.O.E. and H.O.E.

elements.



179

TABLE 1: The errors (wp — w)/w for the five lowest elastic modes in the FV12 test.
Frequencies 7 and 8 are identical. The three rigid body modes are not listed.

Mode L.O.E. STAB3 STAB4 H.O.E. MITC7 MITCY

4 06% 01% 01% -55% 0.0 % -0.2%
18% 14% 16% -02% 02% -03%
20% 22% 26% -21% 03% -03%
04% 08% 05% -26 % -08% -16%
60% 56% 60% -0.7 % 07% -28%

NN B R

TABLE 2: The errors (wp — w)/w in the FV15 test.

Mode L.0.E. STAB3 STAB4 H.O.E. MITC7 MITCY

it 26% 13% 1.8% -08% 0.1 % -0.3%
2 82% 37% 69% -28 % 05% 04%
3 7% 53% 98% -35% 08% 09%
4 54% 30% 37% -21% 0.0 % -1.3%
5
6

164% 70% 138% -54% 08% 07%
148% 66% 11.9% -73% 08 % -39 %

4. PRACTICAL ENGINEERING APPLICATIONS

4.1 A stiffened panel. The first numerical example representing engineering struc-
tures is a stiffened panel. The vibration behaviour of this panel has been measured and
calculated by FEM in a previous study [17). The main dimensions of the panel are
3.0 x 2.4 x 0.45 m, and the thickness of the plating, webs and flanges varies from 3 to
6 mm. The applied element meshes are shown in Figure 2. The detailed dimensions of
the panel and the 20 lowest natural frequencies obtained using MITC9 flat shell elements
(= MITC9 plate + 8-noded plane stress element [18]) and three different mesh config-
urations are presented in Ref. [17]. In this study the frequencies obtained by MITC9
and full integrated 9-node thick shell elements (F19) [18] are compared. Figure 3 shows
the proportional differences between the natura) frequencies obtained by MITC9 elements

and by the other mesh and element combinations.

FIGURE 2: The coarse and refined element meshes. The meshes consist of 129 and 351
elements. Only one-quarter of the panel is modelled.



180

— -
[=] [¢,]
i

(4]

Difference [%]

| T 1 I T T T T 1 1
1 2 3 4 5 6 7 8 9 10
Mode number

FIGURE 3: The relative differences between the natural frequencies obtained by MITC9
elements (the refined mesh) and by three other mesh and element combinations. The
refined mesh and FI9 elements (o), the coarse mesh and MITC9 elements (e), the coarse
mesh and FI9 elements (o).

Figure 3 shows that the natural frequencies obtained using MITC9 elements and the
refined mesh are systematically below the frequencies obtained by FI9 elements. The
same is true in the case of the coarse mesh. This systematic difference results from the
overly stiff behaviour (shear locking) of the full integrated thick shell elements. Although
the meshes are regular and only the global behaviour (10 lowest modes) of the structure is
considered, the example shows that the shear locking can reduce the accuracy considerably
also in practical engineering analyses.

4.2 A cabriolet vehicle. The geometry of a car body is relatively complex and it
consists of many different structural parts. As a result, the size of the calculation model
easily becomes very large. Because of a limited computational capacity, relatively large
elements (1 << h) must be used. This increases the risk of shear locking or other numerical
problems when traditional shell elements are applied.

In a previously accomplished co-project VT'T received the finite element model of a
cabriolet vehicle from Oy Saab-Valmet Ab. The model is shown in F igure 4 with hidden
lines removed.

The car body has been analyzed with three different linear (3 noded) flat shell ele-
ments: the original SHIPFEM element with user defined a-parameter, the STRI3 element
of ABAQUS [19] and the stabilized MITC3. We will denote the natural frequencies cal-
culated with these elements by worra, wsTris and wsTaps, respectively.

FIGURE 4: The finite element model of a car body consists of about 20,000 flat shell
elements and the number of degrees-of-freedom is about 57,000.
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The 10 lowest natural modes and frequencies were calculated. The results obtained
using different elements are compared in Figure 5. (Unfortunately, two slightly different
meshes of the same car body had to be used. First, the results obtained by elements ORIG
and STRI3 were compared employing Mesh 1. Then the elements ORIG and STAB3 were

compared using Mesh 2).
From Figure 5 we see that the differences between the results is relatively large if

compared to the size of the model. Eventhough the results of the STRI3 and STAB3
elements can not be compared like one-to-one, they are more close to each other than to
the original SHIPFEM element.

10 :
5
o
-5 :

Difference [%]

-103 | ]
4 5 6 7 8 9 10
Mode number
FIGURE 5: The differences (wstrrs — WORIG)/wWORIG (denoted by o) and (wsTaBs —

woric)/woric (denoted by ).

5. CONCLUDING REMARKS

The results obtained using MITC elements both in simple numerical examples and
practical engineering applications demonstrate the excellent predictive capability of these
elements. The family of MITC elements forms a theoretically sound set both for thin and
thick plate structures. The experiences in practical engineering analyses show that the
MITC family is very suitable and easy to use.

The main disadvantage of the MITC elements is the relatively large programming
effort which is needed to transfer these elements to a part of a larger FE-package. This
results from the special configuration of the MITC elements (especially the MITCT and
MITCY9).

There are some limitations related to the quadratic MITC elements presented in this
study. One practical limitation is the fact that the MITC7 and MITC9 elements can not
have curved boundaries. In addition, the present family of MITC elements can not be
used as a variable-number-nodes element [18]. More research effort is required to enlarge
the family of MITC elements to these directions.
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ON THE SOLUTION OF NON-LINEAR DIFFUSION EQUATION

REIJO KOUHIA
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Rakentajanaukio 4A, 02150 Espoo, Finland

ABSTRACT

Solution of the diffusion equation is usually performed with the finite element discretization
for the spatial elliptic part of the equation and the time dependency is integrated via some
difference scheme, often the trapezoidal rule (Crank-Nicolson) or the unconditionally stable two-
step algorithm of Lees. A common procedure is to use Picard’s iteration with the trapezoidal
rule. However, in highly non-linear problems the convergence of Picard’s iteration is untolerably
slow. A simple remedy is to use consistent linearization and Newton’s method. This paper
concentrates on the use of quasi-Newton update schemes in solving the resulting non-linear
equation system. Numerical results of highly non-linear diffusion problems are shown and the
convergence of the quasi-Newton updates has been investigated. Also a note concerning temporal
discretization is given.

1 INTRODUCTION

The governing energy conservation equation is
—V.q+3=ct, (1)

where q is the flux vector, which is related to the gradient of the quantity u by the
constitutive law

q= _D(uvg)g’ g=Vu. (2)
Time derivatives are indicated by superimposed dots (9u/0t = ). Equations (1) and (2)
form a system which can be used to describe many diffusive physical phenomenas, e.g. heat
conduction, seepage flow, electric fields and frictionless incompressible irrotational flow.
In the case of heat conduction u stands for temperature and 3,c,q are the heat source,
the heat capacity and the heat flux, respectively.

After finite element semidiscretization, the energy equation (1) takes the form

Cu = f(t,u), (3)
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in which f denotes the unbalance between the given source 5 and the internal nodal ‘fluxes’
r,i.e.

f=8§5-r.
The internal nodal flux vector and the source vector are computed from the element
contributions

rl) = BTqdvV, 5 = NT35dV,
v(e) Vie)

where B is the matrix of discretized gradient operator and N is the row matrix containing

the finite element interpolation functions.
If the temporal discretization is performed by the one-step one-parameter method:

Unta = (1 — @)U, + attny, (4)

then the fully discretized equation system is obtained from (3)

a

At
where C is the heat capasitance matrix. This one-parameter family of methods comprises
both the common implicit backward Euler (& = 1) and Crank-Nicolson (a = 1) methods
and the explicit Euler forward scheme (o = 0). In non-linear problems only the midpoint
version of the trapezoidal rule is unconditionally stable [1], [2]. It is also the only one of
this family which is second order accurate. In linear cases the midpoint scheme is identical
with the standard trapezoidal rule.

The trapezoidal rule has no algorithmic damping. This produces spurious oscillations
if the data is not smooth. A simple remedy for suppressing these oscillations is to use
for the few first steps the implicit backward Euler scheme and then switch to the second
order accurate midpoint rule. This has no effect on the long term accuracy.

In order to solve the non-linear equation system (5) a Newton-type linearization step is
utilized and the resulting equation, at a certain step n+ 1 and iteration i, is the following:

C (un+¢x - un) - f(tn+a, un+a) = 0, (5)

& i i i+l _ i X ~iA
(Atc +K ) Su'™ =f(thya,ul,,) AtC Au', (6)
where af

K = —E i

is the tangent matrix, and the iterative and incremental steps are defined by the equation

wtl = u, + Au’ + Sutl.

n+a
The tangent matrix consists of several parts:
K'=K{+K.,+K! +K! + K,

where K is the linear part, K, and K, come from the u and g dependencies of the
constitutive equation (2), K, from the non-linear radiation boundary condition and K,
from the u dependent source term. They are assembled from the element matrices

KO = /V . B’D'BaV, D' = D(v,g'), (7a)
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i . i D ,
(e)* — Vifall i [ 2= i
K /V BTG, G ( = ,,.-,g.-) g'N, (7b)
; . . oD .
() — i i |22 s 7
K va D:BdV, D} ( % “i's.,) g (7c)
i s
(e — PNT 7d
K{ /V 3NN, (7d)
KO = S()C;'NTNdS, (Te)

where C., is a coefficient containing the radiation and emission coefficients of the radiating
surface. All matrices, except Ky, are symmetric. Dependency of the constitutive matrix
D on u is common in many physical problems. However, the unsymmetric part is usually
neglected in the solution of equation (6).

2 QUASI-NEWTON TECHNIQUES

2.1 Basic properties. A class of algorithms called quasi-Newton (or variable metric,
variance, secant, update or modification methods) have been developed in order to speed
up the convergence of the modified Newton method and which could be more efficient
than the true Newton-Raphson scheme. The basic idea of these methods is to develope
an update formula of the tangent matrix, i.e. a good approximation, in such a way which
avoids the reforming and factorization of the global matrix.

In order to simplify the notation some abbreviations are introduced. Equation (6) can
be written concisely in the following form:

H6u't! =T,

where

H = 2C+K  f=f(tnsa tiy) — —C AU

At At
In the following the wavy line over the unbalanced nodal flux vector is omitted. The basic
requirement for the approximation H’ is to satisfy the secant relationship or quasi-Newton
equation

f(q) = f(¢)-H(d' -q7),
= Héq = 6f or A‘Sf = 6¢', (8)

where!
6q|' — qi . qi—l, 6f1 = fi—l _ fi, Ai = (I:Ii)—l_
In order to get a uniquely defined matrix additional requirements have to be imposed.
A reasonable requirement is, that the updated matrix H' is close to the previous matrix
H*-!. This nearness is measured by matrix norms, and usually, in connection to quasi-
Newton updates, the Frobenius norm or its weighted form are often used. It is also
desirable that the updated matrix should inherit some properties which are characteristic

INotice the difference in definition of §q and 6f.
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to the system. In finite element applications such properties usually are symmetry and
positive definiteness of the tangent matrix. So, the update H* (or A) should also satisfy:

if H'=(H"')T then H' = (H)T
if xTH''x>0 then xTH'x>0, Vx#O0.

However, it should be remembered that the new iterative change §q'+! has to be easily
and cost effectively computed, otherwise the benefit of this kind of update is lost since the
price which is paid for omitting the full Newton step is the degradation of the convergence
rate.

The quasi-Newton techniques are closely related to the conjugate-Newton methods,
see Refs. (4], [5], [6]. Applications of quasi-Newton strategies to structural and fluid flow
problems can be found in Refs. 7] [8], [9]

2.2 Rank-one update. A single rank update to the tangent matrix is a correction
of the form

H=H+ay2T or A=A+pav’ (9)
where the unit vectors ¥,% (or 1, V) and the scalar « (or 3) are to be determined. Substi-
tuting this expression into the quasi-Newton equation (8) and minimizing the difference
between the update and the previous matrix, gives the Broyden update formula [10]:

T T
i = g1 4 (6F — Hé)6q iy (69— ASDSIA

10
5q76q or 51T AT (10)

Broyden’s update formula does not have the property of hereditary symmetry and
positive definiteness. However, it is interesting to note, that a symmetric rank one update
is obtained from (9) by choosing z = y = 6f — Héq (or u = v = §q — Aéf). Obviously
in this case the closeness property is not satisfied.

The update (10) is not performing as well as symmetric rank two updates when the
system possesses the symmetry property. However, it can be succesfully used in non-
linear diffusion problems where the diffusion coefficients depend on u, thus producing
unsymmetric tangent matrix.

2.3 Rank-two corrections. A symmetric correction of rank at most two can be
written in a basic form [11]

H=H+ss? —ttT or A=A+yyT — 2"
and that particular form is also expressible in a symmetric product form
H=I+u?)HI+uv")" or A =(I+wpT)A(I+wpT)T (11)

only if the determinant of H or A is positive.

Two most well known rank-two corrections are the Davidon-Fletcher-Powell (DFP)
and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) updates. These complementary for-
mulas preserve symmetry and positive definiteness of the tangent matrix. These formulas
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are
~ 5q(6q — ASF)T + (6q— AsF)bq"  (6q — ASF)TSf -
= - 5q6q7,
Apras = A+ 6768 Gqrery 04
- 66667 Hébqbq"H
Hpres = H+ 34

5fTéq 6qTHé6q

The DFP and BFGS update formulas are related to each other by the duality transfor-

mations [3] : L
6q— 6f, H— A=H7', H«— A=H"

An alternative form of the BFGS update formula is

- 5q6fT 5£6qF . bqbq”
‘ 12
Apres = (I- T&f) (I- T&f)+ 5761 (12)

For detailed derivation of these equations, see Ref. [3]. The inverse update form (12) or
its product form (11) are usually used in the finite element applications. There are simple
recursion formulas to compute the iterative change in both cases.

3 EXAMPLES

3.1 Rheinboldt’s example. A simple one-dimensional nonlinear test case is the
problem [12]

d u'
7 (1+ul)+)\=0, u(0) = u(1) =0,

in which case the exact solution is
1
u(z) = -z + Xln [(exp(A) — 1)z +1].

For growing source intensity A this solution increases rapidly within a small interval
near £ = 0. Uniform meshes with 100 linear elements and constant load incrementation
(AX = 0.5) are used. Since the flux in this example depends only on the gradient of u, the
consistent tangent matrix is symmetric. Therefore, symmetric rank-two BFGS update
formula is used. Convergence plots are shown in Fig. 1. It is seen from these figures,
that omission of the gradient dependent term K, from the stiffness matrix causes severe
convergence problems, which cannot be overcome by using the BFGS update scheme. It
is also worth noticing that the convergence of the true Newton’s method downgrades to
the level of the standard modified Newton-Raphson scheme.

3.2 Problem producing unsymmetric tangent. When the constitutive matrix D
depends on the values of the function u, the consistent linearization produces unsymmetric
tangent matrix, see equation (7). From computational point of view this is an untolerable
situation. In order to avoid the assembly and factorization of an unsymmetric tangent
matrix, rank-one update formula has been tested.

A model problem is again a one-dimensional equation with homogeneous boundary
conditions:

_% (D( )Z:) =0,  u(0)=u(l)=0.
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TABLE 1. Temperature at the center of the cube, 64 trilinear elements.

[ time exact MPR | IE mixed (1) | MPR (2)
0.0000 | 1.000000 | 1.00000 | 1.00000 | 1.00000 1.00000
0.0125 | 1.000000 | 1.00033 | 0.99999 0.99999 1.00065
0.0250 | 0.999954 | 0.99743 | 0.99948 0.99931 0.99420
0.0375 | 0.998436 | 1.00290 | 0.99578 1.00306 1.01160
0.0500 | 0.990637 | 1.01214 | 0.98343 1.00339 1.01268
0.0750 | 0.942211 | 0.97488 | 0.92748 0.95188 0.95661
0.1000 | 0.855496 | 0.88099 | 0.84041 0.85258 0.85355
0.2000 | 0.460657 | 0.45931 | 0.46261 0.44011 0.43851
0.3000 | 0.223432 | 0.21907 | 0.23037 0.20971 0.20884
0.4000 | 0.106825 | 0.10356 | 0.11286 | 0.09912 0.09870
0.5000 | 0.050973 | 0.04890 | 0.05514 | 0.04681 0.04661
1.0000 | 0.001259 | 0.00115 | 0.00153 | 0.00110 0.00109
(1) = First step with the implicit Euler method (IE) and the
following steps with the midpoint rule (MPR).

(2) = with different initial conditions, identical to the

results of Ref. [15].

A highly non-linear material model, where the diffusivity coefficient D is assumed to vary
according to the equation

D(u) = Do+ } D |1+ tank (= )]
1
is adopted. With vanishing u; the diffusivity produces sharp transition near the value
of ug, see Fig. 2. In the computations following relations are used: Dy = 10Do,u; =
uo/10. Large constant increment size (AX = 10) is used. Convergence is slow and slight
improvement is obtained when the Broyden update is used with the true Newton-Raphson
process (symmetric matrix, Ky omitted).

3.3 Two-dimensional example. To demonstrate the effect of using a two-stage al-
gorithm in order to damp the oscillations in the Crank-Nicolson scheme the following time
dependent problems have been solved. The first one is a simple bar with temperature
dependent isotropic material properties [13]. Both the thermal conductivity and the heat
capacity are assumed to vary according to 1+ 1T (Tin°C). Al other surfaces except
the surface z = 0 are insulated. The initial temperature is u = 0°C. The loading is a unit
heat input through the surface ¢ = 0. The spatial domain is discretized in 15 four node
bilinear or eight node reduced biquadratic (serendipity) elements. Results are shown in
Fig. 3, where the time step At = 0.1 s has been used. Using the one step implicit Euler
method before switching to the midpoint rule inhibits the oscillations completely.

3.4 Cooling of a cube. Cooling of a cube initially at constant unit temperature
T, = 1°C and subjected to zero surface temperature when ¢ > 0 is considered next. The
analytical solution of this problem is given in Ref. [14] and finite element solutions e.g. in
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Ref. [15]. However, in their FE-analyses different initial conditions are used, in which the
initial temperature varies from zero to one inside the outmost element layer. One octant
has been discretized by 64 trilinear 8-node brick elements. Results are shown in Table 1.
The time step has been At = 0.0125 s. Clearly, the use of the one step backward Euler
method prior the midpoit rule does not inhibit oscillations completely as in the previous
example.

10.

11.

12.

13.

14.
15.
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ABSTRACT

We discuss the stabilization of Babuskas method of approximating essential boundary
conditions by using Lagrange multipliers. A simplification of earlier methods is proposed
and analyzed. We also show that there is a close connection with the stabilized formulation
and a classical method of Nitsche.

1. INTRODUCTION

Recently, there has been a renewed interest in a method introduced by Babuska [1] in
which essential boundary conditions are approximately enforced by Lagrange multipliers.
It has been proposed for domain decomposition [7], for fictitious domain methods [9] and
for contact problems [11]. This, despite the fact that it may be difficult to design a stable
method which satisfies the necessary ”Babuska-Brezzi” conditions.

In some recent papers by Barbosa and Hughes [3, 4], Verfirth [16], and Baiocchi,
Brezzi and Marini [2], it has, however, been showed that new "stabilizing” techniques can
be used in order to design methods that are always stable.

The purpose of this paper is to discuss this technique. We will propose and analyze a
simplification of the earlier methods. Furthermore, we will show that the stabilization in
a very natural way leads to a classical method of Nitsche [12].

2. THE MODEL PROBLEM

Let Q be a bounded domain in IRY, d = 2 or 3, with a smooth boundary I'. We
consider the Dirichlet problem

-Au = f in Q, (1)
u = g on I. (2)
This problem is chosen only for notational simplicity; our statements are also valid for

other second order elliptic problems such as, e.g., the equations of linear elasticity and
the Stokes problem.



192

The Sobolev spaces H*(S) for S C Qor S CT, and s > 0, are defined in the standard
way cf. [1]. The norms are denoted ||-||;,s with the subscript S dropped when § = 2. We
will also use the space H='/2(T), i.e. the dual space of H*/?(T'), with the norm

(n,2)
pll-1/2r = sup ) 3)
” ” 1/2 zeHl/Z([‘) ”2”1/2,[‘
where (-,-) denotes the duality pairing.
The problem is then given the following variational formulation [1): given f € L*()

and g € H/2(T), find u € H'(Q) and A € H~Y*(T') such that

B(u, \;v,p) = (f,v) + (9,1) ¥(v,p) € H(Q) x HTV(D), (4)
with the bilinear form defined by
B(u, A, ) = (V, Vo) + (A, 0) + (g, u). ()

Above (,-) denotes the inner product in L2(£2).
The problem has a unique solution, cf. [1]. By using Greens formula in (4) we get the
relation

At =0, (6)

3. THE FINITE ELEMENT METHODS

When discussing the finite element methods we will, for notational simplicity, consider
the case when simplicial meshes are used, but we emphasize already now that the big
advantage of the stabilized methods is that a very big freedom can be allowed in chosing
the finite element spaces since no stability conditions are needed.

Let now R; be a partitioning of the whole of R? into closed simplices (i.e. triangles
and tetrahedrons, respectively) and assume that the partitioning satisfies the usual re-
quirements that the intersection of two simplices is either empty, a vertex , an edge or a
face. Furthermore, the partitioning is assumed to be regular in the usual sense, cf. [6].
The partitioning of ) is then defined as

Ch={K|K=5n0Q for some S € R; }. (7
The finite element subspace for the field variable is then defined as
Vi={veH(Q) | vk € P(K)VK €C }, (8)

where Pi(K) denotes the polynomials of degree k > 1 on K.

To define the space A, for the Lagrange multiplier on the boundary we proceed as
follows. For d = 2 the finite element partitioning &, of the boundary consists of segments
and for d = 3 the elements are curved triangles. This partitioning is also assumed to
satisfy the usual compatibility conditions, i.e. the intersection of two elements is assumed
to be either empty, a point or a curved edge (for d = 3). We further assume that each
element E € &, is the image of the reference element E (i.e. the unit interval or unit
triangle) under a smooth mapping Fg. We then define

Av={p e L*T) | me = i(F5'(z)) forsome i€ P(E), VKe& 1},  (9)
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with [ > 0.
We will also make the natural assumption that there are constants Cy, C; such that

Cihx < hg < Chhx  forall K € C and E € &, with KN E # 0. (10)

As usual we will denote b = maxkec, bk, and from (10) it then follows that hp <
Ch for all E € &,.

First, we will consider the original method.

Method 1 Babuskas method of Lagrange multipliers.

In this the variational formulation (4) is transfered to the finite element subspaces:
find (un, An) € Vi X A, such that

B(un, An; v, ) = (f,0) + (g, ) V(v, 1) € Vi X A (11)

The convergence of the method is given by the following classical result.

Theorem 1A (Babuska [1], Brezzi [5]). Suppose that the finite element subspaces satisfy
the conditions

.,U
sup s Oluloier Ve € M, (12)
vevarioy vl

and

i} 2 Cllvll} Yve{veVi|(pv)=0 Vped}. (13)
For the solution (un, A4) to the problem (11) it then holds

e — wally + 1A = Mall-y/zr < C*llullesa + B2 Mligar), (14)
when u € H*1(Q) and A € H¥'(T'). =

This method has been thoroughly studied by Pitkdranta. Among other things, he
showed that the stability and error analysis is most easily performed using the following
meshs dependent norms (introduced in [14] with a different notation)

Iol3on = X k5 lvlioe  forve H'(Q), (15)
Ee&y
and
lzl212n = D kellzll5e for z€ L*(T) . (16)
Ee€y

For these norms it holds
(v,2) < |[vllyj2nllzll-120  Y(v,2) € H'(Q) x LX(T). (17)

We also denote
lollia = lolls + lollyzn Vo € HY(Q). (18)

The interpolation estimates in these norms are easily proved by scaling and interpo-
lation (cf. [14]).
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Lemma 1 For u € H**'(Q) it holds
inf |lu — V|1 < Ch"||u||k+1 . = (19)
vEV,

Lemma 2 For A € H*(T') it holds
inf "A d /‘"—l/2,h _<_ Ch’+3/2"/\”l+1_1" . L] (20)
BEAR
In the sequel we will also need the following inequality, which is easily proved by
scaling using the condition (10).

Lemma 3 There ezxist a constant Cy such that

9
Crllgol-1/20 S IVello Vo€ Vi m (21)

In [14] the following result is proved.

Theorem 1B (Pitkiranta [14]). Suppose that the finite element subspaces satisfy the

conditions
(p,v)

sup 2 Cllpll-1zn Y € A, (22)
veva\(0} [[V]l1.n
and
lol} 2 Cllollin Vve{veVi|(nv)=0 Vped}. (23)
For the solution (uy, \s) to the problem (11) it then holds
llu = wnllin + 1A = Anll-aszn < CRFllullsa + B+ Al ), (24)

when u € H*'(Q) and A € H*'(T). =m

In the papers [13, 14, 15] it is shown that the spaces V}, and A should be designed
quite carefully in order that the stability conditions would be valid. Hence, there are
reason to be quite pessimistic with regards to the general usefulness of this approach in
the applications for which the methods has been proposed.

Therefore, it is natural to try to modify the method with similar techniques as those
that has been successfully used for the Stokes problem [10, 8]. This has also been done
by Barbosa and Hughes [3, 4]. Their methods did, however, contain terms that are not
necessary for the stability. By dropping them we obtain the following method.

Method 2 A simplification of the symmetric formulation of Barbosa and Hughes [3, 4].

Find (uh,/\h) € V,, x Ay such that

Bh(uh, /\h;vaﬂ) = (fa ‘U) + (gal“) V(vall) € Vi X Ay, (25)
with 5 5
Bh(u’A;vvﬂ) =B(u,A;v,p)—a Z hE<)‘+'a—uaﬂ+'a_v)E (26)
Bty n n

where B is the original bilinear form (5).

The first observation concerning this method is that it is is consistent.
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Lemma 4 For the the ezact solution (u,)) to (4) it holds
By (u, Ajv, ) = (f,v) + (g, ) V(v,p) € Vi X An, (27)
provided that X € L*(T'). =

The next observation is that the modified bilinear form is bounded with respect to the
mesh dependent norms.

Lemma 5 There is a positive constant C such that

Bav,mszm)| < Clllvlln + lsll=zzm)lzllzn + 9ll-1/2) (28)
¥(v, 4) € H(@) x LA(T), ¥(z,7) € H(@) x LX(T). =

Next, we will prove the stability and optimal order of convergence.

Theorem 2 Let (us, \n) € Vi X An be the solution to the problem (25) and suppose that
0 < a< Cp. Withue H*(Q) and A € H*Y(T) it then holds

= wnllun + 1A = Anll=ajzn € C*ulliss + B2 Ml p)- (29)

Proof. Let us first prove the stability of the formulation. For this we let (v, p) € Vi X Ay
be arbitrary and we first note that the estimate of Lemma 3 gives

' Ou
Ivold+a X he(lullss = 5, 15s)

E€&y

(1= aCPOIVolis + e 3 hellelise (30)
Ecéy

> (VI3 + llelin) »

Bh(va ", _l‘)

v

since it was assumed that 0 < a < Cy. Next, let I, : L*(T) — A, be the L*-projection.
Since the functions of A, are discontinuous, we can define @ € A, by fjp = hg' hvE
forall E € &,. We then have

NEll-1/2 = Tavlla/z.h (31)

By using (17), Lemma 3 and the Young inequality we then get
v

Bu(v,4;0,8) = (v, B) — @ 3_ helu+ 5, B)e
Eety i
5 9 ov
= Y hg'liMolde—a Y (p+ 'a_anhv)E
Ee&y Ecé) Ly
ov
> Maollf/on — (= ll-172 + el -2 /2,6) I TLn ] [1/2,0 (32)
> |Taoll3/2n — C2(lVollo + lltll-1/2m)IMavlia/2m
c? 1
> |Maoll}/en — -2£(||Vv||o + leell=a/20)® = §||H;.v||f/2',,
1
2 §||Hh"||f/z,;. = Cs(|[Voll3 + Nl 2m) -
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Let now (z,7) = (v, —p + 6i) with 6§ > 0. Using (30) and (32) we obtain

Bh(vv B, _,‘) + 68;,('0, #; 0, /_‘)

é
(C1 — 6C3)|[Voll§ + §||Hhv||f/2,h +(C1 = 6Ca)llulyjen  (33)
C IVl + ol on + el 1/2) »

Bh(va H; 2, 7’)

v

v

when choosing § < C;/Cs. Now, by scaling one can prove that
IVolls + IMkvllijzn = Cllvlis - (34)

Since (31) gives
Nzlln + lnll-1/24 < C(lvlln + pli-1/2) (35)

we have proved the stability estimate (which is optimal in view of Lemma 5)

Bh(vv Hi 2, '7)
sup 2 C(llvlln + llell-1728) - (36)
Gcmevaxan 2llLa + [1nll-172

The asserted error estimate now follows from this, and Lemmas 4, 5,1 and 2. =

The big advantage with this formulation compared to the original method of Babuska
is that the finite element subspaces can be chosen completely arbitrarly.

Let us next have a closer look at the method. We note that since the functions of A,
are discontinuous, the variable A; can be eliminated locally on each boundary element.
By testing with u € A, in (25), we get the following expression for Ax:

Gun
on

where (as before) II, is the L2-projection onto A;. Now, substituting this into the equation
we get from (25) when testing by v € V,, we get the following symmetric (and positive
definite, cf. below) system for solving the unknown uj:

e =—(h—7)g + (chg) *(Myup — ig)g  VE € &, (37)

o o
(Vup, Vo) — (n,,in",v) - (a—z,n,,u,,)
-1 duy, Ov
+ Z (ahE) (I'I;.u;,,v)E +a E hE((Hh — I)—a—, a—) (38)
Eeén E€éy O

= ()= Wigha) + T (ahs) o Tl

Now, since the space A, can be chosen arbitrarly, we can choose it so big that the projec-
tion II, becomes the identity in the above formulation (or we can think that we choose
Ap = L*(T)). Then we observe that we have rediscovered a classical method:
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Method 8 Nitsches method [12].

Find u; € V, such that

Bi(u;v) = Fir(v) Yv €V, (39)
with
Bi(u;v) = (Vu Vv) — (%,v) - (a—v,u) +7 Z hg' (v, v)E, (40)
) ’ on on bl
A) = (F0) - (g +7 T hEMav)s- (a1)
E€é,

By the way we have arrived at this formulation, it is clear that we have an optimal error
estimate for it. That is, however, more easily obtain directly.

Theorem 3 Let u, € Vi be the solution to the problem (39) and suppose that v > Crl.
With v € H*'(Q) it then holds

llw = unllsp < Ch*lullrss - (42)

Proof. The consistency of the method is immediatly seen from the formulation. The
stability is proved by Schwartz, Young and Lemma 3:

v
Bu(v;v) = |IVollg—2(v, 5-) + Yol j2n
dv
> (|9oll; = 2lvll/zallz -1z + Nolld/zn
g 1,00, g
> |IVolig - F "5;"-1/2,1; +(v— 5)"””1/2,;. (43)

1
> (1- E—CI)”VU"(Z) +(v— 5)””"%/2,).
> Clolis,

when we choose C7! < € < 7.
We have thus established the stability and the consistency. The assertion then follows
from Lemma 1 =

In view of our analysis it seems that the Nitsche method is the most straightforward
method to use. Unfortunately, this method seems to be quite unknown. We think, how-
ever, that it would be worthwhile to explore it in applications such as contact problems,
" for fictitious domain methods and for domain decomposition.
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DEVELOPING THE CONVERGENCE RATE OF A SHOOTING METHOD

PENTTI TUOMINEN
Department of Civil Engineering
University of Oulu
P.0. Box 191, FIN-90100 Oulu, FINLAND

1. INTRODUCTION

The shooting method under consideration is based on the finite difference approximations of
normal forces and bending moments. The method is used to generate axisymmetric finite
elements by determining first numerically the transfer matrix and loading vectors and then the
stiffness matrix and nodal load vectors. Earlier reports about the aim are e.g. [1], [2] and [3].

2. DIFFERENTIAL EQUATIONS FOR ARCH STRUCTURES

In the report [1] the method was used to solve arch structures using differential equations

2v+v+ dR
r ds

a,

)

%)<

+

BlR mix

SO

H @

NE

Ad
R

In the equations u and v are axial and normal displacement, R is the radius of the arch and N
and M are the normal force and the bending moment. EA and EJ are the extensional and
bending stiffnesses. All are functions of the arch length s. It is characteristic for Equations 1
and 2 that the stress resultants of the right hand side are known exactly, when the form of the
arch and the loading are known. As a consequence of this the discretization error of the
method can be presented using a serie of even powers as



200
e = azASZ + a4A§'4 + a6A5'6 +... (3)

The accuracy of the method is increased using three or four calculation loops doubling the
number of grid length As in each new loop. An extrapolation toward the zero grid length
(known as Romberg's method) will give a high rate of convergence. The error is then
proportional to the sixth or eighth power of 4s.

3. RING PLATE
3.1 Notations for the ring plate

A thin axisymmetric ring plate will be considered next. A radial line of the plate is divided
into n equal segments which determine grid points from 1 to n + 1. The grid point 1 is situated
at the inner boundary circle of the plate and the point n + 1 at the outer boundary. The grid
points are indicated with subindeces. 'Index' i + 1/2 or a corresponding fraction is used for the
mean point between grid points i and i + 1. The mesh length between two neighboring grid
points is Ar. Superindeces r and t indicate radial and circumferential directions. The structure
under consideration is presented in Figure 1.

Axis of Revolution

VY z.w

Figure 1. Dimensions, coordinates and displacements of a ring plate. All quantities are shown
as positive.
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Stress resultants of the ring plate under axisymmetrix loading are presented in Figure 2.

Qr+dQ*

Figure 2. Stress resultants of a ring plate under axisymmetric loading

3.2 Equations for the stretching state of the ring plate

Equations for normal forces

N =C (% + #%) @
N = (v% . g) ©)

are depending only on the radial displacement u. In Equations C" and C' are stretching
stiffnesses and ¢ and v Poisson's ratios. From Equation 4 it is obtained

—tum = ©)

which can be approximated using finite differences and mean value of u at the mean point
j =1+ 1/2 as result the recursive formula

Ar Ar N?
1+ B, = 1o B2y + 404 )
2rj 2rj C;‘

for u; , ;. Normal force N” on the right hand side of Equations 6 and 7 is now unknown
otherwise than in Equations 1 and 2 for arch structures. For evaluating of it Equation
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vo=hars L j”N‘dr - L xrar @®)
ooy r on n n

is available. The second integral with the note j = i + 1/2 will be approximated using the

expression

L [TNar = 2 (LN} + N+ NY). ©)
rj 4] rj
Here the terms of summation
Nf = wN + (1 - w;) 1:" (10)

are obtained by eliminating du/dr from Equations 4 and 5. The approximation in Equation 9
causes decreasing of the convergence rate of the method. As before with arch structures
several calculation loops with doubled numbers of grid lengths are used again. The basis for
the extrapolation is assumed to be the serie

e = adr + a2Ar2 + a3Ar3 + a,,Ar4 +... a1n
for the discretization error. Neville's algorithm [4, pp. 108-111] gives values

Dy = (-Diy 4y + 25Dy 1)/ (2%-1) (12)

for the extrapolated quantities in the scheme

Dr Dy,

by
Dr/2 DlO D22

Dy Dy
Dr74 Dy D,

Dy,
Dr/8 Dy,

The use of Neville's algorithm means the eliminating of coefficients a; after each others in
11. After four calculation loops and extrapolation the discretization error of results was now
proportional to the fourth power of the grid length Ar .
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3.3 A modified version of Neville's algorithm

In the third phase of the extrapolation above the new values were calculated using the

formula

D = (-Dinyz + 8D)/7 . (12b)

When coefficients 8 and 7 are replaced with 16 and 15 a better convergence of results is
surprisingly obtained. The discretization error is now proportional to the sixth power of 4r.
The simple variation of coeffiecients means the use of Romberg's method in the third phase of
Neville's algorithm. The results also tell the coefficients a; and as to be zero in the
presumption 11. The modified Neville's algorithm was first tested in generating axisymmetric
cylindrical shell elements. The convergence rate was then also six when four calculation loops

were used.
3.4 Equations for the bending state of the ring plate
Increasing the convergence rate in the bending state of the ring plate was more problematic

than in the stretching one. It was succeeded after a discussion with associate professor Juha
Paavola. In Equations of bending moments

( 2
d“w aw

M = -B’\—dr2 + g—dr) (13)
(d*w dw

M = -p|L2 4 £ZY (14)
Ca rdr

B" and B' are bending stiffnessed. The former one gives the starting point

d*w  paw M"
& ra B (15)

for the recursive formulae of deflections w;. Using finite difference approximations and the
notation ¥ = dw/dr the equations

mar ar* M7
Wy = Ar|l - —=— |y, +w - — 16
2 ( 2’1) ! ! 2 B (16)
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. ; M
1 + oul'Ar wi+l = - -—_— _}J‘A" wf—l + 2w,' - Arz "":, (17)
2n Ti 5
and
2 r
Ar ar© M;
Ar(l + g‘;-’:——) yi = drdiy; = —Wiy + W - > B,:' {S)

are obtained for calculating deflections at each grid point. The moment equilibrium of a radial
strip about the circumferential axis through point i produces the recursive formula

M = L[+ Ginen)] - - (M v = (2o 9)

for the radial bending moment. Here the second integral was approximated with the

expressions
1 J"" M'adr = ér—(M{ + My +.+ M) (20a)
4 i
L Midr = LM+ Mt 1M, 20c)
n n?

In the version 20b the so called midpoint rule was used. The subindeces of 20a were then
3/2, 5/2, and i - 1/2. The use of Equation 20c is the most complicated and it will be discussed
in more detail. In the approximation the last couple M; is unknown. For it can be found

Equation

M = gy - Q80D g, @1)

where the derivative w; can be solved from Equation 18. The substitution of y; into 21 and
this further into Equation 20c and this finally into Equation 19 produce with some rearranging
the final recursive formula

- n ar
(= b)M; = L [M{+ Qfn=n)] + ZL(EM] + M 4.4 ML)

= G(-Wip +w;) - rl__[:z(’i' =r)rdr (22)

for the couple ;. Here the shortened notations are



ar Ar B}
' 2d;r; [#‘ 2r; B/ J 0
and
o = & (=#Y) 24)
2, T

Versions 20a and 20c demand about the same CPU-times in computing, when the version
20b is somewhat slower. The most effective way of calculation is to use Equation 20c with the
modified Neville's algorithm. This combination was the only one, which gave a convergence

rate six after four loops calculation.

Finally a brief question: How can a convergence proportional to the eighth power of the grid
length be achieved without increasing essentially the computing time? A simple way to solve
the problem is to use five loops in calculations with the so called Bulirsch' queue instead of
doubling the number of meridional segments in every new loop.

4. A NUMERICAL EXAMPLE

As a numerical example is considered the stretching state of an isotropic ring plate with a
constant thickness h = 0.20 m. The radii of the plate are , =2 m and r,,,; = 5 m, Young's

modulus is E = 10 000 MN/m? and Poisson's ratio v = 1/3. The stiffness matrix below is
obtained using 4 to 32 radial segments in four calculation loops. The deviating digits of
analytical comparison results are given too.

Table 1. Stretching stiffness coefficients of a ring plate

u =1 U, =1
2357.134 758 |-2142.853 403
42 857 6143
-2142.853 749 | 3857.141 500
6143 2 857

The error of calculations is considered using the expression

e . i il

Ja,,a i

- sgn(k; -a;) (25)
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as an error indicator. In the next table results of the upper line are obtained using the modified
version and the ones of lower line with the usual Neville's algorithm.

Table 2. Values of error parameter g (Equation 25), when Neville's algorithm and its
modification are used.

n=4-32 8 - 64 7-56 19 - 152
CPU-time=4.78 s 928s 8.79 s 20.48 s
mod. -0.3436.10°7  [-0.658-10-9 | -0.144-10-8 -
Nev. 0.2217-10-6 0.1775-10-7 | 0.2949-10-7 | 0.602-10-°

More numerical considerations shows that the rate of convergence remains six after four
calculation loops, when the thickness of the structure varies linearly or parabolically. This
property however failed, when the thickness of the structure was piecewise linearly varying or
the derivative of the thickness was uncontinuous.

5. CONCLUSIONS

The effect of the shooting method under consideration can be increased using a modified
version of Nevilles algorithm for extrapolation. A condition of this increasing seems to be the
continuity of the derivative of the structural thickness.
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P-CONVERGENCE IN PLATE BENDING PROBLEM
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Abstract

This work is about the improved accuracy of finite element calculations achieved by means of
the use of hierarchical shape functions. Hierarchical shape functions of higher polynomial order
p are added in order to receive better results without changing the number of elements. This
so-called p-convergence represents an alternative method for obtaining better results compared
to the way of enlarging the number of elements (h-convergence). The polynomial order is
raised up to degree 6. As an example a four-noded plate bending element is treated. For
calculations a small finite element program is used. Different results are shown, when
rectangular and circular elements are computed. Variations of the boundary conditions are
considered for simply supported and clamped elements.

1. Introduction

Solutions of finite element calculations are always an approximation to exact solution values.
The problem is that it is not possible to assess a single finite element solution, i.e., how close
that solution is to the exact solution. Every single solution from a finite element calculation
depends on the degree of discretization. Discretization is a measure for the finite element mesh
expressed by the element size h and the polynomial degree of the element p as parameters. A
sequence of discretizations, called extension, is needed. This means the creation of finite
element spaces has to be executed. The purpose is to find an appropriate refinement including
only a little increase of data processing. To reduce the above mentioned difference between
exact and calculated solution several ways of refinement are possible ( A, p and h-p).
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Each calculation that is considered as not accurate enough is followed by another one until
convergence is observed. Most finite element programs that are based on the principle of
virtual work use the strain energy to measure the relative error between exact and FE-solution.
At the end of a successful extension asymptotic behaviour for the virtual work of the error has
to be reached. Equivalently, the strain energy of the error has to be minimised. Convergence of
strain energy is the base of convergence for engineering data such as displacements, stress
maxima, reactions, stress intensity factors, etc. [1].

An important goal in developing further steps for calculation is the ability to refer to results
from the last level, i.e., the refinement includes the last solution. This kind of extension is
described as “adaptive technique” or “feedback”. “Self-adaptive” programs only need a
minimum of user interaction because they assess the accuracy of the solution and try to reach a
pre-defined tolerance or acceptance criteria automatically.

2. Hierarchical elements

2.1. P-refinement. As already mentioned, there are different ways for discretization in order
to achieve more accurate results from finite element calculations. The conventional h-refine-
ment is based on the reduction of the element size ». The drawback of this method is its need
for a quite new mesh for each level of the extension. Therefore, existing nodes have to be
moved and new nodes evaluating the shape of the structure have to be created both inside the
element and on boundary edges. In contrast to A-refinement p-refinement always uses the same
mesh for each discretization.

The results obtained from p-refined extensions become more and more accurate by increasing
the order of polynomial degree for shape functions progressively. That means more complexity
is reached by adding new equations of higher polynomial degree. During this process it is not
necessary to change the polynomial order for all elements and all edges. Local refinement
similar to more detailed mesh on parts of the structure during A-refinements is possible. As a
condition common sides of neighbouring elements are forced to have the same basic functions
of the same order to assure displacement compatibility and continuity for all elements of the
structure.

2.2. Two dimensional shape functions. For the use of p-refinement the complete structure is
described by basic functions N(x,y). There are three kinds of functions appearing in the p-
version: nodal shape functions, side modes and bubble modes. These basic functions are calcu-
lated from elemental basis functions that are obtained by mapping elemental shape functions
from the general £ n-plane onto concrete finite elements in the x,y-plane by the use of
specified mapping functions. Shape functions are defined on a standard element, eg.
equilateral, right triangles or squares in normalised size, with own co-ordinates Em).

Four-noded quadrilateral elements with four degrees of freedom per node demand sixteen
nodal shape functions. These first 16 elements of the shape function matrix N° are products of
one-dimensional cubic Hermitian polynomials. Statements of the same type in each direction
are required to fulfil the criterion of independence from co-ordinate transformations. There-
fore, in case of rectangular elements symmetric statements have to be chosen. Elements treated
in this work were mapped from bicubic Hermitian polynomials, which provide C' continuity.
As an example the shape functions for the lower left comer node (node 1 [-1;-1], ) are:
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corresponding to the respective nodal parameters %, (#,¢ )1, (4,5); and (Uen - These shape
functions are the same as for the A-version.

In finite element programs the Jacobian J contains the geometric information concerning nodal
co-ordinates and mapping functions. If mapping functions and shape functions are of the same
polynomial degree the mapping is called isoparametric. In this work mapping is only
isoparametric for p = 3, i.e., in case only nodal shape functions of Hermitian type are used. If
higher order polynomials are added the performance turns into subparametric, i.e., the degree
of the shape functions is greater than the degree of the mapping functions.

2.3. Side modes. For p-refinement shape functions whose polynomial order p is greater or
equal to 4 are added. These shape functions are associated with the element sides. 8(p-3) shape
functions have to be established for quadrilateral elements what results in four degrees of
freedom per corner node. Products of internal surplus functions S, and Hermitian polynomials
H, . form equations for the side modes (5) and (6).

Nk(g,n)'-'Hmt(é)Sp—‘t(n) (5)
Nk(ﬁ,n)=Hm,-(n) Sp—4(5) ©)

where k > 16 and p > 3. H,,, are Hermitian polynomials, which provide the function value or
slope value 1 on the edge where the side mode is located and zero on the other edge. Equation
(7) shows how the Legendre-type internal surplus function of the ith order is defined [2].

5, =—(s-1)" i20 %)

In this work the polynomial degree was increased up to p = 6=

So=(s"-1) ®
5, =3s(s 1)’ )
S, = (s=1)(s+1)*(75* -1) (10)

Required properties for this kind of function are zero values and slopes at elemental corner
nodes. New degrees of freedom are produced by the implementation of side modes that are
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associated with new midside nodes on element sides. Other sets of shape functions are
possible, for example interpolating functions of the Peano family [3].

2.4. Internal modes. Products of the above introduced surplus functions form bubble modes.
For p > 3 there are (p-3) internal modes. Displacement and slope values for these shape
functions are zero at every edge of the boundary because they use hierarchical functions S, in

both & and 7} direction.
N (6.1)=Sp4a(1)Spa(8) a1)

Internal modes can be condensed already on the element level and do not have to be computed
during the assemblage of the global stiffness matrix.

In the treated problem the polynomial degree of internal surplus functions is increased up to
sixth order. This affects on the accuracy during the Gaussian integration. Higher polynomials
required more integration points in order to receive exact results by Gaussian integration.
Polynomials of 6th order in two directions deliver equations of degree 12. Therefore the
number of integration points in the developed program was raised up to 7.

Shape functions used for p-convergence are based on hierarchy, i.e., new functions are added
without changing the old ones. Furthermore, these additional functions do not affect on the
initial set of functions in such a way that new equations provide zero values in locations where
the initial set describes nodal displacements.

3. Application

In this work p-refinement is applied to the problem of the bending of thin plates. The standard
test examples square and circular plates are used. The material properties for the modulus of
elasticity and Poisson's ratio are £ =210 GPa and v=10.25. All calculated structures have the
constant thickness ¢ = 0.05 m, the radius of the circular plate and the side length of the square
plate are both 3 m. Point loads (30,000 N) are applied to the centre node. Further calculations
applying a uniform load of 4,000 N/m’ were examined.

Symmetry in two directions requires the modelling of one quarter of the structure only. In fact,
boundary conditions replace the remaining part. Structures containing one and four elements
are treated. The coarse mesh and the more refined version are examined for the case of simply
supported and clamped boundary nodes.

The basic four-noded element contains 16 degrees of freedom, i.e., each node i has
u,(u,);,(u,,); and (4,g); as its degrees of freedom, if u is the displacement of the plate in

node i. More about this element is in reference [4]. The amount of variables and the practised
way of numbering depending on the polynomial degree is shown in figure 1. This way of
numbering is not very convenient for adapted refinements but it has its advantages in the ease
of condensing the midside nodes, what is done in order to decrease the numerical effort.

4. Results

In this chapter the results obtained are presented. In general, the solution given by the used
program that includes hierarchic shape functions and p-refinement is related to the exact
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solution. For the treated basic problem of plate bending exact solutions can be received from
standard analytic calculations. Here, formulas for flat circular plates and plates with straight
boundaries of constant thickness were taken from [5]. Due to boundary conditions and applied
loads u__ always appears as deflection of the centre node of the structure. For this reason all
mentioned and pictured displacements refer to this node.

1316 912
14 58
p=3
1316 o12
-26]
O (25. ) &
{28-32) (21-24)

L) .

14 B g4
p=5 p=6

Figure 1. Nodal degrees of freedom for one element depending on the polynomial degree

In order to assess results from the treated program the same load cases and boundary condi-
tions were examined with the aid of the commercial finite element program ANSYS. This
comparison served the purpose to see how fast other programs reach convergence depending
on the amount of degrees of freedom and to estimate the absolute accuracy of finite element
programs, i.e., if the exact solution is exactly reached.

A real equivalent comparison between ANSYS and the program developed in this work was
not possible because of ANSYS's element library. Neither hierarchical nor p-convergent
elements are available. This is the reason why all ANSYS convergence curves presented in this
work are h-convergence based curves.

ANSYS elements treated in this work are 3-D elastic quadrilateral shells that have both
bending and membrane capabilities [6]. The first one is element STIF63, a four-noded linear
shell. The second element used here, STIF93, is derived from STIF63. It is a 3-D
isoparametric shell and has 8 nodes and six degrees of freedom at each node: translation in the
nodal x, y and z directions and rotations about the nodal x, y and z axes.

4.1. Square plates. As already mentioned the deflection of the centre node was the measure
for all load cases and different boundary conditions. The following figures show the relative
error of this deflection depending on the degree of freedom of the structure.
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Using the developed program structures containing one and four elements were examined. In
case of point loaded simply supported square plates the used program gave best results for the
four-element structure (see figure 2).
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2 8 element
B
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4 \ == ~

2 & -
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0
[ 2 0 60 [ o] 10 120 140 10

degroes of freedom N

Figure 2. Error in centre deflection for point loaded simply supported square plate

Nodal displacements calculated with one-element structures reached convergence when the
polynomial degree was increased to sixth order. Four-element structures show convergent
behaviour already in case of polynomial degree 5. For both cases convergence required less
than 50 degrees of freedom compared to 150 degrees of freedom that were necessary when
ANSYS (STIF63) was used. Note that results given by the developed program come to
convergence that has not the exact solution as its limit. Four-element structures include a 3.1
% error and one-element structures contain a 6 % difference between exact and FE solution.

8-noded elements from ANSYS element library (STIF93) here give accurate results within a
2.5 % difference but the amount of degrees of freedom used by ANSYS was much higher. If
the number of elements is increased results obtained from STIF63 structures and STIF93
structures approached the same value. For this reason the main attention is given to ANSYS's
4-noded elements although they are much simpler and incorporate only C° continuity
compared to elements developed in this work. For better readability 8-noded elements were
only calculated for structures containing one and four elements, respectively.
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Figure 3. Error in centre deflection for point loaded clamped square plate
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In case of clamped plates (figure 3.) results obtained from the developed program achieved the
same accuracy (3 % deviation) as A-refined ANSYS structures without requiring as many
degrees of freedom as ANSYS does. STIF93 elements served to compute a coarse mesh with
higher order elements when using ANSYS.

In figure 4. it is obvious that the coarse mesh realised by a one-element structure is too rough
to achieve good results. 13 % deviation to the exact solution is decreased down to 3 % when
the amount of elements is increased up to four. ANSYS again gives accurate results but more
degrees of freedom are necessary.

If square plates are clamped accuracy is obtained already for a very few degrees of freedom.
The difference between exact and FE solution again amounts 3 %. In this case one-element
structures and four-element structures reach the same accuracy (3.1 %).
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Figure 4. Error in centre deflection for uniform loaded simply supported square plate

0
m —@— 1 clement
% —&— 4 clements
x ! —_@— ANSYS, 4nded
\ clement
. 15 L —f— ANSYS, 8-n0ded
a \ element
£ 10 ~
et N
i & o — e
0
5
-10
0 0 4o o & W 10 i@ 1

degrees of fredam N

Figure 5. Error in centre deflection for uniform loaded clamped square plate

4.2. Circular plates. When plates are of circular shape ANSYS's 8-noded elements were
avoided because of the above mentioned reasons. Convergence again was achieved for all load
and boundary cases when using the developed program. However, point loaded simply
supported plates (figure 6.) give poor results when using only one element for modelling the
structure. 19.2 % deviation is the result of a poor shape approximation by using only one
element for defining a quadrant of the circular plate. More discretized models containing four
elements delivered results that are much closer to the exact solution (3 %).
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Figure 6. Error in centre deflection for point loaded simply supported circular plate

The computation of uniform load applied to simply supported plates (figure 7.) also gives
acceptable convergence for structures containing at least four elements. The deviation does not
exceed 3 %. One-element structures are not suited for this kind of geometry although
convergent results are obtained.
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Figure 7. Error in centre deflection for uniform loaded simply supported circular plate

More details and results are given in reference [7].

5. Summary

In order to improve results' accuracy the polynomial degree of shape functions was increased
while the number of elements was kept constant. This so-called p-refinement was practically
realised by adding new functions of Legendre type. These functions must not affect on
displacements in corner nodes, i.e., added internal surplus functions required hierarchical
properties. The polynomial degree was raised from 3 to 6.

Convergence was observed in all cases except for circular structures containing only one
element where the results approached a certain value but not the exact solution. For this reason
a pure p-convergence is not seen to be the best way of discretization. The structure has to be
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meshed sufficiently before starting the increase of polynomial degree, i.e., h-p-convergence
seems to give best results. The average deviation between exact solution and FE solution
varied between 3 % and 1.5 %. Results that equal exactly the analytic value were not obtained.

In general, the first step of refinement, a rough meshed structure of third polynomial order,
already provided good results. Further refinements improved these results, i.e., a minimization
of improvements from step to step could be noticed. A limit for a sensible increase of
polynomial order could be observed. If p is greater than six, oscillations caused by additional
degrees of freedom appear and the results do not become much better.

Results obtained from the developed program are compared to solutions given by the
commercial FE program ANSYS. H-refined AN SYS structures that consist of C° continuous
elements accomplish slight better results at the expense of more degrees of freedom and
increased solution time. Standard deviations given by AN SYS are in the range of 2 % when the
number of degrees of freedom amounts at least two times the amount needed by p-
convergence.
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OPTIMUM DESIGN OF STEEL FRAMES USING FATIGUE RESONANCE
TESTING, DYNAMICS SIMULATION, ANALYTIC AND FEM OPTIMIZATION

Heikki Martikka
Department of Mechanical Engineering
Lappeenranta University of Technology
P.O.Box 20 SF-53851 Lappeenranta Finland

ABSTRACT

Optimization of structures is most useful from the concept design onward. But often
optimizing improvements are needed when most design variables are already constrained.
The present goal is to study means to ensure sufficient fatigue life in steel frames used
under dynamic loading. First these were tested using resonance fatigue loading to find out
surface fabrication methods to improve the fatigue life of the critically stressed parts. In the
present study the design of the resonance method was analyzed using dynamics simulation
based on Lagrangian dynamics. The structure was optimized using Monte Carlo optimization
with weighted and fuzzy goals and with constraints on fatigue life and others with a mix of
continuous, integer and discrete design variables. Also FEM optimization was tested. It
concluded that each method is useful but effective integration is needed .

1 INTRODUCTION

Structural designers are increasingly pressed for better solutions in a shorter turnaround
time. It has been observed that from some nine important conditions of success the most
important predictor of success is * a superior product which offers unique benefits to the
user’. Therefore optimization should be used early since at the idea generation and evaluation
stages most of the ’genetic’ properties and costs are fixed. Correct definition of the goals
and constraints is more important that their solution. If Ao alternatives have to be defined
and if the design evaluation rate is L per time unit then the number of yet undefined
alternatives is A = Ao exp(-L t) at time t. If the cost per evaluation of each alternative
is k then the product development cost increases roughly as C=k* Ao uptoan
allowed limit. In the specification and planning phase the goal is to understand the
customer’s incomplete or fuzzy requirements and translate these into engineering
specifications according to Uliman [ 1 ]. One may transform these into traditional models
or into fuzzy models reflecting better the customer’s thinking. It has been noted often too
late that the critical components should have been fully optimized, tested and verified. Some
new design systems like Engineous [ 2 ] were designed with the aim to integrate and retain
multidisciplinary and often incomplete design knowledge into a generic shell to
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automatically iterate analysis codes. The following benefits are feasible: faster turnaround,
better solutions, retaining of design expertise, reduction of human errors and reduction of
labour costs. In order to reach these goals design tools have to be completed. Neittaanmiki
[31has suggested that structural optimization problems may be divided roughly into three
classes; domain optimization, optimal sizing and topology optimization. The objective
of the present study is to test the first two methods for optimization and dynamics
simulation of some machine frames.

2 FATIGUE RESONANCE TESTING

Fatigue testing of large machine elements may be done in two ways. In the brute force
method an active external excitation is applied to a passive structure. Thus large forces
are required for obtaining large displacements and strains. Due to constraints the frequences
have to be low and test times long. But if the structure is excited within +0.4 per cent of
its eigenfrequency, then it will take part actively in the test. Thus only small forces are
needed and frequencies can be set high and test times become short. In a previous study
[4] a series of frames were tested using resonance fatigue loading to find out how
fabrication methods of the critically stressed parts affect the fatigue life. The experimental
set up and results of modal analysis are shown in Fig.1..
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FIGURE 1. Setup of the fatigue resonance testing [4]. a) Lay out. The numbers denote : (1)
upper beam, (2) test beam, (3) power amplifier, (4) feedback, (5) function generator, (6)
amplifier ,(7) electrodynamic shaker, (8) oscilloscope, (9) strain gage amplifier, (10) cycle
counter, (11) rainflow counter and PC, (12) peak value collector PC. b) Results of modal
analysis showing lowest eigenmode of the tested structure .

It was observed that with good machining a fatigue life of 1.46 10° cycles was obtained
with a frequency of 46.5 Hz at a stress amplitude of o, = 160 MPa.



219

3 SIMULATION OF THE DYNAMICS OF THE STRUCTURE

The simulation of the dynamics of the structure was done using the SIMNON [5] nonlinear
simulation program and Lagrangian dynamics.

3.1 The kinetic energy

The dynamics model is shown in Fig.2. We select only one degree of freedom which is the
the vertical defection q of the end of the beam using the method of Dimarogonas [61.
Assuming that a straight beam has a uniform cross section and a cantilever force then its
static deflection at a distance x will be a polynomial shape of order 3 with zero displacement
and slope at x = 0 and displacement q at X = L

o - 23 (3]«
It is assumed that the motion of the beam will be
yx,n = z(x) qi) @
The kinetic energy of the beam b will be
Tb = % j: y* dm )
0

where dm is mass per length .Now the the centerline of the beam is curved and its profile
changes also. It is now assumed that the beam can be divided into four sections which each
have constant sectional properties. The velocity of mass dm at location x is

;= 9 . dq | @
A Y-
The kinetic energy of the beam is a sum
T =TI+ T2+ T3+ T4 ()]
or
Th = %eMb & ©

where Mb is the effective mass taking part in the motion of the test beam. Because the
excitator frequency was restricted to about 50 Hz some additional masses were added to
change the eigenfrequency of the system. The total kinetic energy of the structure is

T = Th + Y2 Mpl Rp1® + Y2 Mp2 Rp2* + %2 J 62 (7)
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where Mpl is the mass of the upper beam and its fasteners and Mp2 is the mass at its end
point , J is the moment of inertia at the center of the upper beam and Rpi are the vectors of
locations of the masses respectively. The angular velocity 8 is the same as the time rate of
the tangent of beam deflection curve. The velocities of the masses are

Rpl = RR1 ¢& @
. &)
Rp2 = RR2 ¢
thus the total kinetic energy is
(10)

T =% MM
3.2 The potential energy and the dissipation energy of the system

The potential energy consists of the elastic energy of the beam and the gravitational energies
of the mass bodies. Potential elastic energy of the beam is

L
Vb=fEIy,,,xdx (11)
[}

Integrating this for the four constant elements one obtains
Vb = VI+V2+V3+V4 = WKGFg (12)

The total potential energy is obtained by adding the potential energies of the total mass of the
beam at its center of gravity and others

V. =Vb + VM + VMpl + VMp2 (13)
or
V =4%GFq¢ + Mgh + Mplg HH1 + Mp2 g HH2 (14)
Dissipation energy was modeled as
(15)
D = %C1&
3.3 The equations of motion.  The Lagrangian function is
L = T-V (16)

The Lagrangian equations of motion are for the coordinate q

_[_]—_+__=F (17)
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3.4 Solution by simulation . The laboratory test force is a harmonic acting with frequency
f = 46.5 Hz. Now the accuracy of the dynamics simulation model is measured by how
well it reproduces the eigenfrequency of the actual structure. The vibrations were excited
with initial conditions of zero displacement q = 0 and zero velocity qt = 0 and a small
external step force Fq. In the simulation the method of state variables was used .

STATE q qt (18)
DER dq dqt
TIME t
dgq = qt " = velocity qt = dq/dt
dqgt = qtt " = acceleration dqt = d(qt)/dt (19)
gt = ILFq/ MM " = Force / mass
where
TFq is the sum of all forces and MM is the sum of all generalized masses
3.5 Results

The following results were obtained , Fig.2 . The location of the center of gravity of the
upper beam were moved by changing the parameter xL1 = x/L1 where x is distance of
cantilever end of the upper beam and L1 is its length. The calculated eigenperiod T = .022
sec was rather close to the experimental period T, = 1/46.5 = 0.0215 sec.
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FIGURE 2. Dynamics simulation of the structure using a simulation program and
Lagrangian dynamics model.a) The simplified model b) The resulting vibration of the end
of the beam q with two locations x/L1 of the upper beam mass center, curve 1: .4 and
curve 2 : .2
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4 OPTIMUM DESIGN OF THE STRUCTURE USING NONLINEAR MONTE
CARLO OPTIMIZATION

4.1 The Algorithm. This method was based on analytical models and Monte Carlo
optimization. Both continuum, integer and discrete design variables may be activated . In this
program model it is possible to use for the U-beam a desired set of standard plate thickness
classes , t(IT) , IT = 1,2,.. . and standard steel classes with UTS Rm(IM) , and cost
CIM), IM = 1,2, etc . The continuous variables were the height H and width B. The

objective function consisted of two terms
Q = Qv + Qpen 20
where Qv = the essential objective function
Qpen = the penalty function penalizing for violation of constraints.
If no constraints are violated then Qpen = 0. Continuous design variables were defined as
x(G) = =xbest() + [ xmax(j)- xmin(G)]* [ 0.5 - RND ] * Learn * kk (3}
where x(j) is the continuous variable and xbest(j) is its latest best value around which the

search is activated with a range which is diminished by a learning function Learn. RND is
a random number 0 .. 1. Discontinuous variables were generated by

x(i) = INT[ (xmax(i) - xmin(i) + 1) *RND + xmin(i) ] 2)

The model of the structure is shown in Fig. 3. The load force was F = 10000 N.
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FIGURE 3. Nonlinear optimization of the beam using the fuzzy goal..Two geometric
constraints were used for the mid section heights, one with Hi < .06 and the second
with Hi < .2. Fatigue lives NN = 10" were constrained by 6 < V< 7. Height H and
width B were continuous variables. Width B was constrained by .1 < B < .2
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4.2 Design goals. Two types of design goals were used
4.2.1 The weighted goal. The essential objective function is
Qv = flQl+f2Q2 (23)

Here the sum of the weight factors is one f1 + f2 = 1. The partial goals are
dimensionless to be comparable . The first goal is the the cost minimization goal

Q1 = cost/ costo 24)

Here cost is the material cost and costo is the cost of a competing product. The second goal
is the technical "Taguchi’ type goal modelled as the minimization of variations from desired
minimum fatigue life.

Q2 = Y R@ R@ (25)

where

RG) V@) / Vo - 1 (26)

Here V(i) is the exponent of the fatigue life at a section number i = 1,2,3,4,5,6 and Vo is
a scaling value, which was set to Vo = 6 to ensure a life of 10° cycles.

NN@G) = 10'® 27
The function V(i) depends on the following stress ratios
Va = Sva/ Rm = relative effective stress amplitude (28a)
Vm = Svm /Rm = relative efefctive stress mean value (28b)
Ve = Se / Rm = relative fully corrected fatigue strength (28c)

Here R(i) is also a constraint for ensuring that a fatigue life of 10° is obtained. Thus it is
required that R(i) > O . Fatigue lives were calculated using a method proposed by Meyer
[7] which combines the Haigh diagram of modified Goodman type and the S-N diagram.
It has been used in axle design [8]. The ideal fatigue strength or the mean endurance limit
of the rotating -bending specimes of steels is can be calculated from static strength

ow = 0.5 Rm 29
the fully corrected fatigue strength is
Se = CCf ow (30)

here C and Cf = 1/Kf are the fatigue strength reduction factors, Kf = the fatigue stress -
concentration factor. These factors may be changed during the manufacture within certain
technical and economical limits. Now the fatigue tests showed that Se for the beams was
160 MPa .

4.2.2 The fuzzy goal. This formulation aims directly at ensuring the satisfaction of the
customer to this product. A successful design event can be defined using Boolean logic .
Now only intersection of events are needed

G = GK and GVl and GV2 and GV3 and GV4 and GV5 and GV6 3D

The fuzzy probability of obtaining this event is the product
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P(G) = P(GK) * P(GV1) * P(GV2) * P(GV3) * P(GV4) * P(GV5) * P(GV6) (32)
where GK = anevent of obtaining a satifactorily low cost = K
GVi = an event of obtaining a satisfactorily high fatigue life at section no i

All these can be formulated as S-formed curves or approximate straight lines. Now the fuzzy
goal P(G) of obtaining a satisfactory design event can be defined as

if K < 20 then P(GK) = 0.001 not possible to produce (33)
if 20 <K < 40 then P(GK) = 1 full satisfaction is obtained

if 40 <K < 120 then P(GK) satisfaction changes linearly

if 120 < K then P(GK) = 0.001 no satisfaction , too expensive

Satifaction P(GV) on the fatigue life exponent V changes from 0.001 when
V < Vmin =4 to 1 when V > 5. Technical constraints were set also on fatigue life

for others sections except the first and the last
VVmin = 6 < V(@) < 7 = VVmax 34)

The mid section heights Hi of the actual beams were restricted to Hi < .06 by the other
components of the machinery. Using the program the values H = .05 to .07 were
optimal. About the same results were obtained with looser constraints Hi < .2 .. The
width of the beam was constrained as .1 < B < .2. The results are shown in Fig.3.

5 OPTIMUM DESIGN USING A FEM PROGRAM
The beam was studied using the optimization module of the I-DEAS system [9]. The model

and some results are shown in Fig. 4. The actual structure is not quite symmetric but it was
modelled as symmetric and one half was used.

b)

FIGURE 4 Optimization of the beam under cantilever loading using FEM a) the initial
model , the deformed form , Mises stress (MPa) contour codes 4: 107 5: 132 6: 157 b) the
optimized form and original form (dotted line), allowed stress was 150 MPa.



225

6 SUMMARY AND CONCLUSIONS

Several modern testing and design methods were applied to analyze steel frames used in
heavily loaded machines.They were previously tested to improve fatigue life using resonace
fatigue loading. The reason for testing was that optimum design methods were not used by
the original manufacturer. Nonlinear optimization proved efficient and gave global optima
in a short time. Experimental dynamic testing is an efficient method for analyzing the
dynamic behaviour of structures. But its experimental results can be made more useful by
using theory based dynamics simulation in preliminary set up design and also in later
analysis. FEM based optimization is a promising design tool but user interfaces should be
made more intelligent and algorithms more robust and automatic.
Acknowledgements.The assistance of Jukka Lehmusvaara , MSc , in I-DEAS modelling is
gratefully acknowledged
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OPTIMIZATION OF THIN ELASTIC SHELLS OF REVOLUTION WITH
AXISYMMETRIC LOADING

Esa Murtola
Tampere University of Technology / Applied mechanics
P.O. Box 589, FIN-33101 Tampere
Finland

ABSTRACT

This paper deals with the shape and thickness optimization of thin elastic axisymmetric shell
structures. The objective of the design is the weight minimization of the shell material when the
constraints are displacements, stresses and enclosed volume of the structure. The nodal
coordinates and thicknesses of the elements are chosen as the design variables .

The finite element model used here is based on the exact solutions of the differential equations
of the classical shell theory. Because of this not only the displacements but also the stresses can
be obtained with great accuracy. In the design sensitivity analysis the analytical method is used
and the numerical results are compared with the finite difference values. Several examples are
presented illustrating optimal shape and thickness distributions for different kinds of shell
structures.

1. INTRODUCTION

Axisymmetric shells are very common in technical applications such as pressure vessels, tanks,
roof of structures, etc. There are also many different theories for the designers to calculate the
responses of structures for various types of loadings. The method used here is based on the
classical theory of thin shells created by Love and Kirchhof [1], where they have made
assumptions for the thicknesses, the displacements and the material of the shell. The theory
was further developped by Reissner and Meissner (1], which have shown the fundamental pair
of differential equation for the thermostatics of shells of revolution in the form

L(W)-2fW=TU+H

L(W)=—E9W+G N (1)

which are explained more detailed €.g in the book of Krauss [1]. However the general solution
of the fundamental pair (1) is

W =W, +W, U=U+U, ,

where (WP,UP) is any of its particular solutions and (WC,UC) is the general solution of the

corresponding homogeneous pair of differential equations

L(W)-2fW=TU

L(W)=— EgW . 2
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In this paper the displacements and stresses needed in the optimization program are calculated
by the exact finite element method proposed by Outinen [2]. The method is based on the exact
solution of the differential equations (1) in a way that leads to the normal finite element
stiffness equation

[K{U}={R}. (3)
2. OPTIMIZATION PROBLEM

The optimization problem discussed in this paper is to minimize the material volume V,, of a
shell structure, when the design variables s; are the thicknesses #; of the elements and the
nodal coordinates of the elements (x;,y;) shown in the figure 1. The minimization problem is
subjected to constraints g;(S), which can be stress and displacement constraints for each
element, a volume constraint for the inside volume V, of the vessel and upper and lower
bounds for the design variables.

Figure 1. The design variables of the shell structure and some fundamental shell elements

The numerical method used here for the optimization problem is the sequential quadratic
programming SQP | 3], which is considered quite powerful for different kinds of problems.

3. STRUCTURAL ANALYSIS WITH THE EXACT FINITE ELEMENT METHOD

The basic idea for the exact finite element method (2] is to use the the particular solution of
the fundamental pair (1) for different loading cases and the general solution of the
corresponding homogeneous pair of the differential equations (2) to make the element stiffness
matrix (4] and the equivalent nodal force vector {r} for each type of fundamental shells e.g
cylinderical shell, conical shell, etc.

In this way it is possible to use fundamental shells as elements shown in the fiqure | and so the
number of the elements is small. Other benefits from this method are that the nodal
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displacements {U} solved from equation (3) are exact according to the theory of thin elastic
shells and also all the field functions § in the element e.g. displacements and stress resultants
can be calculated exactly as a sum of S, a particular solution of equation (1) for any field

loading , S, a particular solution of the equation (1) for the axial loading and S the general
solution of the homogenous equation (2)

S=S8,+Sm+5 4)
where

5. =[S]{a} (5)

where {A} is a vector containing unknown integrations constants and matrix [S] contains

functions from the solution of equation (2) ,[2]. So there is no need for the adaptive meshing
to get more accurate results e.g. in the places where strong edge effects can appear .

3.1 FORMULATION OF THE ELEMENT STIFFNESS MATRIX

The solution of homogeneous pair of the equations (2) corresponds to the element shown in
the figure 2 a , where its nodal displacement vector is {uc} and nodal force vector is {Fc}.

(b)

Figure 2. Different nodal degrees of freedom for shell element

According to the figure 2 a we can get the 4 x 4 flexibility matrix [ac] for the homogenious
loading, which contains only radial forces and moments at the edge circles of the shell. From
flexibility equation

{u}=[a.]){F.}, (6)

with the help of the solution of the equation (2)
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{u.}=[D} A} D
and
{r}=[cl{a}, ®

where the matrices [D] and [C] contains functions from the solution of equation (2) [2], it
follows that flexibility matrix for the homogenous loading is

[a.]=[D][CT™. Q)

The 5 x 5 flexibility matrix [@] for the case in the figure 2 b can be obtained with the help of
the particular solution for the axial loading by adding its influence to [ac]

Now the 5 x 5 element stiffness matrix [l_c- ] is
[k]=[a]” (10)
and the 6 x 6 element stiffness matrix [k] for the case in the figure 2 ¢ can be obtained from
the axial equilibrium.
3.2 FORMULATION OF THE EQUIVALENT FORCE VECTOR

The equivalent force vector for different field loads e.g. hydrostatic pressure inside a water
tank can be computed exactly using the equation

{r}=16{u,}-{5,}. ()

where {up} and {Fp} contains the nodal displacements and the nodal forces corresponding to
any particular solution of the fundamental pair (1) using the field load in question [2].

4. DESIGN SENSITIVITY ANALYSIS

One of the most important stages in the linking of the structural analysis with an optimization
program is the design sensitivity analysis, which calculates the changes in the structural
responses to the changes in the design variables. The methods used in the design sensitivity
analyses are usually based on finite difference methods e.g. the global finite difference method
or the semi-analytical method or the analytical method in which the needed derivatives are
calculated analytically.

Differentiating the equation (3) with respect to the design variable s, we have

AU}, 31K} 1)y _ 2LR)

K
L] sy * s, sy

(12)
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and further

o{U} ___[K]-I(M_M{U}) _ (13).

ask ask ask

After solving the derivatives of the displacements the derivatives of any field function can
solved from the equation

2‘1:3514.%_4.%. (14)
ds, Os, Os, 05

These derivatives can be obtained by the analytical method or by the finite difference method
discussed in the chapter 4.

4.1 ANALYTICAL METHOD

In the exact finite element formulation of the thin elastic axisymmetric shell structures
expressions of the element stiffness matrix, equivalent force vector and particular solutions for
different field loads and axial loads are quite easy to derivate with respect to each design
variable according both the thicknesses and the nodal coordinates of an element. The
derivatives of the stiffness matrix [E ] can be calculated from the definition

[k]ia)=11] (15)
differating it respect to each design variable
ok]_ _pdtalr;
2 a9
Ja] . .
where = is calculated with the help of
ask
3a.] AP q1 [y dlCT
—2=——|C D]—— .
ask ask [ ] +[ ] ask (]7)

The derivatives of the equivalent force vector {r} can be calculated from the equation (11),
which leads to the equation

Q{r_}=a_{k_}{up}+[k]§@_i’}l

ask ask ask ask (18)
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For these derivatives of the element stiffness matrix and the equivalent force vector it is needed

to calculate the derivatives of the flexibility matrix %[_a_] and the derivatives of the particular
54
K . a{“p}
solutions for the nodal forces ——— and the nodal displacements %
Sk k

The derivatives of the field functions aa_s e.g. displacements and stress resultants can be

Sk
| - ofs)}
calculated from the equation (14), where the parts of the particular solutions ” and
k
915, . oS
gm} can be derivated easily and the part of the homogenous solution { c} from the
i St

equation (5), which leads to

os.d _ A3, . rspdtal
a_Sk._E{A}Jr[s]—asT : (19)

where from equation (8).

3(A} _ a1 o{R}
T {F}+[C] 25, (20)

4.2 THE GLOBAL FINITE DIFFERENCE METHOD

With this method is very easy to calculate the finite difference approximations of the design
sensitivities, but it is computationally expensive and the accuracy of the design sensitivities
depends strongly on the step size used for the perturbation of the design variables. The
approximations of the design sensitivities for any field function o are

d(o) _ (O(Sk + 8 ))_(O(Sk ))
s, 3s, )

@1

5. EXAMPLES
Example 1. Clamped circular plate subjected to uniformly distributed load

Problem definition. The weight of the plate with radius r=1m in the figure 3 is to be
minimized with respect to the constraint of the maximum displacement w,, =5,5mm and to
the maximum stress Ocq =73.5MPa. The uniform normal pressure ¢ = 0.0689 MPaand the
initial thickness r=25.0mm. The material properties which are assumed are following
Young’s modulus E =200 GPa and poisson’s ratio v=0.3 . The design variablés and the
results from the optimization are shown in the figure 3. The theory of axisymmetric plates is
not based on the solution of the equation (1) [2], but the stiffness equation (3) and the design
sensitivity analyses is handled in the same way as in the chapters 3 and 4.
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RESULTS:

material volume for
cases a) 0.0746 M°
v) cases b) 0.0651 m°
1 cases ¢) 0.0632 m>

cases d) 0.0616 M>  wwe=reeoe

(2) (b) (© (d

Figure 3. Clamped uniformly loaded axisymmetric plate initial design and optimum shapes

For this example it is also possible to get the exact sensitivities for the displacements and
stresses. These are compared with those calculated in the way presented in chapter 4.1 and
with those calculated by the finite difference method with different step values. The results are
shown in the figure 4.

3'11 . \ 31"
c0 0 R S S S S ] :
é 0.8 §
S z .

1 T |

Figure 4. Comparison of the displacement and the equivalent stress sensitivities for the
constant thickness plate
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Example 2. ;

Problem definition. Symmetric pressure vessel, which is made from three fundamental shells:
axisymmetric plate, cylinder and cone shown in the figure 5 is loaded with uniform pressure
q=10kPais to be minimized with the weight respect to the displacement constraint
Omax =0.5mm and to the stress constraint O, =10MPa.  The initial thickness

t=8,0mmand the desired volume of the vessel V, =1.94 m? The material properties which

are assumed are following: Young’s modulus £ =200 GPa and poisson’s ratio v=0,3 . The
design variables and the results from the optimization are shown in the figure 5.

figure 5. The initial design and optimum shapes for the example 2
7. CONCLUSIONS

A new method to optimize thin elastic shells of revolution with axisymmetric loading is
presented and tested with couple examples. The theory is based on the exact finite element
method and so the results are exact for displacements and stresses according to the theory . It
is also possible to calculate the design sensitivities analytically, which makes the optimization
quite effective,
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DISCRETE MULTICRITERION OPTIMIZATION OF A PLATE

TIMO TURKKILA

Applied Mechanics

Tampere University of Technology

P.O. Box 589, 33101 Tampere, FINLAND

ABSTRACT

The purpose of this presentation is to apply both discrete and multicriterion structural
optimization to the plate structure. The multicriterion optimization problem has three
criteria (the material volume of the plate, a displacement and the lowest natural frequency)
and it is solved using the constraint method.

The plate is divided into several areas and thicknesses of these areas are the design vari-
ables. The discrete values of the design variables are the standard thicknesses of the steel
plate. The solution of the discrete optimization problem is calculated using the Branch-and-
Bound method.

1. INTRODUCTION
The general multicriterion optimization problem can be written into the form

min f(x) =[ () £ (1)

xeQ
where the feasible set is
Q={xeR" | h,(x)=0, i=1,..,me, g(x)<0 j=me+1,.,m } (2)
and functions f,(x),.., f,(x) are called criteria. In the equation (2) me is a number of equali-

ty constrains, m a number of constraints and n number of design variables. In the multicn-
terion optimization the concept of Pareto optimality is used.

Definition A vector X is Pareto optimal for problem (1) if and only if there exists no xeQ
such that fi(x) < f(X') for i=1,..,p with £(x) < f(x") for at least one j.

If there is only one criterion, the problem is the monocriterion problem which is part of the
multicriterion problem. For example the first criterion f,(x) is the objective function and
the criteria fy(X),.., f,(x) are moved to the constraints with parameters €,....€,. If these
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parameters are fixed then there is a monocriterion optimization problem. This solution
method of multicriterion optimization is called constraint method [1] and it can be written
into the form

min f,(x)

fi(x) <&,

f;(?c) se,.

If design variables can get only values of some set, then the optimization is called discrete
optimization and the feasible set is

Q={x,€D, | h()=0, i=1,..,me, g(x)<0 j=me+1,..,m @)
D,={x,,...x,} k=1,.,n

This optimization problem can be solved using, for example, the Branch-and-Bound algo-
rithm [2] which is a systematic way to find discrete optimum. The Basic idea is branch
one design variable and then optimize. If there is a feasible set then the next design vari-
able is branched and optimized and so on. This process continues until there is no feasible
set or there is a discrete solution.

The Branch-and-Bound algorithm is suitable for a linear and a nonlinear optimization. It
gives the right solution for the convex problems so the global minimum for the normal

structural optimization problem is not quaranteed. But this problem is in the continuous

nonlinear optimization too.

2. THE OPTIMIZATION PROGRAM

The optimization program, which has been used, is CASOP (Computer Aided Structural
Optimization Program) [3],[4]. It has two different optimization routines as a black box:
SQP by Schittkowski [5] and ADS by Vanderplaats [6]. All calculations of this paper have
been performed with Schittkowski’s SQP. The CASOP program includes also a small FE-
program with four different element types: 2 and 3 dimensional bar elements, the plane
stress element and the Reissner-Mindlin plate-element. All sensitivity analysises are calcu-
lated analytically without a difference method. CASOP program includes also the discrete
optimization and the calculation of natural frequencies.

3. THE EXAMPLE

The example problem is a plate which loading is the uniform pressure. The plate is shown
in the figure 1 and the symbol o, means allowable stress (von Mises yield condition).

The plate has twelve design variables and three objective functions. Objective functions are
for minimizing the material volume V and the displacement A, of the middle point A and
for maximizing the lowest natural frequency @,. The plate is double symmetric and only
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Figure 1. The plate example

one quarter of the plate is modelled. The design variables of the plate have been drawn
into figure 2.

4 18 12
13 17 11 |
10 16 110 |
11 15 19

Figure 2. Design variables

The FEM-model of the plate includes 48 elements and 65 nodes. The mesh is uniform and
every design variable has horisontically four elements and vertically one element. Stresses
have been calculated in the middle of each element. Because it is not easy to determine
where the highest stresses are, every element has the stress constraint and so there are 48
stress constraints.
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The optimization problem of the plate is

h 14
min | f, | = min | 84
f, -0, (5)

0,50, i=1,..,48
xeD k=1,.,12

where the set of discrete values D is { 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 25, 30,
35, 40, 50, 60 } mm [7]. These are the standard thicknesses of steel plates which routinely
delivered by steel companies. There are 19 possible values for every design variable and
19'? = 2.2-10" different structures.

Four different Pareto optima of the problem (5) are calculated: the minimum of the dis-
placement A,, the minimum of the material volume V, the maximum of the lowest natural
frequency , and an internal point where the constraints are A, < 0.1 mm and ®, = 3000
rad/s.

4. RESULTS

The results of Pareto optima are shown in the figures 3, 4, 5 and 6.

Figure 3. The minimum of the material volume. Objective functions: V=13.23 1, A,=1.82
mm and ®,=2173 rad/s.
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Figure 4. The minimum of the displacement in the point A. Objective functions: V=28.17 1,
A,=0.0209 mm and ®,=1700 rad/s.

Figure 5. The maximum of the lowest natural frequency. Objective functions: V=39.16 1,
A,=0.149 mm and ®,=7529 rad/s.
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Figure 6. The internal point. Objective functions: V=20,7 1, A,=0.0857 mm and ®,=3049
rad/s.

The values of the objective functions in these four minimal solutions are written into the
table 1. It is interesting that some objective functions are worse and some better in the
discrete optimization than in the continuous optimization. However, it is clear that continu-
ous problem gives better or equal results because discrete problem has extra constrains.

Table 1. The values of the objective functions in the minimal solutions. In the table below
¢ stands for continuous and d for discrete problem.

min V min A, max , intern. p.
Vil c 12.58 c 27.16 ¢ 39.08 c 20.24

d 13.23 d 28.17 d 39.16 d 20.70
A,/mm €223 ¢ 0.0179 ¢ 0.151 c 0.1

d 1.82 d 0.0209 d 0.149 d 0.0857
o,/ ¢ 2053 c 1603 ¢ 7930 ¢ 3000
(rad/s) d 2173 d 1700 d 7529 d 3049

The solutions of the problems are written in the table 2. There are some interesting aspects
in this problem. First, the minimum of the displacement is not the maximum of the materi-
al volume. The maximum of the material volume has a displacement A, = 0.0356 mm in
the middle point of the plate. This means that if material volume is reduced then the dis-
placement decreases. The reason for this phenomenon can be seen in the figure 7. When
the displacement of point A is small then the displacement of the point B is large and
opposite. When the displacement in the point B is large then the bending moments of the
plate help to minimize the displacement of the point A.
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Figure 7. The displacement of the plate when the displacement of the point A is in the
minimum.

Because the area of each thickness segment is equal there can be several solutions, which
have the same material volume, in the discrete optimization. For example, in the internal
point there is a structure which has the material volume 20.7 1, the displacement A, =
0.0997 mm and the natural frequency ®, = 3003 rad/s. There is nothing wrong in the sense
of the monocriterion optimization but it is not Pareto optimal solution because there is a
structure where the material volume is equal but the displacement and the natural frequen-
cy are better.

Table 2. The solution of Pareto optima (c continuous, d discrete)

min V min A, max @, intern. p.

,/mm |[c 994 d10 ¢ 12.86 d 12 c300d 3 c 300d 3

,/mm |[c 300d 3 ¢ 10.05 d 10 c21.64 d22 ¢ 923 d10

ty/mm |[ c13.52 d14 c11.09 d 12 ¢ 60.00 d 60 c 31.24 d 30

t,/mm || c21.18 d22 c19.41 d 20 ¢ 60.00 d 60 ¢ 35.36 d 35
ts/mm | ¢ 938 d10 ¢ 60.00 d 60 c300d 3 c 300d 3

t,/mm |[c 3.00d 3 c300d 3 c20.72 d 22 c17.08 d 18
t,/mm | c13.08 d 14 c300d 5 ¢ 60.00 d 60 c 300 d 3

t/ mm | ¢20.70 d22 c 920 d 6 ¢ 60.00 d 60 c 30 d 3

t,/mm | c 938 d10 ¢ 53.11 d 60 ¢ 300d 3 c29.13 d 30
to/mm | c 300 d 3 c 598 d15 c20.72 d 22 c337d 5
t,/mm | c13.08 d 14 ¢ 53.98 d 50 ¢ 60.00 d 60 c 34.79 d 40

t, / mm || ¢20.70 d 22 ¢ 60.00 d 60 ¢ 60.00 d 60 c 52.62 d 50
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The discrete optimization problem is very large. The easiest problem was to minimize the
lowest natural frequency. It ook 104 s CPU time (Silicon Graphics Iris Indigo). The most
difficult problem was the middle point problem which took 7983 s CPU time. These four
minimal solutions needed totally 12,362 s CPU time. Anyway, with four points it is very

difficult to imagine what the set of every minimal solutions looks like.

A ¥

<2
°¢{s~

<~ B

Figure 8. The calculated minimal solutions in the minimal space. In the figure V means
min V, D A,, O ,, I the internal point, ¢ continuous optimum and d discrete optimum,
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MECHANICAL PRESSING OF SOFT POROUS MEDIA
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ABSTRACT. The model describing the wet-pressing of paper is presented. Focus is put on
analysing the generalized version of Terzaghis principle of effective stress for soft porous
media. Analysing the wet-pressing model for saturated flow gives restrictions to the
parametrization of the stresses. Under these restrictions comparison between classical
Terzaghis principle and phenomenological formula is made.

1. INTRODUCTION

Tests and measurements have been the traditional basis tools of the engineers designing

a new product in paper making industry. Having certain demands of the efficiency,
quality and costs of the product on their minds they have made the decisions of the
construction of the new product. This is mainly done simply by the way of trials
and errors. Nowadays the performance of the paper machine has been brought in to
the level where no drastic improvements can be expected. However even very small
improvements in the paper making process can save lot of money and energy. That
is a reason why we need a more accurate knowledge of these processes. One very
sophisticated way is to construct a mathematical modell and track paper making by
computer. Compared to measurements modelling has many benefits. To make a one
measurement serie on a test machine is so costly that with the same financing a group of
researchers could work a year developing a computer program and with the completed
simulation tool we can track these measurements using only fraction of the time and
money needed for test machine. Furthermore we can foretell is it possible to make
a wholy new construction. This is in many cases impossible or at least large efforts
demanding using traditional way. Despite these incontestable advantages modelling is
not going to replace the measurements totally. Due to the abstract reality of the models
we have to have a link to reality. We must always have some comparisons between model
and measurements. Also in many cases these models are using some empirical laws and
relations, which are based on measurements and determination of parameters.
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Paper forming process consists of four main parts. The stream of fiber suspension
coming from the headbox is lead to the sheet forming section where via dewatering
the suspension form the mat - called as web. The construction of the sheet forming
section differs widely depending on what kind of paper we are manufacturing but in all
machines the dominant mechanism in web forming is filtration. After this filtration the
paper web has some kind of porous structure where the pores are filled with water. In
this stage fifth of the web consists of fibers. Part of the water located in the pores is
removed by squeezing the web between two pressing rolls. This stage is just after the
sheet forming section and is called pressing section. The remaining water is removed in
drying section by evaporating. This is done by contacting the paper with the series of
steam-heated cylinders.

Drying section is a very long and energy-consuming part of the paper machine. So
a very natural demand is to get this stage shorter. One very obvious way is to have
a more efficient pressing section. Although we can not have considerable improvement
in water removing without disturbing or altering the quality of the paper, only few
procent growth in water removing efficiency can mean tens of meters shorter drying
section. That is why we need a more comprehensive study and understanding of this
wet pressing phenomena. Without any questions this study can also be extended to
cover many similar physical phenomena like flows in plant tissues and perspiration of a
human being for example.

Here we will just present briefly the model describing a wet pressing of paper. A more
detailed description of the model is found in [1] and about the numerical solution in
[2]. In this paper we are concentrating on the case of full water saturation, which leads
us to a single convection-diffusion equation. From this equation we get condition for
well-posedness of the problem. This condition is then used to analyse the applicability
of the generalized Terzaghis principle of effective stress, introduced in [3].

2. CHARACTERIZATION OF THE PRESSING EQUIPMENT

In a conventional pressing section the water is squeezed out of the paper web into
a special pressing felt by applying a pressure pulse to the paper-felt sandwich as it
passes through the press 'nip’. The pressing equipment consists of two rolls, whics
usually produce a short pulse with high pressure. The pressures applied varies between
2 — 6M Pa and the nip residence time is order of milliseconds. Clarifying picture of the
situation is seen in figure 1.

Physically the pressing phenomena is a flow of water and air in a compressible porous
medium. Water and air are flowing due to external forces decelerated by viscous forces
in elastic compressing porous medium.

3. MODEL FOR WET PRESSING OF PAPER

The model describing the pressing of paper web is based on volume averaged hydro-
dynamical equations for three phases - air, water and solid. We are looking a steady-
state solution in a plane with the assumptions that the flow in horizontal direction is
constant (machine velocity) and that the inertial terms are small compared to pressure
gradient and terms involving mutual interaction between phases (so called Darcy approxi-
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mation). With these assumptions we can write the equations in a following general form

cO:da + 0:(dava) =0 a=sw

cz((1 — @5 — $uw)pn) + 0:((1 — ¢s — $uw)Phva) =0

$a0:Ph = Lo a=w,a (3.1)
pn = pn(ds, p7(2))

Yo = Ea(¢aa ¢un Vg — va) a=w,a.

Above c is the constant horizontal velocity, ¢, is the volumetric fraction and v4 is
the averaged velocity of phase a. pj denotes the (intrinsic) hydrostatic pressure and
pr(z) the total pressure applied to the porous medium. I, denotes the momentum
exchange between phases. First three equations are simply the continuity equations for
each phases and the following two equations are the momentum equations after Darcy
approximation.

4.WATER SATURATED FLOW

In a case of water saturation system (3.1) reduces to

cO0z¢s + 0:(dsv,) =0

cO0rds — 0:((1 — ¢5)vw) =0

(1= ¢.)F(¢s,p7(2))8: 62 = Ly (4.1)
pn = Pu(4s, pr(2))

Sw = E_)w(da,,v, - vu),

where we have used F(¢,,pr(z)) = g&"-.
Using .
{ Pu = — g5 (vw — vs)

(1 = ¢y)vw = const — @,v,
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gives one single convection-diffusion equation
c0y¢, + const 8,6, + 8.(G(¢.4,pr(2))0:8,) = 0, (4.2)

where G(¢,,pr()) = k(¢s)/1ds(1 — ¢s)*F(¢s, pr(z)). To have a well-posed problem

we must now have

G($0rpr(z)) < 0. 4.3)
While k(#,) > 0 this means that the condition (4.3) reduces to
F(¢s,pr(z)) <0. (4.4)

This gives us some restrictions to the parametrization of the hydrostatic pressure py,.

5. PARAMETRIZATION OF THE STRESSES

Rheological characteristics of porous media are determined by the microscopic structure
of the solid matrices of the materials. In many cases the complexity of these structures
makes it difficult to infer the macroscopic properties from the microscopic properties.
It is therefore the common practice to use and rely on empirical laws and constitutive
equations in describing various macroscopic phenomena in porous media. An example of
such empirical relation is provided by the Terzaghis principle of effective stress, which in
one dimensional compression states that the total pressure applied to a porous medium
saturated by fluid is given by

PT = Ps + Ph, (5.1)

where p, is the effective structural stress and pj, as already denoted, the hydrostatic
pressure of the pore fluid.

Equation (5.1) can be shown to be valid for porous media consisting of hard grains for
which the intergranular contacts are pointlike. However for highly compressible porous
materials, for which the contact area between the constituents is not negligibly small,
the Terzaghis principle may not be applicable. That is why instead of (5.1) a more
general form should be used. In [3] the pressure balance equation is written in a form

T = ps(8) + f(s)pn. (5.2)

This parametrization is based on realization made in a case of static compression of
homogeneous porous sample by a piston. The coefficient f can be interpreted as an
effective areal porosity at the contact plane of the piston and the sample. Plotting a
total pressure for different degrees of compression (strain s) as a function of hydrostatic
pressure should lead according to (5.2) to a straight line with slope f(s) and intercept
ps(s). This way f(s) and p,(s) can be found as functions of strain s. In figure 2 a
typical functional form and the lower (f(s) = ¢) and upper (f(s) = 1) limits for f are
plotted.

6. RESTRICTION FOR PARAMETRIZATION
Using (5.2) in condition (4.4) gives
f'()(ps(s) = pr) 2 f(3)P4(8)- (6.1)
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FIGURE 2. The coefficient f(s)

For classical Terzaghis principle (5.1) f = 1. While p)(s) > 0 and p,(s) < pr the
condition (6.1) comes true in this case. But for functional form got for example in
(3] condition (6.1) is not evidently fulfilled. Working on the measured range (in this
case pr € (0,2MPa)) (6.1) remains valid, but extending with the same functional
form to the total pressure values out from the measured range, we will violate (6.1).
This indicates either that the functional form choosed does not fit the reality outside
measuring frame or that the theory based on contact between the compressive piston
and porous medium is not applicable inside medium being just an interface phenomenon.
Example of violating situation is seen in figure 3. In figure 4 is seen a limitive line in
(total pressure,strain) - plane. Functional forms for f(s) and p,(s) used in these figures
are

f(8)=1-ast

S
ps(s) = po ,
S0 —

S

where the parameters had the values py = 0.4, so = 0.8, a = 1.1 and b = 2.6. The total
pressure was set to the value 3.5 in figure 3.

N\

=

-8

FIGURE 3. Derivative of hydrostatic pressure on strain



248

7. CONCLUSIONS

Equations describing the wet pressing of paper web has been briefly presented.
In a case of full water saturation the system is reduced to one single convection-
diffusion equation. From this equation the condition for well-posedness of the problem is
deduced. Furthermore this condition is used to analyse the applicability of the empirical
generalized version of Terzaghis principle of effective stress. The condition is shown to
be valid for given functional forms inside measured range, but being violated outside
this range.
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FIGURE 4: F(s,pr) = 0 contour in (s, pr)-plane
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ON THE HEADBOX FLUID FLOW MODELS

Jari Hamalédinen
Laboratory of Scientific Computing
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ABSTRACT. Fluid dynamics in a paper machine headbox have a remarkable effect on the
quality of the producted paper, on basis weight and fibre orientation profiles, for example.
These phenomena are desired to be studied by using numerical simulation and it requires
mathematical modelling of the fluid flow. Modelling includes some special difficulties
because of the complicated geometry of the headbox. Especially the manifold tubes and
the turbulence generator consisting of some thousands of small tubes must be taken into
account on the average. In this paper we consider some essential modelling aspects and
we also give an numerical example.

1. INTRODUCTION

Fluid flow phenomena in a paper machine headbox establish a number of important
paper properties, chief of which are basis weight and fibre orientation profiles, especially
in the cross direction of a paper machine. Also the shape of the headbox internal flow
passages and the turbulence they generate are of utmost importance.

Experimental work is very important in development of the headbox and sometimes it
is the only reasonable way to research fluid flow phenomena. It has also some short-
comings. For example, optimization of the shape of the flow passages would require to
build several new headboxes before an optimal construction could be chosen. There are
also some technical difficulties in measuring the fluid flow inside the headbox. Besides,
one problem in researching experimentally the effect of the fluid flow in the headbox
on the cross directional profiles is that these profiles depend on the width of a paper
machine. Because pilot machines are very narrow, about one metres wide whereas in
production machines it can be up to ten metres, experiments must be done on a real
scale paper machine at a paper mill.

It is also possible to study fluid flow phenomena in the headbox through mathematical
modelling and numerical simulation. The headbox, with its multitude of complicated
flow elements presents special difficulties in modelling the fluid flow. First of all, there
can be up to some thousands of small tubes in the manifold tube bank and the turbulence
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generator. If a finite element mesh were generated to represent the actual geometry,
fluid flow models could be solved without any geometrical simplifications, but this would
lead to huge algebraic systems and to extremely long computing times. Moreover, the
flow fields of the various headbox components are interdependent, thus it is necessary to
model the fluid flows in the headbox as one flow. Before continuing to these modelling
aspects of the fluid flow, let us briefly describe the paper machine headbox.

The headbox is located at the wet end of a paper machine. Its function is to distribute
the stock in an even layer, across the width of a paper machine. While headbox de-
signs vary, depending on paper grades and speeds, they all have common components
performing common functions. These are the header with its tube bank and equalizing
chamber, a turbulence generator and a slice channel (see Fig. 1).

MM

Figure 1. Schematic representation of the headbox

Referring to the figure, the stock enters a rectangular header (1) which distributes it
equally across the machine width via a bank of manifold tubes (2). A controlled amount
of the stock is recirculated at the far end of the header to provide flow control along the
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header length. From the header the stock enters the manifold tubes which redirect it in
machine direction and discharge it into an equalizing chamber (3). From here it enters
a turbulence generator (4) comprising of a perforated plate and a bank of converging
tubes, and finally into the slice channel (5) which accelerates it and deposits it onto
a moving forming screen. At slice outlet there is a thin flexible lip (6) which can be
profiled to control cross directional basis weight and fibre orientation profiles.

2. SOME MODELLING ASPECTS

As mentioned in Introduction, the actual geometry of the headbox is too complicated
to be used in numerical simulation. Therefore the computational domain must be
simplified. We proceed as follows. Firstly, using the domain decomposition method the
domain is divided into three parts called as subdomains: the header and the manifold
tubes, the equalizing chamber and the turbulence generator and the third one consisting
of the slice channel and the free jet. Secondly, using the homogenization technique
[2,4] the manifold tubes and the turbulence generator are replaced by specific outflow
boundary conditions which give the same head losses as the tube systems do.

Homogenization (or averaging) of the fluid flow through the manifold tubes is based on
an assumption that the flow is periodical in a thin layer near the perforated outlet wall
of the header. Then it is sufficient to solve a local periodical fluid flow problem for a
single tube in order to find out how the head losses in the manifold tube bank depend
on the velocity and on the tube geometry. In fact, assuming that the head losses depend
only on the mean velocity in the tube (the geometry is fixed), we can find an analytical
expression for the head losses and thus also for the outflow boundary condition. This
kind of analytical expressions are based on measurements and they are well known in
hydrodynamical engineering literature. More detailed description about derivation of
the homogenized outflow boundary condition is given in the references [7,9]. A similar
approach is also used in modelling of the fluid flow in the equalizing chamber and in
the turbulence generator [7].

The flow in the headbox is turbulent and indeed turbulence is a desirable flow phe-
nomenon, as it contributes to fibre dispersion by breaking down fibre flocs and prevent-
ing new ones from forming. The headbox model has been developed for simulation of
global time-averaged flow phenomena in the headbox, not to predict turbulence itself.
Therefore it is justified to use classical k-¢ turbulence model. Furthermore, when it is
possible and accurate enough, also the laminar Navier-Stokes equations have been used.

One advantage of the domain decomposition is that the fluid flow in the scparate sub-
domains can now be modelled by different kind of equations. The full system of the
equations of the k-¢ turbulence model have been used only for the header. For the
equalizing chamber we have used two models. The first one has been introduced in (7).
The model consists of the time-averaged Reynolds equations and of a given turbulent
viscosity, which was obtained by solving a local problem and using the homogenization
method. Simulations have shown that the turbulent viscosity does not have any signif-
icant effect on a numerical solution. Thus it is enough to use a constant viscosity and
the laminar Navier-Stokes equations for the equalizing chamber. Also the fluid flow in
the slice channel has been modelled by a laminar model.
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In addition to the geometrical simplifications, the fluid flow equations and the boundary
conditions are averaged in the vertical direction. Dimensional reduction leads to two
dimensional models and therefore it is realistic to use work stations instead of super
computers in numerical simulations. The depth of the header is usually constant or it
decreases in the cross direction such that the depth of the inlet tube is larger than the
depth of the recirculation tube. Changes in the depth are smooth and small and they
have been taken into account only via a specific continuity equation,

V. (D) =0, (1)

where D is the depth and # is the velocity vector averaged in the vertical direction.
The depth of the equalizing chamber is assumed to be constant and the standard two
dimensional Navier-Stokes equations can be used in modelling the equalizing chamber.
The mean velocity at the inlet of the slice channel is a few m/s, but at the outlet it is
order of 10 — 20 m/s. Acceleration is caused by decreasing the depth of the channel in
the machine direction. At the outlet the depth is only a few centimetres. Thus it is
supposed that the changes in the depth must be taken into account also in the viscous
terms of the Navier-Stokes equations.

Next, the concrete fluid flow models for the headbox flow passages are given. For further
information about fluid dynamics see the references [1,6] and [10,12).

3. MODELLING OF THE HEADER

The fluid flow in the domain Q¥ (i.e. the header, see Fig. 2) is modelled using the
classical turbulence model consisting of the time-averaged Reynolds equations

=V [W(Vi+ VET)] +pd-VE+Vp=0, p=po+ pr,

of the modified continuity equation (1) and of the k-¢ model

R v [I;—TVIC] +pu-Vk=urd — pe,
k
€ e?
-V [’;—TVE } +pu-Ve = Cl;ﬂT‘I’ —PC2?,

where the eddy viscosity is

T = pC#'E—

aul ) (aul 3u2 ) 3u2 z
®=2_—— — + — 21— .
(61'1) + a.’L’g + 81‘1) + (8@)
At the inlet I‘i’z Dirichlet boundary conditions @ = Uin, £ = kip and € = ¢;, are stated.
Also the recirculation velocity is fixed, @ = @, on I'H. Normal derivatives of k and ¢

are assumed to vanish on I'ff. On the walls the standard wall boundary conditions of
the k-e¢ model are used.

and
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Figure 2. Computational domain

More interesting are boundary conditions at the outlet of the header, because they
model the effect of the manifold tubes. The most important condition on T'fl, is the

boundary condition for the normal force

—

Gy -i=01 = —p+2uen = —p,

where 7 = (1,0) is the outward unit normal vector. The static pressure in the header
is large compared to the viscous term and thus 2pue); is ignored. The pressure p at the
outlet depends on the pressure in the equalizing chamber pg (a solution of the equalizing
chamber model) and on the head loss in the manifold tubes Ap. As mentioned earlier,
based on empirical head loss formulae we get

1
p=Ap+pe= §pFMuf + pE,

where Fyy is a “friction factor” for the manifold tubes depending on the tube geometry,
roughness of the walls of the tubes, etc. The head loss can also be solved numerically
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as well [7]. Based on numerical simulations, a solution does not depend essentially
on a tangential boundary condition and we have used either the boundary conditions
F2 1= Vk-fi = Ve -7 = 0 or the wall boundary conditions of the k-¢ model.

4. MODELLING OF THE EQUALIZING CHAMBER

In QF (the equalizing chamber) the fluid flow is modelled by the two dimensional Navier-
Stokes equations

(2)

~V - [(1(Vu + VuT)] + p(u - V)u+ Vp =0,
Veu=0.

At the inlet T'F the velocity is given, @ = (ua,0), where u s is obtained as a solution
of the header model. Similarly to the outflow boundary condition of the header model,

we set
- = 1
gy -n=-— (EPFTUf +Ps>

on TE  where now Fr is the friction factor for the turbulence generator and ps is the
static pressure in the slice channel (a solution of the slice channel model). The second
velocity component u; is zero on all the boundaries. Moreover, we set 7 -7 = 0 on the

side walls.

5. MODELLING OF THE SLICE CHANNEL

The slice channel model is based on averaging the Navier-Stokes equations (2) in the
vertical direction. The resulting equations are similar to the so-called shallow water
equations, except that the depth is known in our case. The model is as follows

—%A(Da)+pa- Vi+Vp=0
V. (Di)=0

in Q5.

The velocity through the turbulence generator ur is given by the equalizing chamber
model and we set @ = (ur,0) on I';. On the side walls the tangential stress and the
normal velocity are set to zero. The outflow boundary condition depends on the free
jet. Assuming the contraction of the jet to be known and using the Bernoulli equations,
we get that the pressure at the outlet is [7]

1 1 1
= 5,0 ('}'{7 - 1) uf = EPC_]U.?,

where k is the contraction coefficient typically order of 0.7 — 0.9. Thus the outflow
boundary condition is

i 1
%V(Dul) n—pny = —EPCJUfa

%V(Dug) -fi—pngy = 0.
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6. NUMERICAL EXAMPLE

The headbox fluid flow models are solved numerically using the finite element method
[3,5,8,11]. Because the solutions of the models depend on each other, an iterative
procedure is used in order to simulate fluid dynamics in the whole headbox. The solution
methods are not considered in this paper. We just given an example.

Typically the drying shrinkage profile is compensated by the slice lip profile such that the
slice opening is smaller at the edges than in the middle. It generates cross directional
velocity components towards the middle of the slice channel. Some of the simulated
velocity vectors are plotted in Fig. 3. The cross directional velocity component is very
small. Thus the velocity vectors and the geometry are not in real scale.
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Figure 3. Velocity field in the headbox

CONCLUSIONS

Derivation of the models requires some assumptions and approximations. Therefore
verification of the models is important before numerical simulation can be used in in-
dustrial applications. Based on the numerical tests we can conclude that the models
predict at least qualitatively flow phenomena in the headbox, but further experimental
measurements and development of the models are still needed.
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SIMULATION OF THE PAPER SHEET CURLING
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ABSTRACT. A thin plate model for humidity induced curl of copying paper is in-
troduced. The model takes into account the profiles in the thickness direction of
fiber orientation, elastic modulus and humidity expansion. In the linear theory one
can derive unique and closed form expressions for the deflected surface in terms
of material parameters. However, in practice the nonlinear effects can not be ne-
glected. We show that in the the large displacement case these effects can lead to
multiple solutions. We give examples of ’bifurcations’ where the paper sheet takes
cylindrical form whenever the humidity difference or the size of the test specimen
grows beyond a critical limit. Finally we present a comparison between numerical

simulation and the actual measurements.
Mathematics Subject Classification, 73B30, 73C02, 73C30, 73C50, 73K10.

1. INTRODUCTION

Curling and other dimensional changes of paper sheets are often observed during
humidity and temperature variations. The nature of these deformations depend on the
conditions in the environment and, of course, the properties of the paper grade under
our study.

Modern printing and copying equipment require that dimensional changes in paper
should be small with respect to the change in conditions induced by the device. Par-
ticularly this requirement is important in non-impact printing technology, like copying

.and laser printing machines. In such cases the ink is fixed by means of a hot fuser roll.
As a result the paper absorbs heat, loses moisture and shrinks. Because the thermal
loading and material response is non-symmetric in thickness some bending moments will
develop in the paper sheet. This leads to curling unless there are sufficient displacement
constrains. Figure 1 illustrates paper sheet suffering from poor dimensional stability.

Paper is generally considered as a non homogeneous and anisotropic material, [1].
Moreover, the material properties vary notably only in the thickness direction. These
properties derive from the wet end operations of a paper machine. In the wet end a
mixture of pulp fibres, some additives and water is first put on a broad rapidly running
wire and the filtration starts. In this so called suspension phase the fibres tend to

!Current address: Technical Research Centre of Finland, P.O. Box 21, FIN-40101 Finland
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CuUAL

Figure 1. Leaning of a stack pile and curling of paper, (2].

orient themselves along to the direction that the suspension flow has relative to the
wire. Moreover, this orientation is stronger at the bottom where the fibre suspension
first meets the wire. Mainly due to this orientated structure paper exhibits anisotropic
response to the thermo-mechanical loading.

Numerous authors have studied the dimensional instability and mathematical mod-
elling of paper curling. Carlsson [3],[4] approximated the transversally inhomogeneous
material properties by using a linear laminate plate model. He also gave an explicit
equation predicting the curling phenomena. Shands [5] found a moderate agreement
between his experiments and the Carlssons model. In [6] Carlsson proposed the Finite
Element Method in analysing the bending of cardboards. A linear theory utilising FEM
has been used also in the works [7],[8] and [9]. The nonlinear model has been studied by
Johnson [10]. Recently the author [11] studied the nonlinear geometric effects with the
solution non uniqueness and applied FEM to the inhomogeneous orthotropic plates. A
rigourous mathematical theory for deformations of transversally inhomogeneous elastic
plates with appropriate proofs was later accomplished in [12].

The main goal of this paper is to demonstrate the importance of the geometric non-
linear effects. Many of the papers published in the early 80’s relied on the simple linear
models. However, the numerical simulations [11] and experiments [14] indicate signifi-
cant differences between linear and nonlinear solutions. For example, it was shown that
copying paper sheets of all practical sizes curl cylindrically. The principal curvatures
deviate significantly from the linear model and also from the measured values of narrow
strips cut in principal directions, respectively.

Secondly, as the curling measurement has lately developed and the reliability is now
reasonable it is therefore very attractive to compare the experiments and numerical
simulations. For example, Niskanen [13],[14] reported that the thickness variation of
fibre orientation as well as the elastic coefficients are the relevant factors in the re-
spect of curling. Keeping this in mind we introduce theoretical analysis and numerical
simulations with a set of validating measurements.

In this work we focus on the humidity induced mechanical deformations and ignore
other effects like gravity. Particularly, we specialise in the slow and uniform humidity
changes which is the case in drying a test sample in an oven. In this case we can
expect uniform shrinking or swelling in the entire sheet. Of course, in applications like
photocopying we have rapid temperature and humidity changes and the model needs to
be completed with appropriate mass and heat transfer equations.
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2. THE ASYMPTOTIC MODEL

Consider the inhomogeneous plate where material is orthotropic so that the prin-
cipal directions as well as the corresponding material parameters change in thickness.
More precisely, we assume that the material properties are continuously distributed
along thickness rather than strictly divided to separate layers. Note that for layered
materials the properties of each layer are generally known a priori whereas in our case
the distribution of thermo-elastic properties can only be measured a posteriori, often
using tedious and destructive methods. By introducing asymptotic thin plate equations
we can reduce the number of parameters that have to be measured.

Let us denote by 24 = w x ]—h, h[ C R3 the three dimensional body. Here h means
the half thickness and w C R? characterises the shape of the sheet. Material is assumed
to be homogeneous within the plane and to obey the linear Hooke’s law:

7i; = Cijriexi- (1)

Here 7i; and ex denote the stress and elastic strain tensors. The elastic strain is a
function of total deformation & and the humidity induced initial strain eT. In the
geometrically nonlinear case we have

1
eij = &j(u) — € = 5 (i tujit Uk, iUk,j} — €5, (2)

where u : ), — R3 is the displacement function and &u) is called finite strain tensor.
If one assumes u to be small and neglects the nonlinear term in (2) then one obtains
the linearised strain, usually denoted by e(u), [15]. Note that we have used a notation
where a repeated Latin subscript (i, j, k, [) means summation over 1 to 3 and a repeated
Greek subscripts are summed over 1 to 2.

The displacement function u can be determined using the principle of minimum total
potential energy. That is, the displacement field © minimises, in the certain space V' of
geometrically admissible displacements , the energy £, [12]

E(u) = %/ﬂ rijeij(u)dz. (3)

In the linear case £ is continuous, strictly convex and coercive in V. Thus there exists
a unique solution u in V, see [9]. In the nonlinear case the existence of a solution can
be proved only in special cases.

In the following we state the main result concerning the asymptotic limit when
h — 0. For the sake of simplicity we treat only the linear case. The complete proofs
and the nonlinear equations are given in [12]. We transform our model into a fixed
geometry, i.e. we scale the z3 coordinate: £ = (z,,z2,z3/h). This introduces certain
scalings in displacements u and in strains ¢, ¢7. Using the convention

N N . 1, .
E(8) = eij(d) — & + gls.its,j (4)
the scaled energy £x(u) becomes, [12]

BS S | 2
?/ /1 F03333E§3(u)E33(U)+ﬁcapssEgﬂ(“)Egs(“)'*'

4
n?

(5)
Ca3ﬂ3Ega(“)Egs(“) €3 Caﬂ76Egﬂ(u)E36(u) drydz.
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Here we omit the "-sign in variables u and z in order to simplify the notations. This
energy has the unique minimiser (u®,w) which is also the solution to the following
variational problem:

1
/ (Cgp.,afaﬂ(uo) - C;ﬂ-,sw,aﬂ) €ys(v)dz = / /1 Caﬂ‘vﬁezﬂf%(”)dz (6)

1
/(_C;ﬂ16eaﬁ(uo)+C§ﬂ76w.aﬂ)va,76d17=// --'Bscaﬂwfz,svs.qsdf, (7
w wJ~1

where

1
C' = / ziC dz3, and Copys = Copys — CLC:’,SCEﬁs—s 8)
-1 3333

The first equation holds for all in-plane displacements v € Vy and the second one for
all transversal displacements v; € Vi, where Vy, V3 are chosen appropriately, [12].
Variational problem (6)—(7) is the starting point for a FEM formulation.

Before going to examples we state the following remark. In the nonlinear case one
starts the derivation of the variational system from the finite strains (2). This leads to
a nonlinear system of equations with few additional terms compared to (6)-(7). This
system can further be formulated in terms of Airy’s stress functions to a von Kdrmdn
system. In the case of inhomogeneous material there will appear few additional terms
that are not present at the standard von Karman formulation.

Example 1. Homogeneous, elastic material. Let us suppose that the elastic coeflicients
are constant w.r.t. 3. Then we see that C! = 0 and C? = 2C and the transversal
displacements satisfy the equation

2 _ _ 1
/ §C’a,g.,5w',,ﬂ¢,.,5 dz = / 00576 (/ —:t;;eZﬂ(.’L‘a)d:Es) ¢,75 dz V¢ € V. (9)
w w -1

Hence w,op = 3 fil —zgezﬂ(zg)dz;;. Suppose that thermal expansion is orthotropic
with inherent directions independent of zj: eg‘ﬂ(:ca) = Diag {e$(z3)}, 4 =1,2. Let us
write the components €7 in the form ef(z3) = 152, eT¥ Ni(z3), where Ni is the kth
Legendre polynomial (remember that f_ll Ni(z3)Nj(z3)dz = 0if j # k). Now we get
fil —z3¢] 4(73) dz = 2 Diag {7}, ¥ =1,2. So w(z1,z2) is of the form

1
w(l‘],zz) = 5 (617‘133 + fg‘l:ﬂg) (10)

where we have neglected the rigid body motions. Similarly, if we assume that T is
orthotropic and constant but under a z3-dependent rotation, i.e €7 (z3) = D(6(z3))é7,
where D is the rotation matrix, we immediately find that the principal diagonal terms
in 7 will be even w.r.t. variable z3. Thus they do not contribute to the integral over
the thickness and we obtain

1
0 C
—a:lD:cETd:z:=[ ], 11
[ e an =& € (11)
where C = (eI - ¢]) f 1 —%3siné(z3)cos 6(z3)drs. Now, the solution will be
w(zl,zg) = C:r]:tz, (12)

again neglecting the rigid body motions.
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Example 2. Non-homogeneously elastic case. If the elastic coefficients are not constant
in thickness, we can write C(z3) = Y_r—o C* Ni(zs) and €T = 330, eT¥Ni(z3). Then

2 2 4 ,
0o_o® Cl=ZiC, C?=:C +—C.
¢"=2C, 3 @ 3 5

Applying this to system (7) we get
Wap = —e?;é-}-}-(ezz,ezg’... ,CI,CZ,"')' (13)

This means that if we suppose C = € + C'z; and ¥ = eT® 4+ Tlz3 we still have
Wap = —eZ‘é. Thus the non-homogeneity of C' has an effect to deformations only
together with at least quadratic behaviour of thermal expansivity. This means that to
first approximation we can assume C to be constant w.r.t. z3. This is very important
since the profile of C in z3-direction can not be measured easily from materials like
paper or cardboard.

3. NUMERICAL SIMULATION AND EXPERIMENTS

The effect of thickness distribution of elastic parameters is very important with
respect to curling. However, the measuring of this distribution from real paper sample is
difficult. Therefore, for the model validation, we decided to construct our paper samples
by assembling 2-4 carefully selected laminates (ordinary thin paper sheets) with using
special glue. In each laminate the in-plane components of elastic parameters, thickness
and the hygroreactivity were measured a priori. By stacking these laminates into a
sample we could control the material parameters and therefore reliably compare true
measurements and numerical simulation. The equivalent FE-model was set up using
large dislacement theory and utilising anisotropic layered shell elements.

The KCL laboratories have a system in which many paper samples can be condi-
tioned simultaneously and the curl components can be measured with an optical sensor.
Samples are positioned vertically in order to avoid bending effects due to the gravity.
The device can handle circular samples up to the diameter of @90 mm.

The preliminary simulation and the earlier analysis of rectangular plates [11] indi-
cated that a symmetric solution turns into a non-symmetric one (bifurcation) when the
dimensionless parameter II; = (L?¢T)/h attains certain universal value. This guided us
to adjust the sample size L to @50 mm. so that the bifurcation takes place at convenient
and accurate operating scale of the tester.

Our main experiment was to attach two similar laminates together in 0/90° angle and
to trace the curling when we vary the humidity conditions. The anisotropic laminates
aligned in this angle create strong thickness gradients in elastic parameters. This was
desired since it hides the inaccuracies of the measurements. The numerical simulation
of the samples is illustrated in the figures 2 and 3. The two branches of solid line
indicate the displacements of locations A and B, respectively. Humidity level 0 % RH
corresponds the initial configuration before loading. As we see, the displacements at A
and B develope symmetrically until approximately at 7 % RH the solution bifurcates
and the sheet jumps into the cylindrical shape. This means that either A or B must
become near zero but the other remains non zero: only the combinations (41, B1) and
(A2, B;) are possible. In our case the selection between these two happens randomly.
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Figure 2. Nonlinear displacements

Figure 3. Test sheet samples at 0.75 % RH and 7.5 % RH [16].

Figure 2 indicates also the measurements by means of black dots. In each position
a set of 10 samples were measured in the optical curl meter. However, small initial
curvatures were observed on some of the samples already in the reference state. This
* was probably due to either poor conditioning of the samples between the preparation
and the measurement event or small inaccuracies in air conditioning control of the tester.

The initial curvature effect can be seen more distinctly in another test series in figure
4. Here this initial effect was also included in the FE-model. The effect seems to prefer
one of bifurcation branches and therefore the solution appears now in one branch only
Le. cylindrical curling dominates through the whole range of loading.

4. CONCLUSIONS

In linear theory we obtained that curling was presented by a parabolic surface in R3
and determined completely by the material parameters. Our rather general theory im-
posed no restrictions on structure of non homogenuity of material parameters. However,
the analysis [11],[12] and the examples indicate that the nonlinear model is necessary
in modelling the paper curling. The magnitude of solution can differ greatly from the
linear one and the bifurcation phenomenon can be explained only by nonlinearities.

Our results indicate that the simulation performs fairly well, especially in figure 4.
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Figure 4. Initial curvature effects, [16].

The initial curvature (disturbance) promotes the sheet to follow the branch (A,, B;). To
obtain more reliable results would require extremely accurately controlled conditions.
In spite of that the local inhomogenuities in paper have their effects and we would need
very large number of samples.
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APPLICATION OF k —e¢ TURBULENCE
MODELS IN AERONAUTICS

JAAKKO HOFFREN
Laboratory of Aerodynamics
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Sahkomiehentie 4, FIN-02150 Espoo, FINLAND

ABSTRACT

Chien’s low-Reynolds-number k — € turbulence model has been implemented in a
compressible finite-volume Navier-Stokes solver, and test calculations about airfoils have
been performed. The initial results are not necessarily better than the ones obtained
with an algebraic model. Instead, several problems specific to the application of k — ¢
models in aeronautics emerged. The difficulties are discussed and further study subjects
are suggested.

1. INTRODUCTION

In aeronautical applications, turbulent Navier-Stokes simulations have traditionally
been performed using simple algebraic turbulence models, as in Ref. [1]. These models,
devised for high-Reynolds-number boundary-layer flows, are well-proven and tuned to
give quite accurate results in flow cases resembling their development base. Their
inherent computational efficiency and the ability to define partially laminar flow in
a straightforward manner are also important assets. However, the algebraic turbulence
models have serious limitations in applicability. Merging or interacting turbulent layers,
like wakes, cannot be properly simulated, and the modelling tends to be grid-dependent.
The most serious drawback is the inability to deal with separated flow that dominates,
for example, the maximum lift condition of a wing.

The range of valid flow simulations may be extended by adopting more advanced
turbulence models. As a step towards generalized solvers, the aerodynamicists have
recently begun to study seriously the k — ¢ model that is widely used in industrial
problems. Conforming to this effort, Chien’s low-Reynolds-number k — € model [2] was
implemented in a finite-volume Navier-Stokes code FINFLO [3).

The revised code was tested by calculations involving attached and separated flows
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around airfoils and wings in subsonic and transonic conditions. However, the initial
results do not show much improvement over the basic algebraic turbulence models.
Instead, it became evident that there are several specific problems related to the
application of a k — € turbulence model in aeronautics, which are worth addressing.

In this paper, Chien’s model and its implementation in FINFLO are briefly described,
and some test results are given. The main emphasis lies on the subsequent discussion of
the problems encountered, after which some topics for further research are suggested.

2. COMPUTATION METHOD

2.1 Main flow equations. The flow is modelled by the compressible Reynolds-
averaged Navier-Stokes equations, where the main variables are the density p, the
Cartesian momentum components pu, pv and pw, and the total energy per unit volume
E. The Reynolds stresses resulting from the time-averaging reduce to the modification
of viscosity when the Boussinesq approximation is applied. The effective viscosity to be
used in the laminar-like equations is obtained by adding an extra term to the molecular
viscosity p. When a k — e turbulence model is applied, the addition, known as an eddy
viscosity pr, is obtained from a relation

pr = e, = (1)

where c, is an empirical coefficient, k is the kinetic energy and e the dissipation of
turbulence. In the present implementation, the turbulence model is fully coupled to the
main flow equations. This means that an apparent pressure increment of £ 25k is added
to the pressure p everywhere in the main flow equations. The turbulent kinetic _energy is
also added to the flow total energy, leading to a definition E = p/(v- 1)+0 5oV -V + pk,
where v is the ratio of specific heats for a perfect gas, and V=u+ vy + wk is the
velocity vector. The main flow equations employed, not written here for brevity, are
shown in detail in Ref. [4].

The introduced unknowns, the kinetic energy and dissipation of turbulence are
determined by a separate set of partial differential equations which forms the turbulence
model itself.

2.2 Turbulence model. There are several versions of the k—e turbulence model which
fall into two main categories. With the high-Reynolds-number versions, the model is
not computed near solid walls where relations known as wall functions, assumed to
be universally valid for turbulent boundary layers, are applied to determine the eddy
viscosity. In the low-Reynolds-number versions, a modified set of equations is used in
the whole flowfield, including the vicinity of solid surfaces. It can be argued that the
second class of models is more general, making them more suitable for separated flows.
They may also be more reliable in predicting the important skin friction, and simpler to
apply without a need for special wall procedures, albeit at a cost of increased computing
time.

In this work, the low-Reynolds-number k — € turbulence model of Chien’s [2] is adopted.
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The model equations can be written in two dimensions in the following form:

F — F, -G,
U AF-F) AG-Gu) _

ot oz By Q )

where U = (pk, pe)T. The inviscid fluxes F, G and the viscous fluxes Fy, G, are
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The source term for Chien’s model is given as

k
P—pe—2uy—2
Q= , W @)
€ € € .+
C]'EP—C2%C——2/LEC y /2

N 2
where yn is the normal distance from the wall, and y* = ya(p|V X V|/,u)3”/a”
Applying the Boussinesq approximation, the production of turbulent kinetic energy is
modelled in a Cartesian coordinate system as

P e Qr+ Qe GEa SR -3 5T )

The equations for k and € contain several empirical coefficients. These are given by

0 =144, ¢y = 1.92(1 — 0.22¢~ Ber/36)
or = 1.0, . =13

cu = 0.09(1 — e=0-01155™)

where the turbulence Reynolds number is defined as Rep = (pk?)/(pe). Chien proposed
slightly different forms for ¢; and c;. However, since our test computations performed for
a flat plate boundary layer appeared to be insensitive to the modifications, the formulas
above were based on the most commonly used coefficients ¢; = 1.44 and ¢z = 1.92.

2.3 Flow solver. The FINFLO flow solver [3] used in this study is a 2D/3D finite-
volume code developed in the Laboratory of Aerodynamics at the Helsinki University
of Technology. The fully conservative code operates on multi-block structured grids,
where the unknowns are defined in the centers of the computational cells.

For the inviscid fluxes, Roe’s scheme, facilitating a crisp capture of shocks, is applied [4].
The flow states at the cell faces are evaluated using a formally second- or third-order
accurate upwind-biased discretization, depending on the existence of shocks. The thin-
layer approximation is applied for the viscous terms that can be activated separately in
each grid index direction. For their discretization, the conventional central-difference
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scheme is utilized. The derivatives in the turbulence model source terms are computed
in a similar manner. The continuity of the solution at grid block interfaces is ensured
by the use of two layers of overlapping cells at each side of the boundary.

The steady-state solutions are sought by an implicit pseudo-time integration. The
method applies an approximate factorization, and the resulting tridiagonal equations
in each grid coordinate direction are further factored into simple bidiagonal sweeps for
efficient implementation. Before the sweeps, a simplified implicit correction is made to
the turbulence model source terms, as described in detail in Ref. [4]. Local time steps
defined by a CFL condition and a diffusive stability limit are used, and the convergence
is accelerated by a Jameson-type multigrid technique employing V-cycling [3].

As the boundary conditions on the solid surfaces, the flow velocity is set to zero and
the wall is adiabatic. The required flow variables on the surface are extrapolated using
second-order accuracy. At the farfield boundary, free-stream conditions are specified,
which is sufficient if the grid is large enough.

3. TEST RESULTS

3.2 Transonic flow over an NACA 0012 airfoil. The described test cases represent
typical airfoil calculations. The first example involves a transonic flow with a strong
shock over an NACA 0012 airfoil at Ma = 0.799, Re = 9 x 10® and @ = 2.26°. A C-type
grid with 192 x 64 cells was used in the simulation. The outer boundary of the grid was
20 chord lengths from the airfoil, and the cell thicknesses on the surface corresponded
to a y* value of around unity.

The results of the fully turbulent simulations are compared with results obtained using
the algebraic Cebeci-Smith model and with the experiments in Fig. 1. The comparison
of the pressure coefficient in Fig. la shows some improvement when the k — ¢ model
is applied, but still the discrepancy with the measured values is large at and behind
the shock. From the friction coefficient distributions in Fig. 1b it is seen that the two
solutions are qualitatively different. Both models predict a shock-induced separation,
but with the k£ — e model there is a reattachment, whereas with the Cebeci-Smith model
the flow remains separated. Somewhat fortuitiously, the computed lift coeflicients of
0.380 for the k¥ — € model and 0.397 for the algebraic model agree fairly well with the
measured value of 0.390, but the differences in the respective drag coeflicients of 0.0400,
0.0394 and 0.0331 are significant.

3.2 Aerospatiale airfoil A at high lift. A different flow case is represented by an
airfoil at subsonic high-lift conditions. In the present case, an Aerospatiale airfoil A is at
Ma = 0.15, Re = 2 x 10° and a = 13.3°. The computational grid utilized is of the same
type as in the NACA 0012 case, but the dimensions are 256 x 64. The flow is mainly
attached, but there may be a separation bubble near the leading edge in addition to a
mild trailing edge separation. The transition is fixed at 12 per cent chord on the upper
surface and at 30 per cent chord on the lower surface.

The computed pressure and friction distributions are compared in Fig. 2 as in the
preceeding case. It is seen that the pressure distributions obtained with the different
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FIGURE 1. a) Pressure coefficient b) Friction coefficient distribution on the NACA
0012 at Ma = 0.799, Re = 9 x 10% and o = 2.26°.

turbulence models are practically identical. However, the friction distributions show
marked differences, the result given by the algebraic model being generally in better
agreement with the measurements. The integrated lift coeflicients are 1.677 for the
Cebeci-Smith model, 1.679 for the k — ¢ model and 1.562 for the experiments. The
corresponding drag coefficients are 0.0200, 0.0238 and 0.0204, confirming the superiority
of the algebraic model in this case.
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FIGURE 2. a) Pressure coefficient b) Friction coefficient distribution on the airfoil A
at Ma = 0.15,Re = 2 x 10° and a = 13.3°.

4. SPECIFIC FEATURES OF AERONAUTICAL COMPUTATIONS

4.1 Encountered problems. Although the formulation of the k — e turbulence model
is relatively simple and independent of flow case, numerous problems were encountered
in the test calculations requiring special attention. The problems can be largely traced
back to the nature of aeronautical flows and the accuracy specifications in the field.

A typical feature in aeronautical flows are high characteristic Reynolds numbers, which
means that the turbulence phenomena are concentrated in thin, strong shear layers. This
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leads to large gradients that must be solved with a reasonable resolution to enable a
sufficiently accurate computation of viscous stresses. Since the forces acting on the body
are the main interest, in contrast to typical industrial problems, the computation must
be most accurate near the solid surfaces where the nature of the turbulence changes and
the low-Reynolds-number modification comes into play. For reliable force prediction,
a fine grid resolution and an accurate discretization are necessary. The resulting low
numerical damping, combined with k£ and € varying several orders of magnitude within
short distances, leads to stability and convergence problems.

Guided by the detected problem areas, the robustness of the code was gradually
improved. The discretization of the inviscid fluxes of k and ¢ was fixed to a stable
second-order fully upwinded scheme with an overshoot-inhibiting flux limiter. The
maximum changes of k and ¢ at each time step are now limited to a fraction of their
old values. To prevent the turbulence kinetic energy from growing nonphysically large
during the iteration, it is limited to less than 10 per cent of the local total energy E. In
addition, a hard upper limit of 5000y is introduced for g7. On the other hand, k and
may tend to become negative, requiring their free-stream values as lower limits.

Special modifications were necessary to enable the use of the multigrid scheme with the
k —e model. A significant improvement in robustness was achieved by lumping the eddy
viscosity values to the coarse grid levels from the finest level instead of computing them.
The corrections of k and e interpolated from the coarse levels also need limiting based
on the old state. Without the modifications, it was practically impossible to run the
code in the multigrid mode. The improved code can exploit typically three or four grid
levels, but the achieved convergence is still slower than that obtained with algebraic
turbulence models. The results presented above require around 1000 pseudo-time steps
with the Cebeci-Smith model and 3000 steps with the k — e model, giving a CPU usage
ratio of more than four. Typical convergence curves are shown in Fig. 3.
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FIGURE 3. Convergence of a) the lift coefficient b) the drag coefficient of the NACA
0012 test case computed with the k — ¢ model using three multigrid levels.
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The partial laminarity of typical aeronautical flows causes serious difficulties in k — ¢
simulations. Generally, the boundary layer near the wing leading edges is laminar,
possibly until around the mid-chord. For realistic force predictions, it is unacceptable
to run the calculations fully turbulent. However, the author is unaware of any proven
and physically sound method to model or fix the transition in k — € computations. The
result for the airfoil A was obtained by computing a solution firstly with the Cebeci-
Smith model, after which the k — e run was started using the existing eddy viscosity and
vorticity distributions to initiate k and e. In this way, the turbulence does not extend
to the laminar region since there is no turbulence production, but the transition tends
to creep slowly backwards on the airfoil lower surface, see Fig. 2b.

The most unexpected problem encountered also relates to laminar flow and reveals an
inherent weakness in the k — € formulation. It was noted that at the boundary layer
outer edges, where the turbulence should die away gradually, very high eddy viscosities
emerged sporadically, leading to serious convergence problems and even failure of the
runs. The origin of the problem was traced back to the definition of the eddy viscosity
proportional to k?/e. In regions where both of the components decrease rapidly towards
the free-stream values, their ratio may behave wildly. The situation was brought under
control by the limitations discussed above, but the concept appears crude. This problem
is also connected to the specification of the free-stream turbulence. During the test
calculations, it was noted that varying the free-stream turbulence within reasonable
bounds could change the predicted drag by several per cent, which implies difficulties
in typical practical simulations.

4.2 Subjects for further study. Based on our experience with the k—e model, several
topics need further study to succesfully adapt the model to aeronautical problems. A
few of the most obvious open questions are addressed here, most of them being related
to laminar or weakly turbulent flow.

A reasonable transition mechanism should be devised. The applied method of giving
a ’suitable’ initial value distribution for k and e could be refined and made faster,
eliminating the need of preceeding calculations with an algebraic model. Another
method may be the introduction of an additional surface source term that could cause
the transition of an initially laminar flow.

A generally accepted free-stream turbulence should be determined. The present
situation leaves too much uncertainty in the results.

The formulation of the k — ¢ model equations should be made such that the ratio
k2 /e behaves smoothly at turbulence layer edges and in weak turbulence in general.
Additional continuous limiter functions could be developed to prevent the possible
oscillations of the basic model that may completely spoil the calculations.

The accuracy of the calculations is a problem in itself. It is known that the typical
k — € models work poorly in flows having strong pressure gradients in the flow direction.
These situations are characteristic of aeronautical flows, like the ones presented in this
paper. Perhaps the results could be improved by tuning the model coefficients to better
suit these types of flows.
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5. CONCLUSIONS

The low-Reynolds-number k — € turbulence model of Chien’s has been implemented
in a compressible finite-volume Navier-Stokes solver, aimed mainly at aeronautical
applications. Test calculations involving flows around airfoils have been performed. The
initial results do not show much improvement over the ones obtained with an algebraic
turbulence model. Instead, several specific problems related to the application of k — €
models in aeronautics were revealed.

The accuracy requirements necessitate the use of higher-order discretization giving rise
to convergence and stability problems. The calculation times are further increased by
the use of dense grids near the body surfaces, necessary to determine accurately the
surface friction forces. The characteristic Reynolds numbers are generally high, and
the turbulence effects are confined to thin shear layers where very high gradients of k
and e cause special discretization problems. Especially critical are the outer boundaries
of the turbulent layers, where both k and € tend to zero, causing large excursions in
the turbulent viscosity proportional to k2/e. Representative free-stream values must be
specified for k and €, which is not a trivial choice because the computed drag of an airfoil
is found to be sensitive to the given free-stream conditions. More problems are caused
by the typical partially laminar flow along surfaces, since the definition of transition
with k — € models is not straightforward. Finally, the pressure gradients along surfaces
may be high, which is known to degrade the accuracy of the model.

Based on the consideration of the problems involved, it is evident that a successful
application of k — € turbulence models in aeronautical flow simulations requires further
work to enhance the robustness and accuracy of the calculations. In their current basic
forms, the k — ¢ models do not appear to offer an easy all-round method for aeronautics.
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THERMAL HEAT, CONVECTION, CORIUM FLUID FLOW AND STRUC-
TURAL ANALYSIS OF REACTOR PRESSURE VESSEL BOTTOM AND PEN-
ETRATIONS IN CORE MELTING ACCIDENTS
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ABSTRACT

A computing program system for calculating behaviour of pressure vessel during severe reactor
accident is under development. Thermal heat conduction, heat convection and corium fluid
flow are solved simultaneously and coupled. Structural behaviour and strength of a thickwalled
pressure vessel wall and penetrations for control and instrument rods are to be evaluated.
Problems like thermal stresses, thermo-elastic—plastic and large deformations and creeping are
of essential importance. For thermo~—elastic-plastic analysis 2D- and 3D-FEM codes based on

isoparametric finite element formulation are developed.

Codes based on finite difference and control volume method are developed for thermal heat
conduction and heat convection. Latent heat in phase changes is taken into account. Examples
of applications to heating up and weakening of penetrations are presented. For flow estimation
in a corium pool a code solving Navier—Stokes equations for viscous fluid flow and using k—¢e-

turbulence model is under development.

The purpose of the article is to describe with examples this difficult but important and challeng-
ing field including coupled phenomena of heat conduction, convection, fluid flow and structural
analysis.

1. INTRODUCTION

The probability of a severe nuclear reactor accident resulting in a core damage and subsequent
melting is about 107* / reactor /year. In the world there are about 400 commercial reactors.
Thus one severe nuclear reactor accidents could happen at about 25 year intervals. Severe nu-
clear reactor accident means core melting causing very hot corium (consisting of different core
materials like uranium oxide, zirkonium oxide etc., in liquid phase about over 2200...2500 K)
descending on the bottom of the pressure vessel (Fig. 1). The amount of descending corium
may typically be 1...15 cubic meters. To retain the integrity of pressure vessel by external and
internal cooling could considerably reduce the effects to the environment. Numerical analysis
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are needed to know the margins to the failure at every phase of accident and to search means to
mitigate the consequences by e.g. cooling the vessel externally.

layer of

slow ﬂo& | — solid corium

(laminar)

external
cooling

rapid flow

melting and J B | ' (turbulent)

flow through
penetration

FIGURE 1. The general layout of the nuclear reactor pressure vessel bottom area and one
scenario of the core melting.

The investigation of the Three Mile Island accident 1979 in USA, where the margin to the fail-
ure of the reactor pressure vessel was rather small, gave much information about phenomena
related to core melting accident. From structural mechanics point of view there are phenomena
like

—  exceptionally high temperatures

- large deformations and strains

~  creeping of pressure vessel steel at high temperature

= cracking of solidified corium (cooling water between gaps)

The circumstances are very exceptional and conventional calculation methods and computer
programs related to thermo-elastic~plastic and creep modelling can not be applied straightly
without criticism. The phase of material ranges from solidus to liquidus and structural me-
chanics and fluid flow problems related problems to these phases are illustrated in Fig. 2. Es-
pecially difficult zone is the transition from solidus to liquidus.
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FIGURE 2. The behaviour of materials like steel in different temperatures.

From thermal conduction and convection and fluid flow point of view following phenomena
can be listed:

due to decay power in corium (about 100 W/kg) temperature differences are formed in the
pool causing slow upwards flow in the middle area of the pool, in the upper surface out-
wards and downwards close the vessel wall or solid corium causing natural convection
liquid corium streaming against the vessel wall heats and can cause erosion making the
wall locally thinner and may cause burst and failure of the whole lower head of the vessel
the melting temperature of corium is high (about 2500 K) and molten corium solidifies
rather easily in cooling to ceramic crust, which may plug penetrations coming into contact
with cooler materials like steel in penetrations

essential phenomenon are phase changes and latent heat energy releasing or accumulating
in them

at high temperatures over 2500 K the dynamic viscosity u of corium is rather small, typi-
cally u = 0,004...0,008 kg/m/s, thus the flow is partly turbulent causing increased heat
conduction and convection

boundary layer between molten and solidified corium is not so clear as normally e.g. be-
tween water or air and solid media, thus conventional boundary layer considerations can
not be applied in a straight forward way in the problem in question

fluid flow, heat conduction and convection dependent strongly on each others
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FIGURE 2. The behaviour of materials like steel in different temperatures.

From thermal conduction and convection and fluid flow point of view following phenomena
can be listed:

due to decay power in corium (about 100 W/kg) temperature differences are formed in the
pool causing slow upwards flow in the middle area of the pool, in the upper surface out-
wards and downwards close the vessel wall or solid corium causing natural convection
liquid corium streaming against the vessel wall heats and can cause erosion making the
wall locally thinner and may cause burst and failure of the whole lower head of the vessel
the melting temperature of corium is high (about 2500 K) and molten corium solidifies
rather easily in cooling to ceramic crust, which may plug penetrations coming into contact
with cooler materials like steel in penetrations

essential phenomenon are phase changes and latent heat energy releasing or accumulating
in them

at high temperatures over 2500 K the dynamic viscosity x of corium is rather small, typi-
cally u = 0,004...0,008 kg/m/s, thus the flow is partly turbulent causing increased heat
conduction and convection

boundary layer between molten and solidified corium is not so clear as normally e.g. be-
tween water or air and solid media, thus conventional boundary layer considerations can
not be applied in a straight forward way in the problem in question

fluid flow, heat conduction and convection dependent strongly on each others
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jects makes possible the verification of calculational methods by experiments and comparison of
calculational results obtained by different institutions in benchmark type tests.

Example 1: A typical control rod penetration in boiling water reactor was analyzed with the
computing system developed at VTT. Initial temperature of corium is about 2500 K. Itis as-
sumed that corium, whose initial temperature is about 2500 K drops suddenly on the bottom
and covers the penetration area, whose initial temperature is about 400 K. Fig. 4 shows the
temperature distributions

Ln e _:?5‘;‘ =
FIGURE 3. Temperature distribution in a control rod penetration in a boiling water reactor,
axisymmetric model.

The local presence of cooling water has very essential effect on behaviour of the nozzle. If
there is no water the nozzle fails, but if there is a moderate cooling effect of water and steam,
the failure is prevented or, at least, delayd prominently. The calculations were done using ax-
isymmetric models with rectangular grids. Because of simple geometry control finite difference
method was adopted. In axisymmetric case and cylindrical coordinate system heat conduction
equation is

or o ,,0T

c3r =3 %y,

9. 29Ty, 19T
)+ar(lar)+r13+¢, )
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where ¢ thermal capacity, T is the temperature, ¢ time, z axial coordinate, r radial coordinate, 4
heat conductivity and @ heat generation. Using even difference mesh, the terms in Eq. (2) are

3 2T, L i 0 @y - T - L i+ 4y ) Ty =Ty

5( oz Az

3 T A Qi+ ) Ty = T =L i+ 1) Ty - T
ar“ar " e

1, _ 1, Tig=Tiay

rhar TR mMr 3)

When calculating the sum of these terms and the heat generation term S* at time ¢, a new
temperature value T,-ff 4! can be solved from the equation

TH - T

oy ~ = g0, (4)

In practice, however, because of phase changes, instead of keeping c! j constant, a new

temperature T{%4 is searched as illustrated in Fig. 4.

c |}

(Ti415Cis1)

(Tl+At’ cl+at )

(Ti42,€i42)

(Ti-15€i — (T43,¢i43)

»= T

T* TH+a

FIGURE 4. Searching a new temperature corresponding a known enthalpy increase
At §* (peak in the dependency heat capacity vs. temperature is due to
latent heat in phase transformation).

Because of an explicit time integration procedure, the time increment At must be small enough.
To quarantee the stability the requirement for the time step is
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1 Cmin 1
A’Szlw 1,1 (5)

(Arz)min (Azz)min

Flux condition from the corium surface to water is calculated from

aT
A a = & (Twater = Tsurface ). (6)

OT/9n is the temperature gradient perpendicular to the surface and it is calculated by using two
difference nodes inside the steel or corium and the node at the surface. Heat transfer coefficient
o between corium and water was strongly temperature dependant. The surface temperature
T,,aer Was iterated from Eq. (6). There are gaps between steel surfaces. The temperatures on
the surfaces are iterated at every time step from the radiation equation

oT| _ 4 _q o7
A_ﬁL = ea(Tw-r_‘o)_,hanL, Q)

where the Stefan-Bolzman constant o = 5.67-10"8 W/m%K* and ¢ is the total emissivity of the
surfaces. Heat conductivity and capacity dependencies on temperature is taken into account at
all phases in the calculations leading to iteration processes.

only heat radiation
in a narrow gap
surface- | | surface +
\\
N2 ¥ \TO

N

FIGURE 5. Heat radiation over a gap between two metal surfaces.

I L il

Example 2: A typical bottom of a pressurized water reactor without penetrations. Initial tem-
perature of corium is about 2500 K. It is assumed that corium, whose initial temperature is
about 2500 K drops suddenly on the bottom and covers it, whose initial temperature is about
400 K. Fig. 6 shows the temperature distributions after 90 seconds. In this demonstrative
calculation all surfaces were insulated.
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FIGURE 6. Temperature distribution in a pressurized water reactor lower head without
penetrations with forced convection.

An oblique mesh was needed in this case. So called control volume method was applied. The
basic equation for the temperature T; j of a control volume V; J
i 1§ 49T

a v, L tm B ®)

where c is the heat capacity of the central point of the volume calculated according to the tem-
perature of the middle point of the volume and » is a coordinate showing outwards from the
surface of the volume and @ is internal heat generation. Explicit and implicit time integration
has be applied.

CONCLUSIONS

An intensive program development work is under way at VTT ranging form structural
mechanics to heat conduction, convection and fluid flow. In addition the problems described in
this paper the readiness can also be used in other applications like in simulation of welding or
casting processes.
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ABSTRACT

Some mechanical properties of a flow with an evaporation and durability of slots for
modeling processes in valves are discussed.

0. INTRODUCTION

The valves are very important components in many fields of industry. For example in the
wine preparing process one needs good valves. Valves may work in extremal conditions;
with chemical active fluids, with a big jump of a pressure. Often it is very expensive to
change or to repare valves (for example in the motor of rockets). There are many various
physical processes which disturb work of valves: an evaporation, sedimentation (salt or
occur), deformation of valves, etc. All these processes depend on hydrothermodynamical
structure of the flow, material and shape design of valves (see Fig. 1). That’s why it is
very important to construct adequate mathematical models for mechanical properties
of the flow with an evaporation and durability of slots. In Fig. 1 we see shape design
for different type of valves.

In this paper we present a simple model for valves. If valves work under conditions where
a jump of pressure is large, the process of an evaporation is very intensive. That’s why
an important problem is to calculate a process of an evaporation. We also discuss
briefly the problems of durability of valves. They usually work in a periodic regime and
in extremal conditions which destroy the material of valves.
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Figure 1.

V2

Figure 2. The scheme of the valve.

1. HYDRODYNAMICS OF FLOW

We consider flow from thin cylindrical axially symmetric channel (Fig. 2). Flow of a lig-
uid is attended with an evaporation, a precipitation of occurs and an ice formation. We
give here all equations in several curvilinear coordinates corresponding to an arbitrary
I'-shape of valves (see Figs. 1 and 3).

We suppose that our fluid contains some medijum which can produce a sediment provided
its concentration ¢ > ¢* (phase transition). This fluid changes its state with T > T*. We
suppose that a liquid film is thin. That'’s why the temperature and the concentration
in a section of film is steady with r = ro. We choose for velocity and pressure the
simplest approximation. The velocity u equals to A(s)n where [s| is a length of an arc,
n is a distance from s in normal direction. We also assume that a domain, in which
the evaporation on takes place as well as the process of evaporation is determined by
the mass flow @ and the outside pressure P. Using these assumptions for the moment
equations of the flow we obtain the conservation laws for a curved liquid film on the
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The magnitude m is determined by the relation

m(T) = fi{p.(T) - px — oK}, (1.3)

where pi is the pressure over the surface, p. is the pressure of the saturated steam, K
is the curvature of T, JI is the coeficient of the accommodation. The function satisfies

the Klayperon equation.
pV = MRT; (1.4)

where R is the specific gas constant.

The balance equation with an evaporation reads as follows:
glgt—(hT;c) - %—a%(ch,) = Sy — tMPy, Tilt=0 = Tin (1.5)

where Ty is the liquid temperature, Ti is the initial temperature, o is the density of
a liquid, ¢ is the heat capacity, v is the specific heat of the phase transition, s, is the
warm flow from the wall. The following equations hold for s, and for the temperature

T, of the wall

— = Kw'STw,
ot (1.6)
= Ty,
Sy = _QwCuv’\:sz—y

where Ky, Cw, 0w are coefficients of the thermal conductivity, the heat capacity and
the density of the wall.

The equation of a precipitation of occurs can be expressed as follows:

% + igs-(csq) =0. (1.7)
Here k = c, + a, c, is the concentration of the salt, a is the height of the deposition,
0 if ¢y < c.
={a>0 if ¢ = cs,

where c, is the limit concentration. To close the system it is necessary to consider the
flow of a gas over the liquid film. This consideration provides an evaporation for the
gas flow in the channel:

oM = 27r/ mrdr — Q'(t), (1.8)
ot 0

where Q' is the flow of the gas ejecting from the channel per unit time, s, is the moving
point of the menisk of the film and M is the mass of gas in the channel.

The equation of balance of the heat in the channel reads
%(MCPT,) - Q'cpTh = 20/ iomr ds, (1.9)
0

where iy is the specific heat of an evaporation, c, is the heat capacity in the channel.
The moving point s, is defined from the capillary angle conditions:

h(s.,t) =0, (1.10)
Oh(sest) _ .
S tga', (1.11)

where o' is the capillary angle.
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where o is the coefficient of a surface tension, v is the viscosity, r,z are cylindrical
coordinates, s,n are local coordinates associated with surface I'(g(s1),q(s2)), h(s) is
the height of a liquid film, A is a const, u = An, ¢ = (u,w), u, w are components of the
velocity (see Fig. 3). Our assumptions have been examined in [1)-[2] on a test example
with the thin axisymmetrical flow with an evaporation. In test problem the system was
governed by coupled Navier-Stokes and Stefan equations. A comparison between the
solution of coupled Navier-Stokes model and the solution corresponding to the model
presented here shows that it is suitable for practical things to use our simple model
{1.1). We also assume that the curvature of a film does not differ essentiality from the
curvature of a surface and h < 1.

The conservation law for a mass entails that

Oh  10q Ah\?
o 1+(-37) . (1.2)

where m is the velocity of the evaporation from the surface and g is the flow

h
qz—/ u-rdn.
0
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2. PROBLEM DURABILITY OF PERIODIC WORKING VALVES

We can describe our problem as a contact problem. The Herz theory for contact problem
between two elasticity bodies can be employed for solving the durability problems of
the cylindrical valves. In this case we can obtain for the energy of deformation U the

following expression:

(@R e

and the maximal d displacement is

I3
— 3
d=123{/ 555 »

where R is the radius of contact cylinder, P is the force (pressure) on the valve, x =
1-12

v
From this problem we can derive results about the dependence contact zone “d” on the
outside pressure P. In the elastic case this is

d = 24/xPR.

Thereafter by means of the theory by Treska-Sen—Venan, we find the most dangerous
point which is situated on the depth z4 = .8 for the axially symmetric case. The

, v is the Poisson’s coefficient, E is the modulus of the elasticity.

4 . . . .
maximal tangent stress o is 0.8— at this point. The maximal normal stress is at the

Ta
point z = 0.5d. The component of stress are:

27 2n 27
Or =0¢ = —0'18}—d’ o, = _O'SE’ Tmaz = _0'31ﬁ'

From this point the plasticity zone begins. On the boundary of contact zone the stress
tension is

1 27
=—(1-2v)—.
or =30 =275
At this point usually starts the destruction of material.

For definition of contact zone we can also employ the results of solving the plasticity
problem. In this case we can take results for the problem of plasticity deformation of a
ball which had been solved by A. Ishlinsky. Moreover, it should be taken into account
the roughness of real surface which provides a microplastic deformation. This deforma-
tion leads to developing of micropress and microcracks. These produce progressive the
mellowing the surface contact film by means of separating the surface into very small
particles from and deteriorating the surface. This phenomena usually is being studied
by means of semiempirical theories and results. Employing a simplest version of the
theory we calculate a velocity of the wear of a material in the contact zone

w= /;cp(s)ds,

where p(s) is possible to calculate from P.
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3. NUMERICAL RESULTS

Using mathematical models presented in Chapter 1 we calculate by means of the dif-
ference method cylindrical channels of the height Hy and with the initial temperature
Tin.

The results of numerical experience demonstrate that accordance with Hp and T;, there
exists a characteristic time of the stabilisation of hydrodynamic and thermodynamic
properties (see Fig. 4). If the temperature Tj, is higher the time of stabilization is
shorter. The state of the menisk is also stabilized. The edge of the menisk appears
as a dangerous zone for the stable work of a valve. It is shifting to the channel if
initial temperature increases. The place of the sediment is diminishing if the size and
the height of the menisk are increasing. As an example we present in Fig. 4 the case

Ho = .6mkm, Tin = 320°K.

B wop = B
Q. - o+
x o) ga
N P
(V2]
g}J" o <, T T
0.980  0.985 0.990 0.995 |
r
Figure 4. The shape of the menisk h/H, ; the height of a sediment a-10*
—e—; the temperature T - - - -. 1) 7 =05%107%s; 2) 7 =

4%x107%s; 3)7=2%10"%g; 4)7=10"'s; 5) 71 =10%s.

The distribution of the temperature on menisk for the height of slot Hy = 1 mkm and
with different initial temperature data is given in Fig. 5. We can conclude that the
character of the temperature distribution is always the same. The minimum is situated
about the middle of the menisk (to be specific near .4 from the menisk and difference

between T;, in difference points is not big At ~ 3° — 4°).

Finally, we note that in extremal conditions the freezing of valves may play an important
role. The mathematical model suggested in Chapter 1 fits also for the descriptions of

freezing process of valves.
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Figure 5. The distribution of the temperature on the menisk (Hy = 1 mkm
and for different Tjn): 1) Tin = 280° K, 7 = .1; 2) Tin = 300° K,
r=1s; 3) Tin =300°K, 7 = .15 4) Tin = 320°K, 7 = 1s: 5)
Tin =320°K, 7=1.4-10""s.

Equation (1.5), (1.6) can be written on this case as follows

Oh  eibhi 19¢_ 1+(ah.)2‘

Bt i ot Ot " rds Os
a ohi o 0 . ,
Qia(hTiC) —ov g t ';5;(4077) = sy — iMmo1.

Above p; is the density of the ice, hi = 0if Ty > T, hi > 0 if T; = T,, where T, is
a freezing point. Dynamic of the flow and freezing depends on the material of valves
(metal or plastic). In the case of plastic material it is possible to obtain ice in valves.
In metal valves the dynamic of the sediment is similar but the ice is absent.
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ABSTRACT

Measurements with a Laser Doppler Anemometer / Phase Doppler Particle Analyzer are
described in this paper. The effect of seeding particles on the accuracy of fluid velocity
measurements is studied with the turbulent free jet as a test case. The characterization of drop
size and velocity distributions in sprays is discussed.

1. INTRODUCTION

In this paper, we describe measurements with a modern optical instrument called
LDA/PDPA. LDA is an acronym for Laser Doppler Anemometer; LDAs have been used for
the measurement of fluid velocity for quite some time. PDPA is an acronym for Phase
Doppler Particle Analyzer; a PDPA is a LDA which has been modified in such a way that
particle size measurements can also be carried out. An Aerometrics LDA/PDPA system has
been in use at Helsinki University of Technology since 1992.

The accuracy of LDA measurements in different flow conditions is rather difficult to
estimate. We have used the turbulent free jet as a test case. Experimental data were obtained
with various kinds of seeding particles and the measured velocities were compared with the
well-known theoretical solution based on the mixing length hypothesis. Results of this
exercise will be shown in our paper.

The characterization of sprays is our most important application for the particle sizing
capability of the PDPA. Sprays are used in many industrial processes; for example, in the
combustion of liquid fuels, in spray cooling and drying, etc. For the optimization of such
processes, we need to know the sizes and velocities of the drops in the spray. This
information can be used to estimate the trajectories of the drops and the heat and mass
transfer between the drops and the surrounding gas. Typical results of spray drop size and
velocity measurements will be shown in our paper.
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2. CHARACTERIZATION OF FREE JETS WITH A LDA/PDPA SYSTEM

Any fluid flow velocity measurement with a Laser Doppler Anemometer (LDA) relies on the
information obtained from seeding particles suspended in and transported with the fluid. The
suspended particles flow through a fixed region in space (a2 measurement volume), which is
monitored during a selected time interval. The measurement volume is defined by the cross-
over region of two intersecting laser beams. As a particle passes through the measurement
volume, it produces a Doppler burst signal. The Doppler frequency of the burst signal is then
used to deduce the velocity of the particle (= velocity of the flow). Hence one basic
assumption of this technique must be that the particles follow any changes of the flow
immediately, i.e. with only a negligible velocity lag. While this assumption can usually be
regarded as being satisfied for small to moderate acceleration or deceleration, this is not the
case for large velocity gradients of the fluid and especially not for larger seeding particles.

The purpose of this paper is to present new experimental LDA data of a small turbulent free
Jjet with two different seeding particles and with different working pressures. The results are
compared with the well known solutions of Schlichting and Abramovich which are based on
the mixing length theory. The velocity lag of the seeding particles can then be obtained by
comparing the measured velocities with the calculated theoretical values. The measured
seeding particle deceleration can then be compared with the values based on different particle
drag coefficient models.

The experiments were carried out with a small cylindrical nozzle (diameter 3.6 mm) using
dry air as the fluid. We used four different working pressures from 0.05 bar to 0.2 bar and
measured the axial velocity at the centerline of the free jet. The axial velocities were
measured at different distances from the nozzle exit (from 2.5 mm to 130 mm ). The
deceleration of the particles was then calculated based on the velocities at different locations.

We used dispersed potato starch (measured particle size 9.85 pm) and titanium dioxide TiO,
(measured particle size 3.25 pm) as the seeding particles. The particle size distributions were
measured with a Malvern Particle Sizer.

The velocity profile at the nozzle exit is usually considered as a plug flow, where the velocity
u, is constant over the whole exit area. The centerline maximum velocity remains constant
for about 6 to 7 diameters from the nozzle exit and then begins to decelerate very rapidly.
According to Schlichting [1] the axial centerline velocity u,_ of the cylindrical turbulent free
jetis

e 6 571 % (1)
u, x

where x is the distance from the nozzle exit and d, is the diameter of the nozzle. The results
of Abramovich [2] for the axially symmetric turbulent free jet are very similar. The
centerline velocity is inversely proportional to the distance from the origin, which is located
not at the nozzle exit, but inside the nozzle:

=17.273 _ A @)
u, x+2.197d,
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We assumed that the seeding particles were nondeformable spherical particles and we
neglected all wall effects and collisions of the particles. The density of the particles was
much larger than the density of the fluid (air). The gravitational forces were neglected since
the velocity gradients in the jet were large. The static pressure at the nozzle exit was assumed
to be constant. The equation of motion for a single particle in one-dimensional form can
then be written as

d? dU nd> p?
6ppp dtp_cd 4ppf’? (3)

The velocity V = U,- U, is the velocity lag between the particle and the fluid. The drag
coefficient C, is dependent on the particle Reynolds number which is defined by

vd
Re, =—2% 4

The well known Stokes' drag coefficient for a spherical particle is

24
Re,

C,=f(Re;)= (%)

This is valid only if Re,< 1. The greater the Reynolds number becomes the more inaccurate
Stokes' drag coefficient will be.

Beard and Pruppacher have studied the free falling velocity for small water droplets in
saturated air. These results could be correlated as follows [3]:

C, = 24Re]' +2.76Re ;> 2 <Re,<21 (6)

In Figures 1 and 2 we have the measured axial centerline velocity profiles of four different
working pressures with potato starch and TiO, as the seeding particles.

Potato starch, particle size d,=9.85 hm TO,, partide size d, =325 pm
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The case p = 0.10 bar is further analyzed in Figures 3-8. Measured and calculated velocities
are compared with each other in Figures 3 and 4 and the differences can be clearly seen. The
deceleration of the particles is then calculated based on the velocity lag and different drag
coefficient models (Figures 5-8). It can be seen that the Stokes' model highly underestimates
the drag coefficient and thus the velocity lag for potato starch, although the results for
titanium dioxide particles are quite satisfactory. The model of Beard and Pruppacher gives
better results especially for potato starch particles. The model of Abramovich also seems to
fit the present results better than the model of Schlichting. Figures 3 - 8 show that the
deceleration of axial velocity at the centerline begins closer to the nozzle exit than in the
Schlichting model.

3. CHARACTERIZATION OF SPRAYS

A Phase Doppler Particle Analyzer is capable of the simultaneous measurement of the sizes
and velocities of individual drops in sprays. The operation of the instrument has been
described by Bachalo and Houser [4]. The Doppler burst signal caused by a drop passing
through the measurement volume is detected with two or more photomultipliers placed at
different locations. The Doppler frequency of the signal is then used to deduce the velocity
of the drop, as in conventional laser Doppler anemometry; the phase differences between
the signals detected at different locations are used to deduce the size of the drop. The name
Phase Doppler Particle Analyzer (PDPA) derives from the fact that the measurement is based
on the analysis of phase differences.

The use of several photomultipliers for the detection of the signals causes some problems.
The locations of the photomultipliers must be carefully chosen to achieve good accuracy.
The optimum locations depend on the refractive index of the liquid being sprayed; thus, the
optical configuration of the instrument has to be tailored in each experiment. It has become
common practice to use a single receiver unit with three photomultipliers and the user
therefore only needs to choose the location and orientation of the receiver unit. It is
noteworthy that the optimum configuration is always asymmetric, which is sometimes
reflected in the data. This point will be discussed below. Direct backscattering cannot be
employed in drop size measurements, which is unfortunate. It would be far easier from the
point of view of traversing systems and optical access to the spray if the laser transmitter and
receiver were built into a single component.

The data collected with a Phase Doppler Particle Analyzer can be further processed to obtain
detailed information of the physical characteristics of sprays. The size of the measurement
volume, the total number of drops passing through the measurement volume during the
selected time interval, and the sizes and velocities of the individual drops are known; thus,
one can calculate, for example, the drop concentration and the liquid volume flux,
momentum flux and kinetic energy flux. Furthermore, the time of arrival of each drop is
recorded and temporal variations in the structure of the spray can therefore be analyzed.

An important point is that the measurements with a Phase Doppler Particle Analyzer are
essentially point measurements, that is, the size of the measurement volume is usually rather
small when compared to the size of the spray itself. Thus, high spatial resolution is achieved,
which is often advantageous. For example, in the combustion of liquid fuels it is important to
analyze local fuel-to-air ratios in order to understand ignition, flame propagation and
emissions of harmful pollutants.
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Phase Doppler Particle Analyzers can be built for the simultaneous measurement of one, two
or three components of drop velocity. Our system can only measure one velocity component
at a time. In spray studies, we are usually interested in the axial velocity of drops.

Figure 9 illustrates typical spray measurements. A water spray from a Monarch swirl
pressure jet nozzle was studied in this particular experiment. The nozzle had a nominal
capacity of 5.50 USgal/h and a spray cone angle of 60°. Tap water with a pressure of 6 bar
and a temperature of 17 °C was used. The nozzle was mounted on a manually operated
traversing table and the spray was injected co-axially into a low-velocity air stream to
prevent the recirculation of drops from downstream regions back to the regions where the
measurements were made.

The measurements were carried out across the spray at an axial distance of 20 mm from the
nozzle. At this distance, the diameter of the spray was approximately 50 mm. The plot of the
liquid volume flux vs. radial position shows a hollow-cone spray pattern, which is typical to
swirl pressure jet nozzles. It can be seen that most of the liquid is concentrated in a rather
narrow, ring-like region at the edge of the spray, whereas negligible liquid volume flux was
observed in regions near the centerline of the spray. The plot of the liquid volume flux is
not symmetric about the centerline of the spray. We believe, however, that the spray itself
was symmetric and the asymmetry was a measurement artefact caused by the asymmetry of
the optical configuration of the PDPA. It is of interest to note that the plots of drop mean
size and drop velocity are rather symmetric. Further, it is well-known that the measurement
of liquid volume flux with a PDPA is particularly susceptible to errors [5].

The plot of drop mean size vs. radial position shows both the arithmetic mean diameter and
the Sauter mean diameter. The Sauter mean diameter is defined as the diameter of the drop
which has the same ratio of volume to surface area as the spray as a whole. The Sauter mean
diameter is often used in calculations of the evaporation and combustion of the drops. It can
be seen that the arithmetic mean diameter is fairly constant across the spray whereas the
Sauter mean diameter exhibits maxima in the regions of high liquid volume flux.

The plot of drop velocity vs. radial position shows both the (arithmetic) mean axial velocity
and the r.m.s. velocity. Highest velocities were observed in the regions of high liquid volume
flux.

Attempts were made to fit various distribution functions to the measured drop size
distributions. A chi-square minimum technique developed in [6] was used in the fitting. The
best fit was obtained using the log-hyperbolic distribution function developed by Barndorff-
Nielsen [7]. Figure 10 shows the fitting of the log-hyperbolic distribution function to the
drop size distribution measured at a radial position of 8 mm. The value of chi-square is 12.11
with 6 degrees of freedom which is well below the 5 % significance limit.
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CONCLUSIONS

The accuracy of the Laser Doppler Anemometer measurements is highly dependent on both
the velocity gradient of the flow and the seeding particle size. The known drag coefficient
models can be used to estimate the velocity lag between the fluid and the particles.

Phase Doppler Particle Analyzers can be used for the detailed characterization of sprays.
Drop sizes and velocities can be measured with high spatial and temporal resolution. Drop
concentration, liquid volume flux, and other physical characteristics of interest can be
calculated from the data.
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ABSTRACT

One-dimensional unsteady flow calculations for a constant cross-sectional shock tube
were checked with the exact solution. Several schemes with first- or second-order
accuracies in temporal or in spatial discretizations were tested and compared. It is
found that a combination of spatially second-order Roe’s scheme with the Lax-Wendroff
scheme in time marching can give the best result.

1. INTRODUCTION

One-dimensional unsteady flow calculations are often used as numerical tests for
developing new schemes and testing and evaluating the available schemes. It can also
be used in many practical applications. If an approximate Riemann solver such as
Roe’s scheme [1] is employed to treat the fluxes on the cell-faces, strong discontinuities
can be handled. Then the numerical method is very suitable for such applications like
compressible pipe flows with strong shocks, water pipe flows with water hammer effect
and dam break flows in open channels. If a Lax-Wendroff type of scheme is used, then
second-order accuracy can be obtained in time marching [2]. It would be interesting to
see also the effect of the combination of Roe’s scheme and Lax-Wendroff scheme. That
is the question to be answered by this paper.

A classical test case for one-dimensional unsteady calculation is a shock tube flow which
was probably firstly suggested by Sod [3]. The advantage of using a shock tube flow
as a test case is that exact solution can be easily obtained [4]. On the other hand, the
complexity flow pattern of a shock tube with a strong moving shock, an expansion wave
and a moving contact discontinuous face provides a challenging case for many numerical
schemes. In Sod’s paper [3], a wide range of schemes available in 1970’s were tested
by calculating the shock tube case. Roe [1] also used this shock tube case to test its
first-order upwind scheme. This shock tube case has become a standard test case which
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is also found in some most recently published papers on various numerical schemes [5]

[6].

In this study, this standard shock tube flow were calculated using several schemes or
their combination. The purpose is to find a better numerical scheme for the other
possible one-dimensional unsteady flow applications.

2. BASIC EQUATIONS

The one-dimensional, constant cross-sectional, compressible and inviscid flow can be
expressed as follows:

8U OF _

W'i-o—z—o (1)

where

(2)

=

Il
Y
® 2o
~—

and

pu
F=|p+pd (3)
u(e +p)
3. TIME MARCHING SCHEMES

We use explicit scheme for the time marching in this study. The development of U(z, )
over the time interval At can be expressed in a Taylor series, with third-order and higher
terms dropped

oU A2 5%U

By considering Eq.(1), Eq.(4) can be expressed as

OF At? 0, OF
Uz,t+A8) = U(z,t) ~ At + == o—(A--) (5)

where A is the Jacobi of F(U), or
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Eq.(5) is called one-step Lax-Wendroff method in time marching. It retains the second-

order temporal accuracy.
If the last term in Eq.(5) is dropped, it becomes a first-order scheme in time marching:

Uzt + At) = Uz, 1) - At%zF— M)

4. SPATIAL DISCRETIZATION SCHEMES

] | ! |
1 I

I i
i-1 i-1/2 i i+1/2 i+1

Fig.1 One-dimensional grid

In the grid shown in Fig.1, spatial derivatives in Eq.(5) and Eq.(7) can be approximated

by
oF Fiyy —Fia ®)
0z zy1 =%y
and
Fipr - F F,—F,
8 ,OF Aviziw AriEoes o
8z 8z’ Tl — T ®)
2 2

we call those quantities at the locations 7 + % and ¢ — % as the “cell-face quantities”.
The ways to obtain those quantities determine the quality of the solutions.

Taking fluxes F as the example, one easy way is to use simple averaging

(F; + Fiya) (10)

- Ll

Fiyr =
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This is equivalent to a central difference scheme and has second-order accuracy spatially.
This way of obtaining cell-face fluxes works only in Lax-Wendroff time marching as
shown in Eq.(5). If it is applied in the first-order time maching scheme shown in Eq.(7),
the scheme will be unstable.

A popular way to obtain the cell-face fluxes is the Roe’s scheme [1], which is an
approximate local Riemann solver to get upwind effect. In the Roe’s scheme, the cell-

face fluxes are calculated by

1 I
Fiiy = §(Fl+Fr)-§ZR.‘i |25 | @; (11)
j=1
where
a; = Lj(U. - ) (12)

and );,L; and R; are the eigenvalues, left and right eigenvectors of the Jacobi A4; +1-
A;y 1 is averaged according to the method suggested by [5]. Subscripts ! and r refer to
the variables on the left and right sides of the cell face i + 1. If we simply let

U =U; (13)
and
Up = Ui (14)

we have Roe’s scheme of first-order in spatial accuracy.

If we use MUSCL approach [7], U; can also be obtained by linear extrapolation of U;
and U;_;, and U, by U;4+; and U;4, like

Uy=U; + ‘#’(_;EQ(U', - Ui_y) (15)
and
Ur=Uipa + W(Uﬁz - Uit1) (16)

where
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Uit — U;
o Yi 17
Ri=g o (17)
and
R*+ R
= 18
HB) = T (18)

Eq.(18) is called van Albada limiter [7].

Then this Roe’s scheme with MUSCL approach has second-order spatial accuracy.

5. RESULTS

In this study, four schemes or scheme combination were used. They are shown in table
1.

Scheme Spatial Temporal Equations
accuracy accuracy used
Roe first- first-order first-order (7),(11),
order upwind (13),(14)
Roe second- second-order | first-order (M),(11),
order upwind (15),(16)
Simple Lax- second-order | second-order (5),(10)
Wendroff
Roe + Lax- second-order | second-order (5),(11),
Wendroff (15),(16)

Table 1. Four schemes used in this study

The length of the shock tube is one. 100 computational cells are used along the tube.
At the middle of the tube, i.e. z = 0.5, there is a membrane. The initial data for the
shock tube is the same as that in the Sod’s case. On the left side of the membrane,
p=1,p=1and u = 0; on the right side of the membrane, p = 0.1, p = 0.125 and
u = 0. At the time of ¢t = 0, the membrane is broken down, and the time marching or
iteration begins. The iteration stops at the time of t = 0.144. Time step of At = 0.0024
is used in the iteration. This is equivalent to have a Courant number of 0.24.

The computed results are given in Fig.2, Fig.3 and Fig.4 in which pressure, density and
velocity distributions of the tube at the time of ¢ = 0.144 are compared with the exact
solutions.

It is clearly shown that the first-order upwind Roe’s scheme cannot predict the sharp
gradient caused by the shock, expansion wave and the moving contacting face.
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The simple Lax-Wendroff scheme also shows very oscillating distribution near the shock

and expansion waves.

The second-order upwind Roe’s scheme, although being first-order accurate in time
marching, gives a quite accurate prediction of the positions of the shock and expansion
waves. It also gives a sharp shock wave and sharp density jump at the moving contacting
face. However, small oscillating distribution of flow variables, especially velocity, can
be found.

The combination of a second-order upwind Roe’s scheme for the convective term with
a Lax-Wendroff type of diffusive term can give a compromised result. It gives a
non-oscilating distribution, but at the expense of a slightly thicker prediction of the
discontinuities. This arrangement could be the best among these four schemes.

6. CONCLUDING REMARKS

The numerical tests of the one-dimensional unsteady calculation of a shock tube indicate
that the combination of a second-order upwind Roe’s scheme for the convective term,
with a Lax-Wendroff type of diffusive term, can give a better result than the results
obtained by using simple Lax-Wendroff method, or by using the Roe’s scheme with only
first-order temporal accuracy.

This conclusion may be useful in developing a unsteady flow solver for one-dimensional
flow with variable cross-sections or developing computational fluid dynamics programs
for steady or unsteady multi-dimensional flows.

REFERENCES

(1) P.L.Roe, Approximate Riemann solvers, parameter vecters and difference schemes,

J. of Comp. Phys., 43, (1981) 357-372

(2) P.D.Lax and B.Wendroff, Systems of conservation law, Comm. Pure and Applied
Math., 13, (1960) 217-237

(3) G.A.Sod, A survey of several finite difference methods for systems of nonlinear
hyperbolic conservation laws, J. of Comp. Phys., 27, (1978) 1-31

(4) J.D.Anderson,Jr, “Modern Compressible Flow”, McGraw-Hill, 1990

(5) P.Glaister, An efficient shock-capturing algorithm for compressible flows in a duct
of variable cross-section, Int. J. for Numer. Method in Fluids, 18, (1994) 107-122

(6) W.J.Rider, Methods for extending high-resolution schemes to non-linear systems of
hyperbolic conservation laws, Int. J. for Numer. Method in Fluids, 17, (1993) 861-885

(7) T.Siikonen and T.Saarinen, Flux vector splitting of the one-dimensional Euler
equations, Report B-11, Lab. of Aero. Helsinki Univ. of Tech., 1988



305

NUMERICAL SOLUTIONS FOR STEADY AND UNSTEADY REYNOLDS
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PEKKA SALONEN
Helsinki University of Technology
Laboratory of Machine Design
Otakaari 4, FIN-02150 Espoo, FINLAND

ABSTRACT

The purpose of this work is to find numerical solutions for 1. steady incompressible,
2. steady compressible and 3. unsteady compressible Reynolds equation with
specific boundary conditions and with slider bearing geometry.

The method used to solve the problems is finite differences technique and especially
central differences scheme. In order to apply the scheme, the algebraic equations
are first derived into non-dimensionalized form. Several computer programs were
written for different cases and as a result from them the pressure distributions and in
some cases the load-carrying capacity are plotted out.

The results in 1-D steady state case agree completely with the exact solution. For
the 2-D incompressible case the pressures differ only about 2% from the
corresponding exact solution. In the compressible 2-D case the results match with
the incompressible case when a certain parameter combination is used. The
pressure peak is somewhat lower in the compressible case and also the location of
the pressure peak moves slightly to the direction of the smaller film thickness.

In the unsteady compressible case the load-carrying capacity was of interest. The
load-carrying capacity dropped as the time moved on, but the program written,
resulted only minor drop.
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1. INTRODUCTION

Reynolds equation

d(hpop) o(hpop 0 0
= =z =6U—(ph)+12—(ph 1
8x( 0 axJ+8y[ p oy )" U e PR HIZG (oh) .

has no closed form solution. Yet several researhers have found solutions for (1) with
certain boundary conditions and with certain approximations.

Pinkus [2] has considered already in 1961 the possibility of using computers to solve
lubrication problems, which require a great deal of 'number crunching'. He has
developed a numerical formula to solve Reynolds equation. He has also used the
finite differences scheme, which will be the case in this work, too. The difference is
that he uses the scheme already in the earlier stage of the derivation, which leads
him to use finer grid and more complicated mathematical formulas. Afterwards he
has printed the results for journal bearing case in numerical form. He and some
others [3], [7] have derived the exact solution for slider bearing in one-dimensional
incompressible case to find the load-carrying capacity.

Hamrock has made a lot of work in the area of lubrication theory of bearings. One of
his books [7] covers a wide range of different types of lubrication in different types of
bearings. In the slider bearing case he plots a pressure distribution of fixed-incline
slider bearing. The dimensionless pressure-curves are drawn in function of
dimensionless x-coordinate with different film thickness ratios (ho/sp). The curves
show that the smaller the film thickness ratio is the higher the pressure peak goes.
For instance if the ratio is 1/2 the maximum dimensionless pressure is about 1.0 and
if the ratio is 1 then the maximum pressure is only like 0.3.

Walowit & Anno [8] have studied elasticity combined to lubrication problems. They
have also taken into consideration the compressible gas slider bearing with a
pressure difference across it. This is a one-dimensional case. Their assumption is
that the density is related to the pressure by an equation of state, which means that
pressure depends on the density linearly. They have developed the Reynolds
equation into the form where the compressibility number plays a important role. As a
result they define the limiting load support. When the speed becomes sufficiently
high, the limiting load support is achieved. For example, if one machine operates ten
times faster than another, this does not necessarily mean that it is a candidate for a
gas bearing, since the slower machine could already be approaching the condition
for limiting load support.
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2. EXPERIMENTS AND RESULTS
2.1 Steady-State Incompressible Case
2.1.1 Non-dimensionalized Form for the Reynolds Equation for 2-D Case

The derivations of the following equations will start from the assumption that
Reynolds equation (1) is known. The derivation of Reynolds equation is presented in
[2]. For the incompressible case we may assume the density and viscosity to be
constant. For the steady state case the time-dependent term cancels out leading us

to
3 (. ap). 3(,0p oh
Pl L =6 2

ax( 8x)+ay( ay) e @)

The change in film thickness (h) in slider bearing is

h(x)=h, —’i;ix (3)

In order to solve equation (2) we have to non-dimensionalize this equation. We will
use the following non-dimensionalization:

- - - h
rEE A L

B i hz (4)

, p=

v s

where S is the Sommerfeld number. In addition we define the tapering (a) as

a=ﬁ 5)

Using the above notation we are able to define the Reynolds equation in non-
dimensionalized form

d(dp (B)2 0 (-sdp
3 —_— — _——] h 1 =1—
ax[h ax)+ L) oy 9y ! (©)

2.1.2 Solution for 1-D Case

Now when we have derived the formula for 2-D case, it's easy to derive the equation
for the 1-D case. In this case we assume that the bearing is infinitely long in y-
direction (L>>B), which makes the equation (6) analytically solveable. After applying
the boundary conditions for the case: 1. p=0 at x=0 and 2. p=0 at x=B we obtain an
expression for the non-dimensionalized pressure,
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(a=Dx(1-x)
(a+ 1)[a —(a- l);]2

p=

The load-carrying capacity of the bearing is

W= J- pdA (8)

Because the pressure is constant in y-direction, we may develop the integral in the
non-dimensionalized form

—__ L a1
W= 6UUB'L (awl)z[ln a+1 ] )
hy

For the bearing geometry studied, we are now able to find the pressure distribution
across the bearing in x-direction. That is achieved by fixing the tapering (a) and
giving different values for non-dimensionalized x-coordinate in equation (7). The
load-carrying capacity for the same geometry can be calculated by using (9). A
computer program was developed to do that and the results will be discussed later.

2.1.3 The Finite Differences Scheme

We can develop equation (6) even further ending up to
R 2 2= _ - -
EJ_{) +(£) E)T,;) N 3(1_ a) 8£ _ 1_3a (10)
dx L)\ ady h dx h

To make the finite differences notation easier we will use the following quantities

B . l-a
—_= a —
L b J h

=q (11)

In applying the finite differences scheme we will use the central differences.
Substituting the scheme into (10) we can derive an expression for pressure at certain
point of the bearing area. If we assume the grid to be generated over the cross
sectional area, now we are able to calculate the pressure value at each grid point by
using

—=v —\2
3 -\ 3 -\ Ax) — Ax ) - o -2
Pij :W[(] +5an)pf+|.j +(l _Ean)pi—l,j +[BA_;] Pijsi +[BA—§] Pij —Z_ZAX J
+ .

Ay
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The load-carrying capacity for this case can be evaluated from
1 —
=— 13
BL!pdA (13)

In order to integrate (13) over discretized area Simpson's rule was applied. A
computer program was developed to evaluate the pressure distribution and the load-

carrying capacity.
2.2 Steady-State Compressible Case

In equation (1) for the steady-state condition the last term could be left out. We know
that viscosity depends more on temperature than on pressure. Then it is justified to
assume that the density depends linearly from the pressure. Using the bar notation
we are able to derive

0 (~-10p (B)z o (—mdp) 0 (=
8x(ph 8x)+ L) dy P dy ax(p ) (14)

We introduce a new variable Q:
Q=(ph)’ (15)

Taking the partial derivatives of Q in respect to x and y and using the relations (3),
(4) and (5) we obtain:

2’0\ 1 1 19Q , o[ 2°Q | _
(ﬁ)‘ﬁ*[““'@)ax*ﬁ (a;f)“’ e

Applying the finite differencies we achieve an expression for the quantity Q at grid
point as

Ax1- Ax 1
(2 + 2V)Q,-,,- = Qi+|,j + Qi—l.j __2{'E_a(Q.-+1,j - Qi-].j)_z_;'E(Qm.j i Qi—l.j) + V(Qi.j+l - Qi.j-l)
(17)
where, V= (BA_ﬁ) (18)
Ay

In applying the equation (17) we calculate the Q-values (called in the first iteration
round as initial Q-values). It means we have initial pressure at each grid point. Using
this information we compute the next iterated values now giving to term \/Qij on the
right hand side the computed previous iteration round Q-value and finding the value
for the new Q on the left hand side of the equation. A computer program was
developped in order to calculate the Q's and pressures respectively.



310

2.3 Unsteady Compressible Case

The unsteady case differs mathematically from the steady state case in the way that
we have to take into account the non-linearity term on the right-hand side in (1).
Assuming again the density being proportional to pressure,

3., 0p. 9, 3p J 3
L p ey L Ly s epU L (oY + 1202 (ph 1
ax(h pax)+ay(h pay) 6 ax(p )+ uat(p ) (19)

To non-dimensionalize this, we use the former relations and additionally the non-
dimensionalizing for time. Remembering that film thickness is not a function of time,
we achieve
%’t’ hz( ) +[3ph(1-a)~ 1](ap)+ h28 p+ﬁz a”) +Bp hzﬂ—ﬂ(l— a)
dy
(20)

When we apply the finite differences scheme to this, we get the following form for
time derivative:

a; PH-I E ¥ : T P+| P | p+| 2;7-'*';_1
5 =hiy| =L 4 [3p, Riy(1-a) 1] S Ee | g f Pras T 2Py T Py
ot ‘{ 2% (B --1] Z ’ AY’

— i 2 = —_— — 2 Fa=
=2 Pijst = Pijar = 22 Pt —2Pi; * Pijoy P
+p2h,| DLt | g2 B2 | P 1 G W 21
B l[ ZAy ) B pl.] /[ Ay, J hllj ( ) ( )

In order to solve (21) 4th order Runge-Kutta method was used. So called step-jump
method [5] was applied. In this method the new pressure values are calculated after
each time step and then the partial time derivatime does not depend explicitely on
time. The delta-terms in Runge-Kutta method are then

dp dp 1
= At—(p, Ap, = At—=(p. +—A
Ap, dr (p;) ) dr (p, > p;)

dp 1 dp
Ap, = At—(p. +—-A Ap, =At—=—(p. + A 22
Dy dt(p, 5 p,) P, dt(p. D;) (22)

A computer program was written to apply this scheme in unsteady incompressible
case.
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3. DISCUSSION

Several computer programs were developed in order to find the pressure
distributions in different cases described earlier. The programs were written in
Fortran and compiled using MS-Fortran. As output the programs store in the
harddrive the film thicknesses in different grid locations and the pressure values in
each grid point. In order to decrease the iteration time the relaxation was utilized.
prer =iy + (L= M)pjy (23)

where the relaxation factor is denoted by creek lambda. Both under relaxation and
over relaxation was tested.

3.1 Incompressible Case

For the steady-state incompressible case both in 1-D and 2-D were investigated. The
pressure distributions for 1-D solutions with different taperings (a) are in complete in
figure 1. For this case 9 different x-locations were taken as an example. In the
figures on the legends on the right are shown the different taperings (A). From the
curves can be concluded that the maximum pressure occurs with the tapering a= 2.2
- 2.3. This result agrees with the reference [2].
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—0— Aa22

——— A<23

—t— A=25

—— A=30

Grid point In x-direction

Figure 1. Pressure distributions with different taperings in 1-D.

The 2-D incompressible case the following parameters were used: grid size 9*54,
tapering 2.2 and 1.5 and size factor f=0,15 (equation (11)). B was choosed this small
in order to compare the results with the 1-D case. First was used overrelaxation

(A=1.5) and in the second case underrelaxation (A=0.9). The criteria checking the
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difference between the new and old pressure-value was set to 0.01. This was also
later alternated.

As result the calculated load-carrying capacity (W) values between 1-D and 2-D case
with these parameters showed good accuracy. In 1-D case it gave the value of
2.6707-102 (fig. 2) and in 2-D case with these parameters 0.27253-10-1. The

difference in load carrying capacity values was only 2.1 %.

3,000000€-02 (|

| | ) .:;_f__f'_.-’.'.'?‘-’—_.-’_;ﬁ'h.’_._/'l_:r‘c; o

0oy LU

Taperings

Figure 2. Load-carrying capacity with different taperings in 1-D.

The effect of relaxation factor was also tested. With A-value of 1.5 it took 15 iteration
rounds to reach the error criteria and when the factor was increased to 2.0 it reached
the criterion already after 10 rounds. Only this time pressure values were also more
off from the 1-D solution. With underrelaxation A=0.9, 30 iteration rounds were
needed to reach the error criterion.

If we compare the curves in fig. 1 (with a=2.2) with the curve corresponding to that in
fig. 3, we recognize that the shape of the curve matches and the peak values are in
both cases between 4.0 - 4.5.102. Same type of phenomena can be noticed, if the
fig. 4 and the fig. 1 with a=1.5 are compared. Now the dimensionless pressure peak
value in both cases lies between 3.0 - 3.5+ 102,

5 6 8 &

’
g

Ec§='§§§=f
g

Figure 3. Pressure distribution of a slider  Figure 4. Pressure distribution in 2-D
bearing in incompressible case. with tapering a=1.5.
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3.2 Compressible Case

Figure 6 is achieved using the same parameters as in the figure 5 (A=2.2, A=1.5,
initial pressure values = 1.0). The results show the fact that in the compressible case
(fig. 6) the peak value is slightly smaller than in incompressible case (fig. 5), only 1%.
This result agrees with reference [2]. In addition the fact that the peak value moves a
little to the right in compressible case is also recognizeable. This is mentioned in
reference [2], too.

Figure 5. Pressure distribution in 2-D Figure 6. Pressure distribution in 2-D in
in incompressible case with in compressible case with
tapering a=2.2. tapering a=2.2.

3.3 Unsteady Compressible Case

The program developed for this case is not finished. The mathematical model is
derived earlier in this paper, but in the time the paper had to be turned in, the
computer program was not completed. The results from this part will be discussed in
further similar occasions.
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NUMERICAL SIMULATION OF NON-ISOTHERMAL FLOW OF POLYMER MELT
IN A SINGLE-SCREW EXTRUDER

SEPPO SYRJALA AND REUO KARVINEN
Tampere University of Technology / Thermal Engineering
P.O. Box 589, FIN-33101 Tampere, FINLAND

ABSTRACT

This paper deals with the numerical simulation of polymer flow in melt conveying zone of sin-
gle-screw extruder. The mathematical model used in the simulation is based on general conser-
vation equations of mass, momentum and energy. The rheological behaviour of polymer melt is
described by the power-law viscosity model. The temperature dependence of the viscosity and
the heat generation due to viscous dissipation are also incorporated in the model. The governing
equations are solved using the general purpose fluid dynamics program FIDAP, which is based
on finite-element method. Numerical results for three-dimensional simulation are presented in
terms of the velocity, pressure, temperature and volume flow rate.

1. INTRODUCTION

Extrusion is one of the most widely used manufacturing processes in plastics industry. The most
common type of extruder in use today is the single-screw version, schematically shown in Fig. 1,
in which the raw material is fed into a hopper and is forced through the passage between a rotat-
ing screw and a stationary barrel. The processed material comes out through a die of a specified
shape. Typically, the single-screw extruder can be divided in three zones, namely the solid con-
veying zone, the melting zone and the melt conveying zone, as illustrated in Fig. 1. The through-
put, i.c., the volume flow rate of the polymer out of the die, depends on all of these zones, but is
usually mainly controlled by the melt conveying zone.

FEED HOPPER

«\i\-\i‘\’\\’\”ii\\\»\\\

f%’/‘//’// 0

lsonios | MELTING  IMELT convEViNg | OIE
CONVEYING ZONE ZONE
ZONE

FIGURE 1. Schematic view of single-screw extruder.
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The melt conveying portion of the extruder acts as a simple pump. Forward motion occurs as a
result of the rotation of the screw and the helical configuration of the screw flight. If the extruder
simply discharges the fluid at its downstream end from an unrestricted outlet, there would be no
mechanism by which a pressure would build up in the screw channel, i.e. the pressure at the out-
let equals the pressure at the inlet. In most actual extrusion operations there is, however, a shap-
ing die of some kind at the outlet of the extruder. Consequently, in order to make it possible to
overcome the flow resistance of polymer melt in the die, the production of pressure in the
extruder barre] by the screw is necessary. Namely, a pressure rise in the extruder barrel must of
course be equal to a pressure drop in the die. The pressure at the downstream end of the extruder
is often referred to as a back pressure.

A typical overall operational diagram for a certain combination of the screw and the die is given
in Fig. 2, showing the screw characteristic (i.e., the relationship of pressure rise to volume flow
rate for an extruder) and the die characteristic (i.e., the relationship of pressure drop to volume
flow rate for a die). As a result of intersection of screw and die characteristics, as indicated by
point A in Fig. 2, the point of operation of the screw and die combination is obtained. This oper-
ation point determines the throughput and the back pressure of an extruder. If a smaller die is
substituted, i.e. the flow resistance in the die is increased, the operation point is changed, as illus-
trated by point B in Fig. 2. Normally, the change in throughput is, however, relatively small
since the screw characteristic is typically rather flat in the practical operational range. It may be
summarized that the process of extrusion is the result of cooperation of the screw and the die so
that the throughput of the extruder depends to a considerable extent on the screw.

The flow in screw channels has been the subject of many investigations during the past three
decades. Presented analyses range from simple isothermal, Newtonian fluid-based ones to com-
plex numerical procedures that include most important features of the process, like non-isother-
mal effects and non-Newtonian behaviour of polymer melt. Several reviews about the various
simulation approaches for the polymer flow in single-screw extruders are available [1,2,3,4].

The objective of this study to present a three-dimensional simulation for the flow of polymer in a
single-screw extruder. The analysis in this paper is restricted to the melt conveying zone only,
i.e., it is assumed that the preceding solid conveying and melting zones transport and melt suffi-
cient material so that the throughput of an extruder is controlled by the melt conveying charac-
teristics and that there is no pressure build-up before the melt conveying zone. The theoretical
background of the present simulation is in general conservation equations of mass, momentumn
and energy, coupled with the appropriate relation for the rheological behaviour of polymer melt.
The governing equations are solved numerically by means of finite-element method using the
fluid dynamics analysis package FIDAP.

Die characteristic
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FIGURE 2. Combination of screw and die.
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2. PROBLEM DESCRIPTION AND SIMPLIFYING ASSUMPT IONS

Due to helical geometry of the extruder screw and relative motions of the barrel and screw, the
flow pattern of the polymer melt in the screw channel is quite complex and may be described as
a “helix within a helix”. Furthermore, the general set of conservation equations coupled with the
constitutive relation describing the rheological behaviour of polymer melt is very complicated.
Accordingly, in order to make it possible to solve this flow problem, several simplifying assump-
tions regarding the flow geometry, the fluid properties and the flow phenomena during the proc-
ess, are required. Assumptions made in this study, and virtually in all corresponding studies, are
given below in a consecutive manner. The validity of these assumptions is not discussed here,
but comprehensive discussions may be found in the literature [1,2,3,4].

1) The flow is time independent
2) The fluid, i.e. the polymer melt, can be considered as incompressible.
3) The fluid can be considered as purely viscous (i.e., the viscoelastic effects are negligible)

4) The creeping flow approximation is applicable (i.e., the inertia forces resulting from accelera-
tion of the fluid are negligible in comparison with the viscous and pressure forces)

5) The barrel can be considered to be moving with respect to a stationary screw
6) The curvature effects of the flow channel are negligible

7) The flight clearance and the consequent leakage flow is negligible

The assumption 5 and 6 mean that the actual helical channel along the rotating screw can be con-
sidered, in the theoretical analysis, as unwound to a straight rectangular channel with an infinite
plate (the barrel) moving on top of the channel at constant velocity of Vi, (=tND) at an angle 6
(equal to the helix angle) to the down-channel direction, as illustrated in Fig. 3. The symbols of
most essential screw channel parameters are also identified in Fig. 3. The screw shown in Fig. 3
is double-flighted, i.e. there is two flow channels in parallel.

] Barrel surface

==
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FIGURE 3. Schematic representation of the actual helical geometry and the analyzed straight
unwound geometry of the screw channel. The screw channel parameters are as
follows: D is the barrel diameter, H is the channel depth, W is the channel width, i.e
the perpendicular distance between the flights, e is the flight width, d is the flight
clearance, i.e. the radial gap between the flight and the barrel, 8 is the helix angle, N
is the rotational speed of the screw, L is the lead of the screw, i.e. the axial distance

advanced by one full rotation of the screw, V, is the barrel velocity and Vi, and Vi,

are the components of the barrel velocity in the cross-channel and down-channel
directions, respectively.
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3. GOVERNING EQUATIONS AND SOLUTION METHOD
Adopting the rectangular coordinate system shown in Fig. 3 and following the assumptions
stated above, the equations that govern the flow of polymer melt in the channel of single-screw

extruder are as follows:

Conservation of mass

du dv  dw

e R A 1

axtaytaz = W
Consevation of momentum

i( a_u) 2( 3_“) 2( a_“)_a_P

ax\ 3% +ay “ay T\"3) = ax @

2(2)+ 2(s2)+ 2(n) - 2

ax\"5x +ay "ay +az "az " o9y ®

2(n22)4 2 (x20), 3(y20) . 2

ax\"ax ) T ay\"ay Jr "3 ) T s “
Conservation of energy

T, 2020 2 2(2T), 23T, 3,21,
pCP(uax+vay+sz = x\ ) P\ ke ) T El ke Y )

Here u, v and w are the velocity components in the x, y and z directions, respectively, p is the
pressure, T is the temperature, 7 is the viscosity, p is the density, G is the specific heat, k is the

thermal conductivity, and ¥ is the shear rate. Density, specific heat and thermal conductivity
may, in general, depend on the temperature, but in the present study they are assumed to be tem-

perature independent. The term N}~ represents the heat generation due to viscous dissipation.

In the case of polymer melt the viscosity is dependent on the shear rate and usually also on the
temperature. Therefore, the set of equations (2-5) must be closed with an expression that relates
the viscosity to the shear rate and temperature. In this study the shear rate dependence of the vis-
cosity is described by the power-law model

n = my"-! (6)

where m is the consistency factor and n is the power-law index. The temperature dependence of
the viscosity is entered through the consistency factor by an exponential-type of expression

—a(T-T,)
m = Be 7

where B and o are empirical constants and T, is a reference temperature. In the present case of
three-dimensional velocity field the shear rate is defined as

i ’ i e 2 211/2
BEERE) R N IR ANCR i
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The following boundary conditions are applied in the present analysis:

Inlet: p=0; T=T,

Outlet: p=Ap

Barrel surface: u=Vp, =Vpsin®; v=0; w=Vp, = Vpcos8; T=Ty,
Screw surface: u=v=w=0; g;: =0

The boundary conditions for the velocity components at the inlet and outlet are not specified due
to the fact that they are not known a priori. Actually the velocity distributions depend largely on
the pack pressure, Ap. Therefore the assumption of fully developed flow is made at the inlet and
outlet. The boundary conditions imposed for the temperature correspond the situation of con-
stant barrel surface temperature and adiabatic screw surface.

The above set of governing conservation equations with the viscosity model and boundary con-
ditions is still quite complicated despite the simplifying assumptions made. The equations are
nonlinear and, in addition, the equations of momentum and energy are coupled through the tem-
perature dependence of viscosity and viscous heat generation.

The numerical solution of the above partial differential equations is obtained by means of finite-
element method using a commercially available fluid dynamics program FIDAP [6,7], which is
produced by Fluid Dynamics International (FDI). In FIDAP the equations are discretized
through the Galerkin formulation, which results in a set of nonlinear algebraic equations. In the
present study these equations are solved in a simultaneous coupled manner using the Picard iter-
ation method in conjunction with the direct Gaussian-type elimination for the system of linear
equations. As generally known, the Newton-type methods usually offer more rapid convergence
than Picard method. However, in highly nonlinear and strongly coupled flow cases like in this
study, the convergence problems may be encountered with the Newton-type methods and Picard
method is usually preferred. The three-dimensional elements used in this study are 27-node brick
elements with quadratic interpolations for the velocity, pressure and temperature. It is worth not-
ing that the equal-order interpolation for the velocity and pressure is possible in FIDAP due to
the suitable pressure stabilization technique. The upwinding technique was applied to the tem-
perature in order to obtain oscillation-free solutions at high Peclet numbers typical for polymer
melts. The detailed theoretical background of FIDAP is found in [8].

4. RESULTS

As an application the simulation was performed for a double-flighted screw (see Fig. 3) with
four leads and with the following values of parameters:

D =50 mm; H =4.5 mm; W = 18 mm; N = 60 rpm; 8 = 17° T}, = 120°C; T}, = 200°C.
The material properties used are (correspond a typical low-density polyethylene):
n=0.5; B=50kPas" o=0.01 1/°C; k=0.25 W/m°C, Cp=25 KJ/kg°C; p = 800 kg/m>; T, = 115°C.

The finite-element mesh used in the calculations is shown in Fig. 4. The mesh consists of 420
elements and 4675 nodal points. The calculations were carried out for six different values of
back pressure, i.e., Ap =0, 5, 10, 20, 30 and 40 MPa. The obtained pressure distributions along
the screw channel for the cases of Ap = 10, 20, 30 and 40 MPa are shown in Fig. 5.
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FIGURE 4. FE-mesh used in the calculations (ten times enlarged in the x and y directions).
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FIGURE 5. Pressure distrubutions along the screw channel for Ap = 10, 20, 30 and 40 MPa.

The temperature development along the mid-plane (x = W/2) of the screw channel is shown in
Fig. 6 for different values of back pressure, Ap. The results indicate substantial temperature rise
due to viscous heating especially at high values of Ap. Examples of the down-channel and cross-
channel velocity profiles at the mid-plane of the channel are given in Fig. 7 for different values
of Ap. It can be seen that the cross-channel velocity, u, is only slightly affected by the back pres-
sure, whereas the influence of Ap for the down-channel velocity is clear, as can be expected. The
volume flow rates for different values of Ap were calculated by integrating the down-channel
velocity profiles across the cross-sectional area of the channel and are shown in Fig. 8. In order
to demonstrate the overall operation of the current screw with a specified die, volume flow rate
versus pressure drop data was calculated for an annular die (shown as solid lines in Fig. 8), using
the following approximative relation for the isothermal annular flow of power-law fluid [5]

Q =R} (F_eél_’)l/"(l - X) (2'””/2(1 +x)

° \2mL (2n+1)/n 2

Here L is the lenght of the die, R, is the outer radius of the annular geometry and x = Ri/R,.
where R,; is the inner radius. The values of outer and inner radius used in the calculations were:
Ry =15 mm and R; = 13 mm. Three different lenghts of the die was considered, i.e., L = 25, 50,

75, 100 and 125 mm. The viscosity parameters were the same as those used above at T = 200°C.

®
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Ap = 10 MPa
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FIGURE 6. Temperature development along the mid-plane (x = W/2) of the screw channel for
Ap =10, 20, 30 and 40 MPa. The results are presented at locations { = 0.05, 0.1,0.2,
0.4, 0.6, 0.8 and 1.0, where { is the dimensionless down-channel distance (i.e. the
actual distance divided by the total lenght of the helical screw channel).
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FIGURE 7. Down-channel and cross-channel velocity profiles at the mid-plane of the channel at
location { = 0.5 for Ap = 10, 20, 30 and 40 MPa.
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FIGURE 8. Volume flow rate data for a screw and for an annular die.

The simulations reported in this study have been run on a CONVEX C3840 located at the Centre
for Scientific Computing (CSC) in Espoo. The simulations required 7-10 iterations per run to
limit the relative change in the solution between iterations below 0.005 and the consequent exe-
cution time was 40-50 CPU minutes. The total storage of the problem was about 42 megabytes.

5. CONCLUSIONS

A numerical simulation of fully three-dimensional, non-isothermal flow of polymer melt in sin-
gle-screw extruder has been accomplished. The simulation predicts the velocity, pressure and
temperature fields for a given screw geometry, screw speed and material parameters. Further-
more, the volume flow rate in the screw channel can be related to the back pressure.

A three-dimensional finite-element flow simulation with the fully coupled solution method is
expensive in terms of computer time and memory. Therefore, it might be more feasible approach
to use the segregated solution method in order to reduce the storage requirements and the execu-
tion time. The segregated algorithm is available also in FIDAP, but it was not used in this study.
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ABSTRACT

The atomic arrangements and fast mass transport are studied in the [112] partial dislocation
pair in Au and Cu using the canonical molecular dynamics and many-body interactions. The
arrangements around the partial dislocations are found to be quite regular and relatively
independent on the many-body interaction model used or the material (Au or Cu) studied.
Fast mass transport along partial dislocations is found to be of vacancy-type.

1. INTRODUCTION

Dislocations play a central role in many of the basic phenomena of metals like in plastic
deformation, in mass transport as fast diffusion channels or in propagation of cracks under
applied force. A thorough understanding of these phenomena rests ultimately on knowledge
of the atomic arrangements and movements around dislocations. For example, the (isotropic)
elasticity theory gives for the total energy stored per unit length of a straight dislocation the
following expression:

KbZ (R 1
W= ln(g)+wo )

where the first term on the right-hand side is the strain energy of the linear elastic field per
unit length, K is a constant (energy factor), b is the magnitude of the Burgers vector, R is the
outer radius of a circular cylinder within which the energy is evaluated (the dislocation line
being the axis of that cylinder), r,, is the core radius, and w, is the core energy per unit
dislocation length [1]. When ry approaches zero the first term on the right-hand side diverges.
This artifact is due to the neglect of the discrete atomic structure. Since there are no
experimental methods one could use to measure directly these atomic arrangements or
movements the only direct approach existing presently is atomistic simulation [1}.

In a typical simulation (called molecular dynamics (MD)) several thousand interacting
atoms move along their classical trajectories. During the last ten years both the MD methods
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and the description of the interactions between the atoms have improved dramatically. For
example, at present there exist well-founded MD methods to perform constant-pressure [2],
constant-temperature [3,4] and constant-temperature-constant-pressure [2-4] simulations in
addition to the traditional constant-energy simulations. Also, at present there exist good
semiempirical methods [5,6] to describe the unavoidable many-body interactions between
atoms which is a clear improvement compared to the traditional description in terms of
pairwise interactions.

In this paper we study specifically the atomic arrangements in the [112] partial
dislocation pairs in gold and copper as well as fast mass transport along the dislocation pair
(self-pipe-diffusion) in gold using the constant-NTV MD [3,4,7] (N, T and V stand for the
number of atoms, the temperature and the volume, respectively) and the many-body ATVF
[8] and glue [9] forces.

The format of this paper is as follows. The constant-NTV MD methods are shortly
reviewed in § 2. The geometry and the initialization of the system of the [112] partial
dislocation pair are explained in § 3. The main results of the atomic arrangements and the fast
mass transport are presented in § 4. The conclusions are draw in § 5.

2. CONSTANT-NTV METHODS

Nosé’s equations of motion for canonical MD can be written in real variables for a
monatomic system in the form

d? r;

0 dtgw @
- d

= G [t ®

where r;, m, f; and v, denote the position, mass, force and velocity of nucleus i, respectively, &
is the friction coefficient controlling absolute temperature T, Q is the thermal inertia
parameter, n, denotes the degrees of freedom and kg is Boltzmann’s constant [10,11]. The
velocity-Verlet algorithm to solve Egs. (2) and (3) consists of the following steps [7):

1) Givenr,(t), v, (t) and a, (t) (= acceleration ;) calculate the positions (3t is the time step)
P8 = O +8vi+Lata @ @)
2) calculate the half-step velocities
Vi(t+%8t) = v; (t)+%8tai(t). (&)

3) Using r, (t + 8t) calculate the force parts of the accelerations % fi (t+0t).
The friction coefficient &(t + 8t) is calculated from Eq. (3) by using Simpson’s rule:

Et+8t) = Et) + % é(t) + 42; (t+ % St) + é(t + SI)} +0 (5t5 é(4)) 6
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where &(t), f';(t) and é(l+71-81) are known but &(t+§t), dc.pending on the velocities
v; (t + 8t) , is unknown. (An alternative would be to use &(1), E@t—31), & (t— 5t) and 20t
instead of ?:(1 + -12-81), E(r), &(t) and &, respectively.) The velocities are calculated from the
equation

vi{t+dt) = vi (t+%8t)+%8t[ﬂt—m+ﬁ)~—§(t+8t) \7 (t+8t)] M
or by solving for v; (t + ot) from
. v -(t+8t)l 1 ®
v;(t+0t) = [vl (t+%8t)+%8t-‘—r /[1 +2 8t§(t+8t)].

The velocities can be eliminated from Egs. (3), (6) and (8) to give the following equation for
the friction coefficient:

E(t+Ot) = al +Cy
[1 S z‘n)]2 )

where the constants ¢, and ¢, are calculated from the equations

4 2
= 8% e Lo + Lo B0 “
and
o = 0+ B0+ 4 (‘*%5‘)]‘% (1)

including only known quantities.
We thus get for the following step:

4) Tterate the friction coefficient E(t + t) from Eq. (9) when
et (12)
lerse/f1+4 aief|<1

(¢ must be larger than —2/8t) or from the inverse relation

Et+8t) = 3—(4/——‘“—— -1) (13)
iV Et+0t)—cy

when Eq. (12) is not valid (§ must be larger than Cy).
Step 4) is always very rapid. As the final steps we get:
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5) Calculate the velocities v; (t + 6t) from Eq. (8),

6) calculate the accelerations a; (t + 6t) from the equation (see Eq. (2)):
a; (t+81) = Hln'fi (t+8t) —E(t+8t) v (t+dt). (14)

The steps 1) — 6) constitute our generalization of the velocity Verlet algorithm.

As to the interactions the traditional pair-potential approximation (PPA) has following
deficiences. The Cauchy ratio C,,/C,, in PPA equals 1 whereas in reality it equals 1.5...3.7
for fcc metals. The energy ratio e, /e_ (e, is the vacancy formation energy, ¢, is the cohesion
energy/atom) in short-ranged PPA equals about 1 whereas in reality it equals 0.25...0.36 for
fcc metals. To describe these and also some other properties correctly one must go beyond
PPA. One practical way of doing this is to use the recently derived semiempirical many-body
approximations where the total energy V/is written in the following generic form [5,6,8,9]

1 N

T e
where
N
n; = le P(Ifi N rjl)' (16)

In Eqgs. (15) and (16) @ is the mainly repulsive pair-potential, U is the mainly attractive
many-body potential, + indicates that i = j term should be omitted in the summation, n; is the
background density at nucleus i determined by the density functions p of the surrounding
atoms. By taking the proper derivatives of Eqs. (15) and (16) we get for the force acting on
nucleus i the following expression:

== =3 o (- o)) +[U @+ U @l )} l:i ':f' (17)
i i

where + in @, U and p denotes a derivative with respect to the argument. We have performed
simulations with the ATVF-model [8] for Au and Cu and with the glue model [9] for Au.

3. [112]) PARTIAL DISLOCATION PAIR

The fec crystal structure is shown in Fig. 1. The [112] edge dislocation (z-axis) can be formed
energetically most easily because the corresponding Burgers vector b=au, /2 has the
smallest possible length and thus minimizes the stored energy proportional to b? (Eq. (1)).
The (111) plane is most densely packed and acts as the glide-plane. However, since b
contains two atomic planes, it can be further divided into two partial Burgers vectors b; and
b,:
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FIGURE 1. Face-centered cubic crystal structure. a denotes the lattice constant and b the Burgers-vector of the
perfect {112] edge dislocation. b; and b, denote the partial Burgers-vectors. The circles with_a bar represent
atoms in the (11T)glide-plane (shaded). The circles with a dot represent atoms in the (111)-plane which
contains the edges of the partial dislocations. The small filled circles represent atoms behind this plane. The
open circle represents an atom in the (11 1) -plane in front of the glide plane.

b=b,+b, =(aux/«/f—auy/JE)/2+(aux/47+auy/J€)/z . (18)
Since
b2 >_bf+b§ (19)

the edge dislocation containing two half-planes has a tendency to separate into two partial
dislocations containing one half-plane each.

The starting geometry was prepared as follows [12]. The half-planes I and II were
removed (see Fig. 1) and the half-plane III was moved by —b/2. Then the atoms were
displaced using the isotropic elasticity theory [1].

In all cases we used a rectangular geometry with periodic boundaries with the period of
1.5-+/6a containing 18 atom planes in the [112]-direction (z-axis in Fig. 1). The (110) and
(117) surfaces were fixed (thickness of the fixed layer 8-10 A).

4. RESULTS

The Au system consisting of 4683 movable and 3324 fixed atoms was allowed to relax. This
was accomplished by using constant-NTV MD at T = 1 K, i.e. by solving Egs. (2) and (3)
using the modified velocity Verlet method above with §t=2.5fs. The top view of the
middle and left part of the relaxed system obtained with the ATVF model is shown in Fig. 2.
The distance of 38 A is in a good agreement with the value 40 A that can be estimated by
using the isotropic elasticity theory [1]. The crystal is quite regular near the edge of the
partial dislocation. A more detailed description of the atomic arrangements around the left
partial dislocation obtained for Au with the ATVF model (Fig. 2) and with the glue model is
given in [13]. The preliminary structure for Cu obtained with the ATVF model and displayed
in Fig. 3 is also qualitatively very similar to the structures for Au.
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C1 l
-80

FIGURE 2. Top view of the relaxed Au system. The filled circles represent the fixed boundary atoms and the
two half-planes of the partial dislocation pair.

FIGURE 3. Top view of the relaxed Cu system. For further information see the caption of Fig. 2.

As to the fast mass transport along the partial dislocations the vacancy and interstitial
formation energies at the edge of the partial dislocation (E{v) and E(Gi), respectively) for Au
are obtained by performing constant-NTV MD at T = 1 K with the ATVF model for N ¥ 1
particles and calculating the appropriate energy differences from the equation

AV =VNF1)-(NFDHVN)YN (20)

including now all relaxations (N = 8007, number of movable atoms = 4683 F¥1). As the result

we get E¢(v)=1.4eV and Ef(i)=2.7eV. The formation energy difference E; (i) — E, (v) =

1.3 eV is thus significantly reduced from the value in the crystal: E{f(i)-
F(V)=435eV-0.96eV =3.39¢V [8].



329

We calculate directly the net mass transport induced by one vacancy or one interstitial.
In our calculations either one atom is removed from each partial dislocation edge or one atom
is added in front of each dislocation edge. The (one) vacancy and (one) interstitial diffusion
constants are then calculated from the equations

D, =%—(D(N—2)—D(N)) , 21
D, =5 (D(N+2)- D(N)) @)
where
s 2
D(N) =2 (M -1©) . 23)
i=1
t oo

The calculations of ~ 1.5 ns each give the results shown in Fig. 4, presented as
In(D, /Dy) and In(D; /D) versus (kBT)'l. The diffusion induced by one interstitial is 3 - 16
times as large as that induced by one vacancy. The reason for the anomalously low value of
D, (1400 K) is not clear to us but may be related to the fact that the initial configuration used
at 1400 K had a significantly longer equilibration time than the initial configurations at 1150
and 1300 K. Another possibility would be that the diffusion induced by the interstitial
penetrates to regions of low migration (e.g. bulk crystal; this behaviour was found in [14] for
vacancies). Least squares fits to the Arrhenius law (the two lines in Fig. 4) give for the
vacancy and interstitial migration energies the values E (v)=0.75eV and Ej@)=
—0.14 eV, respectively. The value of E_ (i) is unphysical but clearly indicates that E_ (i) is
very small. Nevertheless, although E_ ()-E_(v)==-0.75eV, AE; = E¢(i)— Eg(v) = 1.3eV
which makes the activation energy for interstitial self-diffusion about 0.5 eV larger than for
the vacancy mechanism. Thus AE, does not decrease enough at the dislocation line
compared to the bulk to make the interstitial-type diffusion competitive with the vacancy-type
diffusion. In this respect our result for Au differs from the MD result in PPA for Cu [14,15].

1 \ .,_,1 __1
'8 : 10 kgD eV )

FIGURE 4. In(D,/D,) (lower data points) and In(D,/D,) (upper data points) versus (kB'I')'1 where
Do =468- 10_7cm2/s. Diffusion is simulated at 1150, 1300 and 1400 K.




330

5. CONCLUSIONS

The atomic arrangements around the [112] partial dislocations are found to be quite regular
and qualitatively similar for Au and Cu. Also the arrangements are relatively independent on
the specific many-body interaction model used. Fast mass transport along the [112] partial
dislocation pairs is found to be more vacancy-type than interstitial-type.
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CALCULATION OF FROST HEAVE USING A THERMOMECHANICAL MODEL.
ONE-DIMENSIONAL CASE
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ABSTRACT

A mathematical model for the freezing of saturated soil is considered. The model is based on
the basic principles of continuum mechanics and of macroscopic thermodynamics. Saturated
soil is treated as a mixture of skeleton, water and ice. The model is capable of describing the
cryogenic suction, the water and heat transport and the frost heave. The computer implementa-
tion of the model is carried out for the one-dimensional case. Some numerical results are
presented and comparisons with experimental findings are made.

1. INTRODUCTION

Freezing soil is a multicomponent system containing mineral particles of the soil skeleton,
water in its three phases: liquid water, ice and vapour, and air. The unfrozen water exists as
free water and as fixed water adsorbed to the mineral particles as thin films. The free water in
the pores migrates under the action of the pore water pressure and of the gravitational force,
while the fixed water is strongly attached to the soil particles moving and deforming with them.
The frost-susceptibility of a soil depends mainly on the grain size distribution and the permea-
bility of the soil and on the availability of water flowing to the freezing zone.

The relevant processes in the frost phenomenon are: 1) suction and freezing of water at the
water layer between ice lens and soil particles, 2) water migration from the water table to the
freezing part of the soil, and 3) heat transfer process due to convection (latent heat). It has
been experimentally shown that the soil contains liquid water at temperatures well below 0° C
[4]. Further, it has been observed that the phase change from water to ice creates a strong de-
pression of water, the cryogenic suction, which draws free water towards the freezing zone.
The cryosuction has been explained by the decrease of the chemical potential (the Gibbs free
enthalpy) of water which takes place at the phase change [4]. The flow of water in a partially
frozen soil occurs in the thin layer between ice lens and soil particles.

Frémond and Mikkola [1] have presented a mathematical model of the freezing of saturated
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soil based on the principles of continuum mechanics and of macroscopic thermodynamics. In
their model the saturated soil is considered as a mixture of three constituents: skeleton, liquid
water and ice. The constitutive equations of the porous medium are derived by the application
of the method of the accompanying local equilibrium state (see e.g. [2]) choosing appropriate
expressions of the free energy and of the dissipation potential. In the present paper, the one-
dimensional formulation of the general model is considered and its computer implementation is
described. Some preliminary numerical results are presented.

2. BASIC CONCEPTS AND NOTATIONS

A completely saturated soil is considered. The unfrozen soil is a mixture of skeleton and liquid
water, and the frozen soil a mixture of skeleton, water and ice. The volume fractions of the
constituents are B* k € {s,w,i} (skeleton, water, ice), which satisfy the obvious conditions

B°+p*+p' =1,p*20,8* 20,820 m

Introducing the porosity n and the relative amount of water % the volume fractions can be pre-
sented in the form

Bs=1_n,Bw=Xn,Bi=x(1_n) (2)

The densities of the constituents p* are taken as constants. The velocities of the particles are

denoted by U*. The relative velocity of water with respect to skeleton is ¥ = U* —U*. The
material time derivative of a quantity f following the constituent & is denoted

7Y gy
dr _ar+VfU 2)

3. THERMOMECHANICAL MODEL
The derivation of the model has been presented in detail by Frémond and Mikkola [1]. It is
based on the balance laws of mass, momentum and energy and on the entropy inequality. A
brief description of the model is given here.
The conservation of mass for the soil is

0°=0,0"+06'=0 e

where 6* means the rate of production of the constituent k
d _
0 == (0'p")+ V- (o*p'0") )

The balance of linear momentum is

m+m*+m =0 (6)
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where " is the rate of production of the linear momentum
- d®gr* -
’-’-’k =_V.o,k _fk+pkﬁkT+ekUk (7)

o* is the stress tensor of constituent k. The total stress acting on a surface element with unit
normal 7 is (0° +6"+¢')-7i. In the application to the soil freezing, the inertia terms in
expression (7) are neglected. The balance of energy is

F+l"+1'=0 (3)
The rate of production of energy is, neglecting the contribution of the kinetic energy,

(k) & _ - -
I* =d—d:’-+e"v-U*—o*:D(I_/*)+m*-(/*+V-q'*—r* ©)

Above, e* is the internal energy per unit volume, D the tensor of the rate of strain, §* the heat

flux from the body to the exterior, and r* the rate of heat production inside the body. Accord-
ing to the second principle of thermodynamics, the rate of entropy production must be non-
negative

Ty +y"+v')=20 (10)

The rate of production of entropy Y* can be brought into the form

- (bt (6)px - . ak.

Iyt ot {0) | oty ¢t T gy g gt - L
dt df T

In the expression above, the free energy ¥ =e—Ts has been employed. s is the entropy per

unit volume. In the expression of dissipation (10), it is required that both the mechanical and

thermal parts are separately non-negative.

In paper [1], it has been shown that, with an appropriate choice of the expressions of the free
energies of the constituents and of the potentials of the mechanical and thermal dissipations,
the equations of state and the complementary constitutive equations of the freezing soil can be
derived. In particular, the choice of free energies

P = ﬁ‘{—p‘CJTln(—T—)+lK,(e‘ )+ use,.’j‘e,’.j‘}
I,” 2 *

v =p"ﬁ”{—cmn(§ —-Li%ﬁ-‘}f(ﬁzaw,ﬁ")} (12)

¥ = B’{—p'CiTln(—]‘]l)+-;-K,(e; )2}
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and the dissipation potentials

@, =B7;70-»(1<ID"'I)” +k, (o) vith[D"| = VD" D7 13)
®, = %quz

results in the following equations of state and complementary constitutive equations

=pu.e; i G,fjw=0, c;:B‘)‘ll‘PKplDu‘r'zDi;,-
s =Q° o waw T af
? —B{ PP T, op’ }
w _ waw £ of
d _B{ T B}
i_ " w[ af
p "B{ KE +p [3 T aB B} (14)
AL Y A
By = { g f P axk}

LT-T,) , T 3B"))_p"aB")), E( __)_K (&),

T
_(Cw - C,)Tln('i) Y.;; T aﬂw pi aB.‘

q" = —K,B" k e{sw,i}

The function f(B’,B”,B’) in the expression of the free energy of water describes the effect of
the porous medium on the behaviour of the water. Its form is based on experiments. C, is the
heat capacity, k, heat conductivity, and ¢ the latent heat of fusion. Besides, there are elasticity
and viscoplasticity coefficients. k is the permeability of soil and y = pg the specific weight. B is
the common part of pressure in each constituent. The displacement of ice is assumed to be
equal with that of skeleton. The division of the second order tensors into deviatoric and
spherical parts has been used, e.g. 6, =06, - pd,, p=—0,/3. €, =u, and D;=U,, are the
components of strain tensor and strain rate tensor, respectively.

4. ONE-DIMENSIONAL CASE

4.1 Equations. The one-dimensional formulation of the model is considered. The quantities
involved depend only on time ¢ and z-coordinate which is directed downwards. The notation
can be simplified: the displacement of the skeleton is u, which is also the displacement of ice,
U* = du/ ot is the velocity of skeleton and ice, and U™ the velocity of water.
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The function f(B*,p",B') describing the effect of porous medium to the behaviour of water is
taken in the form

f(B’,B”,B’)=f(B"/(l—B’))=f(x)=a(%-l) (15)

The system of equations (4), (6), (8) is simplified to the form

on

-§+—[(1 n)U*]=0

3y 2L —(1——{i[a—x)n]+-a—[(1—x)nU']}=o 16)
0z or oz

% = (=1 =)+ =11

a(.ar\ ar. R T

g(xg)—g[p m(C,T+L)U"] at(CT+p nyL) =0

Similarly, the equations of state and the complementary constitutive equations (14) reduce to

_ u MY ol2U7| 207
o, —[(l—n)M,+n(1—x)K,.]a—z+n(1—x)( 2) K % sgn( % )
.
nx
p”=nx[B+p]fT xf’(x)] an
0

., Kk o(p") p"keT 5, X
VY= ———| = |- — ==
ny, ( ) T, S (x)az

r\ . T-T, T 11
—(C,,—C,)Tln(T) L~y (xf( )) (p )B 0

L T )

Above, M, is the compressibility modulus of the soil, X, the bulk modulus of ice, A, K and p
viscoplastic parameters of ice, C=(1-n)p’C, +xnp“C,, +(1- ¥)np'C, the heat capacity of soil,
x=(1-n)x, +xnK, +(1-)rx, the heat conductivity of soil. The total stress, the pressure of
water and the displacement are changes from the initial state. The two last of equations (17)
can be recognized as generalizations of Darcy's equation and the phase change equation,
respectively.
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The basic unknowns in equations (16) and (17) are the temperature 7, the porosity n, the
relative water content ¥, the water pressure p*, the displacement u and the velocity of water

U~
For unfrozen soil the equations are still simplified

on 0o
il a-mufi=o0
3 +az[(1 mU*]

U _

0z =0

9,
g(nV )+

u_p”__
0z n

= _ii(l’_")

(1-mM, j(Y, =Y. X1, ~n)dz (18)

Y¥oz\ n

d( T\ ar., v 9 )
g(xa—z)—a—z[p n(C,T+L)U"] at(CT+p nL)=0

These five equations contain as principal unknowns the temperature, the displacement of soil,
the porosity, the velocity and pressure of water.

4.2 Boundary conditions. Consider the case in which the temperature at the surface z=0 is
below freezing point 7, and the lower end z= is kept at constant temperature above freezing.
Thus, the boundary conditions for the temperature are

TON=T,(1), T(h1)=T (19)

The displacement of the skeleton at lower end is assumed to be zero, while the surface is taken
as traction free, so that the boundary conditions are

u(h,t)=0, ©,(0,£)=0 (20)

The flow of water at the surface is zero and the pressure of water at the unfrozen end remains
constant y A so that the boundary conditions are '

(mV*X0,6)=0, p*(h,t)=nB)ht)=0 21

At the freezing front between the frozen and the unfrozen zones the temperature, the
displacement of soil, the porosity, the normal stress, the velocity and the pressure of water and
the relative water content are continuous.

4.3 Initial conditions. It is assumed that the temperature field in initial unfrozen state is
uniform
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T(z,0)=T (22)

The initial values of stress and pressure are zero, since they are changes with respect to the
initial state. The existing stress at the initial state can be computed by equilibrium consideration

020 =—(Y:-Yw)(1—n0)z_7wz (23)

assuming the initial distribution of the porosity to be constant n,. The value of water pressure
can be recognized in the expression of the total stress

Dy /ny=B =7,z (24)
The displacement at the initial state equals zero as well as the velocities
u(z,0)=0, U‘(z,0)=0, U”(z,0)=0 (25)
Finally, the initial state being unfrozen means that the relative water content equals one x=1.
5. COMPUTATIONS

The dicretization of the equations of the one-dimensional case has been carried out using the
finite element method with respect to the spatial coordinate and of the finite difference method
with respect to time. Linear shape functions were used. Near to the freezing front, where the
quantities vary strongly, denser mesh was employed. Numerical results for a soil specimen, de-
scribed in Fig. 1, are presented in Figs. 2 and 3 together with experimental results.
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‘ depth

Initial temp. +3.0C

Bulk density 2726.0 kgm>
Porosity 390 %
Permeability 5.0 x 10* ms™
*Thermal conductivity 2.0 Wm'K!
*Heat capacity 900.0 Jkg'K!

**nfrozen relative water cont.

at -1.0°C 11.6 %
**Pojsson’s ratio 0.4
**Young's modulus
- unfrozen 10.0 MPa
- frozen 10.0 + Eip' MPa

Ei Young’s modulus for pore ice 20 MPa
B' volumetric ice content

* Average for soil solids
** Presumed for silt

Figure 1. Tested silt specimen and its physical and mechanical properties.
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DETERMINATION OF VISCOELASTIC MATERIAL PARAMETERS FOR
PRACTICAL USE IN TRANSIENT LOADING

MATTI TERVONEN
Engineering Mechanics Laboratory
Department of Mechanical Engineering
University of Oulu
PO Box 444, 90571 Ouly, Finland

ABSTRACT

A systematic way to find out the viscoelastic material parameters is proposed here. Practical
requirements for the range of the measuring frequency and the relaxation spectrum are
considered. The model parameters are found out basing on the principles of inverse problem
theory and using the methods of constrained nonlinear programming. Computational and
modelling selections are made automatic, building on the strategies found by performing
numerical experiments with synthesized and real material data.

1. INTRODUCTION

Viscoelastic material models must often be used in transient loading conditions even for
materials, which can be modelled linearly elastic in statics. Transient situations, from the
material point of view, occur eg in rolling contact of cylinders covered with the so called
engineering polymers. Engineering polymers include epoxies, polyesters and polypropylenes
[1]. The maximum allowable strain for these materials is about 2 percent [2] which can be
considered small in geometrical sense as is expressed in [11, p. 47). For these materials, the
viscoelastic model is an improvement to the commonly used elastic one, as it makes it possible,
for example, to predict more accurately the energy loss and heat generation than by using, in
the context of elasticity, the often guessed hysteresis loss factor. These materials, being always
quite stiff, most often amorphous and cross-linked [2, 5], are the best of all polymers to be
modelled as linearly viscoelastic.

The literature dealing with the viscoelasticity theory and its boundary value problems is broad,
see [4,7,9,14] and the references therein, and the amount of rather new journal articles,
especially on the thermoviscoelasticity, is large. However, the problem of finding out the
necessary material parameters from measured data has got minor attention. Ferry [5] gives
large number of measured data and interconnections between them, but not a method is
presented to obtain the model parameters for a general linear material model. In [15],
Vestergaard presents methods to find out nonlinear complex modulus by fitting calculated
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steady state response to the measured dynamic data. Because of the steady state analysis, no
attention was given for the frequency and relaxation spectra. Recently, Braat [3] described how
he found out the parameters for a standard linear solid (one relaxation term). There, the loss
tangent was used to fit the material model to the measured data. As it was mentioned in [3], that
model can well be used for qualitative but not for quantitative calculations. The relaxation
spectrum should be quite broad because of the transient state and the fact that in rolling contact
problems, the loaded area is known only roughly before the analysis. Besides, the loss tangent
may not be the best function to be used in a more general inverse modelling.

In this paper, a procedure based on the methods of nonlinear programming, or more generally
inverse problem theory, is proposed to find out the general line-type relaxation spectrum and
equilibrium modulus from the measured complex modulus. It is desired to get general strategies
for, and further to automatize, as many parameter selections as possible basing on both practical
simulation needs and computational requirements.

2. FOUNDATIONS AND PRACTICAL REQUIREMENTS

The material response in linear viscoelasticity can be presented in the complex modulus, in the
operator (differential) or in the integral form. The Stieltjes convolution [10] is the most general
of the last alternative. As it can be concluded from [4,9], a material parameter in the linear
theory of viscoelasticity is completely characterized with its relaxation spectrum N(s) if the
equilibrium modulus is included there. The general relationships between N(s) and the
relaxation modulus E(#) and complex modulus E* can be found in [9]. For a discrete, or line

spectrum

N()=Eid(s-5;);5=1/7;;i=0..N;5 =0

N
E() =Ey+ Y Ee ™™
@ o+ Z i€ (1)

i=1

. R S A o
E(Gw)=Ey+YEi——5+i1Y E———5=Ey+ Y Ef; +1Y Eg; =E (0) +iE (@)
- (o) o 1+(er)

where E, is the equilibrium (static) modulus and the group of pairs {E;, r;} forms the actual
relaxation spectrum.

Incremental (differential) form, commonly used in nonlinear creeping problems is hard to use
when the relaxation spectrum contains numerous terms, because the order of the equation is
one more than the number of the relaxation pairs. In [13], it was shown that the integral form
is powerful when the system is spatially in steady state. Complex modulus can only be used to
calculate the response of a materially steady state system. It is, however, a commonly
measured variable, and here we are trying to find out the material parameters using the
measured complex data.

The questions that one must consider here, are: what is the band of the relaxation spectrum
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needed for accurate calculations and what is the frequency range to be used in the measurements?
The investigation of the base functions f; and g, of equations (1) and presented in figure (1)
answers to the later question and give some insight to the first one.

1

0.8¢

0.6r

0.4

Base functions f; and g,

10 10—'--‘ 1 10 10
Non-gimensional parameter ®t;
FIGURE 1. Base functions of the real (solid) and imaginary parts of the complex modulus.

If we shall have relaxation time around the point T, in the spectrum, we must make measurements
in the vicinity of w = 1/7,. On the other hand, if the estimate for the length of the loading pulse
is ¢,, the relaxation terms for which © = £, have the greatest effect on the transient response. This
can be predicted directly from the relaxation modulus E(?) (see equations (1)) or by doing simple
calculations with different shapes of the loading pulse. In quasi-static response, the shape of the
transient loading (including the duration) determines the width of the relaxation band needed to
take completely into account the viscoelastic effects. If the loading consists of a single, smooth
pulse, the needed width is about two decades below and above the centre T = ¢, as can be
deduced from figure (1), from one-dimensional calculations and from the results of the rolling
contact simulations done by Tervonen [13]. It is thus enough to model the material behaviour
within four decades around the centre point which means that the measuring frequencies must
cover the range 1/(100¢,) ... 100/, where ¢, is the duration of the pulse. Accordingly, we can lay
down bounds for the relaxation times so that all the viscoelastic effects are modelled. The
relevant bounds are

T2T4n =1/ Onax s TS Trax =1/ Oy * @

The problem in dynamic measurements is, how to reach a frequency range that is broad
enough. Usually, the system can be used to measure data over about four decades but the
maximum frequency is not high enough for all practical simulations. To overcome this
problem, the time-temperature equivalence (or superposition) has become a widely used practice,
see eg [3,5,15). The frequency shifting of the lower temperature data for a real material is shown
in figure (2). These and many other measurements to the use of this project were done in
VTT/Tampere using the DMTA equipment.
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FIGURE 2. Shifting on the frequency axis according to the time-temperature equivalence.
3. DATA FITTING AND THE INVERSE PROBLEM

We are seeking the material parameters appearing in two independent functions, £” and E” in
the complex modulus form of equations (1). On physical and computational reasons, bounds
must be given for the parameters. Besides the bounds in equations (2), there is a natural bound
E, > 0. On account of these facts, the problem is somewhat different from the ordinary curve
fitting problem discussed for instance in [6]. Here we use the general terminology of the
inverse problem theory [12]. All the material models in equations (1) could be used for the
forward modelling and they represent parametrizations of the physical system. To determine
numeric values for the model parameters {E, E,t}, we need measured data for some
observable parameters which now are the measured values of the real and i unagmary parts of
the complex modulus at different measuring frequencies w;, or

E ) =E; ®
E (@) =E

The model parameters are obtained with inverse modelling, here by using nonlinear data fitting
procedure, that is, optimization methods. Loss tangent and the magnitude are the other
functions of the complex data that could be used to find out the model parameters. Both parts
of the modulus are used here because together they contain more information of the material
than any single function. The loss tangent, for example, does not change if both parts of the
complex modulus are multiplied with the same, arbitrary constant which means that we cannot
obtain single-valued linear model parameters {E,, E}.

Two different nonlinear optimization problems are defined and used here; the minimax (¢,,) and
nonlinear least squares problems. Both methods make use of the relative differences



343

E(w
Zl ([) = "_{_.L} -1
Fi )
E (w;
Zz ([) B ‘*;'L) -1
E;
between the values from the forward modelling (E" of equations (1)) and the measured
(observable) data (expressions (3)). The values of Z, at the measuring points w; may be
arbitrarily weighted. The minimax (¢,,) problem, to find the model parameters E,, E, and 1, is
defined by

minimize max {ZWLZ00}
[Ey.Eiri}e R Z (.2, ()

(-7, +Tpin SO
Ty —Thax S0 )

subject to .

where || is used to mean the absolute value and N is the number of the relaxation terms. The
nonlinear least squares problem reads here

m m
minimize XZ(N*+YZ,()?
{Eo.EptieR™ =1 j=1 (6)

subject to ¢ ({EyE.7;P)s0 k=1.38+1

where the constraints c, are the same as in problem (5).

The scaling of the measured data and model parameters must be considered here because the
ratio between parameters may be large. In [6], a rather thorough presentation is given on the
subject. In this work, it was found that dividing the complex modulus data with the mean value
of the measured real part gave good convergence results. Without scaling, numerical
difficulties appeared leading frequently to a singular Hessian matrix.

The estimation of the starting point, the initial guess, is another important question. We have
to decide the number of the relaxation terms, the value of the equilibrium modulus and the
relaxation pairs. Because the measurements are commonly carried out using logarithmically
spacing frequencies, the relaxation pairs were situated logarithmically on that axis. The
minimum measured value of the real part has been used as the initial value for the static
modulus. The coefficients E, for the initial spectrum were obtained dividing by N the difference
between maximum and minimum measured value of the real part.
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The minimization problems (5) and (6) were solved using the optimization toolbox of the
MATLAB-system [8]. MINIMAX and CONSTR functions were used, both allowing constraint
optimization. They are basing on sequential quadratic programming with the BFGS update of the
Hessian matrix, see [6,8] and the appropriate scripts in the optimization toolbox for details. The
control function was constructed so that most parameters have built-in default values. They
include the initial guess, the constraints, the termination criteria and scaling. Negligible small
relaxations terms are omitted and nearby terms, having nearly the same relaxation times, are
joined automatically, see also chapter 4. Last mentioned operations are crucial if we shall
compute the inverse of the relaxation modulus, because small or nearby terms cause numerical
difficulties in the inverse process. The inversion itself is not considered in this paper.

4. RESULTS AND DISCUSSION

Formulations (5) and (6) with appropriate computer implementations of the modelling problem
have been tested with synthesized and real material data. The gradients were calculated
analytically and by using finite differences.

4.1 Tests with synthesized data. The methods were tested and the effects of various
algorithmic parameters were examined using synthesized data for the complex modulus. Here,
we can also demonstrate how the excess relaxation terms conjoin and how we can discard
some negligible terms. The synthesized material is characterized exactly with E, = 2 GPa,
E, = 0.25 GPa, E,=0.50 GPa, r,=3 - 10" sec. and 7, =5 - 10°? sec. The fitting is performed
at the frequency range »=100 - 100 00 rad/s using different starting points. The system was
insensitive to the initial guess if there were enough terms. The results in table 1 show that the
fit is practically exact. The physically inappropriate term E,=-3.94-10"® is within the constraint
tolerance. The computation required 220 function evaluations when using the finite difference
gradients and 23 evaluations plus gradient calculations with the analytic Jacobian. The total
time was a little bit shorter with the numerical derivatives.

TABLE 1. The results after the minimax-procedure for the synthesized material given above
and fitted to 20 logarithmically placed values.

i Initial guess Result Final result
T E, T E, T E;

0 2.100 10° 2.000 10° 2.000 10°
1 1102 1.565:10° | 5.0003-10° | 4.7012-10°

4.9978-10° | 5.0000-10°
2 2.154.10° 4.9953-10" | 2.9883-107
3 4.642:10™ 3.0000-10* | 2.5000-10° | 3.0000-10* | 2.5000-10°
4 1-10 2.19810% | -3.9410% |  eees | ceeee-

The constrained least squares problem (6) gave practically same results as the minimax-

procedure, but the latter took less iteration cycles.
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4.2 Real materials. One of the real materials, the loss tangent of which is in figure (2), was
modelled with different number of relaxation terms, N =4 ...11. Results improved highly when N
was changing from four to six and further slightly until the number of terms N was eight, but
practically not at all beyond that. The fits in figure (3) are the best for each case in the sense that
no better results were found by changing the initial point or by continuing the iteration. The
number of iterations was 58 and 296 for the cases (a) and (b) of figure 3, respectively. An
automatic selection, see chapter 3, for the initial point {E,, E, 7} gave the results presented

here.

(a) 210 N
6}
5 o
(3 4 -} 2 4 6
10 10 10 10 10
Emor im
0.1
0.05 0
0 -0.1
10’ 10 10° 10° 10° 10° 10 10*
(b) .
Re 7 Im
2g™10 : ,X10
ae ........................... ow ..... B
z‘ fdde 5 .:. ...................... 5 """"""'E""""
- : y . :
10° 10 10 10° 10° 10° 10* 10
Emor Re Emor Im
0.05 - 0.02 .
o}
0 i
0,05 : .04 : :
10° 10° 10* 10* 10° 10" 10* 10

FIGURE 3. Modelling results for a real material (see figure (2)) fitted using four (a) and eight (b)
relaxation terms. Measured data (o), modelled behaviour (solid line) and the relative differences

between them as functions of frequency .
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A question is, how does the relaxation spectrum alter due to those extra terms that do not
better the model? The results showed that the equilibrium modulus does not change when
the number of terms was six or more. This is an expected result when all the fittings were
performed at the same relaxation band. From the results of figure (4), we see that negligible small
and nearby terms appear when the number of terms in the initial guess is eight or higher. When
we omit the small and join the nearby terms, the spectra from the models having initially eight and
eleven terms are practically the same, each having finally only six different relaxation pairs. The
joining was done for the terms whose relaxation times differed less than 20 percent from the
mean value of them. By comparing the results we see that even if the final spectrum consists of
six terms, the result is better when we have some extra terms in the initial guess.

7
X0 _ 1 x10
%
®
10l 10
9
8
® o
0 8
X X X
6 X & ®
o M e
®
4 + + X
+ o 6+ X X
2 + + 5 ax
+ ®
o)
L ﬂ|+ A i
% 4 2 0 % 4 2 0

FIGURE 4. Relaxation spectra (log(t) , E;) for three different models of the real material used
before: six (x), eight (o) and eleven (+) relaxation terms. Original spectra are on the left, and the
spectra after omitting small and summing up the nearby terms, are on the right.

The use of a lot of terms in the starting point helps the modelling to find the best possible
fit to the data and makes the modelling less sensitive to the initial guess. Computations have
shown, however, that the maximum number of the relaxation pairs to be used in the initial guess
is about three times the number of decades to be fitted. Numerical difficulties seem to appear
after it though the system is not near the limit of underdetermination where the number of
the material parameters exceeds the number of the data points. We can conclude that two to three
relaxation terms are needed per decade in the initial guess. The numerical tests done here
indicate also that the automatic initial guess for the spread of the spectrum is effective. The
results, only a small portion of which was presented here, have shown that engineering polymers
can be modelled with adequate accuracy by using the line-type relaxation spectrum. This
modelling can effectively be done with strategies and methods proposed in this paper.



347

5. CONCLUSIONS

This paper presents how to find out the material parameters for the use of structural simulations,
when the material is modelled as linearly viscoelastic and the loading is a short transient from the
material point of view. It was shown that the complex modulus must be measured, perhaps by
utilizing the time-temperature equivalence, over about four decades around the point where the
frequency is an inverse of the load duration. Strategies are given for the automatic selection of
many computational parameters, as eg the scaling and the initial guess including the number of
the relaxation terms needed there. Some of the investigations done with synthesized and real data
are presented as test Cases. The results of these studies are the basis for the above-mentioned
strategies.
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NATURAL SYSTEM OF COORDINATES FOR ANISOTRIPIC BODY

PERTTI HOLOPAINEN
Department of Mechanical Engineering
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P.0. Box 589, SF-33101 TAMPERE, FINLAND

ABSTRACT

The natural system of coordinates in the linear elasticity of an an-
isotropic body has been stated by V.V.Novozhilov (1958}, but this
has been presented rarely or not at all in the later professional
literature. In this paper a re-examination of the natural system of
coordinates is performed. In this coordinate system the number of
different elastic coefficients reduces from 21 to 18. The values of
elastic constants in the anisotropic body depends on the choice of
the coordinate system. Only defining the natural coordinate system
we can compare the elastic properties of anisotropic bodies.

PRELIMINARIES

When a material is anisotropic, linearly elastic, and deformations are
small, the Hookes law in a skew curvilinear co-ordinate system is a most
general form

ij _ Cijkl

o aKl’ (in’k,l = 1’293) (1)

ij .
where the 07" and € are components of stress tensor and deformation

tensor respectively%lThe constants Cijkl are components of materials
stiffness tensor fg (of fourth order). The number of its components is
3+3-3.3 = 81. Here the summation convention is used: The repetition of
index (whether superscript or subscript) in a term will denote a summa-

tion with respect to that index over its range.

When the deformation tensor

e = 3wy *ugy) (2)
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is symmetric, the summation indices in (1) can be changed, so

gkl o glitk (3)

When a skew infinite small element faces parallelly co-ordinate planes is

. e 1] . .
in moment equilibrium, O J i symmetric and thus

Clel - CJlkl. (L)

Because of (3) the number of independent components of *C is 81-27=5k. When
the equation (L4) is taken into account sufficiently, the maximum number of
independent components of *C is 54-18=36. When the material is linearly

elastic, a strain energy density function

exists. But

u = OlJ , oU e o_k.l (6)
aeij aekl

and further

2 .. 2 ..
k
9°U - Clel, 3°U . llJ. (7)
asijaekl aeklaeij
When the order of differentation is immaterial, it follws from (7)
Clel - CkllJ. (8)

When the equation (8) is taken into account sufficiently, the number of in-

dependent elastic constants is reduced to 21 as is well-known.

The strain energy density is independent of the choice of the co-ordinate

system. When we known that eij transforms tensorially, so (Table 1. Fig.1.)

TABLE 1.

5 & i
g0 | 8], B, B,
g | By Bov B3,
Esi | By B85, 3,

- 1!
(g, = By g.,) FIGURE 1.
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_ il J"
€5 = By B €5 050e (9)
_ jaidkl o igKlait itk Lt
U ic Eijekl = iC Bi BJ Bk Bl ei'j'ek'l'
il"klll
= 3C & Ei'j'ek'l' (10)
and thus
itk _ it gt k'L 1gk1 11
where
i Bxi'
Bi =T e (12)
ox
So the Clel:s transform tensorially (11) and “g is tensor (of fourth or-
der).

NATURAL SYSTEM OF CO-ORDINATES

Consider the constitutive equation (1) of anisotropic material in a rec-—
tangular Cartesian co-ordinate system, when the distinction between con-
travariance and covariance disappears. All the indices can be subscripts

(or superscripts). The constitutive equation (1) ca be written

%; = Cisx1%k1° (13)
When cij and e;; are symmetric and (3) and (4) are taken into account, the
equation (13) can be written into matrix form

(9947 [C1111 G122 C1133 1123 C1113 Gz [ a1

S22 Coo11 Compp Cop33 Cop23 Co213 Conia| | f22
%33 ®3311 %3302 %3333 %3323 %3313 3312 | 33| (1)
%231 o311 Co320 C2333 C2323 C2313 Coz12| [2623
%13 Cy311 €1322 C1333 C1323 C1313 C1z12| | %13

| %12 | Ci211 C1222 C1233 Ci223 C1213 Cr212]) [2F12)

where 2eij = Yij (i#j) are the 'engineerin' shear strains and Eij are ten-

sor shear strains. The order of mixed pairs of indices is chosen here

as Lekhnitskii /2/. The equation (14) can be written shortly

€

Qll

o =

where 01

9912 ©

5 = Oppsees s

Ci11 5 Cy4992 G = €

1122°°°°

S50

(15)

and based on
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(8) the matrix C is symmetric including 21 different elastic constants Cij'

In the transformation of co-ordinates from old X, to new Xsy the vectors o

and £ transform so as

= q.,.0 €.y T Qu,:E; (16)

o. .. .0,
b ititi? an’

end the matrix C

c = Q.,:Q:,:C (i, =1 vo. 6) (17)

i’ 1115557150
qi,j:s are not the components of rotated basevectors Ii' (direction
cosines) Ii but their second degree homogeneous funetions. So o, € and C

does not transform tensorially.
It is well-known that in isotropic material the spherical defotmation

= = i ] 18
eii €, Eij 0, wvhen 1 # j (18)

results only normal stresses

0.. = Ke (19)
11

{The notation €555 04 DOL summed)., The constant K is called the bulk mod-
ul. What stress state causes the spherical deformation (18) in anisotropic
material? Substituting the spherical deformation (18) in (13) it can be ob-

tained

oy = cijkke = Kije (20)

The constants Kij =C are compnonents of the tensor of bulk modul 25 J1/.

The 2§ is obtainable ;giﬁ “g by the contraction (german, Verjlingung, finn-
ish, nuorentaminen) equating the idices k1 + kk, and then summing.1 The
array Kij is symmetric based on (4). We can see in (20) that the spherical
deformation (18) causes in anisotropic material also shear Stresses in rec-

tangular Cartesian co-ordinate system with an arbitrary orientation.

But the symmetric Kij has real eigenvalues Ai and ortogonal eigenvectors

=(1)

u' "', When the orientation of the Cartesian co-ordinate frame is parallel

to eigenvectors E(l) becomes the matrix of 25 diagonal

ﬁ=[1\1 Ay Mgl (21)

1) The second possible contraction gives Lij = Cikjk' The other different
possibilities to contraction does not exist because of the symmetric
properties of *C. The matrix of Cauchy tensor is P..=K..-L..-3(K,-L_)§..
- 1) 1) i) 171771
where K, and L, are the first invariants of K and ’L. The ’p gives the
natural system of co-ordinates also. According to Caychy Pij=0 always

and the Poissons ratio v=0,25 /1/.
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and thus

O.. = A.E. (22)
i1 =

So the spherical deformation (18) causes only normal stresses . (differ-
ent values) in this special orientation of Cartesian co-ordinate system.
The Cartesian co-ordinate frame whose orientation is the same as the eigen-

vectors of the tensor of bulk modul is called /1/ the natural co-ordinate

system of anisotropic material. The directions of eigenvectors before are

called the principal directions of anisotropy /1/.

When the constitutive equation (13) of anisotropic material where 21 differ-

ent elastic constants are, is written in the natural co-ordinates (also

Cijkl:S are dependent on the orientation of co-ordinate frame (11)), become

cag = i 3 23

Clek 0, when 1 ¥ j (e3)
without that all C, C are equal to zero. These three sub

15112 Ciso20 Ci333
sidiary conditions (23) denote that in the stiffness tensor l"(_J_of‘ anisotro-
pic material has really 21-3=18 free components. When the constitutive equa-
tion (13) is transformed from the natural co-ordinate system to some other
system Xsy (11) inecludes the components of ﬂg further three subsidiary con-
ditions. When the natural co-ordinate system is defined so as presented be-
fore from the 21 elastic constants defined in some co-ordinate system  ex-

n
perimentally, the 'fixed' elastic constants C., are obtained by using

- - - (i), —(i#)9 kL
(11}. Now Bsyg = iy, vhere i,,=u /lu |, the i':th normerad eigen-—
n
vector of 2K. Only the elastic constants C.,.,, ,,, of one material are com-
== 1'3'k'l

parable to the ones of other material.

A.L.Rebinovich presents a comprehensive system of engineering constants for
a fully anisotropic homogeneous body in some fixed co-ordinate system writ-
ing the constitutive equation (13) in inverted form: eij = Dijklckl /2/.
If the anisotropic body is non homogeneous, the elastic properties will
change when going from one point to another and/or the principal directions
of anisotropy will change. In anisotropic body the principal directions of
€ and 0 are different in general, i.e. when the stresses are calculated
from the constitutive equation (13) or (14) written in the principal co-or-

dinate system of g, the principal strains results also shear stresses.

Plane stress state. The plane stress distribution is based on the assump-
tion that

O33 = 03, = 03, = 0 (24)
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This assumption is approximate and is used for thin flat plates loaded in

the plane of the plate.
The constitutive equation (13) is written in the plane case

0 (0,B,7,8 = 1,2) (25)

- CaByG’
where the material stiffness tensor “g_has the same symmetric properties as
the ones in the space stress/deformation state (3),(4) and (8). The number of

different elasti constents is 6. Substituting the circle-like deformation

= = 26
€y = € Eug = O» When @ # 8 (26)
in (25) it can be obtained
o, = = €. (27)
aB caBYYE KaB
The KuB is symmetric. By writing (27) in the principal co-ordinates of KaB
i.e, in the natural co-ordinate system it can be obtained
0. =XE (28)
w o

where Aa is the eigenvalue of KaB' In the natural co-ordinate system

Ci211 * Ciopp = 0 (29)

which denotes that the number of free elastic constants in the plane case

is 5.
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ON HEMIVARIATIONAL INEQUALITIES
AND THEIR NUMERICAL SOLUTIONS

Markku Miettinen
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1. INTRODUCTION

In mechanics and engineering sciences we meet problems on which constitutive laws are
given by nonmonotone, multivalued relations. For example, there are mechanical prob-
lems involving such relations between reactions and displacements. The mathematical
models of such kind problems lead to nonmonotone multivalued differential inclusions,
the so called hemivariational inequalities. The theory of hemivariational inequalities was
born only at the beginning of the last decade due to the work of Panagiotopoulos in the
area of nonsmooth mechanics. He introduced the notation of a nonconvex superpotential
being a generalization of the classical convex superpotential. This generalization with
the notation of a generalized gradient of Clarke gave rise to hemivariational inequalities
(see [8]-[14]). The aim of this paper is to present a fully discrete approximation model
for hemivariational inequalities and numerical methods which can be used for solving
this approximation (see more details from [3]-[6]).

The outline of this paper is as follows. In Chapter 2 we introduce the concept of hemi-
variational inequalities by using two examples in mechanics: an adhesive contact or a
nonmonotone friction problem of a linear elastic body, nonmonotone skin friction or
adhesion in plane elasticity. In Chapter 3 we present an approximation model for hemi-
variational inequalities, and, in Chapter 4 numerical methods for solving hemivariational
inequalities.

2. APPLICATIONS OF HEMIVARIATIONAL INEQUALITIES

2.1. Adhesive contact and friction problems of a linear elastic body.

Let us denote by 2 C R® a bounded domain occupied by a linear elastic deformable
body in its undeformed state and T its Lipschitz boundary. By n = {n;} we denote the
outward unit normal vector to T, ¢ = {o};} the stress tensor, ¢ = {¢;;} the strain tensor,
S = {S; = oijn;} the boundary force, v = {u;} the displacement and f = {f;} the
volume force. Moreover, by St and Sy we denote the normal and tangential components
of the boundary force S, respectively. In the same way, ur and uy are the corresponding
boundary displacement components of u.
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Figure 1. A linear elastic body

The boundary T' is divided into three nonoverlapping open sets I';, I'; and I'; such that
I' =T, UT; UT;. We assume that on I'; the displacements are given, i.e.,

u="U, U=U(z) onT};.

For simplicity, we shall consider the homogenous boundary value problem U = 0 on I';.
The general problem (U # 0) is reduced to this by the translation & = u — U. On the
other hand on I'; the boundary forces are given by

S =F, F =F(z) onT,. (2.1)

On I'; we have an adhesive contact boundary condition or a nonmonotone friction law:

PROBLEM (P1): We have on I'; a pointwise adhesive contact condition

-5 € 9j(z,u), S(z),u(z) €eR® onTs;. (2.2)

PROBLEM (P2): We have on I'; a pointwise nonmonotone friction condition with given

normal force
—~ St € 9jr(z,ur), St(z),ur(z) €R® on Iy;

2.3
SN=FN, FN=FN(.‘L‘)€R on I';. ( )

The function j: 2 x R® — R satisfies the following conditions:

_SNJ _STJ\

NN

a) b)

Figure 2. Nonmonotone boundary laws
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f M af N

Figure 3. An example of a generalized gradient

(i) For all £ € R® the function z — j(z,£) is measurable on 2.
(ii) For almost all z € Q the function £ — j(z,£) is locally Lipschitz on R3.
(iii) The function j(-,0) is finitely integrable in f2.
(iv) For almost all € Q and each £ € R® n € 9j(z,£) == |n] < ¢(1 + [£]) for some
constant ¢ > 0 not depending on z € (.
(v) It holds j°(z, ¢, —¢) < a(z)(1 + |€[) for some nonnegative function a € L*(2).

Let us define what is meant by 3j(z, £):

DEFINITION 2.1. Let f: RM — R be a locally Lipschitz at ¢ € RM and let y € RM.
The directional differential in the sense of Clarke of f at  in the direction y, denoted
by f°(z,y), is defined by the relation

fo(z,y) = hl_if;:-s‘:go f(-T + Z - hi) — f(;g + 2) 1

and the generalized gradient 0f(z): RM — RM by means of
8f(z) = {y € RM : f°(2,2) 2 (3, )pw V2 € RM}.

Let us derive the hemivariational inequality describing our elastic system. The equilib-
rium equation of the system is

0i5,5 + fi=0 in §2. (2.4)

Assuming that the displacements u are small, we have the following relation to the

strain tensor €:
€ij = 3(uij + ujs). (2.5)

Because the material in  is assumed to be linear elastic, we have
0ij = CijhkEnt, (2.6)

where C = {Cijnk}, Cijnk € L=(R), is the elasticity tensor having the well-known
symmetry and ellipticity properties

Cijak = Cjink = Chaij,
Cijnkeijenk > ceijei; Ve € R®, ¢ = const > 0.
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Then, using the Green-Gauss theorem and assuming that all the functions are suffi-
ciently smooth, we can derive from (2.4) and (2.5) the following equilibrium condition:
Findu € V = {v € [H(Q)]?:v = 0 on T'; } such that

/ oij(u)eij(v — u)dQd - / filvi —u;)dQ = Si(vi —u;)dl  YveV. (2.7)
Q Q T'2Uls

Substituting the boundary conditions (2.2) and (2.3) and the material law (2.6) to
(2.7) we get for the problems (P1) and (P2) the following hemivariational inequalities:

Find u € V such that

/ C.-,-;.ke.-j(u)(e;.;,(v) - Ehk(u)) dQ) + / jo(:r, U, v — u) dar
Y] Ta (Pl)

>/{;f,(v, ')dQ+/I‘,F(v u;)dl’ VveV
and

/ Cijni€ij(u)(enk(v) — enk(u)) d + / Jr(z,ur,vr —ur)dl
@ Fs (P2)

Z/ﬂfi(vi—u.')dQ+/F2F.'(ve—u.')dl‘-i-];a Cn(vy —upn)dl'  Wvev,

respectively. The existence of at least one solution of the above problems is guaranteed
by {10, Theorem 4.25).

2.2. Nonmonotone skin friction or adhesion in plane elasticity.

In this example 2 is a bounded domain of R? occupied by a linear elastic body in its
undeformed state. Now the boundary I is divided into two nonoverlapping open sets
I'; and I'; such that T; UT; =T'. The boundary conditions on I'; and I'; are the same
as in the previous example. The body force f is diveded into two parts f = f; + far 1
a given body force and f, a body force which describes the skin effects or adhesion and
it is obtained from the following relation

{ —f2 € 0j(z,u) on Q;
fo=0 on Q\Q,

where Q' is the part of the body where frictional or adhesive effects take place. The
function j: © x R? — R satisfies the same conditions as previously, i.e., (1)-(v). The
following hemivariational inequality describes the physical system: Findu € V = {v €
[H'(Q)?:v=00nT,}

/ Cijnkeij(u)(enk(v) — enr(u)) dQ + / j°(z,u,v — u)dl’
Q [v1

> i dQ F; (59
—Afx(vt-ut) +/1"‘, .'(v.'—u.')dI‘ Yv e V.

The existence of at least one solution of this problem is also now guaranteed by [10,
Theorem 4.25].
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Figure 4. A plane elasticity problem

2.3. Other applications.

Other applications of hemivariational inequalities are, e.g.,
e nonlinear elasticity problems with adhesion or nonlinear friction
nonmonotone multivalued relations in structural analysis
adhesively connected sandwich plates
delamination effect in laminated von Karman plates
rigid viscoplastic flow problems with adhesion or nonmonotone friction
nonmonotone laws in massonry structures
nonconvex semipermeability problems.

We refer to [10]-[14] and references therein to see more details of the applications of
hemivariational inequalities.

3. APPROXIMATION OF HEMIVARIATIONAL INEQUALITIES
We shall consider the following model problem (compare to (P3)):

Find u € V and X € L*(Q;RM) such that
a(u,v) + Jo X -vdz = (f,v) (= [ Fi-vdz + fr.z F,-vdz) YveV (P)
and X(z) € 9j(z,u(z)) a.e. T € L

Let us introduce the notations in the above problem. Let @ C RM be a bounded
domain with a Lipschitz boundary T, V a real Hilbert space (for example V' = {v €
[HY())™ : v =0 on I;}) equipped with the norm || - ||, V' the dual space and (-, -) the
corresponding duality. Let f be an element of V' and a: V' xV — R be a continuous and
coercive bilinear form. The function j:  x RM — R satisfies the previous assumptions
(i)-(v) (R® is replaced by RM). We shall also assume that

the injection V C L*(92;RM) is compact;
V N L°(;RM) is dense in V.

Under the above assumptions it is possible to show that the problem (P) is solvable.
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Let us introduce the fully discrete approximation of (P)s:
Find u; € V4 and X; € Y}, such that
at(up,vn) + [o Xn - Proondz = (fa,vn)n  Yon € Vi (P)i
and Xy (z) € 8j((Paz)(z), (Pyup)(z)) a.e T €,

which can be written equivalently as follows:

Find u, € V, and X, € R™» such that
at(up,vp) + oM c;'.X,.(z;;) ~on(zd) = (fa,vn)n Vo, € V3 (P):

i=1

and Xp(z}) € 9j(z},un(zl)) i=1,..,my.

Next we explain the notations used in (P), and impose the assumptions needed to show
the convergence of the solutions of (P) to the solutions of (P). First we define finite-
dimensional approximations of the spaces V and Y = L?(Q; R™) denoted by Vj, and Y;,
respectively. The discretization parameter % is connected with the mesh size of partition
of {1 (we use the finite element method). Because we use two different partitions of 12,
we should actually have two different discretization parameters hy and hy. To avoid
this difficulty we assume that our families of partitions satisfy

hy 20+ < hy - 0+.

Hence only one parameter h = max(hy, hy) will be used in what follows. We shall pay
more attention to the construction of Y}, because the construction of Vj is standard,
and, can be found, for example, from [1].

Let {Vi} be a family of finite-dimensional subspaces satisfying
{ Vi CV NC(Q;RM), dim Vj < oo Vh € (0,1) and
YoeV, H{uw},vn€Vy: vy —»vinV.

The starting point for the construction of the approximation of Y is the approximation
of the integral [, X - vdz. We shall use a quadrature formula

my my, M
JR BT SECEIRIEIES P PELAENIEN (3.1)

where ¢}, are weights and z}, € { are nodes of a quadrature formula. From the numerical
point of view is reasonable to choose the nodes z}, in such a way that they have some
relation to the partition of V}, for example, these can be the vertices, the midpints
of the edges or the centers of the gravity of the triangles of the partition of V},. Let
us assume that (3.1) is exact for constant functions implying that 3"7* ¢i = my(Q),
where my denotes the Lebesgue measure in RN, Then it is possible to define a partition
Th, h € (0,1), of O, where Q4 is another domain containing Q. 7}, consists of a finite
number of subsets K} of Qp, i =1,...,my having the following properties:

(1) Ty = UmL K

(2) h > maxi=;,...,m, {diameter of K} };

(3) int Kjnint K7 =0 Vi # j;

(4) K} is closed, convex and has a nonempty interior for any i = 1,...,my;

(5) For each ¢ =1,...,my there is exactly one point 7} €int Kj N

(6) my(int KkNQ)=ch i =1,..,ms.
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Figure 5. Partitions of Vj and Y3

For the finite-dimensional space Y we will choose the space of piecewise constant
functions over the partition 7}, defined as follows:

Ys ={f € I®(Q;RM) : 3f : Q4 — RY,
Fline ki is constant i=1,..,ms f = fla}
We need also the space of piecewise continuous functions over the partition Tp:
Xp ={f € L®(Q;RM): 3f : Q4 = RY,
Flint ki is continuous i=1,...,mnf=fla}
Let P, be a linear mapping from X3 to Ya defined by means of
ms
(Paf)z) =Y f@)(Kine ki )2), V2 €Q,
i=1

where Xjpy ki is the characteristic function of int K}, and, P,z is defined by

(Pra)(z) = ) 2h(Kim g )a)s Vo€

The following assumption concerning the consistency between the approximation spaces
V, and Y3, will be assumed:

yn —yinV, yn € Va => Payn — y in L2 RM).
The assumptions concerning approximations of a, f are standard. An approximation
of a, a?: Vi x Vi — R, satisfies:

3M > 0: |a"(un,vn)| < M||us||||vall Vun,va € Vi, Yh € (0,1);
3& > 0: at(up,un) > @|jusl® Yun € Vi, Yh € (0,1);
up —u, vp = vinV, up,vp € Vp = a*(un,vn) = a(u,v), a*(vn,up) — a(v,u).

The symbol (-,-)x: V4 x Vi — R denotes the duality pairing between V, and V, and
fr € V} is an approximation of f such that

38> 0: |(fa,vn)n| < Bllvsl| You € Vi, VR € (0,1);

vy — v in V, vpb €V = (f;.,v;.);. — (f,v).

Finally we need that the function j(z, €) is sufficiently regular with respect to . Then
it is possible to show the convergence result: the solutions of (P)s tend to the solutions

of (P).
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THEOREM 3.1. Let {(yn,Xs)} be a sequence such that (yn, Xs) € Vi XY} is a solution
of (P)y. Then there exist subsequence of {(yn,,Xs,)} and (y,X) € V x Y such that

yhe oy inV;
Xy, — X in L*(Q;RM).

Moreover, (y,X) is a solution of (P).

REMARK: The reason, why we get the convergence result only for subsequences, is that
in general the solutions of hemivariational inequalities are not unique due to nonmono-
toness. This also implies that it is not possible to get global convergence rate estimates.

4. NUMERICAL REALIZATION

Let A > 0 be fixed. This enables us to skip the symbol h in many situations and instead
of np, mp, z},.. to write n, m, z',... First we shall rewrite the approximation (P)s
into the matrix form. Let {¢’}7_, be the basis of V4. We define a linear mapping
A: R" = R™ as follows:

Aij=¢'(z")  i=1,.,m,j=1,.,n

In the sequel we shall identify y = 3_7_, @’y; € Vi with the nodal vector y = (y; )i=1 €
R". Hence (P), is equivalent to the following problem (P):

Find y = (y1,...,¥n) € R™ and s = (84, ....,8m) € R™ such that
(Ay,z)gn + (5,Az)gm = (f,2)g.  Vz€R" (P)
and s; € ¢;8j(z',(Ay)i) i=1,...,m,

where A = (a"(go‘,goj))::j=1 is an n x n square matrix, f = ((fa,¥’)s)}=; € R" and
(+*)Rns (»*)Rm denote the scalar products in R™, R™, respectively. For solving (P) we
introduce two methods:

A NONSMOOTH NONCONVEX OPTIMIZATION METHOD: Let us assume that the matrix
A is symmetric. Then it is possible to show that the substationary points (if 0 € dL(y),
Y is a substationary point of L) of the function L: R® — R defined by

L(Y) = 3(47, )R- = (£, )R + ¥(¥),

where
m

Y(y) =) ciilz', (Ay)),
i=1
are solutions of the problem (P). It is known that, for example, local minimum points
of a locally Lipschitz function are its substationary points. Hence our problem (P) is
transformed to the problem of finding a local minimum point of L, i.e.,

arg min L(y).
yeR»
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B_] ™ 5-]( N
as f ——
i > 5
X, X 7 X

Figure 6. Nonmonotone law replaced by monotone one

To solve this problem we have to use optimization methods for nonsmooth nonconvex
functions, because the function L is generally of this form (see details of those methods

from [7]).

A FIXED POINT METHOD (APPROXIMATION BY MONOTONE SUBPROBLEMS): In this
method we use the following iterative scheme:

on rth step find y" such that
(Ay", 2 — Y )Ra + Lizy cilFf(2", (Az)i) — 53(2*, (AyT)i))
2 (fyz - yr)Rn + 2:11 ci(Ei)T(z7yr_l) VZ', € R"’

where
(E)o(2,y""") = ji(a*, (Az)s) — 5=’ (Ay" ™ )i)—
7°(zi, (Ay™™)i; (Az)i — (Ay"™1)i)

represents the error between the function j and its convex approximation j; at the point
(z*,(Ay™™');). Thus the main idea of this method is to transform (P) to the sequence
of the variational inequalities which can be solved by effective numerical methods. We
refer to [6] to see the details of this method and its application to a nonmonotone friction
problem.
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ABSTRACT

The present paper is concerned with the kinematics of a curved plane beam taking
into account finite deformations. The most important tool in the study is a local
auxiliary fixed rectangular coordinate system. This is spanned locally at each point
under consideration after which all the definitions are performed in its coordinates
which are not related to the geometry of the structure, at all. The method
leads with no ambiguities to exact expressions for the strains which can then be
systematically simplified for different purposes on the base of suitable approximations.
The consideration is limited in this context to a plane beam to emphasize the simplicity
of the procedure and to avoid too complicated and offputting expressions as a result.

1. INTRODUCTION

This study can be considered as a continuation to the paper presented in the Fourth
Finnish Mechanics Days held in Lappeenranta, 1991 [1]. That paper enlightened the
use of local rectangular coordinate systems in deriving expressions for strains in various
solid systems or structures. It was emphasized in it, that the method introduced is - in
the opinion of the authors - very systematic and simple and produces a novel way to
study and especially to teach, for example, any curved structure in purely rectilinear
coordinates.

The presentation in [1] likewise in [8] was limited to linear analysis and the aim is
now to evaluate the nonlinear terms, taking into account the finite deformations in the
expressions of strains. To present the main ideas in a simple context without involved
formulae the consideration will be limited to the analysis of a beam curved in a plane.
The paper [1] will be, at first, referred shortly on the most essential parts to recall the
procedure applied.

2. MATHEMATICAL BACKGROUND

Three coordinate systems, a rectangular global Cartesian z,y with unit base vectors
1,7, a rectangular local Cartesian X,Y with unit base vectors €x, €y and an orthogonal
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curvilinear «, # with unit base vectors €y,€s are used. Coordinates ¢,y and «,f are
defined for the whole structure and are employed in the traditional way. The X,Y-
system is, however, used as an auxiliary tool in a way to be explained presently.

The mathematical manipulations will be performed exploiting a local Cartesian
coordinate system, producing the final result, however, in the general curvilinear ones
conforming to the geometry of the structure. For this purpose, the connection between
derivatives evaluated in these two coordinate systems is needed. In [1], the general
relationship between the derivatives in two dimensions

] T L e O
-aTX- _ éz'ex aa'ey aa (1)
o (T|oF . & | 12
Y 88 X " B

is derived in detail. Here, 7 is the position vector of a generic point. In this presentation,
in which the consideration is limited to beams with orthogonal curvilinear geometry,
it is meaningful to orientate the unit base vectors of the local coordinate system to
coincide with the unit vectors of the curvilinear system at the origin, where the local

system is spanned.

3. DISPLACEMENTS AND STRAINS

The displacement vector 7 in two dimensions can be expressed either in a local Cartesian
or in a curvilinear coordinate system, i.e.
4 =uxex + uyey, (2a)
U= Uqg€n + Uﬂgﬂ (2b)
or in any other coordinate system. The latter one is employed in analytical calculations
in curved structures. The general expressions for the rectangular strain components
[3,4,5 ] in a X, Y -system are

Cdux 1 Oux\* (Ouy\?| _ 0@ . 1 0z o
=G+ 3 { (G + ) b= ey = LT,

- Ouy 1 (/8ux\? (Ouy\2 o 1 8@ O

_ Ouy 1 [0ux Ouy\*| _o0u . 1 0d Ou 3
R ay*g{(ay) +<ay)} v Y T3 57 Ay ®)

_Oux  Ouy  OuxOux  OuyOuy 0d ou oi O0Ou
Y=y teax Tax oy tax oy Tav Ktax Y Tox av
The equivalence between these two formulations can be verified directly by substituting
the displacement vector (2a) into the scalar product expressions on the right hand side
of the equation and performing the differentiation. The unit vectors €x and €y are here

constant with respect to differentiation because the X,Y system is fixed.

When the unit vectors of both X,Y and «, 8 coordinate systems are chosen to coincide
at the origin of the local coordinate system, the Jacobian matrix at that point has the
diagonal form

or oF _ 17!

3o X Fa Y| _[H, 01" _[HZ o

o . o ‘[o ) - 1% Hgl] ®)
0[[3 ex aﬂ ey
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FIGURE 1. Curved beam and its deformation.

H, = Ho(a,pB) and Hg = Hp(a,p) are the scale factors. The derivatives of the
displacement vector evaluated now with respect to the local coordinate system will
get the form

o8 _ _y Oua. 0  Ous. &
ax = Ha'(Gatet gy ¥ 5 ¥ 45 ) i
o Oua_ , 0B Ous, 0%,

_ -1/ Y"a it o it 4
oy = s (Gplatuazp t ggeetiogy

After evaluating the derivatives for the unit vectors, the expressions are substituted
into the strain component formulae (3). It should still be remarked that equations (5)
are valid exactly only at the origin of the auxiliary coordinate system, where the unit
vectors in both systems coincide.

4, CURVED BEAM

4.1 Geometry. A curved plane beam is considered using the notation shown in Figure
1. The curvilinear coordinate @ coincides with the beam axis. Symbol 3 is replaced
here by the symbol n for the rectilinear normal coordinate measuring the distance from
the beam axis. The purpose is to determine the expressions for the strain components
€a = €x and Yan = VXY at a general point P shown in Figure 1. It is here convenient
to fix the origin of the auxiliary coordinate system at the point O on the beam axis, as
shown in the figure. The position vector of a point P can be represented as

7la,n) = Fo(a) + néy(a), (6)

where 7 is the position vector of point O on the axis. The derivatives of the unit base
vectors are

98 _ _Eg 9én _ %gm (7)

da R™™ da
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whereas the corresponding derivatives with respect to n vanish. The reference to
coordinate « is dropped out from the scale factor H and from the radius of curvature
R, for brevity. Expressions (7) are obtained from the well known FRENET formulae, e.g.
VAIsALA [2]. Here the radius of curvature of the beam axis is considered positive when
the center of curvature is on the negative side of the n-axis. The scale factor is defined
through the equation

O _ me, (8)

If coordinate « is selected to be the arclength s - as is usual - H = 1. Differentiation of
expression (6) gives

oF oo 08 ..  H, ny .
% = 5 t"5a = Heatnpl=H(1+ 5)% ©)
oF
an o

It can be seen that the scale factors corresponding to coordinates & and n at a general
point are H(1 + n/R) and 1. The relations (1) obtain thus the forms

o 90 _39
da’ Y ~ on’

0 _ -1 n.a
e = H(1+ )

X (10)

which are again strictly valid only at the origin of the local coordinate system.

4.2 Displacements and strains. A general kinematics for a curved plane beam,
visualized in Figure 1, is described with an equation

i(a,n) = [ug(a) — nsinb(a)] €x(a) + [un(a) — n(1 — cos f(a))] En(a) (11)

for the displacement vector of point P. This assumes that the normals to the undeformed
beam axis stay straight lines with no stretcing, but do not any more form normals to the
deformed axis. The unknowns are uq(a), un(a) and 6(a) representing the displacement
components of point O on the beam axis and the rotation of a material fiber originally
perpendicular to the axis as positive in the clockwise direction. The derivatives of the
displacement vector at point P needed for strain evaluations can be calculated directly
using expressions (10) and (11) yielding

o7 ., n\~1[/0u, o8 ) O€,
ﬁ_H (1+R) [(E—ncosaa—a)ea+(ua—ns1n0)%
aun N ae = agn
+ (a_a - nsxnﬁa—a)en + (un — n(1 — cos b)) P ]
n\~1 [/ Qug o6 un — n(1 — cosf)
o= i — >y 12
(1+3) [(Haa neosb proa T R ) (12)
+ (_ua—nsin9+ Oun — nsing o
R Hoa  """Hoa )|
= = —sin6, — (1 — cos 6)&,.

Yy
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The only nonzero strain components in expressions (3) at P are ex and yxy (€a =
€x, €n = E€y):

=€x = (1+%)_1(§U_a —ncosé o + Us =11 —cosﬁ))

- Hoa Hoa R
1 n\ -2 Bu, o6 un —n(1 — cos 0)\?2
+§(1+§> {(Haa'"mseﬂan’ R )
Uq — nsinf n Oun sin 8209 oo )
+(-=3 Hoe """ Hoa s
ny -1 ua—nsin9+ Ouy, — nsind a6 )—sin0 (13)
7°"=7XY=(1+§) B R Hoa """Hoa
ny -1 Ou 00  up—n(l—cosf)
-(1+5) {smg(Ha —neosbpaa R )
Uy —msinf  Ouyp a6
H(1~ eos ) ~ =+ 7155 ~"sinbyae )}

It is of certain interest to notice that though the beam undergoes no stretching in the
direction of the normal, the linear part of strain component €, does not vanish. The
nonlinear part cancels, however, the nonzero linear part of it.

The expression of the shear strain yan can be simplified to the form

Yan = (1 + %)—1 [cose(% 1;;) sm9(1 + gtéo u_,,)] ) (14)

and the normal strain, correspondingly

fo = %(l+%)_2{(%—%)2+(1+%+%)2

von( - o050) [0 = ) o (e g v )] 09

a6
n2(% B H@a) }— %

According to the BERNOULLI assumption or the beam theory with vanishing shear
deformations the rotation function can be solved from equation (14) by setting the
condition von = 0. Thus the expression

Hoa "R (16)

is obtained.

In stability analyses, particularly, the nonlinear terms in the expressions of strains are
adopted selectively by sustaining on the assumption, that the angles of rotation are
prevailing compared to the terms of deformation, for example NovozuiLov [3], ODEN
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[4]. Recalling the definitions of the strains (3) and performing the rearrangement of the
terms results in

X=X X ax Yoy Tax "oy
_ Oux Ouy 10ux /Oux Ouy _ Ouy Oux 17
XY =3y T ax 2ax (30 * 3% %t ) (17)

+16uy (6ux Ouy Ouy _ 6ux)

20Y \gYy ' 84X  8X oy J°

Qux 1{(8ux)2 l(auy Oux  Ouy c?ux)2}’

By defining the rotation vector & which is a vector perpendicular to the plane of the
beam, i.e. & = wz€z in which

The subscript Z has been dropped here for convenience. At point P this can further be
developed to the form

1 ny -1 Ug —nsinf  Oug, a .
w=§[(1+§) (— 7 +H601 nsinf——— aa)+s1n9]
1 n\~"1[Bup ua . n 1 o0
_5(1+E) [Haa—f+sm0(1+§)+nsm0(R Haﬂ)]
After taking into account (18) the expressions (17) take the form

o= G {(R) iR+ 5 e )

dux Ouy l{@ux (3ux 6uy_2 )+3uy (3ux+3uY+2w)}.

(19)

XY =5y T ax ax \av T ax v \ay T ax

(20)
The nonlinear expressions can now be simplified by retaining only the terms quadratic
in w yielding finally

Oux 1 ,_0u ou . 04 _ \?
X=5x t3¥ T5x Xt (ax EY_W""X)’ @)
_Oux Ouy 06u . 01 ,
=2y tax “ay Xtax &

At P these expressions obtain rather complicated form

em () o Gl 0] -

+;(1+R) [31‘;:; %+sin6(1+%)+nsm0(; ;‘g )]2, (22)

7“:(1_*_%)—1[% 1;; sn€(1+n;ga)].
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The assumption of EULER-BERNOULLI for the vanishing shear deformation produces a

condition 9 Bu "
. n [¢4

sm0<1+nHaa> = Hoe R (23)
This result shows the angle of rotation to be dependent on coordinate n, which is against
the initial assumption in the displacement kinematics (11). To avoid this discrepancy,
the condition (23) could be demanded to be valid in an average sense for instance by
integrating over the height of the cross-section or by considering it at the neutral axis
i.e. at level n = 0. In this context, however, (23) will be applied in its consistent form.

The strain component €4 is thus

n\ -1 [ ug Uup 1 . o 1 2 a0
o= (1+= e W O B el —=(1 - 0)? + o——\1.
¢ ( R) [H@a R 2sm g n(ZR(l cssf)F + coe Haor) (24)

5. EXAMPLES

Consider at first a thin arch following the stability analysis of SiMITSEs [6]. This means
that the terms dependent on normal coordinate n can be dropped as insignificant or
the consideration can be done on the axis of the arch. The expressions for the strains
(14) and (15) are thus

o frrp a9 G B

Héa R Héa R Héa R (25)

o =B 2) (14 55+ )

The strain €, which is precisely the same given by SIMITSES is independent of the angle
of rotation and so EULER-BERNOULLI assumption has no meaning in this case. Instead,
by applying the equations (22) and (24), gives the corresponding relations in the form

Ouq Un 1.,
= ——+ — + —sin® 0,
Hda R 2 (26)

€a

Applying now condition (23) for vanishing shear deformation gives for the strain
component €, an expression

Oug Un 1(0u,1 u_a)2.

Hoa TR T2\Hoa " R (27)

€a =

Consider next voN KARMAN’s beam theory for beams and shallow arches. It is assumed
that the derivative of the axial displacement is small likewise all terms containing 1/R,
TuoMALA [7 ]. When these are dropped the expressions (14) and (15) take the form

n a "o, 2
= () i e o)+ 2 ()

Oun,

Hoo

(28)

Yan = cosf —sinf.
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From the latter the angle of rotation can be determined according to the EULER-
BERNOULLI assumption yielding

tanf = %, (29)
and finally for the strain e, an expression
" " 2
azl i 2_2nu—n+ ln2(.___un__) , 30
€ 2 (un) f(l F (u;)z)s 2 1 4 (u:'l)2 ( )

in which the notation ()’ = 8(-)/Hda for the derivative with respect to the arch length
is adopted, for brevity.

Applying then finally expressions (22) results in the relations

1

-—= —ain2
€q = ncosﬂHaa + 3 sin” 6, (31)
= Oun _ sin (1 +ni)
Tor = Hoa Hoa”

which reduce with the assumption of vanishing shear deformation, according to (24),
on the beam axis to the form

€a = %(u,n)z - nu',i, (32)
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APPLICATION OF DIMENSIONAL ANALYSIS
TO PROBLEMS OF FLUID MECHANICS
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ABSTRACT

The application of dimensional analysis to a well-known example is described. The
objective is to illustrate how dimensional analysis can be used to improve the physical
understanding of fluid mechanics problems.

1. INTRODUCTION

Dimensional analysis is an elegant and powerful tool both in the theoretical treatment
of the differential equations that govern physical phenomena and in the efforts to
rationalize experimental work. It has been found out, however, that the application
of dimensional analysis to practical problems often leads to failure and disillusionment.
Thus, there is still a need for detailed expositions of the fundamental ideas.

In this paper, a well-known example of the application of dimensional analysis is
discussed. Attention will be paid to points-of-view which may help to increase the
physical understanding of fluid mechanics problems. Essentially similar lines of thought
have been employed in our laboratory to solve more complex problems of current
scientific and technical interest. Those results cannot be presented in this paper due to
lack of space but will be presented in another publication in the near future.

2. DRAG FORCE ON A SPHERICAL BODY

Consider the following problem. A spherical body with a diameter D is immersed in a
fluid stream moving with a constant velocity U. The density and viscosity of the fluid
are p and 7), respectively. We want to determine the drag force F acting on the body,
that is, we are searching for a relationship of the type

F = f(D,U,P,TI)- (1)



374

It has to be noted, of course, that this is not really a problem of current scientific
interest. The problem has been worked out in great detail in the past and is now widely
used as an example in textbooks of dimensional analysis and fluid mechanics; see, for
example, (1, pp. 14-16; 2, pp. 53-55, 248-255; 3, pp. 413-414].

Let us first go through the standard procedure of dimensional analysis. The solution is
obtained as follows. Note first that there are five variables (F, D, U, p, 7) and three
fundamental dimensions (mass, length, time). It can be easily shown that the rank of
the dimensional matrix is three. Thus, there are 5 — 3 = 2 dimensionless variables in a
complete set and the solution can therefore be expressed as a relationship of the type

o, = f(IO). (2)

The commonly used dimensionless variables are

F 8§ F
H1 = CD = .:.D?%pva = ;pUzDz (3)
and
I, = Re = % (4)

which can be substituted into Equation (2) to obtain

Cp = f(Re). (5)

Thus, the drag coefficient Cp is to be expressed as a function of the Reynolds number
Re. It has indeed been confirmed by experimental investigations that a relationship of
this type exists; see, for example, Fig. 1. in [1, p. 16] and Fig. 4-1. in [2, p. 54].

Two regions are of particular interest:

Cp = % for Re < 1 (6)
and
Cp ~ 0.44 for 10° < Re < 2.10°. (7)

Equation (6) is the well-known Stokes’ law, which can also be derived theoretically
using the creeping flow assumption; see, for example, (2, pp. 248-255]. The creeping
flow assumption means that the inertial terms in the equations of motion are discarded
since they are assumed to be negligible when compared with the pressure and viscous
terms.
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This is as far as the textbooks will take us; naturally, many more details are usually
given along the way. But there is much more to be gained with some extra thoughts.
Let us consider a few interesting questions.

(a) How do we know that all important variables were included in the analysis? And,
on the other hand, how do we know that the variables included in the analysis are
relevant?

(b) Why do we want to use Cp as the dependent dimensionless variable and Re as
the independent dimensionless variable? After all, dimensionless variables can be
chosen in an infinite number of ways.

(¢) Do the special cases Re < 1and Re > 1 have some particular physical significance?
What would that be?

Question (a) may seem rather unnecessary since the validity of the theoretical analysis
was already confirmed by the fact that the experimental data of Cp vs. Re follow a
single curve. Collecting experimental data is, however, a tedious and expensive method
of checking theoretical predictions. It makes sense to search for ways to refine our
analysis before experimental investigations are to be undertaken.

It should first be noted that consideration of dimensional requirements may sometimes
prevent gross mistakes. We know that the fundamental equations of fluid mechanics
are dimensionally homogeneous and that the solutions of fluid mechanics problems can
therefore be expressed by means of dimensionally homogeneous equations. Thus, one
should check the list of variables to see whether it is possible to construct dimensionally
homogeneous equations between the variables; if not, then at least one variable is
certainly missing. For example, Langhaar [1, p. 14] has discussed a hypothetical case
in which both p and 7 are disregarded in the problem described above. He pointed
out that since it is impossible to construct a dimensionally homogeneous equation
of the type F = f(D,U), one should be warned not to proceed along this line any
further. On the other hand, Kline [4, p. 6] has claimed that consideration of dimensional
requirements is not likely to be of much help in practical problems.

It must also be recognized that one will not be able to know which variables are to be
included in the analysis unless one has a sufficient understanding of the phenomenon
being studied. According to Kline, this is the most difficult part of dimensional analysis
[4, p. 6]. Bridgman emphasized the importance of a sufficient understanding [5, Ch. V]
and stated that “... we are to imagine ourselves as writing out the equations of motion
at least in sufficient detail to be able to enumerate the elements which enter them.
... (We use equations of motion in a general sense, applying to thermodynamic and
electrical as well as mechanical systems.)” Langhaar gave some advice on the selection
of variables [1, pp. 14-15], but a more detailed treatment would have been worthwhile.

At this point, it will be instructive to carry out some speculations. First, what will
happen if we assume that p can be disregarded but 7 cannot? We will then be searching
for a relationship of the type F = f(D,U,n). Or, on the other hand, what will happen
if we assume that 7 can be disregarded but p cannot? We will then be searching for a
relationship of the type F = f(D,U, p). Let us go through these two cases.
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In the first case, we have four variables (¥, D, U, n) and three fundamental dimensions.
The rank of the dimensional matrix is three. Thus, there is only one dimensionless
variable in a complete set and the solution can therefore be expressed as

F
where C is a constant. Thus,
F = CqDU. 9)

The value of C cannot be found by means of dimensional analysis; other methods are
needed.

Now note that substituting Equation (9) into Equation (3) gives

F 8 ., 7 8 -1
= — = (—— = - 1
Cp %DZ%pUz 1GCUD ﬂ_CRe (10)

which becomes Stokes’ law when C = 3w. Thus, the relationship Cp ~ Re™?! can
be found in a simple manner using dimensional analysis and the assumption that the
density of the fluid can be disregarded. Note also that the assumption that the density
of the fluid can be disregarded is consistent with the creeping flow assumption.

In the second case, we have four variables (F, D, U, p) and three fundamental
dimensions. The rank of the dimensional matrix is three. Thus, there is only one
dimensionless variable in a complete set and the solution can therefore be expressed as

_F
~ pD?2U?

=C (11)
where C is a constant. Thus,

F = CpD*U2. (12)
The value of C cannot be found by means of dimensional analysis; other methods are
needed.

Note that substituting Equation (12) into Equation (3) gives

F 8
Cp = p2loy? ;C (13)
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which becomes Equation (7) when C = 0.173. Thus, the relationship that Cp is
independent of Re can be found in a simple manner using dimensional analysis and
the assumption that the viscosity of the fluid can be disregarded.

The fact that dimensional analysis can be used to derive the results shown in
Equations (10) and (13) has also been pointed out by Tritton [6, p. 94].

We are now able to move to questions (b) and (c). Two important special cases have
emerged: for Re < 1, the viscosity of the fluid is important whereas the density of the
fluid is not; for Re > 10°, the density of the fluid is important whereas the viscosity
of the fluid is not. There is also a region where both the density and the viscosity
of the fluid are important; this region is defined by 1 < Re < 10%. Thus, Re
seems to be an important parameter with obvious physical significance and it is quite
natural to choose Re as the independent dimensionless variable. It should be noted, of
course, that the physical significance of the Reynolds number can also be established
by manipulating the equations of motion; see, for example, 2, Ch. 11]. This point will
be further discussed in the next section.

Note that the words “independent” and “dependent” are used here in the meaning es-
tablished in Article 16 of Langhaar’s textbook [1, pp. 38-39]. Thus, the commonly used
terms “independent variable” and “dependent variable” have simply been introduced
into dimensional analysis. It has to be noted, however, that Langhaar has also used
the term “independent dimensionless variable” in another, entirely different meaning.
According to Article 7 in [1, pp. 16-18], an independent dimensionless variable is a
dimensionless variable which cannot be expressed as a product of powers of the other
dimensionless variables in a complete set. In this particular case, Cp is dependent in the
sense that its value will depend on the value of Re and independent in the sense that Cp
cannot be expressed as a power of Re. It is rather unfortunate that such confusion in
terms has arisen.

3. ANALYSIS OF GOVERNING EQUATIONS

Consider the steady flow of an incompressible Newtonian fluid (neglect any body forces).
The flow is governed by the equation of continuity and the equations of motion. The
equations of motion are also called the Navier-Stokes equations and are of the form

Ov. Op 8%v,
pv,79:+... = —a—z-}"f] 62:2 + ... (14)

where the inertial terms are on the left-hand side and the pressure and viscous terms
are on the right-hand side. For the purposes of this study, it is sufficient to consider the
general form of the various terms; thus, only the z component of velocity and partial
derivatives with respect to  are shown here. The complete equations can be found in
textbooks of fluid mechanics.

Let us now try to develop a methodology for comparing the importance of various terms
in the Navier-Stokes equations. We first non-dimensionalize the equations as follows.
Choose the dimensionless variables
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(15)
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where U is the characteristic velocity, L is the characteristic length and P is the
characteristic pressure. Thus, the partial derivatives can be written as

% = g% s = E___azf’” @ - E-B_ﬁ (16)
oz ~ L0z ' 0Oz  L[*03 ' 8z Loz

and substitution of Equations (15) and (16) into Equation (14) gives the dimensionless
form of the Navier-Stokes equations:

= % — _i@+i(326’ )
Vs gz Tt = ToUiBE T pUL\ D& T
P 8 1 (&%,
- et ) (a7)

Let us assume that U, L and P have been chosen in such a way that all dimensionless
variables and their all derivatives are of order unity everywhere within the system being
studied. Note that this assumption is rather subtle and cannot always be satisfied; see
the discussions in [2, Chs. 11 and 15; 4, pp. 101-105]. For example, in boundary layer
flows there are two characteristic lengths and velocities.

The relative importance of various terms can now be compared. For Re > 1, viscous
terms will be negligible when compared to the inertial terms. For Re <« 1, inertial terms
will be negligible when compared to the viscous terms. Thus, the physical significance
of the Reynolds number has been established.

How should one choose P? The pressure terms in the Navier-Stokes equations are
always comparable to at least one other term involving the velocity [6, p. 66]. It has
~ been suggested by Denn [2, p. 235] that

P = pU? for Re < 1 (18)

and

P=— for Re > 1. (19)
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A new approach is proposed here. Let

U U
P = pU2+1—7— = (Re+1)n— (20)
L L
which yields
P 1
pU? 1+ Re (21)

and the dimensionless form of the Navier-Stokes equations becomes

. 0, _ 1\ dp 1 [/8%*,
‘v,g-%... e _(1+§,—e)ai+ﬁ(352 +) (22)

For Re < 1, Equation (22) becomes the creeping flow equation

_@ + 82‘6’

ot gt =0 (23)

For Re > 1, Equation (22) becomes Euler’s equation of inviscid motion

G, , 0

’03-6—5-}-... —ai. (24)

Thus, the characteristic pressure given in Equation (20) seems to be a reasonable choice.

CONCLUSIONS

Successful application of dimensional analysis to problems of fluid mechanics requires
good physical understanding of the problems. On the other hand, skillful application
of dimensional analysis can increase the physical understanding of fluid mechanics

problems.
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STRUCTURE OF SKI

MSc, Lic. Tech. Pekka Hautala

Helsinki University of technology, Laboratory of Machine Design
Otakaari 4 A

FIN-02150 Espoo, Finland

ABSTRACT

Various mechanisms contribute to the resistance to sliding over snow: plowing and
compaction in front of the slider, snow deformation below the slider, deformation or
fracture of the asperities, shear of the water films that support the slider's weight,
capillary attraction from other water attachments, and dragging along surface dirt.

The mechanisms do not operate independently. Different mechanisms dominate under
different conditions of load, speed, temperature, roughness, wetness, snow type, and
slider characteristics. One of the factors that affects the above mentioned conditions,
is the structure of the ski, especially as far as the plowing and compaction factors and
deformation under the ski are concerned. In addition, the spreading of the surface
pressure below the ski affects the tribological contact between the sole and snow.

This paper presents the measurement methods and equipment of the mechanical
properties of the ski, measured results as well as conclusions are drawn from the
structure of a good ski.

1. INTRODUCTION

At the moment there are two ways to ski, the traditional one and skating. The ski for
the traditional skiing can construct properly well, but the ski for skating is much more
complicated. The reason is that, that the traditional skiing is a two dimensional and
skating is a three dimensional case.

The low friction, when the ski is sliding on the snow, is due to water film lubrication.
If the sliding speed is appreciable and temperature below 0°C, the local surface
melting is produced by the frictional heating of the sliding surfaces (fig. 1) /1/, /2/.

In the later investigation has been noticed, that various mechanisms contribute to the
resistance to sliding over snow: plowing and compaction in front of the slider, snow
deformation below the slider, deformation or fracture of the asperities, shearing of the
water films that support the slider's weight, capillary attraction from other water
attachments, and dragging along surface dirt /3/.
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FIGURE 1. Water film lubrication /1/.

There is no water film lubrication under the tip of the ski. The contact is dry. In
addition the snow compresses and it's pushed aside from that area. At the middle of
the ski the snow compression, deformation and fracture of asperities, shearing of the
water film, capillary attraction and drag by the surface dirt resist the sliding. If the
processes operate independently, the total friction (1) can be expressed as the sum of
terms representing each mechanism /3/:

K = Uplow *+ Udry + Hlub + Hcap + Pdirt

And when two processes interact in parallel, the total friction can be governed by:

1p= 1/ugry + 1pjup

The total friction depends extremely much on the contact pressure of the ski and the
snow /3/. There is presented a typical pressure distribution in the fig. 2. It has been
noticed by experience that the distance between pressure areas (wheel base) is long in
good skating skis. Also the pressure distribution is tapered.

v

FIGURE 2. The pressure distribution under the ski /4/.
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The mechanical properties of the ski have a great effect on the total friction of the ski.
Also the skating skiing has created new requirements of the mechanical properties of
the ski.

The goal of the research work is to find out the properties that make skating skis good
to ski and to develop the ski better than ever (fig. 3).

The paper presents the measurement methods and equipment of the mechanical
properties of the ski, measured results as well as conclusions are drawn from the
structure of a good ski.

SKI 2000

CAN WE
IMPROVE?
HOwW?

PROPERTIES WHICH
MAKE SKI
GOOD

/I

BAD SKI

FIGURE 3. SKI-2000 research.
2. Experiment methods and equipment

2.1 Bending stiffness and shape

An equipment was developed to measure the bending stiffness and the shape of the ski
(fig 4). The shape of the bottom of the ski is measured by potentiometer and the data
is acquisited by computer. The equipment can define the shape with the resolution of
0,012 mm in every 0,2 mm.

First the shape is defined without the load. Then the shape is measured in three point
bending position. The difference of these two is the diffraction line. The bending
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stiffness distribution can be calculated from the diffraction line by the difference
method.

FIGURE 4. The bending stiffness measurement equipment.
2.2 Contact pressure

The theoretical relationship between bending stiffness and contact pressure is quite
complicated, because the ski is non-straight beam on the elastic basis. For the reason
was developed the contact pressure measurement equipment (fig. 5). In earlier
investigations the contact pressure was measured by removable sensor, but this
technique turned out to be unreliable.

FIGURE 5. The contact pressure measurement equipment.
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The current equipment consists of 34 strain-gage pressure Sensors, by which the
contact force can be measured in every 125 mm. The elasticity of the sensors is the
same as the one of the skiing track's (fig. 6).

The ski is loaded by step-by-step increasing force. The measured data is acquisited by
the computer.

FIGURE 6. The pressure sensor.
2.3 Moment of inertia
The moment of inertia of the ski can be measured by a simple torsional pendulum

(Fig. 7). The moment of inertia is calculated from the oscillation time, if the
oscillation time of a sub-structure with known moment of inertia is measured.

FIGURE 7. The equipment for measuring the moment of inertia.
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2.4 Torsional stiffness

The torsional stiffness of the ski was detected by measuring the angle of torsion, when
the ski was loaded with known torsional moment.

2.5 Vibration properties

The vibration properties of the ski were measured in the Laboratory of Strength of
Materials in Helsinki University of technology. The measurements were done by
GenRad 2515 real time spectra analyzator.

3. Results, Skis of the Finland's skiing team
The measured skis were selected by Finnish ski racers. They used the skis in

competitions during the season 1993-1994. The skis were named A-D. The results are
presented in figures 8 - 15.
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FIGURE 9. Weights.
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FIGURE 10. Bending stiffnesses.
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FIGURE 15. Mode shapes 1-6.

4. CONCLUSIONS

4.1 Equipment

Concluded from the measurements it can be said that the working reliability of the
equipment is good. The equipment for measuring contact forces and moments of
inertia were first time in use. Other equipment have been utilized earlier.

The pressure sensors in the equipment for measuring contact forces should be at the
same level of heigth. The 6th sensor was obviously at lower level than the others
during the measurements.
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4.2 Results

The biggest differences between skis can be said to be in weights, contact forces and
torsional stiffnesses. The differences in weights are partly due to differences in
lengths.

The weights of the skis were measured with equal bindings. If we want to know real
differences between skis, the weight of the binding (130 g) should be taken from the
weight of the ski. The weight of the binding is rather big. More attention should be put
in to developing lighter bindings.

In the introduction was mentioned that the distance between pressure areas (wheel
base) is long in good skating skis. All the skis have this property. Obviously ski D is
for lighter racer, because the ski has bigger contact forces under the binding than the
other skis. It is also noticeable, that the contact force doesn't increase after the certain
limit while the load still rising.

If the ski does not have enough torsional stiffness, it twists and is no more steerable.
The measuring method was novel, and therefore no exact conclusions can be drawn.
But obviously the ski D compensate its poor bending stiffness by the good torsional
stiffness, and there fore a racer considered it as a good ski. Because the torsional
stiffness is an important property of a ski, it should be developed a more accurate
measurement equipment in the future.

There were only small differences between the skis in the vibration properties. The
greatest differences were in the 3rd mode. The ski C had the lowest natural vibration.
This was due to the camber of the ski C, which was larger than the one of the other
skis'.

As a conclusion it can be stated that the distance between pressure areas (wheel base)
is long in good skating ski, and it has enough bending and torsional stiffness and it
should be light.
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FULL 3D STRESS FIELD ANALYSIS IS TO BECOME THE GENERALIZED
FRACTURE PARAMETER

KARI IKONEN & HEIKKI RAIKO
VTT Energy
P.O. Box 1604, FIN-02044 VTT, FINLAND

ABSTRACT

Numerical results of the shallow crack effect is presented. The fracture toughness in transition
area measured in J-integral is considerably increased, when crack depth or length is low. This
phenomenon can be simulated using materially nonlinear FE-method and very detailed FE-
mesh to get the actual value of the local stress close to the crack tip region. The cleavage
fracture is assumed to take place when the maximum crack closing stress component has
reached the critical value. This is, in principle, application of maybe the eldest strength
hypothesis in the world, the maximum principal stress hypothesis instead of J-integral
approach. The result of these kind of analyses can be used as a constraint correction parame-
ters in fracture toughness experiments, where the specimen dimensions (size) do not fulfil the
requirements to produce small scale yielding (SSY) condition. Even the very largest test
specimen do not exactly produce the SSY condition, so, a numerical analysis of this kind
always decreases the amount of error in test result interpretation.

1. INTRODUCTION

When making fracture mechanics tests with small or moderate size test specimen, the K;-
dominated stress field is highly disturbed in 2D-specimens close to free surfaces or in all the
crack area, if the crack is shallow or ligament is small compared to other dimensions of the
small specimen. All these effects are increased in significance if the plastic zone in the crack
tip is large compared to the depth (a) or ligament of the crack, ref. [1], [3]. The code
requirements for fracture mechanics tests (ASTM E399-83 and ASTM E813-87) define the
minimum size of the test specimen as a function of flow stress and J-integral loading level.
However, to know more exactly the 3D-stress state, the effect of reduced constraint at or
close to free surfaces, the form and width of plastic zone, the variation of COD and J-integral
in the front of crack tip, and the possible errors in interpretation of test measurements, very
detailed nonlinear 3D stress analysis is needed. In the following, a short description of the
FE-analysis system made for this kind of analysis is given and some numerical results are
reported and discussed. The results show that a lot of error can be avoided in the interpreta-
tion of fracture mechanics test results, if a detailed 3D FE-analysis is made in addition to the
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test itself with known stress-strain-relationship of the tested material and with known shape
and dimensions of the test specimen and the initial crack.

2. STRESS FIELDS IN CLEAVAGE FRACTURE

If we look at stress components in front of crack tip in mathematical plane strain (MPS)
condition, Fig.1, we can see that the crack closing stress component in the very tip of the
crack is equal to yield strength corresponding the strain rate. This means that the stress state
at the blunted crack tip is two dimensional due to the free surface of the blunted crack tip. If
we go ahead in front of the tip, the stress state becomes more three dimensional and the
current stress components grow much higher. The maximum of the crack closing stress
component is about three times the one dimensional yield stress and the location of the
maximum is about 2 - 4 times CTOD in front of the crack tip. This can be decided even by
linear elastic reasoning, by FEM or by slip line theory.

The cleavage fracture is assumed to take place when the maximum crack closing stress
component has reached a critical value. This is, at least in principle, application of the eldest
strength hypothesis in the world, the maximum principal stress hypothesis by Rankine, Lamég,
Clapeyron and Maxwell. Keeping this in mind, we can now make a correlation between the
measured value of critical J-integral from a test specimen and the respective critical J-integral
value in undisturbed small scale yielding field, (SSY). This kind of numerical stress analysis
application can be used in the lower transition region where extensive plasticity precedes
unstable fracture.

y
‘ = 30n
oy
Om
CTOD 90° —
X

FIGURE 1. The maximum crack closing stress component in front of a crack tip.
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3. NUMERICAL ANALYSIS PROCEDURE

A FE-method based computer code was developed at VTT Energy for special analysis
purpose now in question. The basis of the program is a typical materially nonlinear FE-
program. The nonlinear behavior of material is programmed according to von Mises’s
yielding condition and associative flow rule [4]. Due to nonlinearities the analysis process is
incremental and step by step iterative. The special features needed in the FE-program for
nonlinear analysis of stress fields very close to crack tip are:

- automatic node and element generation for very high density, well shaped and balanced
mesh in the crack tip area,

- calculation of CTOD according to [9] in the crack front during the incremental analysis,

- calculation of J-integral in the crack front by path and domain integral method, and by
a very powerful and accurate own developed method for curved crack front (eg.
semielliptical cracks). The average J-integral is also calculated globally from beam
deflection and reaction force,

- calculation of maximum crack closing stress component (the most positive principal
stress component) in front of crack tip in the distance of about 1 to 10 CTODs during
the incremental analysis,

- automatic reference case analysis (small scale yielding), where the FE-modeled crack
tip area is analyzed with forced displacement boundary conditions based on analytical
solution of small scale yielding infinite field [3], which gives a HRR-field close to
crack tip, ref. [5], [8],

- comparison of calculated J-integral values in small scale yielding field solution and real
test specimen geometry solution corresponding to equal maximum crack closing stress
component in front of the crack front locating in the distance of about 2 - 4 times local
CTOD, ref. [3], and

- post processing capabilities with interactive color graphics.

First a 2D FE-program was developed including the features described above. The 2D
program includes the options of analyzing plane strain, plane stress and axisymmetric stress
state. When doing 2D analyses it became evident that in addition to the relative shallowness
(a/W) of the crack the distance of free surface at the ends of the crack in specimen also had
a prominent effect in local stiffness, stresses and J-integral values. Therefore, the FE-code
was expanded into 3D. In 3D program the calculation of J-integral had to be changed from
line integral to domain integral method. The 3D program is able to model the effect of the
partly plain stress state close to free boundary at the specimen edge. Accordingly, the possible
side grooves of the specimen can be exactly modeled in the analysis. The 3D analysis gives
the J-value in all calculation points of the crack front and the average J-value over the crack
front can be calculated, too. Thus we are able to compare the measured average value from
the test and the actual maximum value of the fracture parameter. The need of very small
elements, whose dimensions are equal to order of CTOD, and the need of calculating high
stresses compared to uniaxial yield strength causes frequently some numerical troubles and
the iteration processes have to be continued to very high accuracy to get stable results., The
updating of stiffness matrix is important for accurate and effective calculation.
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4. MODELING OF THE CRACK TIP

In 2D analysis 8-noded and in 3D analysis 20-noded isoparametric elements with reduced or
full Gauss quadrature were employed in the models. The mesh close to crack tip front is
generated in polar coordinate system. The mesh is often generated only for a symmetric half
of the structure. Circumferentially the elements are evenly distributed typically in 8 or 12
element sectors. Radially the elements are generated in a way that the radial length of the
element layer is increasing in geometric series. The minimum element size close to the crack
tip must be order of one COD with reasonable load level and the outside diameter of the cir-
cular mesh area must be at least ten times the plastic zone dimension. The reasonable size
ratio between radial element layers is between 1 and 2. This leads to 10 to 30 radial layers
of elements in the near tip field mesh. These rules yield typically to element meshes shown
in Fig. 2. for three point bend specimen. There are 1092 nodes and 329 elements in the mesh.
The semi circular area close to crack tip contains 30 layers of 8 elements.

In 3D models the symmetry of three point bend specimen is used in two sections; the
transverse section at crack plane and the longitudinal vertical section in the axis plane of the
beam. Thus only a quarter of the beam need to be modeled. The number of element layers in
the half thickness dimension of the test specimen were varied from 1 to 4, which corresponds
to 2 to 8 element layers in the full thickness. Two element layers give reasonable results for
beam without side grooves, but a beam with V-shaped side grooves needs 3 to 4 element
layers in half thickness direction to give stabile local values for the fracture parameter. The
element layers have to be focused close to the free surface. In the middle part of the beam
model the element layers can be thick compared to the thickness of the specimen.

FIGURE 2. Typical 2D mesh for three point bend test specimen.

5. NUMERICAL RESULTS FOR THREE POINT BENDING SPECIMEN

First application of the 2D FE-analysis system was the analysis of a three point bending test
specimen (W=150, B=75 and L=600 mm), refs. [6], [7]. In some actual tests the initial crack
length had been a=15 mm. The material stress-strain relationship in test temperature was
tested and constants for Ramberg-Osgood material model were defined.
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First a reference analysis was made for the SSY-solution. A semi circular element mesh with
high element density was made. The load for that was a forced displacement field at the outer
boundary of the model. The displacement field is based on analytical solution of small scale
yielding infinite field. The forced displacement components at radial distance R in angular
coordinates © are as follows:

- (1+V) K, e 1
U, = —— "Tznz (3-4v-cosB) cos(8/2) (1)

_ (1K, e , "
u, = —p— ‘/_2_1; (3-4v-cosB) sin(6/2) (2)

The SSY reference analysis was run incrementally as far as the required J-integral level was
reached. During all load increment level the J-integral, CTOD and the maximum crack
closing stress component were calculated and stored.

Secondly the analysis for the test specimen was done. The element model and mesh was like
in Fig. 2. The loading force F was incrementally increased and J-integral, CTOD and
maximum crack closing stress component were calculated, respectively. When the maximum
crack closing stress component and value of J-integral were compared in SSY analysis and
the test specimen analysis, following result was received, Fig. 3. Equal analysis with the same
material properties was repeated also for an other three point bending test specimen (W=100,
B=50 and L=400 mm), and the result is plotted in Fig. 3, too.

50
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FIGURE 3. Relation between J-integral values in test specimen and in SSY condition at

loading levels which generate equal maximum crack closing stress component. Parameter "n
is the hardening exponent in Ramberg-Osgood model.
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In three dimensional analysis of the bend specimen the local variation of the fracture
parameter in the crack front can be seen, Fig. 5. The reason for the changes of the parameter
is that the stress state in the heavily loaded and plasticized crack tip area are changing from
plane stress situation on the free surfaces of the specimen through plane strain state to
complicated 3D stress state in the central part of the test beam, where the strain is clearly
positive in the thickness direction of the test specimen. In addition, in small specimen with
50% crack depth the effect of the plastic zone caused by the tool bringing the external force
to the specimen interacts with the plastic zone caused by the crack tip singularity. The result
given in Fig. 3 were converted into temperature/stress intensity factor -coordinate system to
visualize more clearly, what is the shallow crack effect in this test specimen and material
property case. The J-integral values were converted to K;-parameter values and, moreover, the
K-parameter values corresponding to SSY condition were calibrated to a typical exponential
K,-curve. Then the calculated test specimen K;-result could be plotted in same figure. The
result is plotted in Fig. 4. There are also calculated result with the same specimen geometry
but a slightly different material properties.
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FIGURE 4. Test specimen results and the corresponding critical K, .-values (SSY).
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FIGURE 5. Maximum O, and local fracture parameter in specimen with increasing load.
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6. THE CRACK DEPTH CORRELATION TO FRACTURE TOUGHNESS

A primary parameter in the depth effect of the crack is the size of plastic zone compared to
the depth of the crack. In the regime of linear fracture mechanics the characteristic radius ,
of the plastic zone [2] in plane strain condition is

KZ
oK m @
o, (1-v¥)a,

where K, the stress intensity factor, o, is the yield strength, E elasticity modulus and v
Poisson’s ratio. In considering strain hardening o, should be substituted by some other
characteristic stress. Let this be the parameter o, in the Ramberg-Osgood fitting function. A
suitable dimensionless parameter to correlate to fracture constraint is the ratio between the
radius r, and the crack depth a. Thus we can seek the crack depth correlation in form

_ E J \7
Te = Tivk (55 a—og) I Jessy - (4)

This fitting fulfills the requirement J, — J.ssy, When a — oo Formally it follows

_ E J \m
Kige = \Il+k(1—v2 aTO") Kic (5)

where K, is calculational fracture toughness.
By fitting a curve by least squares in Fig. 4 to the points calculated by FE-method in the

interested area, namely below K, = 100 MPaVm values k = 0.993 and m = 0.889 are
obtained and equation (5) will look like

2 . 0.889

K
Ko = J1+0.993(ﬁ) Ky (6)
0

It should be emphasized that equation (6) is valid only when n = 10. For other hardening
modules n the parameters k and m must be calculated accordingly.

CONCLUSION

Numerical application of FE-method is presented to correlate the size, shape and relative
dimensions of the test specimen and initial crack and hardening material properties to fracture
toughness in reference (SSY) condition. In addition, a correlation function procedure is
proposed to eliminate the shallow crack effect in three point bending specimen.
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The numerical results show that the present method is able to simulate the fracture mechanics
test with good accuracy. The average J-integral values calculated either from global deflection
and reaction force or from averaged local values in the crack front are both very close to
those calculated according to the ASTM testing standard.

Possibility to reliable numerical simulation of strongly nonlinear material testing gives much
deeper understanding on the phenomena and important factors of the material behavior in test
and actual operation condition.

This kind of analyses are now able to show, why the toughness of thinner plates is better than
thick plates made of same material. Secondly, this analysis procedure can be used for analysis
of relatively shallow and short surface flaws in large and thick-walled real ductile structures
giving results that tells that short and/or shallow surface flaws are not so dangerous in case
of monotonic increasing load (concerning not high cycle fatigue) as linear elastic analysis or
analytical solutions presumes.

The current activities on this procedure are focused on the analysis in case of thermal stresses
and strains in 3D structures.
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A RULE-BASED PROTOTYPE EXPERT SYSTEM FOR
THE EVALUATION AND SELECTION OF FIBER-REINFORCED PLIES

PETRI KERE
Laboratory of Light Structures
Helsinki University of Technology
Puumiehenkuja 5 A, FIN-02150 Espoo, FINLAND

ABSTRACT

Due to its simplicity, modifiability, and flexibility in applying problem-solving knowledge,
a rule-based system of Al using heuristic knowledge representation is an appropriate tool for
the construction of an expert system for design purposes. A rule-based system for the
evaluation and selection of fiber-reinforced plies is described. It searches feasible plies that
satisfy specified requirements and ranks the plies on the basis of targets set for different ply
attributes. The basic elements of an expert system are introduced.

1. BACKGROUND AND MOTIVATION

A software for analyzing composite material systems [2] is currently under development in
the Laboratory of Light Structures at the Helsinki University of Technology. An expert
system for searching feasible solutions is planned to be integrated in the software. The
system will include tools for the ply selection, laminate creation, and laminate selection on
the basis of a user defined design specification. The software is developed in the UNIX/X
Window environment. Easy expandability is one of the key requirements set for the tools of
the software.

A rule-based prototype expert system for the evaluation and selection of fiber-reinforced
plies was developed to evaluate the feasibility of the Artificial Intelligence (Al)
programming environment C Language Integrated Production System (CLIPS) in the
development of an expert system for solving design problems of composite material systems.
Requirements were set for the knowledge representation, modifiability, and expandability,
as well as for the implementation of an explanation facility [1].

2. THE CONSTRAINT SATISFACTION PROBLEM

The constraint satisfaction problem can be established as follows. Let

X=X}, j=1,.,n (1)
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be a set of attributes with values in a set of discrete and finite domains

D={D!.,.}, i=1,..,m, j=1,..,n. 2
Let

R={R}, j=1,u,n 3)

be a set of constraints called requirements, each of which shows the values compatible for
the jith attribute. The problem is to find a subset S of values such that all the constraints for
different attributes are satisfied:

S={Sy.}, i=1l,..,m, j=1,.,n, 4

where

_ D, if D;€eR, for every j=1,...,n

V=

(5)
o otherwise

Every different subset that satisfies all the constraints is called a feasible solution.

Besides being specified a requirement, a constraint can also be specified a targer. A
constraint is called a target if the strict satisfaction of the constraint is not required, but the
constraint shows the desirable values. The distance of values from the constraint is mapped
by the quality factor function. The quality factor function maps all elements of D;; into the
codomain of real number defined in the interval from O to 1 inclusive as

af;: UD,-~[0,1]. (6)

i=1
3. AI PROBLEM-SOLVING APPROACH

The basis of rules of inference comes from deductive logic. A syllogism that is any valid
deductive argument having two premises and a conclusion can be represented as follows:

Premise :  Any element that satisfies the constraint is compatible
Premise ; _ Element A satisfies the constraint

Conclusion : Therefore, element A is compatible

In an argument, the premises produce evidence to support the conclusion. The premises are
also called the antecedent and the conclusion is called the consequent. In deductive logic,
the true conclusion must follow from the premises. The advantage of using syllogisms is that
they can be expressed in terms of IF-THEN rules:

IF Any element that satisfies the constraint is compatible and
Element A satisfies the constraint
THEN Element A is compatible

In formal way, the general schema for representing an argument of this type is:
Pp-aq
R M
. q

where p and ¢ are logical variables that can represent any statements. The use of logical
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variables in propositional logic allows more complex types of statements than the basic
syllogistic forms. Inference schema of the propositional form is called modus ponens and it
forms the basis of rule-based expert systems. However, in logic the conditional p — ¢ is a
logical definition defined by a truth table and can be translated into natural language in a
number of ways, while in rule-based expert systems, the conditional p — ¢ corresponds to
the rule and p corresponds to the pattern that must match the antecedent for the rule to be
executed.

A group of multiple inferences that connect a problem with its solution is called a chain. A
chain that proceeds from given facts by using rules for changing state until the goal
condition is satisfied, is called a data-driven search, or a forward chain. An alternative
approach is a chain that is traversed from a conclusion back to the facts that support the
conclusion. That is called a goal-driven search, or a backward chain. Forward chaining and
backward chaining are the basic search strategies for state space search, whose definition is
presented by Luger and Stubblefield [5]. The basic concept of forward chaining in a rule-
based system is illustrated in Figure 1.

_O_ Given fact R8

3 .+ Inferred fact
Missing fact L J J K
l:l Applicable rule | )

Inapplicable rule

FIGURE 1. The basic concept of forward chaining in a rule-based system. Rules are
triggered by the facts that satisfy their antecedent. Given that the rule R, has to be satisfied
by facts B and C to be activated. Only fact C is present, from which follows that R, is not
activated. Rule R, is activated by facts C and D which are present and so R, produces a new
fact H. Other satisfied rules are R,, Ry, R, Ry, and R,

4. ELEMENTS OF A RULE-BASED EXPERT SYSTEM

In the human-modelling world, condition-action rules are generally called productions. In
rule-based systems a knowledge-base contains all the domain knowledge coded in the form
of productions, called production rules. Each production rule represents an independent piece
of knowledge and is identified by a name. Following the name is the IF part, or condition
part of the rule, which is a collection of individual conditions called patterns. In a reasoning
process, working memory contains a description of the current state of the problem solving
process. This description is a set of patterns that is matched against the condition part of
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rules to select appropriate actions for problem solving. In the beginning of the recognize-act
cycle, working memory is initialized with the beginning problem description. The inference-
engine controls the reasoning process as follows: the patterns are matched against the
conditions of the tules; this produces a subset of the rules, called the conflict set, whose
conditions match the patterns in working memory. The rules in the conflict set are said to
be activated. One rule in the conflict set is then selected on the basis of the conflict
resolution strategy and fired, i.e., the action part of the rule is performed, changing the
contents of working memory. This control cycle is repeated until no patterns in working
memory match the rule conditions. The conflict resolution strategy is based on a search
algorithm. The different search algorithms are discussed by Luger and Stubblefield [5]. A
schematic sketch of a rule-based system is presented in Figure 2.

The advantages of a rule-based system can be listed as follows:

1. Separation of knowledge and the inference engine enables easy modification of the
knowledge in the knowledge-base without changing the program control.

2. Modularity of production rules, from which follows that the rules have no syntactic
interactions. Thus, it is easy to expand the expert system by adding, deleting, and
changing the knowledge in the knowledge-base.

3. It is easy to build an explanation facility with rules since the antecedent of a rule
specifies exactly what is needed to activate a rule.

L

Working Memory Cn
Patterns
Patterns —> Actions

FIGURE 2. A rule-based system. The inference-engine loops until patterns in working
memory no longer match the conditions of any rules.

5. THE PROTOTYPE EXPERT SYSTEM

5.1 The need for a rule-based system. Because of its simplicity, modifiability, and
flexibility in applying problem-solving knowledge, a rule-based system of Al using heuristic
knowledge representation is an appropriate tool for the construction of an expert system for
the design of composite material systems. The need for applying symbolic reasoning and
possibilities to extend the expert system into the heuristic design support the use of rule-
based problem-solving techniques. Furthermore, it is characteristic of the design problem
that:

1. All or most of the data are given in the initial statement of the problem.

2.  The formation of the goal, or the hypothesis is difficult.

3. There are many potential goals but only a few ways to use the facts.
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Thus, forward chaining is the appropriate search strategy for the design problem.

5.2 Ply evaluation and selection problem. A composite laminate is formed of plies that
commonly consist of reinforcing fibers in a polymer matrix material. Ply constituents, their
mutual proportions, and the form and orientation of the reinforcement specify the properties
of plies, which partly define the properties of the laminate. In the evaluation and selection
problem of fiber-reinforced plies, different ply properties gathered in a ply specification,
called ply attributes, are considered design variables. The beginning problem description,
i.e., the initial state in the prototype is formed of the ply specifications stored in the
database and the design specification given by the user. The design specification may
include requirements and targets set for different ply attributes. In the design specification,
every different target is weighted with a weighting factor between 0 and 1 associating the
importance of a target. Thus, the weighting factors for different ply attributes are:

A={1, |2 €[0,1]}. ®)

The weighting factor 0 corresponds to the least important and 1 to the most important target.
The value of a quality factor function is called a quality factor. The quality factor function
is selected on the basis of the constraint. Thus, the quality factor is relative. The schematic
graphs of quality factor functions are illustrated in Figure 3.
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FIGURE 3. The schematic graphs of quality factor functions gf; (D;;) used in the prototype
system. a) Lower and upper side constraints D' and D* are specified. AD denotes the
maximum difference between the side constraints and minimum and maximum values of D,
1 €i < m. b) A certain value D is searched. c) The greatest value D,y is searched and
lower side constraint D' is specified. d) The greatest value D,y is searched, no side
constraints are specified. €) The smallest value D,y is searched and the upper side constraint
D" is specified. f) The smallest value D,y is searched, no side constraints are specified.

When quality factors are stated in matrix form as follows
QF={QF,.J.}, i=1,..,m,j=1,..,n, 9)

where
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QF; = af,(D), (10)
a cumulative ply quality for each ply can be defined as
QF ¢ ={QFf}, i=1,..,m, (11
where
n
QF/ =j321 QF; 4, (12)

Finally, feasible plies that satisfy all the requirements are selected and ranked on the basis
of ply quality factors obtained by scaling cumulative ply qualities between 0 and 1:

QF? ={QF’}, i=1,..,m, (13)
where
QF; - min QF;
QF‘p . 1<k<m . (14)
max QF, - min QF;
1<k<m 1<k<m

5.3 Realization of the prototype expert system. The prototype expert system is realized
with CLIPS, Version 6.0, developed by the Software Technology Branch, NASA/ Lyndon
B. Johnson Space Center, in the UNIX/X Window environment. CLIPS uses the efficient
Rete Algorithm [3] in pattern matching and is optimized to be a forward chaining language.
CLIPS provides a complete environment for developing expert systems.

The prototype consists of all the basic elements of an expert system. A knowledge-base with
modularized structure is the storage of information. The knowledge-base contains the design
knowledge telated to the ply evaluation and selection, explanation knowledge used to
produce the explanations, and the process control knowledge to control the process
propagation. The knowledge in the knowledge-base consists of Object-Attribute-Value
(OAV) triplets, heuristic knowledge, i.e., the production rules, and procedural knowledge
including modules and functions. Modules are used to create the hierarchial structure of the
knowledge-base. The interaction between the user and the prototype is realized with the
CLIPS user interface. The inference engine and working memory of CLIPS control the
reasoning process. The state space search is based on the forward chaining control strategy
with the depth conflict resolution strategy. In the depth strategy newly activated rules get
higher priority and the search goes deeper in the search space whenever this is possible. As
soon as the goal state is reached, the ply selection tool lists feasible plies and ranks them on
the basis of their ply quality factors. In the ply evaluation mode, all evaluated plies, also
infeasible ones, are listed. The explanation facility enables the user to ask the questions what
is being asked and what attributes are available in the knowledge-base, why the attribute is
included in the knowledge-base, i.e., the current constraint set for the attribute, and how the
program has reasoned to the resulting conclusion.
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5.4 An example run. An example of a design variable defined heuristically in the prototype
is the ply formability. The ply formability is a processing parameter contributed by the form
of reinforcement and the thickness of a ply. The maximum formability corresponding to the
hypothetical zero thickness of the ply and the change of the formability vs. ply thickness are
defined heuristically in the knowledge-base for each form of reinforcement. The simplified
ply formability F is defined as:

F=max[Fyy + 2L h,0], (15)
oh

where F,y,; denotes the maximum formability, 0F/dh the change of the formability vs. the
ply thickness, and h the ply thickness. Thus, the ply formability is a nondimensional
absolute value. The default values for F,,,, and dF/0h are shown in Figure 4c. In an example
run of the prototype system shown in Figure 4a, feasible plies are searched against a simple
design specification from the extended database of the LAMDA software [7] including 35
ply specifications with 34 ply attributes.

a.
Select ply Evaluation or Selection mode (e/s/what/why)

| oo e mmm———————————— | b.

| PLY-ID | PLY-QF | VE h weave reinforcement applicability
| mmm e ferssaamaaaas

| CEF11-02 | 0.97 | 50 0.220 plain carbon prepreg
| CEF11-01 | 0.45 | 50 0.325 satin carbon prepreg
| CEU11-01 | 0.34 | 60 0.200 unid carbon prepreg
| CEU11-02 | 0.34 I 60 0.200 wunid carbon prepreg
| CEU11-03 | 0.17 | 50 0.340 wunid carbon prepreg
| CEU11-04 | 0.17 | 50 0.340 wunid carbon prepreg
Select explanation (what/why/how/none)

why

Select attribute or all

all

ATTRIBUTE formability is specified as a TARGET with WEIGHTING FACTOR 1.00
MAXIMUM VALUE is searched for formability

ATTRIBUTE Vf is specified as a TARGET with WBIGHTING FACTOR 0.50
Value 60.00 is searched for V£

ATTRIBUTE applicability is specified as a REQUIREMENT
Value prepreg is searched for applicability

ATTRIBUTE relnforcement is specified as a REQUIREMENT
Value carbon is searched for reinforcement

C.

Ply type Fu, dF/dz
mat 1.0 -0.1
satin 0.8 -0.1
twill 0.6 -0.1
plain 0.4 -0.1
unid 0.2 -0.1

FIGURE 4. a) An example of the prototype expert system run. b) Ply attribute values of
- each selected ply. ¢) Default values for F,,,, and oF/oh.

The plies are selected on the basis of the requirements set for the applicability and
reinforcing material (applicability refers to processing). Selected plies are ranked on the
basis of the targets set for the formability and fiber volume fraction. The current design
specification is explained with why all question. We can see that the ply CEF11-02 with the
greatest ply quality factor corresponds best to the current design specification mainly
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because of its form of reinforcement (the best formability). The ply attribute values of
selected plies are shown in Figure 4b.

6. SUMMARY

A rule-based prototype expert system for the evaluation and selection of fiber-reinforced
plies has been developed with CLIPS in the UNIX/X Window environment. The evaluation
and selection of plies is considered as a constraint satisfaction problem. The constraint set
for a ply attribute may be a requirement that must be entirely fulfilled, or a target that shows
the desirable values. The selection of plies is based on requirements and the ranking of plies
on targets. An example run demonstrates the use of the prototype system. The need for
symbolic reasoning, as well as the need for simplicity, modifiability, and flexibility in
applying problem-solving knowledge are the reasons for using rule-based techniques of Al
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STEFAN-BOLTZMANN RADIATION FOR NON CONVEX SURFACES

TIMO TIIHONEN
Laboratory of Scientific Computing
University of Jyviaskyla
P.O. Box 35, FIN-40351 Jyvaskyla, FINLAND

ABSTRACT

We consider the stationary heat equation for a non convex body with Stefan-Boltz-
mann radiation condition on the surface. The main virtue of the resulting problem is
non locality of the boundary condition. Using the technique of upper and lower solutions
we prove the existence of a weak solution.

1. INTRODUCTION

Radiative heat exchange plays an important role in many situations. It has to be
taken into account in general always when the temperature on a visible surface of the
system is high enough or when other heat transfer mechanisms are not present (like in
vacuum, for example). Apart from some simple cases like a convex radiating body and
known irridation from infinity, we have to take into account the radiative heat exchange
between different parts of the surface of our system. This leads to non local boundary
conditions on radiating part of the boundary.

In this work we shall consider the stationary heat equation in two or three dimen-
sional domains {2 with radiative heat transfer on & C Q. The typical shapes of Q are
sketched in Figure 1. The main emphasis is in analysis of a closed container, i.e. when
2 is connected but has a hole. However, we will also give some remarks on the other
geometrical configurations.

The structure of the paper is as follows: First we derive the the equations for heat
balance on a radiating surface and formulate them in appropriate function spaces. Some
properties of the non local operator are then proved for later use. In the third chapter
we consider the stationary heat equation with non local radiation boundary condition
and show the existence and uniqueness under reasonable hypotheses.

NOTATIONS: We shall mainly consider geometries that belong to the class C**®. That is,
domains whose boundaries can be locally represented as graphs of functions with Holder
continuous derivatives. By L? we denote the space of measurable functions whose p:th
powers are integrable. We also exploit the well known Sobolev space H! of L? functions
whose derivatives are also in L2.
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L s

Figure 1.
2. RADIATION ON DIFFUSE GRAY SURFACES

We consider the three dimensional equivalent of the situation of Figure 1.b, where 2
is a conducting body. The domain bounded by ¥ is a vacuum (transparent and non
conducting). On I" we assume, for simplicity, that temperature is known.

On ¥ the heat balance reads as

¢g—R+J =0,

where ¢ is the heat brought to the surface by conduction. R denotes the radiation
emitted by the surface ¥ and J is the energy of incoming irridation on X.

For surfaces that are diffuse and gray as emitters and reflectors the intensity of emitted
radiation has the representation (see [2], for example)

R=eoT*+(1—¢)J.

The first part corresponds to the Stefan-Boltzmann radiation law, the second part is
the reflected part of the received irridation. In the geometry of Figure 1.b the irridation
on ¥ depends only on the radiation emitted by different parts of ¥ itself. Infact we can
write for any point s € &

J(s)=[2w(s,z)R(z)dz,

where we call w as the view factor between points s and z of £. For convex three
dimensional enclosures the view factor has the representation w = w* with [2]

(8= 2z) ny(z —s)
Ijz — s[4

w*(s,z) = e

Correspondingly, in two dimensional case (cross section of an infinitely long cylinder)
the view factor reads as
n:(s —2) ny(z — s)

o= sP

w*(s,2) =
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If the enclosure is not convex we have to take into account also the visibility factor =:

0, if3zNQ # ¢,
E(s,2) = .
1, ifszNR = 4.

The view factor can then be written as
w(s,z) = w*(s, 2)E(s, 2)-

Let us introduce the operator K : L®(Z) — L*(Z),
K(f)(s) = / w(s,)f(z)dz Vs€S, VfeL®()
s

We can now write J = K(R) and hence

R=eT*-(1-€K(R) onX
or, equivalently,
R=(I—-(Q1-¢K) 'eaT".
Now the heat balance on ¥ reads as
0=g—R+J=g-G(cT")
with
G(oT*)=(I - K)R= (I - K)I - (I-E)K) ' E)(aT*).
We shall also use for G the expression

G =(I-H)E=(-EK(I-(I-E)K)™")E.

G is the infinite dimensional equivalent to the matrix of so called Gebhart factors, [2].
Let us now present some lemmas about the properties of K and G.

LEMMA 1. Let & be a C*®-surface. Then w* € L°°(Z; LP(Z)) for p < 1/(1 — 6).

PRrOOF: Clearly we only have to treat the situation s — z for any fixed z € £. We can
choose the coordinate system so that z = (0,0,0) and in the neighbourhood of z X is a
graph of a C*® function f.

Let now s = (z, f(z)). Then we have

ni(s=2) _ Ve +f@) VIO +Vila)e oy

ls—2* — L+ [VAO)P)(|=* + f(=)*) ~ |=[?

where t € (0,1) and C is the HSlder constant of V f. In a similar way we can bound also
ns(z — s)/|z — s|2. Hence w*(z,-) can have at z a singularity of type |z|72(!=% which
gives the bound for p.

The above result holds clearly also for w as Z is in L*°. In the two dimensional case
the corresponding bound for p is 1/(1 — 26).
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LEMMA 2. The operator K > 0. If & € C' then K is a compact mapping from L?(Z),
p > 1/6 into itself and p(K) = 1.

PROOF: For convex T the positivity of K is obvious. In the general case we have
to notice that Z(s,z) = 0 whenever w*(s,z) < 0. If ¥ € C%% and v € LP(X) then
|Kv(z)| < |lw*(z, )|l s (gyllvlizs(z). The norm of w*(z,-) is uniformly bounded by a
constant depending on the Holder coefficient. Hence, Kv € L™(Z) C LP(X). As K
belongs to the class of Hille-Tamarkin operators it is compact, [3].

As [ w(s,z)dz = 1Vs € T constant functions are eigenfunctions of K with eigenvalue
1. As K maps L” into L™, the eigenvalues of K are all in L. On the other hand
|K]| = 1 as a mapping from L™ into itself. Hence 1 is the maximal eigenvalue.

In the sequel we shall assume that T is a C® surface with § > 0. Hence K maps
L? into L*® for p > 1/6 in 3D (p > 1/(26) in 2D. We also denote by E the operator
corresponding to multiplication with € € L=(X).

LEMMA 3. The operator I — (I — E)K from LP(Z), p > 1/6, into itself is invertible with
non negative inverse whenever 0 < ¢g < e < 1.

PRrOOF: (I — E)K is non negative and its spectral radius is bounded by 1 — €. Hence
we can write o
(I-(I-BK)™" =I+) (I~ E)K).
i=1
The series converges and its terms are all nonnegative.

LEMMA 4. The symmetric part of operator G, G+G7 from L?(X) into itself is positively
semi definite.

PROOF: Let v € LP(X) be arbitrary. Denote by u the solution of (I —(I— E)K)u = Ev.
Then

(v,(G+ GTWw) =2(E~Y(I — (I — E)K)u,(I — K)u)
=2(u,(I = K)E~'(I - K)u) + 2(u,(K — K*)u) > 0

as p(K) = 1.

LEMMA 5. Let d € L*(X), d > 0 be given and denote by D the operator induced by
d. Then if G maps LP(X) into L*°(X), the operator GD maps L!(¥) into L*(X) for
q 2 sp/(s — p). Moreover, (z,GDz) > 0 Vz € LI(Z).

PROOF: Let us choose a family of finite dimensional subspaces {V;} of LI(X) such
that V; C Vij, for all ¢, LX) = U;V; and elements of V:s are piecewise constant
functions. Let ¢;, j = 1,...,N; be a basis of V; with the property that all ¢;:s have
pairwisely distinct supports. The finite dimensional equivalents to operators G and
D are the matrices with components G;; = fz G(¢:i)¢; and D;; = fE d¢i¢;. Disa
diagonal matrix with non negative entries. Now let A\ be an eigenvalue of GD and
¢ the corresponding eigenvector. Then denoting y = Dz we have Re(A(z” Dz)) =
Re(zTDGDz) = Re(y"Gy) > 0 as G + GT was positively semidefinite. Evidently,
zTDz > 0 and moreover 27 Dz = 0 implies that Dz = 0 and hence GDz = 0. This
means that A = 0. In the case 27Dz > 0 we obtain immediately that ReA > 0. This
means that £TGDz > 0 for all z in the finite dimensional case.
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Let now z € LY(E) be arbitrary. We can find a sequence {z;} such that z; € Vi

and z; — z strongly in L9. Then it follows easily that Dz; — Dz strongly in L? and
consequently also GDz; — GDz in L*°. This implies the non negativity of zTGDz for
all z in LY(X).
REMARK: The above Lemma 5 is one of the main tools in the sequel. It will be applied
for the linearized version of the radiation condition. The above lemmas apply verbatim
for the geometries of Figures 1.b and 1.c. In the situation like in Figure 1.a where part
of the radiation can escape the operator K is, in general, contractive, ||K|| < 1. This
implies, among other things, that G can be strictly positive definite and for d > 0 also
GD is strictly positive definite.

3. CONDUCTION RADIATION PROBLEM

Let us now combine the radiation heat exchange with the normal heat conduction in
Q. In stationary situation the absolute temperature satisfies in  the boundary value
problem:

—kAT=f inQQ,
T=T"onT,
4-i,;—:=—q on X.

where k is the heat conductivity and f the heat source. Combining this with the
radiation law we get on I the nonlinear, non local condition

or 4
k%+G(aT )=0 onX.

To introduce the weak formulation of our system let us define for given p

Vh = {v € B@)NLA(D)] vl =T,

Ve = {ve H(Q)NLI(Z)| vlp =0},

Vot = {veV|v>0}.
Then the problem can be written as

a(T,v) + b(T,v) =< f,v > TeVhk, YweV (1)
with
a(T,v) = /ﬂkVTVv,

BT, ) = L G(o|TP T

and < f,v > is the duality pairing between VJ and (VF)'. Note that the Stefan
Boltzmann law is physical only for temperatures above zero. So in order to make the
mathematical model well posed we modified the law for negative (unphysical) absolute
temperatures.

The space V{ is a reflexive Banach space. In the three dimensional case the condition
v € LP(R) is essential for p > 4 as it can not be deduced from the trace theorems. With
the given definition of the spaces the weak form is well defined for p > maz(5,4/0).
Moreover, we have the following result for the case without the non local term:
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LEMMA 6. [1] The problem
a(T,v) +/ eo|TIP~*Tv =< f,v > Ywe VP, TeVh
s

has a unique solution T € V}, for all f € (V{)'.

THEOREM 1. Let Q be three dimensional. Assume that £ € C*%,6 > 0, T° € H/*(T),
f € (V) and that there exist two functions ¢ < ¢, ¢, € H(Q) N LP(X), p >
maz(5,4/0) such that $ <T° <y onT,

a(¢,v) +b(¢,v) << o>  Wwe Vg,

a(¥,v) + b(x,v) >< f,v > Yv € V;t.

Then there exists a unique solution T for (1). Moreover, ¢ <T < ¢ in Q.
The proof will be divided in two lemmas.
LEMMA 7. Let us denote [u] = maz((u — ¢)*,min(0,—(é — u)*)) and c(u,v) =
v Jg[u}P~v for some v > 0. Then the modified problem
A(T,v) := a(T,v) + b(T,v) + ¢(T,v) =< f,v > TeVh, WYweVd

has a unique solution.

PROOF: Let us first prove that A is monotone. Let T;,T; € V}, be arbitrary. Then
A(Tl,Tl - T2) - A(Tg,Tl - Tz) = a(Tl -1, T — Tg) + / G(O’(Tl‘1k - T;))(Tl - T2)
T

+y /E (T2~ - [LP)T - T)

2 a||Ty - T2”21,-11(9)7

where a is the coercivity constant of a. Note that we write here simply T% even when
we actually mean |T(T3. In the above the estimation of the first and the last term is
clear. In the non local term we can write for some T that T{ — T = 4|T]*(T) ~ Tp).
Then

/ G(o(T! - T)))(Th — T2) =/ Glod(Ty ~T))(Th ~T2) 20
> >

by Lemma 5 as d = 4|T> > 0 on £ and G, d and p are such that the conditions of
Lemma 5 are satisfied.. As A is hemicontinuous and, due to the additional term, also
coercive in V?, there exists at least one solution. Moreover, as A is strictly coercive in
H?', the solution is also unique.

LEMMA 8. The solution of the modified problem is also a solution of the original prob-
lem.

PROOF: We have to show that the solution T of the modified problem satisfies ¢ < T <
¥ in QU X, since then ¢(T,v) = 0 Vv € V¥ and the result follows.
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Let us prove that T < ¢. The other inequality follows with same technique. Sub-
tracting the modified problem from the condition imposed for 1 we get

a(yp — T,v) + b(1p,v) — b(T,v) 2 (T, v) Yo € Vgt

Now, b(3,v) — b(T,v) = [ G(o(¥* — T*))v. As ¢ and T are in LP(X), there exists
a function d € LP/3(Z), d > 0 such that ¢* — T* = d(¢p — T) on . So, writing
b(u,v) = [ G(odu)v we have from above

a( = T,v) + by - T,v) 2 (T, v) Vv € Vot.
Choosing now v = (¢ — T')™ we have

—a((p—T)", @ -T) )= -T)" @ -T))+ (% -T)* (»-T)7) 2
/E A -T)"y 20

Now,
B = T) (-~ T)") = /E doe(tp — T (% - T)™ - /E H(doe( — TY)(% - T)~ <0

as H is non negative. From coercivity of a and semi coercivity of b we conclude that
(v-T)"=0.

In the two dimensional case the non linear boundary term is well defined for all H!
temperature fields because by trace theorem the spaces V? coincide with H'(Q) for all
finite p. Then arguing as in the proof of Lemma 9 we obtain the

THEOREM 2. Assume that £ € C1%, § >0, T® € HY/*(T') and that f € (V{)'. Then
there exists a unique solution T for (1).
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ERROR ANALYSIS FOR MEASUREMENT OF RIGID BODY INERTIA
PROPERTIES
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ABSTRACT

In this paper two methods for measuring rigid body inertia properties, which include rigid body
mass, location of center of mass and components of inertia tensor, are described. Both
methods are based on measured acceleration amplitudes of free rigid body, which are possible
to determine from frequency response functions of flexible mounted rigid body. Methods can
be divided to two stages, first the rigid body fit is used to find the acceleration of the origin and
the angular acceleration of the free rigid body, and then the inertia properties are calculated
from this data. In both of these two stages an overdetermined set of linear equations has to be
solved. Because these equations are formed from measured data, results are random numbers.
A method for estimating expected values and covariance matrix for unknowns is proposed and
verified using Monte-Carlo-simulation. Errors in calculated inertia properties are measured
using the estimated standard deviations.

INTRODUCTION

During the last decade several methods for measuring the rigid body inertia properties have
been presented /1,...,8/. However, error analyses for these methods are lacking. In this paper
error analyses for two methods are proposed. Both methods are based on measured
acceleration amplitudies of free rigid body. These amplitudies are commonly called rigid body
inertia restraints, and can be determined from frequency response functions of flexible mounted
rigid body. There are several ways, as listed in /8/, how to calculate the rigid body inertia
restraint from FRF's, but this is not the subject of this work. In this work it is assumed that
expected values and variances of inertia restraints have been calculated.

Because measured data should always be taken as random, all quantities calculated from it are
random. So, it is natural to measure errors in results using standard deviations or coefficients
of variation /9/. When inertia properties are calculated from inertia restraints, two or three sets
of linear overdeterminate equations has to be solved. For this reason the second moment
analysis, used extensively in stochastic FEM, is expanded to overdeterminate case. The
proposed method is verified using Monte-Carlo-simulation.
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Finally, the error analysis is used to study the effects of increasing the number of response and
excitation points. In all cases one method seems to be more accurate than the other.

In this work the coefficient of variation is used to measure randomness. For random variable it
is the standard deviation divided by the expected value.

SECOND MOMENT ANALYSIS FOR LINEAR STOCHASTIC EQUATIONS
A set of stochastic linear equations can be written in the form
Ax=b, M
where nxm-matrix A (n2m) and n-vector b are random. In second moment analysis /9/ it is

assumed that expected values and covariances between the elements of matrix A and vector b
are known. For a matter of simplicity, the matrix A is written as column vector row-wise as

al a l[a @ - ay]
a= a; ‘ A= 3:2 . [021 ‘122‘ a2m] @)
aZ,‘ a, [anl Qny - anm]

Using the above definition for vector a, the known covariances can be written as

cov(a)= E[(a —E[a))(a-E [a])T] (nm x nm-matrix) 3
cov(b)= E[(b ~ Eb))(b- E[b))" ] (n X n-matrix) )
cov(a,b) = cov(b,a)’ = E[(a ~ E[a])(b- E[b])T] (nm X n-matrix) 5)

When solving equation (1) using the perturbation method, the matrix A and vector b are
written in the form

A=Ag+(A-Ay)=Ag+AA = Ay +EAA (6)
b=bg+(b—by) = by +Ab = by +eAb, )

where Ay and by are the expected values of matrix A and vector b, respectively. The last

forms in equations (6) and (7), where € <<1, are based on the assumption that random
disturbancies near expected values are small. Also the unknown vector X can be written in the
form

X = Xq +€AX. (8)

Substituting expressions (6), (7) and (8) in the equation (1) and equating the equal order terms,
the following equations are obtained:



417

Agxy =Dy (from zeroth order terms) ®
ApAx = Ab- AAx, (from first order terms) (10)

When n>m, the solution of equations (9) and (10) is not so straightforward, in this work
these are multiplied by Moore-Penrose-pseudoinverse of the matrix Ay, yielding

x0=A6b0 =Db0 (11)
Ax = Ay (Ab— AAx,) = DAb— DAAX,, (12)

because Ay Ag =1, when the rank of matrix Ay is full (which guarantees the unique solution).
For computational reasons, the last term of the equation (12) is written in the form

DAAx, = DAa, (13)
where m X nm-matrix D is
b=[b, D, - D,), (14)

where m x m-matrices D; are of the form

dixoy dyXex v diXom
B, = d2i:x01 d2i:102 N d2if0m (15)
AmiX) AmiXgy - dmiXom
Finally, vector X is written in the form
x = Dby + DAb~DAa, (16)
from which the expected value of vector X can be computed
E[x]= E[Dbo ]+ E{[DAb]— E[ DAa]= Db, =x, 17)

and covariance-matrix for vector X becomes

. %)
cov(x)=E[(x—xo)(x—xo)r]=[15 D][ cov(a) cov(a,b)][D ] (18)

—cov(a,b)’  cov(b) || pT

In this work, also the covariances between the elements of vector X and matrix A and vector
X and vector b are needed. These can be computed from
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cov(x,a) = E[(DAb—[)Aa)(Aa)T]= Dcov(a,b)T — Dcov(a) (19)
cov(x,b) = E[(DAb - DAa)(Ab)T]= Dcov(b)—Dcov(a,b). (20)
RIGID BODY FIT

When rotations are small, the acceleration vector of point P of a rigid body is
ap=ao +6X7p/0, 21
where @, is acceleration of origin, O is angular acceleration of the rigid body and 7p;q is the

position vector of point P with respect to the origin. At point P the accelerometer measures
acceleration to the direction of unit vector e, so the measured acceleration is

a™ =2p-dp. (22)

Writing this in matrix form yields

[e, e, e, ye,—ze, 16,—Xe, Xe,-— yex] =a (23)

Using at least six accelerometers an overdetermined set of equations can be formed. Because
measured accelerations, coordinates of point P and components of unit vector €p are random
variables, the resulting set of equations is stochastic and can be solved using second moment
analysis. Using equations (17) and (18), the expected values and the covariances for elements
of the acceleration vector of the origin and the angular acceleration vector of the rigid body
can be calculated.

INERTIA RESTRAINT METHODS

The equation of motion for free rigid body is

m 0 0 0 mzy,, —mMy,, | Qo Fx
0 m 0 —mz,, 0 mx, .. aoy Fy
0 0 m my,.. —MX,.. 0 ap, FZ
= (24)
0 Mz, MYy J -Jy —Jx || 0y Mp,
mz,. 0 —MX,.. —ny Jyy —‘,yz (Xy MOy
_—mymk mx,.; 0 sz —.]yz .,zz J L o, | _MOZ_



419

where vectors [aOX dgy Qo Oy Q. az]T and [Fx F, F, Mp, My, MOZ]T are
measurable. Based on this measured data, the elements of mass matrix can be solved.
Depending on the organization of unknown values, at least five different methods are possible
to be found for determining the unknown inertia properties. In this work, only two of those
methods are examined.

The first method, which has earlier /8/ been named as Inertia Restraint Method (IRM), starts
by taking the first three equations, considering coordinates of the center of mass and the
inverse of mass as unknowns, and writing them in the form

X
0 o -a, K y’"k g,
~a, 0 a, F| ™|=|ag, (25)
Zmk
&y —Oy 0 F, m—l ap;,

Using at least two different excitation locations/directions an overdetermined set of equations
can be formed. Because the elements of multiplying matrix and RHS vector are measured, and
thereby random variables, the resulting set of equations is stochastic and can be solved using
above presented second moment analysis. Thus the expected values and covariances for
coordinates of c.m. and inverse of mass are obtained.

After the first step, the origin is transformed to c.m. and in last three equations of equation
(24) the components of inertia tensor are considered as unknowns. So these can be written in
the form

=]
0 0 -a, - o1’
o, a, -a, J M
22
06 o, 0 -0, 0O -0, 7, =| My (26)
0 0 a, 0 -a, -a J M4,
- Xz
-J)'Z_

Again, using at least two excitation locations/directions, the set of stochastic equations is
obtained. From the solution of this set, the expected values and covariances for components of
inertia tensor are obtained.

There is no immediate reason for separating six equations of (24) to two sets. In (24),
considering directly the unknown elements of mass matrix as unknowns, it can be written in
form
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m
MX i
(@, 0 -o, a 0 0 0 O 0 0 N\ mym!| [ E
agy O 0 -2, 0 0 0 O 0 0 || mzu /2
G, =0y o O 0 0 0 0 0 0| Jy| |F
0 0 ay -ag 0y 0 0 -0, —&, 0 | J, = My,
0 -ay O a, 0 o, 0 -o, 0 -o,| Jz Mo,
|0 ap, -ap 0 0 0 o 0 - -oy) Jy | |Mo
e
| e ] @D

Using at least two excitation locations/directions the stochastic set of equations can be set up,
which is solved in the same way as earlier. This method is called Direct Inertia Restrained
Method (DIRM). It is worth to note, that calculated components of inertia tensor should be
ransformed to coordinate frame, which has its origin in c.m.

SIMULATION AND RESULTS
For testing the proposed error analysis method, arbitrary values for rigid body mass,

coordinates of c.m. and moments of inertia were chosen. From this data the acceleration
amplitudes of chosen response locations were calculated for chosen excitation locations.
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o
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Figure 1. Analytical vs. simulated results when randomness in amplitudes is incresed.
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3 Mass z-coordinate of c.m.
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Figure 2. Analytical vs. simulated results when number of response locations is incresed.
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Figure 3. Analytical vs. simulated results when number of excitation locations is incresed.
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The excitation was considered as unit force. In analytical error analysis the calculated
amplitudes were taken as expected values and standard deviations, proportional to amplitudes,
were assigned to these. In simulation, random amplitudes with same expected values and
standard deviations as in analytical case, were generated and 1000 simulations were executed.
Results, with increasing randomness in acceleration amplitudes, are shown in figure 1. It is
seen that proposed error analysis works well for mass and coordinates of c.m., when
coefficients of variation of acceleration amplitudes are less than 0.2. This is approximately the
same limit that has been found in stochastic FEM applications. For moments of inertia the
coefficients of variation of these amplitudes should be less than 0.04 for reliable error analysis
results. Results of figure 1 were calculated using twelve response and three excitation
locations.

Next, the effects of increasing the number of response and excitation locations were studied.
The minimum number of response locations is six. The number of response locations was
increased to twelve and the results are shown in figure 2. It is seen that at least 10-11 response
locations are preferable. The minimum number of excitation locations is two. The number of
excitation locations was increased to six, and from figure 3 it is seen that four excitation
locations should be used for accurate results.

Numerous attempts were made to take into account randomness in response and excitation
locations and directions. For some reason analytical error analysis presented in this paper and
Monte-Carlo-simulation didn't give the same results.

CONCLUSIONS

An statistical error analysis for measurement of rigid body inertia properties was proposed and
verified through Monte-Carlo-simulation. For mass and coordinates of c.m. the method works
well when coefficient of variation in measured rigid body inertia restraints are less than 0.2, For
moments of inertia this limiting value is 0.04. Using this error analysis some nearly optimal
lower bounds for number of response and excitation locations were determined.

REFERENCES

1. N. Okubo, T. Furukawa, "Measurement of Rigid Body Modes for Dynamic Design", Proc.
IMAC 2, pp. 545-549, 1984

2. J. Bretl, P. Conti, "Rigid Body Mass Properties from Test Data", Proc. IMAC 5, pp. 655-
659, 1987

3.Y.S. Wei, J. Reis, "Experimental Determination of Rigid Body Inertia Properties”, Proc.
IMAC 7, pp. 603-606, 1989

4. M. Furusawa, "A Method of Determining Rigid Body Inertia Properties", Proc. IMAC 7,
pp. 711-719, 1989

5. P. Conti, J. Bretl, "Mount Stiffnesses and Inertia Properties from Modal Test Data", Journal
of Vibration, Acoustics, Stress and Reliability in Design, Vol 111, pp. 134-138, 1989

6. ). Toivola, "Jaykin kappaleen hitausominaisuuksien mittaus", Diplomityo, TTKK, 1991

7. A. Fregolent, A. Sestieri, M. Falzetti, "Identification of Rigid Body Inertia Properties from
Experimental Frequency Response”, Proc. IMAC 10, pp. 219-225, 1992

8. J. Toivola, O. Nuutila, "Comparison of Three Methods for Determining Rigid Body Inertia
Properties from Frequency Response Functions”, Proc. IMAC 11, 1993

5. M. Kleiber, T.D. Hien, "The Stochastic Finite Element Method", John Wiley & Sons,
Chichester, 1992



