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Preface

This volume contains the papers presented at the Fourth Finnish Mechanics Days
held in Lappeenranta, Finland, 5 - 6 June 1991. The First Finnish Mechanics Days
were held in Oulu in 1982, the Second in Tampere in 1985 and the Third in
Otaniemi (Helsinki) in 1988. Although these meetings have traditionally had a
national character, five invited quest speakers from Estonia gave the Lappeenranta
meeting an international flavour.

The purpose of the Finnish Mechanics Days is to gather researchers and
postgraduate students in the field together for stimulating discussions on their
research work. The science of mechanics includes a wide range of themes and it is
always useful, especially for the younger participants, to gain an understanding of
the various problems, and the way common ideas of science can be used to solve
them.

The number of papers presented has been steadily growing, which reflects the
important role this basic science plays in modern society. The proceedings of the
earlier Mechanics Days have been multi-lingual, many papers having been written in
Finnish. This time the organisers thought that the use of English throughout the
volume would greatly enhance its value as a review of the state-of-the-art of
mechanics research in Finland today.

The Organizing Committee wishes to express its sincere gratitude to all authors

for their hard and successfull work in preparing contributions.

Erkki Niemi
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NONLINEAR DEFORMATION WAVES IN SOLIDS WITH APPLICATION
IN NONDESTRUCTIVE TESTING

JORI ENGELBRECHT
Institute of Cybernetics
Estonian Academy of Sciences
Akadeemia tee 21, SU-200108
TALLINN, ESTONIA

ABSTRACT

Nonlinear mathematical models governing the deformation waves in solids are
briefly analyzed. The emphasis is put on the evolution equations describing
single waves. These equations which are also widely used in other branches
of physics give an adequate description of the main physical effects caus-
ing the distortion of wave profiles. Such an approach turns out to be use-
ful in nondestructive testing of material properties.

INTRODUCTION

Nonlinearity plays an essential role in most of the physical processes. The
widely accepted understanding that linear description is basic and possible
nonlinearity leads only to a certain perturbation, has been proved to be
erroneous /1/. On the contrary, the world around us is nonlinear and a 1i-
near description is just an exception, although it is still widely used for
"everyday purpose". Nonlinearity has to be always taken into account in
qualitative changes.

In solid mechanics nonlinearity is often related to plasticity and,
therefore, the importance of being nonlinear is there perhaps more easily
accepted than in other branches of science. Theory of elasticity, however,
is mostly used in its linear version based on infinitesimal deformations and
the Tinear Hooke's law. It is interesting to mention that in early days of
mechanics many constitutive laws were proposed to connect stress and strain,
the Hooke's law being one among others, mostly nonlinear ones. The growing



needs of engineering in the 18th century have picked up the Hooke's Tlaw
which has led to simple expressions for many practical problems. The fasci-
nating story of this facet of the human thought is given by Bell /2/.

Despite such a traditional "linear thinking", contemporary mechanics
of solids accepts nonlinearity as a basic notion /3/. Even more, nonlinear
theory of mechanical oscillations has been a cornerstone for contemporary
nonlinear dynamics and chaos (see, for example, /4/). The paradigm about
the unpredictable behaviour of deterministic, nonlinear dynamical systems
has changed otir views about the governing laws of Nature. Unpredictability
plays an important role not only in physics and related fields, but also in
philosophy /1,5/.

This paper covers only one problem in nonlinear solid mechanics, i.e.,
the propagation of nonlinear deformation waves. The nonlinear theory of
elasticity is taken as a basis and the corresponding mathematical models
for nonlinear deformation waves are constructed /6/. The physical background
is analyzed and the asymptotic evolution equations derived. These equations
give a concise but sufficient description of wave processes in solids.
Further, the possible application of nonlinear theory in nondestructive
testing is briefly described. This description is mostly based on the re-
sults obtained in the Institute of Cybernetics, Estonian Academy of Sciences
during the last decade.

NONLINEAR MATHEMATICAL MODELS

The conceptual approach in constructing the mathematical models of wave

motion is based on the following hierarchical sequence /6/:

- basic principles (initial assumptions and conservation laws);

- constitutive theory (auxiliary postulates which together with conserva-
tion lTaws form a closed system);

- mathematical model (auxiliary assumptions about the character of field va-
riables and approximations of the constitutive equations).

The details of such an approach can also be found in several textbooks
/3,7/. Here we shall briefly analyze where and how the nonlinearity comes
in.

The first source is of the geometrical character. The strain theory
EKL is related to the components of the displacement vector UK by



2B, = U (1)

KL U

KLUkt Yk L o

where comma denotes the differentation with respect to material coordinates
XL and the summation convention is applied to every repeated index which
run over 1,2,3. The nonlinearity in (1) is usually referred to as geo-
metrical nonlinearity. In physical terms it means that the theory of finite
deformations is taken into account /3/. Next, the principle of equipresence
should be followed which here means that at least all the quadratic terms
should be accounted for in other expressions. We see later that there are
cases when the accuracy of quadratic terms is not sufficient.

Another important source responsible for nonlinearities is of the phy-
sical character and related to the constitutive equation(s). If only the
theory of elasticity is taken into account, then we may consider everything
to be embedded in the expression of the Helmholtz free energy F

1
pgf =7 ALy% + uly + gL 4 vplyly + vglg +
+ K1I1“ + K211212 + K3I1I3 + |<4122 . (2)

where o is the initial density; 11, 12, 13 are the algebraic invariants of
the deformation tensor (1) and the Greek symbols are used for elastic modu-
1i: » and p - the second order or the Lamé moduli, Yis Yo Y3 " the third
order and KQs Kos K3s Kg = the fourth order moduli. For longitudinal waves
one should take the third order moduli into account /6,7/, for shear (trans-
verse) waves - both the third and the fourth order moduli /7,8/. In the lat-
ter case, the cubic terms appear in governing equations.

In addition to these, some other nonlinearities may arise. For example,
the body forces may be of the nonlinear character /9/, the thermal /10/ and
viscous /11/ effects may involve new nonlinear terms, etc. The examples of
nonlinear mathematical models can be found in several momographs /3,7,12/.
As a result, a mathematical model based on the theory of elasticity in the
three-dimesnional Cartesian system may be represented as

Uy - C 0, (3)

ooy = “nkemli,m T

where CNKLM = CNKLM(UI J) and the dot denotes the differentation with re-
spect to time. The nonlinearities (both geometrical and physical) are put

into CNKLMIS' Tn theory of fluids which is usually written in spatial (not
material, as (3)) coordinates, additional nonlinearities arise due to con-



vective terms /3/. System (3) must be solved subject to initial and bound-
ary conditions in order to determine the wave field in a solid under in-

spection.

METHODS OF ANALYSIS

In mathematical terms, system (3) is a quasilinear system of partial dif-
ferential equations. In many cases, the governing system like (3) may even
be more complicated involving more variables (for example, temperature T
/10/) and/or integral operators (in the case of relaxing media /11/). The
integration of such systems represents a difficult problem of mathematical
physics. However, even in the linear case when finite deformations and phy-
sical nonlinearities are neglected, the number of exact solutions describ-
ing the dependence of the field variables on the initial conditions is
rather small. The number of exactly solvable nonlinear problems is certain-
1y much smaller. This is the main reason why approximate methods in wave

motion are so intensely developed. Generally speaking, the approximate
methods used in the wave propagation theory may be divided into three

main groups:
(i) the approximate analysis of the exact solution;
(i1) the perturbative analysis of the solution with small (slow) deviation
from a known one;
(111) the simplification of mathematical models (equations) describing the
process.,

The description of these methods can be found elsewhere /13/, here we
concentrate our attention only on the third group (iii). The methods of this
group do not simplify the solutions but rather the equations governing the
wave process. The simplifying procedures make use of certain small para-
meters which may either be present in the initial equations (systems of
equations) or result from the process (the solution is close to the station-
ary one, for example). The best results are achieved when the initial system
is simplified into a single equation, first order with respect to time (ge-
nerally speaking) and of arbitrary order with respect to space coordinates.
This equatior is called an evolution equation. Physically it means that a
wave process is separated into single waves, each of them described by its
own equation. The best example of such an evolution equation is the well-



known Korteweg-de Vries equation.:Its derivation and history form a bril-
liant chapter in contemporary mathematical physics /14/. The mathematical
details of such simplifying procedures are given, for example, in /13/. It
should be noted that the main feature of these procedures is the moving
frame in which a certain basic (finite) velocity is taken into account.
Here we give some examples of possible nonlinear evolution equations go-
verning nonlinear deformation wave processes in solids.

The dimensionality plays a very important role in deriving and solving
the evolution equations. Historically, the one-dimensional (1D) processes
were modelled first, involving just one spatial coordinate (say, X1) of
propagation. In some cases (waveguides, spherical or cylindrical processes,
etc.) this simplified assumption is quite natural and acceptable without
serious doubts, in other cases, however, the assumptions justifying the
usage of 1D equations need serious analysis. This way or another, the 1D
equations are usually of the following form /6,13,14/:

u au 2u 92 u _
i 5t QU + 8y gE t A g b = 0, (4)

where 1 = T(X1) or T = t(t) and & is the moving frame ¢ = E(cot-X1) with

¢y = const. Variable u represents either the deformation gradient or the
particle velocity. The nonlinearity is modelled by the second term in (4),
the sign of which depends on the signs of higher order moduli. The examples
of such equations can be found in /6/.

In two-dimensional (2D) case the situation is more complicated and best
results are found for representing equations that model the wave-beams ge-
nerated by bounded inputs. The 2D evolution equations for longitudinal
waves were derived and analyzed in /6,15/ and for shear waves - in /8/. For
example, the 2D evolution equation for longitudinal waves is

3 ¢dU Ju ] 1 3u
hB-g(BT aE .--) _'H(_a'ﬁ?-"'ﬁ-'ﬁ) (5)

with n = ”(XZ) and H standing for the so-called diffraction parameter. In
physical terms, the r.h.s. of (5) models the slow distortion perpendicular
to wave motion in Xy and in this case the cylindrical symmetry in X5 is
taken into account,

A rather complicated example is given in /16/ for describing the waves
in soft tissues, the properties of which can be put somewhere between solids
and fluids. The equation is of type (5) involving in the 1.h.s. nonlinearity,
small-scale inhomogeneity, large-scale inhomogeneity, attenuation in the
form of exponential decay and relaxation.



APPLICATIONS

G.Maugin has said /12/: "On certain occasions one wants to benefit from the
nonlinearities. On other occasions, one wants to avoid them." What are the
main features in wave motion due to nonlinearity? In this paper, attention
is paid to basic nonlinearities (geometrical and physical) in the absence
of external forces. There is an important point - beside the nonlinearities,
other effects of the same order must be taken simultaneously into account
and that makes the final mathematical model very complicated. Any combi-
nation of viscosity, relaxation, dispersion, temperature, etc. with non-
linearity leads to novel physical conclusions (again in contrast to a 1i-
near model of elasticity) /16/.

Generally speaking, the possible features of a nonlinear model in con-
trast to a linear one are the following:
(i) spectral changes (i.e., changes in wave profiles);
i1) coupling of waves;

(
(i11) phase changes;
(iv) interaction with other effects of the same order.

As a consequence, some nice "linear ideas" are lost, including, for example,
superposition of solutions and the applicability of integral transform
methods.

The spectral changes lead to the generation of higher harmonics and in
a certain limit shock waves may be formed causing the stress concentrations.
This is an example of a case when nonlinearities should (if possible) be
avoided. On the other hand, however, all the changes listed above are in-
formative in a certain sense, If we treat waves as carriers of information
as in nondestructive testing (NDT) - then there is a benefit from nonli-
nearities. Further a brief description of this extremely interesting branch
of mechanics is given.

In mathematical terms, the problem of NDT is actually an inverse prob-
lem which can be stated as follows: for a given equation (system)

L{u) =0 (6)

and for given initial and/or boundary conditions together with a measured
variable u at certain t (or X1), the unknown coefficients of L(u) must be
found. If L(u) is given as system (1), then we come to the inverse problem
of the basic system. If L(u) is given as an evolution equation (4) or (5),



then we come to the asymptotic inverse problem /17/.

The asymptotic inverse problem has several advantages compared with
the inverse problem of the basic system:

(i) the asymptotic inverse problem is the Cauchy problem being more inves-
tigated while the inverse problem of the basic system involves the
boundary conditions;

(ii) the solution of an evolution equation corresponds exactly to the ex-
perimental technique because as a rule, the receivers (transducers)
registrate one certain wave and the space-recording corresponds to the
solution of an evolution equation at a certain fixed t;

(iii) the direct solution of an evolution equation is usually Tess extens-

ive as compared to the solution of the corresponding basic system.

The accuracy of measurements in the ultrasound region of initial ex-
citations (MHz region) needs digitizing with timelags in the interval of na-
noseconds. This is possible using contemporary experimental devices /18/.
The information can be extracted from the analysis of a measured pulse that
involves:

- changes in spectral amplitudes;

attenuation due to dissipation;

decay due to diffraction;
deformation of the surfaces of equal phase due to dispersion and diffrac-

tion, etc.

It is clear that an inverse problem can be ill-posed and the infor-
mation about the properties of the sample cannot always be uniquely deter-
mined. Such an example is the case of a viscoelastic (Voigt model) nonli-
near medium. Here we come to the 1D Burgers equation in the dimensionless
form /6,7/

ou _ su _ -1 32u 7
Y T ez (7)

where T is the acoustic Reynolds number

-1
o= 3j14mglugteng - (8)

Here My is the dimensionless coefficient of quadratic nonlinearity /6/, Ug
is the maximum amplitude of the initial excitation, T, is the wavelength

and Ny is the kinematic viscosity. The structure of T shows that in this
case the solution of an inverse problem gives a combination of physical pa-
rameters and Mg and ng cannot be found separately from one experiment. More-



over, the solution of (8) for large time (distances) shows that the depend-
ence on the initial conditions is lost /19/ while the solution depends only
upon the main moment (i.e., energy) of the initial condition. This fact
lTeads to a situation where there is a conditionally well-posed inverse prob-
lem only in a certain space of independent coordinates where the dependence
on initial conditions still exists.

After showing the difficulties in solving the inverse problems, we
stil1l want to stress the importance of such problems in mechanics of solids,
in seismology, in biomechanics, etc. The frequency intervals of excitations
are different for various problems and various media demanding the differ-
ent scaling in asymptotic procedures /13/ for deriving the evolution
equations. These nonlinear equations form an interesting class of equations
which are intensively studied. They give an adequate description of the
wave process in a physical sense together with a good correspondence to the
experimental techniques. NDT is just one branch of applications where evo-
lution equations enable to enhance the outcome.
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ON THE COMPUTER AIDED OPTIMAL
STRUCTURAL DESIGN

PEKKA NEITTAANMAKI

University of Jyviskyla, Department of Mathematics
P.O. Box 35, SF 40351 Jyvaskyla, Finland
Abstract. In this paper the problem of optimal structural design is formulated and some

practical examples are illustrated. In the second part an overview of the literature of
optimal structural design, applications and software is given.

1. INTRODUCTION

The primary problem often facing designers of structural systems is determing the
shape of the structure. In spite of graphical work stations and modern software for
analyzing the structure, finding the best geometry for the stucture by “trial and error”
is still a very tedious and timeconsuming task. The goal in optimal structural design
(structural optimization, or redesign) is to computerize the design process and there-
fore shorten the time it takes to design new products or improve the existing design.
Structural optimization is already used in certain applications in the automobile, ma-
rine, aerospace industries and in designing truss and shell structures (with minimum
weights). In general, however, the structural optimization is just beginning to pene-
trate the industrial community. The integrated FEM (Finite Element Method) and
CAD (Computer Aided Design) technologies within optimization loop will (hopefully
quite soon) fully computerize the design loop.

In Fig. 1.1 (a) we see the traditional CAD/FEM-system and in Fig. 1.1 (b) the new
generation of CAD/FEM-system.

INITIAL DESIGN

[ INITIAL DESIGN | " AND
DESIRED PROPERTIES
FINITE ELEMENT | MAKE NEW
ANALYSIS DESIGN
y
FEM-SIMULATION

NO AND AUTOMATIC
IMPROVEMENT
OF THE DESIGN

THE PRODUCT

THE DESIRED

PROPERTIES
?

THE FINAL
DESIGN A

| ] FINAL “OPTIMAL”
DESIGN

Shape design in traditional CAD system

Optimal shape design system

(a) (b)
Figure 1.1.
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Parameters chosen to describe the design (geometry) of the system are called design
variables. The design parameters can be either finite dimensional (vector) or distributed
parameters. Optimal structural design problems can be divided roughly into three
classes: domain optimization, optimal sizing and topology optimization.

In domain optimization (or variable boundary optimization) the shape of the domain
is sought. Usually the problem is reduced to finding a vector function which defines the
unknown boundary. In chapter 2 we shall formulated the domain optimization problem
in an abstract setting and give some practical problems which lead to this setting.

In optimal sizing we usually assume that the layout of the structure is given and
we try to find optimal sizes of the structural members. The sizes of the members are
chosen as the design parameters that can be of a vector or distributed type. Typical
examples are optimal sizing of a beam (distributed parameter) or optimal sizing of a
frame (vector parameter). The literature of optimal sizing problems is very rich (see
Brandt (1986), Gajewski and Zyczkowski (1987)).

Topology optimization deals with the search of optimal lay-out of the system. For
example, design the truss such that the weight of the truss is minimized and the truss
can carry a given load without collapsing. On the other hand, in topology optimization,
the mechanical body can be considered as a domain in space with a high density of
material, that is, the body is described by the global density function that assigns the
material to certain areas that are part of the body. Topology optimization problems
have an on-off nature and are therefore extremely difficult to solve in the distributed
case. For some topology optimization type of problems see Kohn and Strang (1986),
Bendsge and Kichuchi (1988), Bendsge (1989), Bendsge and Rodrigues (1989).

2. DOMAIN OPTIMIZATION

2.1. Setting of the problem.

Let © € O (= set of admissible domains) be a domain for which we want to find an
optimal design (an optimal geometrical layout). We suppose that O is a subset of some
larger family @ ; © C O.

With any © € O we associate a space V() of functions, defined on Q. In order to
handle the situation mathematically, we introduce topologies in @ and in {V(Q) | €
C’~)} K Q,, Q€ O, we have to define what it means that

(2.1) Q.20

Analogously, if yn € V(Q), y € V(R), Qn, Q € O, then we specify the convergence

(2.2) Yn — Y .
Let
(P) €0 —-y(Q)eV(Q)

be a mapping which with any domain 2 € O associates the solution of a state problem
(given by equations, inequalities etc. in ) and let

(2.3) G ={(&y) Qe 0}



i3

be its graph.
Finally, let I(£,y) with Q € O,and y € V() be a cost function (criterion function),
whose restriction on G will be denoted by J(£), i.e.

(2.4) J() = I(Q, y(Q)).

The abstract optimal shape design problem is stated as follows:
{ Find Q* € O such that

J(Q*) < J(Q) for all @ € O.

We will say that (Q*,y(Q2*)) is an optimal pair for (P).

A large range of important optimal shape design problems which arise in structural
mechanics, acoustics, electric fields, fluid flow and other areas of engineering and applied
sciences can be formulated. Typically,

(P)

J(Q) = / dz (minimization of the weight) |
Q

J(Q) = /(y(m))2 dr (minimization of displacements) ,
Q

J(Q) = /(Vy(a:))2 dz (minimization of stresses) ,
Q

J(Q) = /‘; . (,;iny(z) dz (minimization of contact stresses or boundary flux) .
2.2. Industrial applications.

We shall present a collection of optimal shape design problems which would be inter-
esting as well from an industrial point of view. For the technical background of these
problems as well as numerical solution we refer to Haslinger and Neittaanmaki
(1988),Haug and Céa (1981)and Pironneau (1984).

Example 2.1. Maximization of the torsional rigidity of an elastic shaft.

Consider the torsion of the elastic shaft shown in Fig. 2.1.

Figure 2.1.
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Let € denote the cross-section of the shaft. A torque, T', is applied to the shaft at its
free end, resulting in a unit angle of twist, §. From the St Venant theory of torsion, the
elastic deformation of the system is governed by the elliptic boundary value problem

(2.5) —Au=2 inf
(2.6) u=0 on 0}

where u is the Prandtl stress function. The torque-angular deflection relation is given
by T = GRS, where G is the shear modulus of the material of the shaft and R is the
torsional rigidity of the shaft given by

R(Q) 22_/9 w(z)ds .

The problem of optimal shape design of 2 is given by
(2.7) min I(Q;u(S)) ,
where

195 u(®) = ~R(Q),
u(§2) solves (2.5), (2.6) and

O = {Q C R? | meas(Q) < 4, A > 0 is given and T is Lipschitz} .

Example 2.2. Minimization of the weight of a thermal diffuser.

Consider the problem of finding an optimal shape for a minimum-weight thermal diffuser
with e priori specifications on the input and output thermal power flux.

We assume that the thermal diffuser has a volume D symmetrical with respect to the
z-axis (cf. Fig. 2.2 (a)) whose boundary surface is made up of three regular pieces: the
mounting surface £; (a disc perpendicular to the z-axis with its centre at (0,0, 0)), the
lateral adiabatic surface £y and the interface 23 between the diffuser and the heatpipe
saddle (a disc perpendicular to the z-axis with its centre at (0,0, L)).

4

r

Ia(a) r;
r, Qa)

(b)
Figure 2.2.
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The temperature distribution over this volume D(«) is the solution of the stationary
heat equation

(2.8) Au=0 in D(a)

with the following boundary conditions on the surface & = £;UZ2UZ; (on the boundary
of D)

Ou

(2.9) p Gin on ¥y
0
(2.10) a—Z =0  onX
(2.11) U = U3 on X3, uz = constant,

ou . o
where — is the normal derivative on the boundar surface X. The parameter ¢in appear-

ing in (27.19) is the uniform inward thermal power flux at the source (positive constant).
The radius Ry of the mounting surface £, is fixed so that the boundary surface ¥y is
fixed in the design problem. Using the axial symmetry of our problem, one can consider
the situation in R? so that the class of shapes for the diffuser be characterized by a
constant L > 0 and a positive function a(z), 0 < z < L, with a(0) = Ro > 0. The
domain, whose shape we are looking for, is (see Fig. 2.2. (b))

Q(a):{(z,r)€R2|0<z<L,0<T<a(2), a € Uaa}

where

Usa = {ar € C™X([0, ) | a(0) = Ro}
Domain Q(a) is bounded by Ty, I'y, T'2(a) and T's (see Fig. 2.2), where

Ty(a) = {(z,r) €R* | 2 € [0, L], r = a(2)} .

In this case

O ={Ma)|a €U} .

With the assumption that the diffuser is made up of homogeneous material of uniform
density (no hollows) the design objective is to minimize the functional of the volume of

Qa): .
I == [ (e dz,

subject to the constraint on the outward thermal power flux at the interface I's between
the diffuser and the heatpipe saddle:

Ou
sup ——=—(2,7) < Gout
(z,r)€T3 an( ) o

where gy 15 a specified positive constant.
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The optimal shape design problem reads

L
Minilr]nize {J(a) e 7r/(; a(z)? dz}

a€Uaq
_dua)(z,r) _

(P)

subject to  sup < Qout
(2/7)€Ts On
where u = u(a) is the solution to the state problem
10u  0%u  O%u
' sl SR, S0 .
(2.8") S Tzt a2 0 in Q(a)
(2.9") iu = Gin on I'y
on
(2.10") a%u =0 on Iy UT(«)
(2.11) U= us onTly .

Example 2.3. Optimization of the shape of the poles of an electromagnet.

This problem is of interest for example in the manufacturing of very large electromagnets
and in magnetic tape storage on computers. Fig. 2.3 (a) illustrates the two-dimensional
approximation of the physical domain. By symmetry we can restrict the design analysis
to one-fourth of the domain only (see Fig. 2.3 (b)) So the domain of interest, £, is given
by Q =]0,a[x]0, b[. It consists of three different subdomains, QF, Qc, Q4 = V4 UQ .
of ferric, copper and air materials, respectively. Moreover, we have a subregion D C Q A
where constant magnetic field is desired (Fig. 2.3 (a)).

W L NNE

_%QF——‘&E- I Q0 2 M
NI D
1 /’b a

(a) (b)
Figure 2.3.
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Our aim is to design a part of the boundary 8(Q 4, NQF) described by a curve v such
that the graph of «, denoted by [v], lies inside of a given set G (Fig. 2.3 (b)). We can
formulate the shape design problem as a minimization problem

qin J(@r), O={0r|h]e€G},
where J is the criterion function given by
J(Qr) =/ VA— Byt ds
D

where A is the electromagnetic potential in Q and By is the desire field in the subregion
D.

The electromagnetic potential satisfies the non-linear system

A

V- (v(|VA,2)VA) = ojinQ, A=0onTy ’(69_n =0onTly,
where pg = 47 -10""MKSA™!, j is the z3-component of the current density vector and
va=1MKSA forall z € 24 ,
ve =1 MKSA for all z € Q¢ ,

IVA|201

= — e)==———>—— MKGSA for all Qp .
vp=e+ (f 6) |VA|201 +g SA for z € iF
The constants a, €, f and g above can be fixed by experiments. We choose e = §5-107%,
f =0.175775, g = 8758.756 and o = 5.419241.

v(|[VA z) =

Example 2.4. Optimization of the header in paper machine.

A header is that part of paper machines, which has to deliver flow coming from pump to
number of small pipes as uniformly as possible (Figure 2.4.). It has been quite difficult
to design the header just trying different kind of geometries and velocities.

Figure 2.4.
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Flowrates in the pipes are effected by controlling recirculation and by changing the
shape of the header. To the cost function is chosen the meandistribution of velocities
at the end of the pipes. The flow can be modelled by the Navier-Stokes equations.

The design variables are the angle of inflow, the shape of the back wall, the shape of
the pipes and recirculation. The shape of the header is assumed to be piecewise linear.
When recirculation is changed, we also change velocity of inflow so that the mean value
of velocities is constant.

2.3. Remarks on the other applications.

To close this chapter, here we shall mention some more practical applications of op-
timal shape design. For the marine industry and design of submerged bodies in naval
hydrodynamics and related topics see Bushnell (1987a, 1987b), Hughes (1983, 1986),
Pedersen and Nielsen (1987), Angell, Hsiao and Kleinman (1986) and Souli
(1988), for antenna structures and flexible structures see Eschenauer (1982, 1988),
Bendsge (1988) and Bendsge, Olhoff and Taylor (1986); on automobile design see
Bennett and Botkin (1981); on design problems in the aerospace industry and re-
lated topics see Arumugam and Pironneau (1988 a,b), Esping (1985), Esping and
Holm, (1988), Fernandes (1988), Rosengren (1986), Wellen and Bartholomew
(1987) and Wu and Wu (1987).

For the design of thermal diffusers for communication satellites see Delfour, Payre
and Zolésio (1986,1987) and of electromagnets see Pironneau (1984), Borner (1985),
Arumugam, Neittaanmaki and Salmenjoki (1988).

Optimal shape design in elasticity, plasticity and contact problems have been handled
in Haslinger and Neittaanmaki (1988). For biomechanical applications see Hart,
Davy and Heiple (1984) and for interesting examples see articles by Babuska (1986),
Stadler (1988a) and Velte and Villaggio (1982).

There is a rapidly increasing research activity on composite materials, for which see
Bushnell (1987a), Kohn and Strang (1986) and Eschenauer and Fuchs (1987).
This field lies between the interrelation of structural design optimization, the relaxation
of variational problems and homogenization.

3. CONCLUDING REMARKS ON THE LITERATURE ON
OPTIMAL SHAPE DESIGN AND RELATED TOPICS

3.1. Survey articles, conference proceedings and textbooks.

Problems of optimum structural design have been formulated and solved by numerous
authors for several decades. Studies and solutions published up to the early 20th century,
now only of historical interest, are not included in our reference list. They are listed in
Brandt (1986).

In the book edited by Brandt (1986) the authors present a fairly complete list of
publications (more than 2100 references up to the year 1980) in the field of structural
optimization written mainly from the engineering point of view. More precisely, the
list was meant to cover all publications dealing with the fundamental problems of op-
timization and with the optimum design of building and civil engineering structures
(optimization of beams, plates, trusses, columns, arches, frames, shells, hanging struc-
tures and lattices, etc.). The bibliography contains relatively few references to modern
mathematical treatments of the problems in question.

The book by Gajewski and Zyczkowski (1987) is devoted to optimal structural
design under stability constraints. Particular attention has been paid to the provision
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of a comprehensive list of references (including over 2000 entries) with special emphasis
on optimal structural design involving stability constraints.

Comprehensive general reviews of the field of optimal structural design have been pub-
lished by Niordson and Pedersen (1973), Venkayya (1978), Haug (1981), Schmit
(1981), Qian (1982), Sheu and Prager (1968) and by Haftka and Gandhi (1986).
Conference proceedings edited by Haug and Céa (1981), Lev (1981) and Atrek,
Gallagher, Ragsdell and Zienkiewicz (1984) include several survey articles. The
conference proceedings edited by Mota Soares (1987) also includes among others sur-
vey articles on optimal shape design, Taylor (1987) deals with distributed parameter
optimal structural design problems and their basic formulations and applications, Ol-
hoff (1987) considers variational methods in structural optimization and Mota Soares,
Leal and Choi (1987) consider the boundary element method in the optimal design
of structural components. The article by Papalambros (1987) contains an outline of
knowledge-based systems in optimal design. In the article by Hornlein (1987) the fea-
tures of about 30 internationally-used software systems for structural design are listed.

There are several monographs on optimal shape or optimal structural design. For
those written mainly from the engineering point of view see Arora (1989), Banichuk
(1983), Bremicker (1989), Cyras (1983), Farkas (1984), Gajewski and Zyczkowski
(1987), Grinev and Filippov (1979), Haftka and Kamat (1985), Haslinger and
Neittaanmaki (1988) Hemp (1973), Haug and Arora (1979) Lawo (1986), Lepik
(1982), Malkov and Ugodchikov (1981), Papalambros (1988), Prager (1974),
Rozvany (1976, 1987), Save and Prager (1985), Troitskij and Petuchov (1982),
Vanderplaats (1984), and, more from the mathematical point of view, monographs
by Haug and Arora (1979), Haug, Choi and Komkov (1986), Komkov (1988),
Pironneau (1984) and Sokolowski and Zolésio (1991).

3.2. On software for computed aided structural design.

There are several general purpose CAD and FEM software packages which already
include initial modules for linking shape optimization to the design procedure as in
Beckers, Braibant and Fleury (1985). In Haftka and Kamat (1985) a brief
survey of packages (developed mainly in the 1970s) for structural optimization is given in
Chapter 8.6. In Hornlein (1987) the features of about 30 internationally-used program
systems for structural optimization are listed.

We shall close this chapter with a short (and inevitably very incomplete) list of soft-
ware for optimal structural design. These programs have either been developed from the
application-oriented point of view (automobile, marine, aircraft, air space industry etc.)
or have been supplemented by optimization modules for multipurpose CAD/FEM pro-
gram packages. For the latter group of software packages, see the optimization modules
of ADINA (Haririan, Cardoso and Arora (1987)), ANSYS (Swanson and Marx
(1985)) and NASTRAN. Integrated packages also include STARS (Bartholomew and
Morris (1984), Wellen and Bartholomew (1987)).

For programs developed especially for design optimization we mention only the fol-
lowing products:

AXIOPT (Trompette and Marcelin (1987))
DESAP (Kiusaalas and Reddy (1977a, 1977b))
LAGRANGE (Schittkowski (1985))

MAESTRO (Hughes (1986))

OASIS (Esping (1985), Esping and Holm (1988))



20

ODYSSEY (Bennet and Botkin (1981))

OPTISEN (Ward, Patel, Wakeling and Weeks (1987))
OPTSYS (Brama (1987), Rosengren (1986))

PANDA (Bushnell (1987a, 1987b))

PROSS (Sobieszczanski-Sobieski and Bhat (1981)).

For more details about program pagages for optimal structural design see Hornlein

(1987).
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ABSTRACT

The Laboratory of Strength of Materials started in 1986 a research project concerning experimental
vibration analysis and especially modal analysis. Until now, the research has concentrated on getting
experience of measuring complicated structures, like aircraft, and developing a computer program
appropriate to modal analysis. In the future the main research areas will be in estimation techniques
and in linking analytical with experimental modal model. In this paper the research work and program
development work done will be described.

In experimental modal analysis the application of multiple excitation force and measuring of
multiple response functions became popular during the last decade. The application of multiple input
force results in a more uniform excitation energy distribution and hence more accurate and consistent
measured data can be obtained. In the 1980's several multiple input modal parameter estimation
methods were developed to take advantage of the new excitation method. These parameter
estimation methods use frequency response data due to multiple input force simultaneously to
estimate global modal parameters. The characteristics, advantages and limitations of time and
frequency domain implementations of these methods will be discussed briefly.

Linking the mathematical model with the experimental model has turned out to be necessary in
some practical situations, for instance, when measurements can not be done with desired boundary
conditions; ground vibration test of an aircraft is an example of that. On the other hand the
mathematical model is flexible when predicting the effects of structural modifications. The paper
discusses linking in general, its necessity, applications and problems arising from inaccuracies in the
experimental and mathematical models. The methods based on manipulation of system matrices
seem to be worth future research.

INTRODUCTION

Vibration behavior may be determined mathematically or experimentally. Experimental analysis is
required in order to find out actual modal parameters and mode shapes and to update a mathematical
model to represent the actual behavior. In cooperation with the Finnish Air Force, The Laboratory of

Strength of Materials started in 1986 a research project concerning experimental vibration analysis
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and especially modal analysis. The project was established due to Air Force's need to know vibration
behavior of aircraft for flutter analysis. This offered a fascinating possibility for Helsinki University of
Technology (HUT) to get advanced equipment for research and education. As a whole HUT was an
ideal location for the project as the subsequent flutter analysis is also done in another laboratory of
HUT. When choosing location for equipment the need to get good contact with students and young
researchers and the possibility to perform research for industry was taken into account. The
equipment consists of 16-channel Computer-Aided Testing system (GenRad 2515), minicomputer
MicroVAX |I, three electromagnetic shakers and instrumentation needed for response measurements.

Until now, the research has concentrated on getting experience of measuring complicated
structures, like aircraft, and developing a computer program appropriate to modal analysis. During the
existence of the project several vibration analyses for aircraft have been done. Also, many different
structures and miscellaneous components have been analyzed for industry. The vibration research
facility has been exploited in education, two Master's Thesis have been done and one post graduate
work is being made.

In the future the main research areas will be in estimation techniques and in linking mathematical
with experimental modal model. In this paper the research and program developing work done will be
described.

Figure 1 presents the whole analysis process for aircraft. At first the experimental modal model is
created by means of modal analysis. The second phase consists of updating Finite Element Model
(FEM) through experimental modal model. All subsequent manipulations, like flutter analysis and
estimating the effects of structural modifications will be approximated using FE-model.

In experimental modal analysis the application of multiple excitation forces and measuring of

Measurements
&
Experimental Modal Analysis

= EXPERIMENTAL MODAL MODEL

¥

Linking analytical with experimental
modal model

= Updated FE - Model

v

POST PROCESSING with FEM

FIGURE 1. A dynamic analysis process for aircraft.
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multiple response functions simultaneously became very popular during the last decade. The app-
lication of multiple input forces yields more uniform excitation energy distribution to the structure and
hence higher quality and more consistent measured data. One extreme advantage of multi-input
excitation methods over single input excitation techniques is, that identification of repeated modes is
possible. As the modal parameters are global properties of a structure (they do not depend on a mea-
surement location), estimation methods which are able to analyze numerous response functions due
to several input forces simultaneously are needed. In the 1980's several such global parameter
estimation techniques (eg. time and frequency domain polyreference techniques) have been
introduced. The time domain polyreference technique has been our main tool in the estimation of
modal parameters. It has also been implemented to self-made computer code, which will be discussed
later in this paper.

Updating FE-model through experimental model has turned out to be necessary in many practical
situations, for instance, when measurements can not be done with desired boundary conditions;
ground vibration test of aircraft is an example of that. On the other hand the mathematical model is
very flexible and does not require as much knowledge as using experimental modal mode! directly
when predicting the influence of structural modifications. FE-model is very effective especially when
the modifications are relatively small and/or if plenty of different modifications should be investigated.
The modification of input file for FE analysis is very simple and the results after modifications will be
got fast. In case of large modifications, FEM is not reliable for complicated structures anymore, as
there are always inaccuracies present in mathematical models. In such cases the only alternative is to
make new measurements and a new experimental model and study if the modifications have yielded
desired results.

Trial-and-error method has been the most widely used updating method so far, but nowadays
more advanced methods and methods, which require less user interaction have been developed.

Linking of models are discussed in greater detail elsewhere in this paper.

Computer programs
There are plenty of commercial computer programs for experimental modal analysis and FE analysis,
but only a few codes for linking FE-model with experimental model. Athough commercial codes are
available, in the Laboratory of Strength of Materials computer programs have been developed for
experimental and FE-model creation. This is because commercial programs are generally 'black
boxes' which can not be modified or extended by a user. In many cases a client is bound to one
software house, because the programs of different software houses do not generally support the same
file formats and thus the data transfer between the programs is complicated or impossible. One
important aspect was to get more knowledge about the latest methods and deeper insight to the
mathematical problems involved in algorithms.

MODALS is an advanced modal analysis software package, which supports most of the features

needed in modal analysis and in linking of models, like
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» modal parameter estimation,

» modal model validation,

« graphics for function and structural display,
« general function (or block) arithmetics,

« window to other programs,

» tools for combining FE- and modal models,
= programming capability,

» On-Line Help.

MODALS is command language driven and it consists of approximately 100,000 lines of
FORTRAN code. MODALS does not support data acquisition, for which a commercial program
MODAL-PLUS (by Structural Dynamics Research Corporation, SDRC) is used. The current version of
MODALS supports MODAL-PLUS binary file formats and SDRC Universal file formats, but it is easy to
add new formats into the code.

In practical analysis the two most important features required of analysis program are, that it is
able to handle a large number of modes and wide frequency bandwidth simultaneously. This is
because it decreases analysis time notably. MODALS is able to analyze the total analysis band at the
same time with maximum of 128 modes. Some theory behind MODALS will be discussed below.

Basic problems present when creating an analysis program may be divided into the following two

categories:

1. problems concerning estimation methods and

2. problems how to reduce user interaction.

Problems concerning estimation techniques are on the one hand performance of the method
itself, on the other hand mathematical. in most cases a method which is able to analyze the whole
trequency band at the same time, without being forced to divide the bandwldth Into pleces, Is
preferable. Frequency domain estimation methods yield typically very ill-conditioned equations, if the
frequency range is wide, and thus they are more suitable for narrow bandwidth analysis.
Polyreference time domain technique does not have this disadvantage, which is the reason why it has
been installed in MODALS. The method should also be able to handle a large number of modes,
which also causes numerical difficulties. During the measurement phase, the resolution of the A/D-
converter used in data acquisition and selected input range determine the accuracy of measured data.
Although the accuracy of measured data is much lower than that used in calculations, the computation
accuracy and the algorithms have a remarkable influence on the results. Mathematical problems may
be decreased by using stable mathematical routines. In MODALS implementation orthogonal
decomposition like QR and Singular Value Decomposition have been used for solving linear equations

and eigenvalue problems instead of elementary decomposition (Gaussian elimination). The roots of a
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polynomial are solved using companion matrix approach instead of normal polynomial root solvers.
Although the residue (mode shape) calculation is mathematically straightforward and stable, it is
sometimes difficult to get valid values because of modes present outside the analysis frequency
range. It is possible to estimate the effects of out-of-range modes if the residues are calculated in
frequency domain, that is not possible in time domain estimation. Thus, in MODALS implementation
the residues are calculated in frequency domain.

All estimation techniques which use a wide frequency band generate more roots (natural
frequencies and damping values) than are really present in the system. So some of the estimated
roots are computational, which should be separated from physical roots. This needs very much
interaction between the user and the program and for complicated structures it is normally the most
time consuming phase in modal analysis. There is nowadays a couple of methods for detecting
computational modes, but none of them is ‘fool-proof'. We have investigated this problem quite a lot,
but it is still unsolved. In MODALS implementation, a self-developed criterion based on how well the
characteristic polynomial is satisfied, is used. This criterion works completely for analytical data (all
computational modes will be found), but generally for real data app. only one half of the computational
modes is found. This is due to the fact that measurement errors, nonlinearities etc. bluff the algorithm
to think that the mode is physical. We are sure that much can be done in this field and thus the
developing of a better method is one of the main research areas of the project now.

The FE analysis is performed with Finite Element solver FESAP, which is based on SAP IV [1].
The original code has been modified very widely and plenty of new features have been added to the
program. The current version contains app. 21000 lines of FORTRAN code.

FESAP supports many special features useful in the linking process. The natural frequencies and
mode shapes are calculated directly without a transformation of the structure stiffness matrix and
mass matrix to a reduced form, which yields more accurate results. The ability to solve the eigenvalue
problem for a free-free model is very important, for instance, when analyzing aircraft. In many
applications the nodal points do not coincide with the measured ones and hence the visual and
mathematical comparison of analytical and experimental mode shapes is ditticult. This problem can be
overcome by displacement extrapolation, which means that the displacements of an arbitrary point in
space can be defined using rigid links. Extrapolation is effective, as it does not increase the number of
unknowns and the size of system matrices and hence the solution time will not increase.This feature is
extremely important for instance in aircraft applications, as they are normally modeled using simple
beam elements. Mass output for elements, element groups and for the whole model is important when
the mass distribution is under study. The possibility to select the nodal point whose displacements are
to be output is also a useful new feature.

Initial stiffness distributions (needed in the updating process) are sometimes determined by static
tests. For a visual study and analysis of static test data the computer program REGRESSIO has been
developed. REGRESSIO uses a linear regression analysis to fit a straight line to a force-displacement

curve. An arbitrary measured data value may be suppressed/unsuppressed interactively. The results,
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which are discrete flexibility factors, may then read into MODALS for future manipulation.

The most important aspect of a general purpose computer program is the ease with which it can

be modified, extended and updated. This is because new methods are developed and better

numerical procedures are available. Every program is designed to be modified and extended easily by

the user; additional options and new features may easily be added. The programs are coded using

FORTRAN 77 language. The graphics is based on Tektronix graphics.

Program developing will concentrate on MODALS. The need to develop FESAP is small, as

according to present knowledge it supports all required features. The main area in developing of

MODALS is better estimation techniques, updating methods and methods which reduce user

interaction.

Computer codes presented have been used successfully in analysis of aircraft. In Figure 2 the

usage of different programs is presented.
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FIGURE 2. Computer programs used in creation of modal models.
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POLYREFERENCE COMPLEX EXPONENTIAL TECHNIQUE

One of the most popular multiple input time domain methods namely Polyreference Complex
Exponential Technique has been recently installed in modal analysis software package MODALS. The
theory background of this method together with one of the frequency domain methods, called
Frequency Domain Polyreference Method, will be discussed briefly. Some practical viewpoints
concerning the installation of estimation method in MODALS also will be presented. The
characteristics, advantages and limitations of methods will be compared to show basic differences

between time and frequency domain methods.

Theory
The time domain Polyreference Complex Exponential Technique uses the impulse response function
data obtained by inverse Fourier-transform of measured FRF's to extract modal parameters.

The impulse response function between a particular response location and a particular input
location of a viscously damped system can be expressed as a linear combination of damped complex

exponentials of modes contributing in the frequency range of interest as
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Sn . 'Cnmn"'imn 1-Cn,

hij (1k) = impulse response function between response location i and input location j,

N = number of modes in the frequency range of interest,

n = mode number,

Aij,n = residue for mode n at response location i due to an input at location j,
ST = analysis time increment = 0.5/ (I, 5, - fmin

o, B 21tfn. where fn = natural frequency,

Cn = relative damping,

= denotes a complex conjugate.

In a similar fashion an expression for impulse response functions between a particular response

location and all input locations can be formulated using matrix notation as

(hittd} = WITUI Al @
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where [W] contains the modal participation factors. The modal participation factors indicate how well a
mode is excited from different input locations. Note that only the left hand side of the equation is
known and the equation is nonlinear in unknowns. It can be proved that the complex exponentials and
the columns of modal participation matrix are the eigenvalues and corresponding eigenvectors of a

matrix polynomial of the form

(WP + [ IV + .+ [ VTV = 0 @

where pL > 2N (L = number of input forces). This matrix polynomial is the characteristic polynomial of
the system. The matrix polynomial formulation enables the Polyreference method to find repeated
roots of maximum multiplicity of input locations.

Using equations (2) and (3), an autoregressive equation can be derived as

-1
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To determine coefficient matrices of the characteristic polynomial, equation (4) can be used to
form a set of linear equations to solve unknown coefficients. Once the coefficient matrices have been
solved, the resonance frequencies, damping ratios and modal participation factors of the system can
be determined by solving the eigenvalues and eigenvectors of matrix polynomial. Then equation (2)
can be used to form a set of linear equations to calculate residues in the time domain. The residues
can be calculated also in the frequency domain using an alternative formulation. Hereby, the time
domain polyreference parameter estimation is a two stage procedure, first all impulse response
functions are used to determine a set of poles and then the residues are calculated for a particular
response function. In both stages, a set of linear equations is used to determine unknowns. From the
numerical point of view, the autoregressive and matrix polynomial formulation used to solve modal
parameters have been found to be stable [2].

In MODALS implementation, a singular value decomposition algorithm is used to solve the
unknown coefficient matrices. The companion matrix approach is used to solve the roots of matrix
polynomial and the corresponding eigenvectors are calculated directly from equation (3). These
algorithms have been found to be able to solve problems involving polynomials of order up to 256
successfully.

Until now, the major difficulty has been with modal participation factors of periectly repeated
roots, which can be considered not to be the case in practice. The algorithm detects repeated roots
successfully, but fails to solve the corresponding modal participation factors, which yields incorrect
residues (mode shapes). However, if there is a very small difference between roots, the modal

participation factors will be estimated correctly.
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Frequency Domain Modal Parameter Estimation
The frequency domain modal parameter estimation techniques offer an alternative way to extract
modal parameters from FRF's in their natural domain. An expression of FRF of a viscously damped

system can be written either in a partial fraction form as

N A A
U 4 2 |l|n + |J|n + UIj , (5)
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or in a rational fraction form as
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where
n > 2N
m >n+2
Hij = FRF between response location i and input location |
L = lower residual term
U = upper residual term

Let's have a quick overview on the theory of Frequency Domain Polyreference Method. The
expression for displacement and velocity FRF's between all response and input locations can be for-

mulated as

-1
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where [®] denotes the mode shape matrix and the residual terms have been neglected for simpilicity.

It can be shown that there must exist a matrix A such that
[Al[®] = [®][sn] - ®)

where the eigenvalues of matrix A are the poles of the system and the corresponding eigenvectors are

mode shape vectors. Matrix A can be calculated using the following equation
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[AIH] = [H] . ©)

Once the poles and the mode shapes have been calculated the modal participation factors can

be determined using equation (7) [3].

Comparison of Methods

The time domain methods use mostly impulse response functions obtained by inverse Fourier
transform of measured FRF's, introducing new sources of analysis error like time domain leakage.
Another, perhaps more serious, problem using a time domain method is that only the poles within the
frequency band of analysis can be detected, since

esnST _ esn8T+12nml

1
0T = v — .
2{fmax ‘ fmin)

(10)

As a consequence of this fact it is possible neither to calculate the modes outside the frequency
range of analysis nor to take into account residual effects of these modes on the modes located inside
the subband of analysis. This fact makes the time domain methods more convenient for analyzing of
wide frequency bands. The major advantage of the time domain over frequency domain
implementation is the fact that these algorithms have been found to have stable numerical
characteristics.

In the frequency domain methods the FRF's are used directly, which makes it possible to analyze
also the FRF's with unequal frequency increment. The influence of modes outside the frequency range
of analysis can also be taken into account by calculating modes outside the frequency band or by
using residual terms. However, most of these methods yield ill-conditioned polynomial formulations,
which are found to be numerically unstable, especially when a wide frequency band is analyzed.
These facts make the frequency domain methods more convenient for analysis ot a narrow frequency
band [4].

UPDATING FE-MODEL THROUGH EXPERIMENTAL MODAL MODEL

Effects of the structural modifications on the dynamic behavior can be predicted if the dynamic
behavior of the original structure is known. In practice this requires the formation of an experimental
modal model. If the individual modificatios are large, it is profitable to repeat measurements, otherwise
it is preferred to update FE-model through experimental model. Modifications can be easily modeled

by FE-method, which enables fast and accurate solution of the new response.
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Applications

Updating of a FE-model creates the basis for reliable prediction of the influences due to the structural
and environmental changes. Updated FE-model can be used e.g. in response and flutter analyses and
with care in stress analysis.

The aim of the FE-model updating is to improve the operation of a device and the endurance limit
against fatigue or to specify acceptable dynamic environment in the transport and mounting. Updated
FE-model can be used in the assessment of restraint variations and to determine modes which are not
on the measured frequency range. These modes are reliable only if an adequate number of elements
and modes have been used in updating.

FE-model updating is mainly applied to vehicles, massive and rotating machines and to very
sensitive structures. Some applications are associated with acoustic design and devices, which exploit
vibrations. Lack of the appropriate computer programs and their high prices restrict updating in

practice.

Requirements of Models and Problems in Modeling

Excitation, measurement and analysis techniques and the analyst's experience have the largest effect
on the accuracy of the experimental modal model. Unknown restraints and structural parameters,
discrete parameter distributions and joints raise difficulties in FE modeling, too. Nonlinearities and low
frequency resolution in measured data may degrade the accuracy. Most structures are partly non-
proportionally damped, which causes the measured modes to be complex. In the FE-method, struc-
ture is normally assumed to be undamped, which yields real modes i.e. normal modes. Although the
damping is ignored, updating can be completed in most cases with success. This requires some more
work and more complicated algorithms. Measurements are often contaminated by systematic and
non-systematic (noise) errors. Non-systematic errors are normally smoothed away automatically in
mathematical routines during modal analysis. In contrast, systematic errors in measured data form a
potential error source for updating process. If systematic errors have not been identified during the
analysis phase, compietely wrong conclusions may be drawn and thus, the basis for the updating
process is erroneous. Of course, a FE-model which is updated through an erroneous experimental

model is not a reasonable basis for structural modifications.

Existing Methods
Until the 1970's the only updating method was the trial-and-error method, in which the modeler
changes FE-model using his own experience and various error descriptions. Since the 1970's there
have been successtul efforts to develop systematic and automatic methods for the updating process
(Fig.3) and hence some of the modern methods manipulate the system matrices directly.

Tools for trial-and-error method: Direct comparison is based on visual investigations and on
simple mathematical criteria. On the xy-plane, where abscissa represents measured quantities and

ordinate mathematical quantities, equal values form a straight line of slope one. in the case of mode
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shapes the slope of the regression line iscalled as 'Modal Scale Factor' (MSF). MSF is calculated

between the modes d)i and d)j according to the following equation

MSF = 1oy @) , an
@) (o)
| ORIGINAL STRUCTURE ]
v MODELLING
| EXPERIMENTAL DATA [ <—| INPUT DATA CORRECTION
SOLUTION
[ EXPERIMENTAL RESULTS | UNALﬁICAL RESULTS |

v nonsatisfactory results
SELECTION OF INACCURATE
[ COMPARISON I—b‘ PARAMETERS

satisfactory results

LPROCESS COMPLETED |

FIGURE 3. Updating FE-model through experimental modal model.

The regression line can be used to determine inaccuracies in the behavior of the FE-model;
reasons for bad results are very hard to locate. However, direct comparison is often used in rough
updating before a more advanced method will be applied. Direct comparison is analogous with the
visual inspection of mode shapes, which is a clear and practical method to locate errors in the
response of a FE-model.

The modal assurance criterion (MAC) is a scalar value between zero and one representing the

correlation between two mode shapes ({®;} and {<I>j}). and it is defined as [5]

MAG = |*“"'}T*“‘i}|2 _ (12)

T i
(@) (@i} D)) (9]}

MAC is usually used as a simplified orthogonality test. In practice the mode shapes are
considered the same if MAC-value is greater than 0.9, and entirely different if the MAC-value is

smaller than 0.1. Uneven measurement mesh may cause difficulties in interpretation of MAC values.
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COMAC is used in calculation of the correlation of magnitudes of the mode shape coefficients
(interpretation as above). COMAC for the ith degree of freedom is calculated using experimental

mode shapes (E) and analytical (A) as follows [5]

2
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where K is the total number of correlating mode shapes and @ refers to the mode shape coefficient of

response location i. The accuracy of COMAC can be improved by setting the mode shapes into the
same phase and not taking the absolute value until the end of summation.

COMAC and MAC are used in rough updating especially when there are many degrees of
freedom. Pure mode shape comparison does not tell anything about the reasons for erroneous
behavior.

Synthesized frequency response functions (FRF) are formed by natural frequencies (f,), mode

shapes (®,), modal masses (m,) and relative dampings (&,). By comparing these FRFs to the

measured ones the accuracy of the element model can be checked. FE eigenanalysis leads normally
to real mode shapes, when the synthesized FRF H is formed between point i and j by using N mode

shapes as stated in the equation 5.

N A A..
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Models with few measured points can be easily compared over the whole frequency range. Mode
indicator functions, which contain information about multiple FRFs ease the comparison of large
models. Comparison of synthesized FRFs aids the advanced methods described below.

Methods based on the classic Berman method: Classic Berman method [6] (Fig. 4) is a
noniterative updating process, where no eigenanalysis is needed. Input data of the method consists of
experimental mode shapes (®), natural frequencies (f) and reduced system mass matrix M and

sliffness matrix K. Changes of the system matrices are minimized in the updating process. lteration
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can be used to check the convergence. The theory and associated equations of these methods are

presented in reference [6].
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FIGURE 4. Classic Berman method.

Updating methods based on the classic Berman method often yield reduced system matrices,

which satisfy experimental results but may present additional modes. Although the updating is very

accurate with reduced system matrices, they can not be converted to the changes of the FE-model.

Sensitivity analysis: lterative sensitivity analysis (Fig.5) presupposes the eigensolution on each

cycle. Both global and local parameters are selected as updating objects. Global parameter is e.g.

modulus of elasticity, and local parameters could be element parameters, concentrated masses and

restraints.

ZO0—-H>»>ID$mMmA—

| Parameter selection

-+

[ Calculate sensitivities and select correlated modes l

g

I Calculate paramster changes and update parameters '

Y

Solve eigenvalue problem and compare results I

no * yes

-————l Convergence achieved ? I—’— Mand K




39

FIGURE 5. Sensitivity analysis of eigenfrequencies.

Let us now concentrate on sensitivity analysis of natural frequencies. Sensitivity of natural
frequency f for the parameter P (element of sensitivity matrix S) can be calculated by using finite
differences as

st dfi  fi(P) - f(Pj+dP))
ap. = ‘ (15)

SPi dPi dPl

Parameter changes can be calculated by Bayesian technique /7/, which allows weighting of
experimental and element parameters. For an underdetermined system, the following equation is

presented
T Ty
{dP} = [CplIS] [[Cel+ISICplIS] ] {df}. (16

where [C] is the weighting matrices. Subscript p refers to parameters and r to responses. Weighting
matrices contain proportional reliabilities on their diagonal. Weighting affects the ratio of the
accuracies of model parameters and the accuracy of response.
Modes may change places during the updating process and hence they must be ordered after
each iteration cycle. lteration is continued until the predefined convergence criterion is fulfilled.
Changes obtained by sensitivity analysis have clear physical meaning, because it manipulates
directly physical parameters of the FE-model. Reduction of the FE-model is unnecessary. The time

consuming eigensolution can be considered a disadvantage.

Conclusions

The success of updating FE-model through experimental modal model depends on accuracy of the
experimental model and the FE modeller's experience. Inaccuracies in experimental model are due 1o
systematic errors in measured data and unexperience of the analyst. Problems in FE-modeling are
concentrated on unknown restraints, joints and unknown structural parameters.

Methods based on the classic Berman method are superior in cases where updated FE-model is
used directly without making any changes to the model €.g. in response analysis. That is due to the
fact that the physical meaning of the structural parameters has been lost during the updating process.
It the changes of the system matrices could be converted to the structural parameters, methods based
on the classic Berman method would be practical and accurate updating methods. In the sensitivity
analysis the structural parameters are changed directly and thus the physical meaning of the
parameters is preserved. Unfortunately, the time consuming iteration process decreases the value of
the sensitivity analysis as a practical updating method. The most practical tools for trial-and-error
method are MAC, COMAC and visual inspection of mode shapes.

Basic tools for trial-and-error method, as MAC, COMAC and visual comparison of mode shapes
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and FRFs are installed into MODALS program. The installation of sensitivity analysis and methods
based on the classic Berman method is postponed; the aim will be to combine the advantages of
these two methods. Perhaps, the future updating method will construct reduced system matrices by
Berman methods and apply sensitivity analysis to the reduced system matrices directly.

The updating methods described in this paper are used successfully in many simple cases. FE-
model updating of an aircraft has also been completed using the trial-and-error methods.

SUMMARY

The project has reached a level where it is possible to make experimental modal analysis for
complicated structures. Nowadays self-made computer programs are used especially for experimental
modal analysis, but for updating FE-models, as well. Experience got from using the programs shows
that the programs are appropriate to experimental modal analysis and to the linking of experimental
and analytical models. However, it is necessary to continue developing MODALS.

The installation of a sophisticated frequency domain multiple input modal parameter estimation
method could enable us to take advantage of both time and frequency domain implementations and
thereby more confidence concerning extracted modal parameters could be achieved. The improving
methods already installed in MODALS also seems to be potential research area.

Fundamental investigations according to the literature have been done concerning the updating
process. This is, however, not enough and research work concerning more sophisticated updating
methods should be done. Basic tools for trial-and-error method have been installed into the program

MODALS. The installation of more sophisticated methods will be done in the future.
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NUMERICAL HOMOGENIZATION USING THE FINITE ELEMENT METHOD

Juha Aliranta and Stig-Goran Sjolind
Engineering Mechanics Laboratory
Department of Mechanical Engineering
University of Oulu
SF-90570 OULU, FINLAND

ABSTRACT

Overall elastic properties of composite materials are frequently calculated
using simple averaging methods. In cases where the material has simple
symmetry properties, analytical homogenization methods has also been
applied, but in more complicated cases numerical methods has to be resorted
to.

In this study a numerical homogenization method based on the use of the FEM
is presented. A representative volume element (RVE) of the complex
composite material was modelled using three dimensional finite elements.
Overall stiffness properties were calculated in this way for the RVE. These
properties were used in later stages of homogenization or directly in
structural finite element calculations.

The presented homogenization method has been applied in several consequtive
stages in analysing vibrational behavior of spirally wound paper tubes made
of anisotropic materials containing various distributions of voids.

INTRODUCTION

Spirally wound paper tubes are fabricated by immersing paperboard strips in
an adhesive bath and then winding the strips around a mandrel in a
staggered fashion. Paperboard strips have orthotropic material properties
with principal directions of orthotropy coinciding with lenght, width and
thickness directions of the strip. After winding the principal directioms
of the paperboard do not coincide with the geometric axis of the tube and
the tube wall will contain various distributions of voids appearing between
the individual strips [1].

Spirally wound paper tubes are commonly used in industry as a centre cores
for winding paper or film during production operations. The winding is done
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under tension, subjecting tubes to external radial pressure. The stress
distribution in wound paper is important for developement of sound rolls
suitable for shipping. Models to estimate stresses in paper during this
winding process have been developed [1, 2]. A closed form elasticity
solution is developed to predict stresses and strains in spirally wound
paper tubes loaded axisymmetrically [3].

In this study the influence of fabrication operating variables on the
stiffness and vibration properties of spiral paper tubes has been studied
by using the numerical homogenization method.

METHODS

The homogenization method

When investigating the effective stiffness moduli of composite materials,
there are a few possibilities of experimental characterization, but they do
not lead to the entire anisotropy elastic matrix. Therefore authors
( Willis, Hashin, Halpin,...) have developed ‘several theoretical methods
to obtain global or effective constitutive elastic coefficents [4]. One of
these methods is the so called homogenization method.

The objective of the homogenization method is to determine average
homogenous global constitutive relationships for the composite material
from known constitutive properties and distributions of the microscopic
constituents. For this purpose a representative volume element (RVE) of the
material is analysed. The RVE is a typical small element of the composite
material.

Upper and lower limits (in energy manner) for the elastic properties of
anisotropic materials can be obtained by Voight's model and by Reuss’
model, respectively. 1In the Voight's model the RVE is assumed to have a
uniform strain field {e®} and in the Reuss model a uniform stress {¢©}
field [5]. Some authors (Begis [4] and Persson [6]) have used the Voight's
model to predict the effective properties of composite materials. In the
Voight’s model equation 1 is used to estimate the effective stiffness
properties of anisotropic elastic materials.

VEeOIT[E*) €0} > [{eIT[E]€e}dV = [{FIT{u,}ds (1)
\Y s

where

V is the volume of the RVE

{9} is a uniform strain vector

[E*] is an average material

stiffness matrix

fe} is the strain vector in the RVE

{F} is a force vector

fu®l is a prescribed displacement
boundary condition vector

[E] is the material stiffness
matrix in the RVE.
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The numerical homogenization

In the numerical homogenization we need the theory of the homogenization
method, but the effective properties of the anisotropic material has been
estimated by using the FEM. In the numerical homogenization we may use
equation 1 to calculate the effective properties of the anisotropic
material. When we apply prescribed displacement boundary conditions to the
RVE, which are the same as in the case of a uniform strain field, the
equation 1 can be approximated by

£e0IT[E*]£c0) = L{cOIT[[E] LeIaV 2)
\Y
For example if we want to calculate terms of the average material stiffness
matrix E¥], we need to calculate stresses in the RVE. When we substitute
£ e© 3" ={1 00000 3} we get the first column {E¥.1 of the average
material stiffness matrix [ E*]. Now we may write équation 2 in the
form

(E51) = LfIE)edav = SfTolav 3
\Y \Y

It must be noted, that in the equation 2 there are applied prescribed
displacement boundary conditions on the RVE, but other points are free.

APPLICATIONS

In this study we have used the numerical homogenization to study operating
variables of a spirally wound paper tube. The analysis is based on a
representative volume element (RVE), which includes a void and has
anisotropic (orthotropic) material properties. The RVE has been analysed by
FEM (ABAQUS) using three dimensional finite elements.

Figure 1 a)...d) shows all stages in the analysis of the spiral paper tube.
In the first stage, figure 1 a), there has been calculated the average
material stiffness matrix of the RVE. Figure 1 a) shows the representative
volume element of the tube. In the second stage, figure 1 b), we have used
a plane model of the half pitch of the spiral paper tube. By using the
plane model the modelling of the half pitch of the tube was easier. Figure
1 b) shows a plane model of the half pitch of the tube. The colored element
is the RVE. In the third stage, figure 1 c), there has been made a beam
element from the half pitch of the tube by calculating the stiffness matrix
of the half pitch of the tube. Figure 1 c¢) shows a half pitch of the tube,
which has been made by transforming the plane model to a cylinder. In the
fourth stage, figure 1 d), there has been calculated natural frequencies of
the tube by using beam element, which was calculated in the stage 1 c¢).
Figure 1 d) shows the whole structure. The colored part of the tube is a
half pitch of the tube.
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a RVE

a half pitch of
the tube

FIGURE 1. All stages in the analysis of the tube,

a plane model of
the half pitch

Figure 2 shows one of the prescribed displacement boundary conditiomns,
which has been used in the numerical homogenization method. From equation 4
we see which kind of load cases we have to use when we are calculating the
matrix of the RVE by using the numerical
homogenization method in the first stage.
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FIGURE 2. Load case €4 = 1 for the RVE.

Figure 2 shows load case ey = 1, where the prescribed displacement boundary
conditions are same as in the uniform srain field ey = 1, but in this case
inner points are free.

In the third stage we have calculated the stiffness matrix of the beam
element. Figure 3 shows degrees of freedom of the beam element.

FIGURE 3. The beam element.
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CONCLUSION

The tube, which is made of an anisotropic material, has been analysed in
several stages. The first stage is to use numerical homogenization method
to calculate the overall stiffness properties of the anisotropic material
contalning various distributions of voids. The second stage is to use the
calculated overall moduli of the anisotropic material to calculate the
stiffness matrix of a beam element, the lenght of which is a half pitch of
the spirally wound tube. The last stage is to use the beam stiffness
matrices to analyse vibration properties of the spirally wound tube.

The influence of operating variables on the stiffness has been studied by
calculating the first natural frequency of the tube. The first measured
natural frequencies are about 41 Hz and the first calculated natural
frequencies are about 37 Hz.

The natural frequencies of spirally wound tube obtained by the finite
element analysis agree quite well with the measured ones.
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A TINITE BEAM ELEMENT FOR LAYERED STRUCTURES
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ABSTRACT

The well-known basic plane beam element has two nodes, and its three degrees of freedom on both nodes
comprise axial and transverse displacements, together with rotation. Plane elements with in-plane
displacements on nodes have been used in beam problems employing inter-con nected members ¢.g. layered
beams and composite beams. However, the plane beam elements can also be applied when special lype
finite elements for layered beams are derived. This paper introduces a transformed beam element which
has the same number of degrees of freedom as the basic clement. Iis stiffness coefficients arc easily
transformed to meet the requirements of the internal connection structure of the system. The coefficients
of the stiffness matrix can be obtained by superimposing displacement states of the basic element in such
a way that only one displacement component in the transformed element is non-zero at a time.

INTRODUCTION

Plane beam elements having three degrees of freedom on nodes, ie. rotation and two displacements, can
also be employed to solve problems of layered structures when the degrees of freedom are transformed to
allow the elements to be interconnected on top of others. This makes them feasible for the manipulation
of sandwich structures in which different layers have differing rigidities. The stiffness matrix is formulated
by deriving the changes required using the matrix of an ordinary beam element.

The Timoshenko beam element

Timoshenko’s beam theory /1,2/ allows for shear deformation when considering the displacement state of
the beam, so thal the stiffness equation can be written as

N; EA _EA u;
—}—ﬁ_(1+0) 0 0 EI(1+0) 0 o

Vi Vi
12/L? 6/L 0 -12/L* 6/L

Ml Er (4+0) 0 —6/L (2 -8)|]|®: (0

Ny (1+0) L g—‘; (1+6) 0 0 uy

Vi SYMM 12/1* -6/L | |7

My (4+0) [\@y
2

where abbreviations 6 = 12E/GA’L", A’ = Ala are used. EI and EA are the flexural and axial
stiffnesses respectively, and A is the cross-sectional area.
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a is the shear coefficient of the cross-section, used here in order to consider the distribution of the
shear stresses on the cross-section. Timoshenko defines it simply as the ratio of the shear stress at the
centroid to the average shear stress (the stresses are calculated according to the technical flexural theory).

When the coefficient 6 approaches zero, the stiffness coefficients of the technical flexural theory are
obtained. The need to consider shear deformations depends on the material properties involved in the

problem.
M.i’ (p.i . ] Mj, lOJ-
1 J
N1., u. (% _ a } B Nj’ uj
Vs v; W v Vis v

FIGURE 1: Degrees of freedom in two-noded plane beam clement

TRANSFORMATION OF THE DEGREES OF FREEDOM

A beam element suitable for layered structures is such that its nodes can be connected flexibly to the nodes
of another element by applying spring elements between appropriate nodes. The degrees of freedom on
the end nodes of the ordinary element are therefore divided into three nodes, each having now only one
degree of freedom, axial or transverse displacement (FIGURE 2.). The top and bottom nodes, ’#i’ and 'bi’
take care of the longitudinal displacements and the middle one, situated on the centroidal axis, moves
transversely.

ut1 ti
Iy
| Zad

j

Vi$ R

Ubi bi
|y
[l

FIGURE 2: Degrees of freedom on the transformed element

DERIVATION OF STIFFNESS COEFFICIENTS

The coefficients of the stiffness matrix for the layered element are now derived by introducing a positive
displacement on one node while the others are kept zero and considering the force components of the
ordinary element needed to produce this.

The nodal displacement u_; > 0 is taken as an example and the forces required to impose the state of
Figure 3 are introduced. The displacement state is determined using axial displacement w o= pu and
rotation p; = u,/h in the ordinary element. These are produced by the forces

Ni = {EA/L}ui =- i (2a)
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V, = {6El/(1+0)L2, o, (2b)
M, = {(4+OEI/(1+6)Lp; (29)
(2d)

M; = {ZH)BI/(1+6)L};

The axial forces on nodes £ and bi can be arranged so that these result in a total axial force Ni and
a bending moment M.. To produce N, the components Nt and N, are required and the moment is
n bn
produced by the force couple N\ = -Np,\, = M,/h,

Nen = TpN{ 0+ 1p) = 10 (32)
Non = TN{0¢ * 1) = ToN; (30)

The equations (3) are based on the requirement that N and N should satisfy the condition of an
axial deformation state. The resultant forces on the nodes are then

Ny =Ny + Ny

= ngrp (BAL); + {(4+OEU( +9)L%}u, (42)
Np; = Npp + Npm
= ny 2(BAIL)u - {(4+O)EI( +9)Lh%}u,g (4b)
Accordingly, for the j-end one must write
Ny = (1, EAL) + {(26)E(1+6)Lh hyu, (40)
Ny = -(n, (BAL) + {(26)BI/(1+6)Lh hyu, (4d)
Transverse forces depend only on the rotation, and due to u, they are written as
V=V, = {6E1/(1+6)L7n}u, (de)
u,. >0
g U t]
o) ? Q
0 > 0 nth
= e |19 —ﬁ'L—
/ nbh
bi © Q
L b3

FIGURE 3: Correspondence between a nodal displacement and the rotation of the element end face

Correspondingly, one of the displacements u, ., utj and u, . at a time is set to be nON-zero and the force
components required are considered. The resulting vector R)‘r the nodal forces is

_ T
{Fe} = Ny N V; Ny Ny Vi ¢2)
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and the vector for the displacements is

_ T
Ugh = uy up; v vy wy v (5b)

The stiffness matrix [Se] in the equation for an element,

{F,} = [S,HU,} ©)

(5,1 [s,]

g =
L5 [5,17 [55]

the submatrices of which, [Sl], [SZ] and [S3], are given in detail in the appendix.

As in all beam elements, the transverse deformations are not considered inside the clement. If the
system contains substantial compressive layers, they can be allowed for by calibrating the stiffness of the
transverse coupling springs so that the flexibility of the layer corresponds to the settlement of the spring.

DISCUSSION

The elements explained above have been found to behave well, due to their similarily in nature to
Timoshenko beam elements, which are not sensitive to errors caused by selection of the dimensions, and
the overall accuracy of the solution is good provided that the length of the elements is much less than the
length of the structure.

‘The elements have been used for the analysis of composite beams having incomplete interaction, for
which purpose the lengths of the elements were chosen directly according to the spacing of the connectors,
fe. the lengths were less than the total depth of the cross-section. When the non-linearity of the spring
elements was considered, together with the non-elastic material behaviour, the true properties of composite
beams could be determined /4/. Figure 4 presents a typical two-layer connected composite element having
vertical and horizontal coupling springs. The vertical springs take care of the compression between layers
and the horizontal springs allow for the longitudinal shear and slipping at the connection interface.

B

AA
NV
o—o—c:%—q—c
Q
l\v)\v)f

FIGURE 4: A two-layer beam element composed with coupling springs

The nodes capable of longitudinal displacement can be used to couple reinforcing springs (axial
elements), which are suitable for the modelling of pre-tensioning effects or reinforcement in concrete
structures. Figure 5 shows the principle of connecting a reinforcing axial element to a flexural element.



53

If no slip is considered, the axial ‘a’ is assembled directly to the stiffness matrix of the ‘lbe’ element. The
slip between the axial and flexural elements could be modelled by using horizontal coupling springs which
have the same propertics as the load-slip function of the reinforcement.

ti tj
" 77
@ 777
0| 7 | PO “J; >
-i_‘_‘ _ -
Ej (1be)+(a)! %, K ‘:\ E
j | by al b‘jJ -

ti bi 1t bj J

FIGURE 5: Assembly of the stiffness cocfficients of an axial element to the stiffness matrix of an layered
beam element
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APPENDIX

The stiffness matrix of the transformed element is written with the aid of its submatrices as

(5,1 [8,]

S =
(5] (3,17 [S,]

where the submatrices are written in the most common case

N3SCA+SCF1 n n,SCA-SCF1 SCF3

(5.1 = n2SCA+SCF1 -SCF3
SYMM SCF4
-N3SCA+SCF2 -1,.1,SCA-SCF2 -SCF3

-n,N,SCA-SCF2 -1}SCA+SCF2 SCF3
SCF3 -SCF3 -SCF4

NiSCA+SCF1 1M, SCA-SCF1 -SCF3
(5] = n2SCA+SCF1  SCF3

SYMM SCF4

SCA = BA/L, SCF1 = (4+6)EI/(1+6)Lh%, SCF2 = (26)El/(1+6)Lh’

SCF3 = 6EI(1+6)L%h, SCF4 = 12EI/(1+6)L>

h =@, +n)H
Ut
—>0 EA, EI b T
“b ) g !
__.} v b lr
b |
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ABSTRACT

Design sensitivity analysis is performed for the finite element system arising from the
discretization of nonlinear potential problems using isoparametric Lagrangian elements.
The calculated sensitivity formulae are given in a simple matrix form, which makes it
easy to include sensitivity calculations into existing finite element codes.

INTRODUCTION

Shape optimization problems are optimal control problems where the control is some
geometrical parameter [4], [7]. Traditionally optimal shape design is associated with
structural optimization. However, any shape optimization problem which is governed
by an elliptic partial differential equation can be solved numerically using the same
techniques. In this work we consider the case where the state problem is approximated
by the finite element method. Although the continuous setting of the problem may be
a distributed control problem, the numerical optimization problem always has a finite
number of parameters. ;

By design sensitivity analysis we mean computing derivatives of the finite element
solution with respect to nodal coordinates of the finite element mesh. Although the
geometric sensitivity analysis is one of the most crucial steps in numerical shape opti-
mization, it is still considered extremely elaborate and difficult even for linear problems.
This is probably due to the bad form in which most of the sensitivity formulae are pre-
sented. In these formulae there are usually too much explicit dependence on certain
application or element type. This implies unstructured programs which are difficult to
debug and maintain.

In what follows we develop the geometric sensitivity analysis in matrix form for a class
of nonlinear potential equations. We assume that the continuous problem is discretized
using isoparametric Lagrangian elements. A sensitivity analysis of this type for linear
elasticity problems has already been done by Brockman [2], [3]. In addition we show
how to compute efficiently the sensitivity of a functional depending on the finite element
solution. The results can be applied in numerical realization of optimal shape design
problems, where the system is governed by these nonlinear problems.
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SENSITIVITY OF THE DISCRETE SOLUTION VECTOR
OF A NONLINEAR POTENTIAL EQUATION

Consider the nonlinear potential problem with mixed boundary conditions

-V (p(=, [Vul?)Vu)=f inQCR", n=2,3
1) u=0 only
p(z,|Vul>)Vu-n=g onT,.

Here 00 =T, UT,, f € L*(Q), g € L*(T;) and p : R® x R — R is a given smooth
function. We assssume that for given data the problem (1) is an elliptic problem and
has an unique (weak) solution.

The range of physical problems falling into this category is large. Moreover, a general
nonlinear elasticity problem can be handled analogously. One has to replace the po-
tential u by a displacement field i, the gradient Vu by a strain tensor (), the source
term f by a body force f, the boundary flux g by a surface traction g and pVu by a
nonlinear stress-strain relation o(%) = p(e(@))e().

We discretize the problem (1) using Lagrangian finite elements of order k. Then the
discrete analoque of problem (1) reads as

up € Vp : / p(z,|Vur*)Vuy, - Vop, dz
Qp

(2) = fon dz -+—/ gvrds Vv, € Vy,
Qn Tan

where Vi, = {p € C°(Q4) | ¢|1, € P¥(T.), ¢|r,, = 0} is the piecewise polynomial finite
element space and Q) = UT, is the finite element mesh. The matrix form of problem
(2) is the system of nonlinear equations

(3) K(q)q =1,

where K(q) is the “stiffness” matrix and f is the “force” vector respectively. The
unknown vector q contains the nodal values of wup.

Suppose now that the nodes of the finite element mesh depend on a real parameter
@. Our aim is to find the sensitivity of the solution vector q with respect to «, i.e. to
find 8q/8a. In what follows we will denote ( ) = ( )/ 0da.

If the nodes of the finite element mesh depend smoothly on a, we may use the implicit
function theorem and differentiate (3) to obtain

(4) [K(a))'q+K(q)q' =f".

The terms [K(q)]’ q and f can be computed element by element using the relations
(5) K(a)g=) PK*(q°)q° and f= > opefe.

Here P¢ is the “local-to-global” expanding matrix, P¢T is the “global-to-local” gathering
matrix and q° = P¢Tq (vector of nodal values of up, associated to the e:th element).
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In the case of isoparametric elements each element T, is obtained from the parent
element T' ([-1,1]", for example) by the mapping T — T. : £ z(£). Let

®1 Op1/061 ... Opm[B&
(6) N=| : and L= : :
©m O0p1/0€n ... Opm/[0a
be the matrices containing the values of the shape functions and their derivatives for

the parent element. Denote by J = [%—?}] " the Jacobian of the mapping £ — z(€).
V=1
Finally let d

(7) X =

be the matrix containing the nodal coordinates of the e:th element. ( In what follows,
we omit the superscript e as we are now working with the e:th element). At a point
z(£) the cartesian derivatives of the shape functions are now given by B = J L and
the Jacobian by J = LX.

Gaussian quadrature with integration points and weights (€F, W), k=1,..., K is then
used to perform the numerical integration needed for computing the element stiffness
matrix, resulting

K
(8) K*(q) = > Wi p(c*, 5:) By Be|Jxl,

k=1

where s = [Vun(z*)|2, =¥ = z(€¥), B = B(€¥), Jx = J(¢*) and |Ji| = det Jy.
The following results give the formulae for computing q'. For the proofs, see [2] and

[5].

LEMMA 1. The sensitivity of the “strain-displacement” matrix By is given by
9) B} = —BX'B;.

LEMMA 2. For the sensitivity of the determinant we have

(10) 136 = 136 Y Vei(ah) T (XY

Jj=1
LEMMA 3. The sensitivities of s; and z* are given by
(1) (=) = (X) N
and

(12) s = 2(Brq®) Biq® + 2(Brq®) Bi(q°)'.



58

LEMMA 4. The sensitivity of p(z*, sy) is given by

Op(z*, T
(13)  plat sy =2 ) (B,qt ) BYe + (Vap(a*,o0)) T (X)NG
Op(z*, s
+2 %(que)TBk(qe)'
THEOREM 1. The term [K¢(q®)]' q° is given by
(14) [Ke(qe)]l e _ Se(qe)qel + Te(qe)qe’
where
K
(15) $°(a) = Y Cx BfBiq"a""BJ B,
k=1
. K T
T*(a*) = )_(Ce BfBra‘a""BY B} + Di (B})"Bx
k=1
(16) +Dy BB} + Fi Bf By + F. BY By
and
() Ck = 2Wi|Jx|0p(c*, 5¢)/0s, Dy = Wi|Jk|p(z*, s1)

B = Wi|Je|(Vap(z*,5)) (X) Ny, Fi = Wil Tel'n(c*, 51).

In the absence of surface terms (i.e. ¢ = 0) the element force vector is given by

(18) o= Wi f(z*)Ne|Je|.
k

Differentiating (18) we get
THEOREM 2. The sensitivity of £¢ is given by

(19) (£ = D Wi (Vo (") (@F) Nul3ul + F*)Ne|Tul)
k

Performing the assembly process, we get the following expression for the sensitivity
of the solution vector:

THEOREM 3. The sensitivity of q is given as the solution of the linear system of equa-
tions

(20) (K(a) +S(a)) o' = £ ~ T(a)a.

REMARK. In the equations (9)—(19) the only matrix depending on a specific application
(mesh topology, design parametrization, etc.) is X'. All other matrices are available
from the assembly of the system (3). In practise the nonlinear system (3) is solved
only approximately. Therefore the equation (20) also holds approximately only. To get
accurate numerical values for the sensitivities it is recommended to solve system (3) as
accurately as possible. It is beneficial to use Newton-Raphson method in solving equa-
tion (3), as after convergence of the Newton-Raphson iteration the coefficient matrix in
(20) is (approximately) the one used in the last iteration.
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ON THE ADJOINT STATE TECHNIQUE
FOR THE SENSITIVITY OF A FUNCTIONAL
Let @ = (a1,...,aym) € RM be a parameter vector and let F : RM x RN — R :
(a,q) — F(a,q) be a cost or a constraint functional. The sensitivity of F' with respect
to ay, s =1,...,M is given by

dF _ OF T_ai
(21) da. = Ba. T (VoF) 30,

The form of equation (21) is not suitable when the gradient of F with respect to a is
needed as it requires M solutions of the linear system (20). Employing the standard
adjoint equation technique of optimal control theory to eliminate a%?— we obtain

(22)

dF  OF of
pT (

- = A, ()}
da, Oa, Oa, T(a) q) ’

where p is the solution of the adjoint equation
(23) (K(q) + S(q)) p=V,F

Now the computation of VoF requires only one solution of the linear system (23).

APPLICATIONS

In this section we shortly list some state equations of form (1) which have appeared
in optimal design litterature.

Sensitivity analysis for axisymmetric Poisson’s equation. An important appli-
cation is the axisymmetric Poisson’s equation

(24) -Vv. (27rrVu(r, z)) = 2xr f(r, 2).

Equation (24) may descibe a temperature distribution in an axisymmetric structure or
an ideal fluid flow in an axisymmetric nozzle, for example. In this case p(z,s) = 27 1.
As the problem is linear the adjoint problem (23) has the same coefficient matrix. When
direct methods are used for the solution of (3) one may solve (23) eficiently using the
existing factorization of the coefficient matrix.

Sensitivity analysis for magnetic field. Electromagnetic behaviour is governed by
the Maxwell’s equations for the magnetic field H and the magnetic induction B. In-
troducing the vector potential A B =V x A the Maxwell’s equations reduce into
equation

(25) V x (pV x 4) =7,

where 7 is the current density and p is the magnetic reluctivity. Let the domain under
consideration be given as = Qair U Qeopper U Qiron. In this case the function p is of
the form

1//10, T E Qair U Qcopper

(20 B ={ o o
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Assuming that 4 = (0,0,u) and 7 = (0,0,j3), the problem then reduces into the
nonlinear potential problem

(27) ~V - (pl(=, |Vu?)Va) = ja.

Although the mapping = — p(z,s) is not continuous, no problems arise if the finite
element boundaries coincide with the material boundaries. The results of Theorems 1-
2 are now directly applicable.

We note that in ref. [6] the sensitivity analysis was performed for this problem in
the case of P! triangular elements. As in both cases area coordinates were employed
the sensitivity formulae presented there cannot be utilized in the case of higher order
elements.

Sensitivity analysis for subsonic compressible flow. In two dimensions compress-
ible gas flow is described by the compressible potential equation

(28) V- (p(|Vu[*)Vu) = 0.

The velocity of the flow is given by ¥ = Vu and the density of the gas by

1
-1 -t .-
(29) p(15]%) = po (1 - Z_}_ 1 |17|2) ! (po and +y positive constants).

When the flow is subsonic then the equation (29) with suitable boundary conditions
is an elliptic boundary value problem. In [1] a shape optimization problem for a lifting
airfoil was formulated and solved using P'-elements. Again Theorems 1-2 enable one
to use higher order elements too.

CONCLUSIONS

The sensitivity formulae presented in this paper are both simple to program correctly
and efficient as basic linear algebra subroutine (BLAS) packages can be utilized. Our
approach is general as it applies to all isoparametric Lagrangian finite elements. General
purpose programs can be easily developed as the dependence on the specific application
can be isolated into separate modules. The same approach can clearly be applied to
different state problems (elasticity, Navier-Stokes, etc).
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P—ADAPTIVITY APPLIED TO THE SOLUTION OF FIELD
AND PLANE STRESS PROBLEMS

SEPPO ORIVUORI

Imatran Voima Oy, Rakennusosasto
P.0. Box 112, SF-01601 VANTAA, FINLAND

ABSTRACT

This paper describes a method to reveal the errors in the FEM-models. The
two error sources: inappropriate jumps in the stress field at
interelement boundaries and the lack of satisfaction of governing
equations, are transformed into physical quantities with which we can
easily measure the errors. In vhat follows we describe the solution
refinement strategy in which the element approximation properties are
improved by adding hierarchical edge and bubble modes. This is done only
in those parts of the model where error measures exceed the desired
accuracy. Examples showing the functionality of the solution refinement
method described are also presented. Examples deal with stationary
temperature distributions and plane stress problems.

INTRODUCTION

The finite element based programs are becoming more and more
user-friendly. They can be wused with little knowledge of the solution
method. This have caused a growing pressure to estimate the error content
of the solution obtained and hopefully even make it better. There are
several methods to get some information about the errors in FEM-solution.
A priori estimates try to guide meshing so that the largest element size
is below a certain limit to guarantee the desired accuracy of the
results. Instead of these, a posteriori error analysis methods are used
in practical applications. The early literature from the late 1970's /1/
wvas far too mathematical for civil engineers. Later on this mathematics
was translated to a more practical form to be applied in practice. /2/,
/3/, /4/ and /5/ are some examples of such papers. Guided by the error
estimates the refinement can be carried out using the three different
methods: the h-method, the p-method or the hp-method. In the h-method the
nev nodal point grid is created, in the p-method degrees of polynomials
within elements are increased. The error measures used in the papers are
often various norms which are difficult to realize by an engineer
utilizing FEM-programs. In the present paper the error measures have a
clear physical meaning. Two years ago vwe started to develop
ADAFEM-program in Imatran Voima Oy using the p-adaptivity to make it sure
that results of the FEM-program are within preassigned error tolerance.
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THEORETICAL BACKGROUND

Field problems
Field problems are governed by the flow balance equation

V'@ + Q =0 ¢Y)

vhere ¢ is the gradient operator, q is the flux vector and Q is the
source term. Components of the flux vector can be related to gradients of
a scalar potential by

q=- kv (2)

wvhere k is a matrix of material properties and ¢ is a potential
describing the phenomenon, for example temperature in heat conduction
problems.

For orthotropic two-dimensional problems Eq. (1) and (2) can be
written as

aq 9q
5;* + §§y + Q=0 (3)
and
3¢
o= ko
(4)
3¢
Wy

where q, and q, are the components of the flux vector along global x- and
y-axis, respectively; k, and k, are the material propgrties controlling
the flow in global x- and y-direction, respectively.

Boundary conditions which are valid on the points of the boundary of
the solution domain are

9y = - kng_: = an (5a)
or

q, = a« (¢-9,) (5b)
or

$ = ¢ (5¢)

vhere the subscript n indicates the direction along the normal to the
boundary, q, is the prescribed flux, o is the parameter controlling the
flow, for example the heat transfer coefficient 1in heat conduction
problems, ¢, is a known function and $ is the prescribed boundary value
for the unknown potential ¢.

TWO-DIMENSIONAL ELASTIC STRESS PROBLEMS

The two equilibrium equations for the plane stress problems are

do 9T

_axx + _any + bx = O (6)
9T 90

=T+ 5)_,y +b, =0 (7)
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vhere ¢, , o, and T, are the three stress components defining the two-
dimensional ~plane stress problems; b, and b, are the components of the
body force along x- and y-direction, respectively. Stress-strain
relations are

o = De (8)

vhere o = [0, o, Txy]T is the vector of stress components specifying the
plane stress state, € = [g,€ ny]T is the vector of corresponding elastic
strain components and D is tﬁe elasticity matrix having the form

E lv O

D = 57 | Y 1 0 (?)
00 (1-v)/2

in isotropic conditions. E and v stands for the Young’s modulus and the

Poisson’s ratio of the material, respectively. The strains induced by

displacements can be calculated using formulas

du
& = 3% = €o,x (10)
_ oV
g = 3y €,y
du v

Yey= §§ + %
where u and v are the displacement functions along the x- and y-axis,
respectively; &, 4 and g, , are the initial strains in x- and Y-
direction, respectively.
Boundary conditions which are wvalid on specific parts of the
boundary of the solution domain are

u=u (11a)
or B

g, cos(nx) + T, cos(ny) = T, (11b)

T,y cos(nx) + o, cos(ny) = T,

where u = [u v]T is the vector of unknown displacement functions, the bar
above the symbol indicates prescribed value, cos(nx) and cgs(ny) are the
direction cosines of the normal to the boundary and T, and T, are the

traction components.  pppops IN THE FEM SOLUTION

The linear equation system whose solution gives the approximate nodal
values for the unknown function is often obtained applying the minimum
principle of the total potential energy or the Galerkin method in the
displacement based finite element methods. These solutions fulfill the
displacement continuity conditions to a certain degree between the
elements, the over-all equilibrium conditions are satisfied at global and
at element levels as well. The pointwise satisfaction of the equilibrium
equations (1), (6) and (7) are not generally guaranteed. The normal
component of the flux vector by Eq. (5a) and the stress field calculated
using Eq. (8) is generally discontinuous across the common element
interfaces. Displacement boundary conditions (5¢) and (1la) can be
assumed to be exactly satisfied.

Errors in field problems
Substituting the approximate solution for the element
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¢ = Na® (12)

where N is the row vector of shape functions utilized to describe the
behaviour of the unknown function ¢ and a® is the column vector of
degrees of freedom associated with each shape function, into Eq. (3) and
(4), ve get

2 2
S0 N Lk Ny ae g o e (13)
Ix2 dy?

vhere the material properties were assumed to be constants over the
elements. r° of Eq. (13) describes the pointwise error in the domain of
element e. Integrating the absolute value of r® over the volume V, of the
element e we obtain

e® = [ |re|dv (14)
Ve
vhich is a measure of the error of FEM solution over the element e.

The jump in the value of normal flux along the interelement
boundaries ij between elements e; and e, can be evaluated using Eq. (5a)
I T M.y (LI M N (15)
q
where h;, h,", k., and k,, are the thicknesses and material properties of
the elements e, and e,, respectively. The direction of the normal can be
chosen to be outwards with respect to the element e;. a®! and a°2are the
values of the degrees of freedom for element e; and e,, respectively.
Integrating the jump over the common interface we obtain
etd = [ | ji3 | ds (16)
q ij «
which measures the erroneous discontinuity of the normal flux.

Errors in plane stress problems

Substituting the displacement field obtained for the element e in the Eq.
(10), vhich are further inserted in Eq. (8), we get the stress field in a
point under examination

¢ = DBa® - o, (17)
where B is the strain-displacement matrix € = Ba® - €, and o, is the

initial stress vector. Putting these approximate stresses in the
equilibrium equations (6) and (7) we get

35, . 9%,

x tayl the=r3 (18)
% 35,
x>t §§y + by =13

where r,® and r,° represent unbalance in x- and y-direction. Integrating
the absolute values of these unbalance terms over the volume V, of the
element e we obtain

e = [ |re|dv
° (19)

\
eg= [ |z lav
Ve

which measure the errors within each element.
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Erroneous jumps in stress field across the interelement boundaries
ij can be evaluated as follows: calculate the stress components at each
point of the boundary ij using Eq. (17) for both elements, then transform
these stress components into normal and tangential components, see Fig.
(1), and finally integrate the absolute values of the thickness weighted
stress differences over the area of the boundary, we get

eij =J |&§1h1 —&§2h2|ds
3 (20)
I |igth, -%22h,|ds

i3
{EE/,,,an

i
ezd

j

FIGURE 1. Normal and tangential stress component on the boundary ij

ELEMENT SHAPE FUNCTIONS

The unknown function u(g,n) within each element is approximated using
formula

m m+k m+k+1
u(g,n) = I N;(&na; + L N, a; + L N;a; (21)
i=1 i=m+l i=m+k+1

in vhich the shape functions N can be grouped in three classes. The first
class consists of the shape functions of the basic element, i=1...m,
where m=4 or m=8 for the 4- or 8-noded isoparametric element. The second
class, i=m+l...m+k, are edge modes defined below. The third class,
j=m+k+1...m+k+1l, includes bubble modes which are also defined below. In
Eq. (21) a;, i=l...m, are the approximate nodal values of the unknown
function, parameters a;, i=m+l...m+k+1, indicate the participation factor
of each hierarchical shape to the solution. One possible choice for the
hierarchical edge modes uses functions which are defined as an integral
of the Legendre’s polynomial

P.(8) = .ri | P (x)dx, (22)
where B
1 d» 2
L(x) = —=—— oo ((x2-D)™) (23)
2rpn!  dx®

is the Legendre’s polynomial of order n, where n >1 orn> 2 for the
4-noded or 8-noded elements, respectively. Edge modes of order n for each
of the four edges of the 4- or 8-noded isoparametric element are

N, (&) = B(B)P,(N) (24a)
Ny, (E0) = B (DR, () (24b)
Ny, (E1) = P,(E)P;(N) (24¢)
Nj,; (E,N) = B (E)P,(E) (24d)
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where
P (&) = (1-&)/2 and P, (&) = (1+&)/2

Bubble modes can be defined by
N (&, n) = EinI(1-82)(1-n?) (25)

vhere i and j are non-negative integers.
Figure 2 depicts the 4th order edge mode

FIGURE 2. 4th order edge mode
ABOUT THE REFINEMENT STRATEGY

The errors are uniformly distributed in the optimal models. So the
average errors are computed in field problems using Eq. (14) and (16)

N
E = (I e®)/N (26a)
e=1
and
M ij
J=(Ze )/M (26b)
1 g

vhere N is the total number of the elements and M is the number of edges
in the model. Similar average errors for plane stress problems are
obtained using Eq. (19) and (20)

1 0
E = max (N g=1ex ' g=1e§) (27a)

and 1 1
J = max (ﬁ % eli | i % eld) (27b)

The dimension of the terms (26a), (26b) and (27a), (27b) is energy/time
and force, respectively. This makes it possible to estimate magnitude of
these errors comparing them to the energy/time fed into the model in
field problems and to the absolute value of the largest reaction force
component in stress problems. The new degrees of freedom are added using
the following strategy: the average errors (26a) and (26b) or (27a) and
(27b) being 1less than a certain percentage of the above mentioned
reference value the solution is assumed to have a desired accuracy.
Otherwise the next higher hierarchical edge mode, (24a)...(24d), is added
(depending on the edge) to each ’perpendicular’ edge to the boundary
vhere errors exceed the preassigned percentage of the reference value.
The unbalances in the equilibrium equations (14) or (19) exceeding the
same limit cause the bubble modes (25) to be added to the appropriate
elements.
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EXAMPLES

Example 1

As a first example we consider an one-dimensional heat conduction problem
of Fig. 3. Heat is generated with a rate 0=1 W/m® 1in elements 7-10 and
the temperature = 1 °C is prescribed at x=3. All the other surfaces
except x=3 are insulated. The original FEM-solution with 4-noded elements
gives piecevise linear solution with exact nodal values (supercon-
vergence). Analytic solution is T=2.12 between x=0 and x=1.2, parabolic
between x=1.2 and 2.0, linear from value T=1.8 at x=2.0 to value T=1l. at
x=3, see Fig. 4. According to the Eq. (16) and (14) there is jump error =
0.02 W on boundaries 13-14 and 21-22 and jump error = 0.04 W on
boundaries 15-16, 17-18 and 19-20 and unbalance = 0.04 W in elements
7-10, see Fig. 5. Following the refinement strategy presented second
order edge modes are added to the edges shown with * in Fig. 6 and bubble
mode (1-82)(1-n?) is also added to the elements 7-10 shown with K1

in Fig. 6. With these refinements the exact analytical solution is

i T=1C
obtained. NODE ELEMENT !
d 27 s =
0.2m 1O|32 I | | g | | a | a l | | |q3
Ell
i |
0m
FIGURE 3. Finite element mesh for the original FEM-solution. Thermal
T conductivities are: k,=k,=1 W/m/°C
212 21
2,04
194
18
——— ANALYTICAL
-—— FEM
19 2 20 30m

FIGURE 4. Analytical solution to the stationary heat conduction problem =
solid line; original FEM-solution = broken line

b4
AR ]
unbalance errors 0.0& 0.04 0.04 0.04W

jump error

%

VLYY

FaWale N TN
654
A
ANa

.

FICURE 5. Errors in the original FEM-solution. The dimension of the error
is W
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LR T S .

K1 [K1 [ Kt |K1
K H o M M %

FIGURE 6. Hierarchical modes added to the original FEM-solution. One *
means 2nd order edge mode, K1 indicates the bubble mode (1-£2)(1-n?)

Example 2
As a second example we consider a cantilever beam shown in Fig 7.

AYV
/
42 X
» Tolo D)
_f_/1 )
N
k t .
FIGURE 7. Finite element mesh for the cantilever beam subject to bending

moment M at the free end. E=3.0*107 kN/m?, v=0.3, M=0.15 KkNm (@=3000
kN/m2?), b=0.1 m, 1= 1.0 m and thickness of the elements h = 0.03 m.

Analytical solution to the problem is u(x,y) = -(M/EI)xy, v(x,y)
=(M/EI)(x3-vuy?)/2, M(x) = M and Q(x) = 0, where I is the moment of
inertia = hb3/12, M(x) and Q(x) are the bending moment and shear force

distributions along the beam. The original FEM-solution using standard
isoparametric 4-noded plane stress element is shown in Table 1

TABLE 1 Results of the cantilever beam

Analytical Original FEM Vith 2nd order edge With 6th order edge
mode and one bubble modes and one bubble

Up;p 1.0000%10-4 0.6741%10-4  0.9987%10-4 0.9992#10-4
Veip 0.9993%¥10-3 0.6741%10-3  0.9979%10-3 0.9990%10-3
o, 3000. 2222. 3000, *) 3000. *)
o, 0. 667. 0. *) 0. %)
Ty 0. 778. 0. %) 0. %)

*) in elements 5-10. Corresponding values for the elements 1-4 differ
slightly from these due to the support conditions of the model. u,, is
the axial displacement at the free end on its lower surface y=-0.05, Oy
is the axial stress at the same point.

The stress distributions obtained using standard isoparametric
4-noded elements are shown in Fig. 8. The error analysis reveals errors
shown in Fig. 9. After adding 2nd order edge modes to the boundaries
indicated with at least with one * in Fig. 10. The solution after giving
freedom to use edge modes up to 6th order and bubble modes bos &by, Nbg
and &b, vhere by=(1-82)*(1-n?), uses modes shown in Fig. 10. The need
of higher order polynomials in the vicinity of the support is due to the
displacement boundary conditions used: u and v fixed, which are different
from the analytical solution : u, v and dv/dx zero at (x,y)=(0,0).
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2222, IR m.e
Sx \ éy Txy
A% Sl
w22 1222, 1 ¥ ¥ o667 Ll s
FIGURE 8. Original FEM-solution for stresses in each element
j03,ie1 143, 0s1
2;3 i .ec' i

el ie3
2;01'i,e;~1,i g2y |95, e
i is2

e hie2

¢4 ,&r
FIGURE 9. Errors in the original FEM-solution evaluated according to the
Eq. (20) and (19) are identical for each element. Jump errors are
eoifi”:eui”-i+1=667*0.1*0.03=2.0 kN, eai+2,i+3=eui+1,i=0.’
eTi'**Z‘ETi*3*i+1=2*(0.57?*7?8)*0.1/2*003=1.35kN (approximate)
(1.17=exact), eT1+2'i+3=eTi+1"=2*?78*0.1*0.03=4.67 kN and unbalance
errors e,® =0, ey°=(2*??8/0.1+2*66?/0.1)*0.1*0.1*0.03:8.67 kN

R Fu * % % #

¥* ¥ % * 3% * »*
Kt.:!qkt.ﬂ K?{ Ku{ K1 % K1 K1* K1 % K1 K1}g
Hin

FETEET T AL * * * *  * %
*¥ X¥

FIGURE 10. Hierarchical modes used in the refined solution, number of

stars indicates the order of the edge mode used: one star = 2nd order

polynomial, two stars = 3rd order etc.; Kl = one bubble mode, K2 = two
bubble modes etc.

Example 3
As a third example we consider a thick pressurized tube. FEM-model of one
quadrant of the unit thickness slice of the tube is shown in Fig. 11.

FIGURE 11. Thick tube. Internal pressure p=10 kN/cm2. Symmetrical
boundary conditions on the horizontal and vertical boundaries. E=10000
KN/cm? and vu=0.3. Because only plane stress elements are available the
plane strain can be simulated inputting value E/(1-v?) for the Young's
modulus and value v/(1l-v) for the Poisson’s ratio.

Original FEM-solution wusing the 4-noded elements, analytical
solution and the two refined solutions are shown in Fig. 12.
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FIGURE 12. Radial and tangential stress distribution
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for the thick tube

subject to internal pressure. Results for the refinement: up to 3rd order
edge modes are used and no bubble modes, are also shown

Fig.13 represents the
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results using 8-noded elements.
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FIGURE 13. As in Figure 12, but 8-noded isoparametric elements are used

CONCLUSIONS

An a posteriori error analysis system have been devised which can
adaptively refine the original FEM-solution. At present the linear
equation system containing hierarchical degrees of freedom are solved by
a direct method, frontal solution technique. To improve the solution
efficiency some iteration procedure could be used. The refinement
strategy can also be improved by calculating some quantity with which
ve can decide beforehand which hierarchical modes reduce error most
effectively. The ideas presented in the paper can also be extended to
the plate in bending problems.
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ABSTRACT

We present a new nonconforming method for the plain strain problem. In the element
a continuous piecewise linear approximation is used for one component of the displace-
ment whereas the other components is approximated with piecewise linear functions
continuous only at midpoints of element edges. For this method we can show that it
does not lock in the incompressible limit.

INTRODUCTION

In the pioneering work by Crouzeix and Raviart (1] it was shown that an optimally
convergent method for the Stokes equations is obtained by using a triangular mesh with a
piecewise constant approximation for the pressure combined with linear nonconforming
approximations for both components of the velocity. This method has however not
become very popular, probably due to high number of degrees of freedom.

For conforming methods it easy to see that a stable Stokes element will give an element
for the plain strain elasticity problem that will not lock in the incompressible limit; cf.
e.g. [2]. In the case of the linear nonconforming element of Crouzeix and Raviart the
situation is different. The corresponding plain strain element, with the pressure locally
eliminated, would give a displacement method with nonconforming approximations for
both component of the displacement. It is easy to sce (cf. [2, pp. 250-251]) that in that
method spurious mechanisms can occur and hence the method is not of practical use.
Let us also recall that the standard conforming linear element locks in the incompressible
limit,.

In this paper we present a linear element suffering from neither locking nor mechanisms.
The idea is simple: one uses conforming elements for one of the displacement component
and conforming for the other.

This element can combined with a piecewise pressure also be used for the Stokes prob-
lem and compared with the method of Crouzeix-Raviart it has the advantage that the
number of degrees of freedom is considerably reduced.

THE ELEMENT
We consider the plain strain problem: Find the displacement u = (w1, ur) minimizing

the energy of the linearly elastic body, i.e.

E(u) = 5%1\1/1 E(v)
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with
B0 = [ [nes)es)+ 5 EutvPlan - [ fvda- [ guar,

where the summation convention is used. f = (fi, f2) is the given body force, g =
(g1, 92) the traction acting along the part I'; of the boundary of the region £ originally
occupied by the body. p and A are the Lamé parameters and V is the set of kinematically
admissible displacements

V= { b4 l vVir, = (uo,lau0,2)’ E(V) < oo }a

i.e. the displacement is fixed along the other part I'y of the boundary. € = {e;;} is
the strain tensor.

Let us now define our method. We introduce a triangulation 75, of 2 and seek the
approximate displacement from Vj = Vy , X Vo 3, with

Vi, = { v | vis linear in every triangle of 7}, continuous at midpoints of interelement
boundaries and equal to ug,1 at midpoints of element edges lying on Ty },

Vo,u = { v | v is continuous in 2, linear in every triangle of 7) and equal to ug 2 on 'y }.

The degrees of freedom for this element are the following: The values of the first displace-
ment component at the midpoints of the edges and the values of the second component
at the vertices of the triangle. Note that the element stiffness matrix is easily obtained
from that of the standard ”constant strain triangle” by a simple change of the degrees
of freedom.

The approximation is then obtained from the condition

Eh(uh) = min Eh(v)

VEV)

with

Eav)= ) /T [uﬁij(v)fij(v)‘F5(6ii(v))2]dQ—/invidQ—/n gividD' .

TET,
Since the basis functions are discontinous the approximate energy above is defined as
the sum over each element. The approximations for the strain and stress tensors must
also be defined separately on every triangle T in 7:
En|T = E(Uh)lT and OhT = (2,& s(uh) + )\Sii(uh)I)lT .
These we compare with the exact strain € and stress

o =2ue(u) + Ag;i(u)l

and we can prove the following result.
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TrrorEM. There is a positive constant C, independent of the Lamé parameter A, such
that

e = enllo + llo = anllo < Ch(|ulz + [of1). n
Here h is the mesh parameter, i.e. the maximum diameter of all triangles in Ty, ||-l|o
denotes the L%norm and |-|;, ¢ = 1,2, stand for the Sobolev space seminorms; cf. [2,
pp. 266-267].
The above estimate is ”optimal”, i.e. the convergence rate O(h) is the best one can
obtain using piecewise linear basis functions. Furthermore, the positive constant C' is
independent of the Lamé parameter A which means that the method will not lock near
incompressibility. Let us recall that in a method that locks one can only get an error
estimate with a constant that blows up in the incompressible limit when A — oo (ie.
when the Poisson ratio v — 1/2).

REMARK. If the domain and boundary conditions are such that the regularity estimate
l[allz + llels < CliElo,
is valid, then we also have the optimal L% estimate for the displacement:

lu—usllo < CR?(Julz + |o]1). L]

A NUMERICAL EXAMPLE

We will present some preliminary numerical results for (a slight modification of) a
standard test problem simulating a cantilever beam subject to a parabolically varying
end shear [2, pp. 219-255]. We choose = (0, L) x (—¢, ¢) and let the exact solution be

wi(or,en) = 2 o (312 (1 - 21) + e} ~ )
wemson) = LGS @ -2 (w01 + ()0 ) 8]

This problem is solved by giving the displacement on I'y = { (z1,22) | z1 = 0, 22 €
[—c,c] } and the traction along the three other sides. By symmetry only half of the
domain is computed. The data employed in the calculations are

P=-1, L=16, ¢=2, E=1, v=03 and 0.499.

We perform the calculations for two meshes. The finer mesh of Figure 1 is obtained by
first dividing the domain into 4 x 8 rectangles and then subdividing each rectangle into
two triangles. With this mesh the number of degrees of freedom is 153.

T2

/‘5_

L=16

c=2‘
I

T

Figure 1
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The coarser mesh of Figure 2 gives 99 degrees of freedom.

| T2

FIGURE 2

In Table 1 we present the normalized vertical tip displacement (i.e. at the point (L, 0))
for the two meshes and two values of the Poisson ratio. For comparision we quote the
results given in [2, p. 221] obtained for the standard bilinear quadrilateral element with
full and selective integration. The mesh for these elements is a 4 x 8 quadrilateral mesh
i.e. the rectangular mesh in Figure 1. The number of degrees of freedom are in this
case 90 and should therefore be compared to the results of our method with the mesh
of Figure 2.

Method Degrees of freedom vr=0.3 v = 0.499
Nonconforming, Figure 1 153 1.023 1.021
Nonconforming, Figure 2 99 1.035 1.031
Quadrilateral, full integration [2] 90 0.904 0.334
Quadrilateral, selective integration [2] 90 0.912 0.937

TaBLE 1. Normalized tip displacement for plain strain beam

These results show that the present method does not lock and in addition that it is
competitive with the selectively integrated quadrilateral element.

REMARK. It is perhaps not entirely correct to compare our results with those given
in [2], since there the boundary conditions where given by the symmetry condition,
the traction along the rest of the boundary and three displacement components at two
corners. With our nonconforming basis functions the corner value of the nonconform-
ing displacement component is not so easily prescribed and hence we have chosen the
alternative above. However, the tendency for a method to lock increases when more
boundary displacements are fixed. Hence, there is no reason to believe that the results
for the quadrilateral methods would be better when the diplacement is assigned on I'y.
It should also be noted that to prescribe the displacement at a finite number of points
is not variationally correct. m
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ABSTRACT

We discuss three simple bilinear quadrilateral plate bending elements: the selectively-
reduced integrated element, the MITC4 element of Bathe-Dvorkin and a new modifi-
cation to this. We show by numerical examples that the two first methods suffer from
certain deficiences which are removed in our modification of the MITC4 element. The
numerical examples confirm the results of the numerical analysis of the methods.

INTRODUCTION

Let us recall the Reissner-Mindlin formulation of the bending of a plate. The basic
unknowns are the deflection w and the rotation 8 determined from the condition that
they minimize the energy, i.e. (w,3) satisfy

E(w,B) :( min  E(v,¥), (1)

v,¥)EKad

with the energy defined as

E(v,@b)z%a(lﬁ,d))—l—%/{ﬂd}—vvﬁ dQ—/ng ds)
(2)
+ M- dl' — Qudl.
It I's

Here 2 is the region occupied by the plate, g is the applied load, ¢ is the thickness of
the plate, G is the shear modulus and & is the ?shear correction factor”. The bending

energy is given by the bilinear form

dﬂdﬂ=IX%%?SZJO—V)dﬂ%sw0+ydwﬂdw¢]ML (3)

where E and v denote the Young modulus and Poisson ratio, respectively. The kine-
matically admissible deflections and rotations are denoted by Ksq. On the boundary
parts I'yy and I's the moment M and normal shear force Q are prescribed, respectively.
We recall that the shear force of the plate is given by

Q = Grt(B — Vuw). (4)
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The problem in the analysis and design of finite element methods the critical issue is
the behaviour of the element for "thin” plates. Hence, one usually studies the problem
where the applied load and prescribed boundary moment and normal shear force all are
proportional to ¢, i.e.

f=tf  M=+£M, Q=+0, (5)

with £, M and Q independent of ¢. This ensures that the exact problem has a finite
limit solution when ¢ — 0, cf. (1]. Below we will also make this assumption. In an
analysis it is also useful to introduce the scaled shear force q=1t"%Q and the following
Helmholtz decomposition of it (cf. [4])

q=Vr+rotp. (6)

In the next section we will define the three finite element methods and recall what is
known about their performance. The last section is devoted to our numerical examples.

THE FINITE ELEMENT METHODS

In all three methods the standard isoparametric bilinear elements are used for both
components of the rotation and the deflection, i.e. we use the space

Kig={ (v,%) € Kaa | (0, ¥)x € [QLE)]P VK € ¢y } (7)

where Cj, denotes the partitioning of the domain into quadrilaterals.
In the first method we minimize the following energy expression in Kk,

P K .
Ey(v,9) = %a(d),df) + % / |Ry(3p — VU)H d§) — / gv dQ
Q Q (S)

+/ M.y dl' — Qu drl,
I'ng

Jrg

with the reduction operator R, defined from
(Ra%)jelement = value of 9 at the midpoint of the element. (9)

The approximate shear force is calculated from
Qr=GrtRy(8 - V). (10)

This means that an selective reduced integration (SRI) is used; the bending energy is
calculated with the 2 x 2 Gauss rule and the shear term with one point quadrature. We
will refer to the element as "SRI”.

This element is presented in most recent textbooks on finite elements such as [6,7].
However, the element is usually not recommended without restrictions. It is well known
that the approximation obtained for the deflection can be bad, see e.g. the "pergola
roof” example (p. 334) and Fig. 5.3.20 of [7]. Another problem with the element is that
it can give rise to a highly oscillating (non-physical) shear. This seems to be widely
known although not explicitely stated in the literature until quite recently [10].
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From a theoretical point of view the problems with this element is not surprising. An
analysis shows directly, that in general the method cannot converge optimally. However,
if the plate is clamped along the boundary and if rectangular elements are used, then
it is possible [9] to derive the following error estimate for the method:

IVw — Vwillo + [V8 = VBl < Ch(llwlls + 1811« + llall1), (11)

Here (wh,,@h) denotes the finite element solution and h denotes the mesh parameter.
Above we have used the standard notation for Sobolev space norms (cf. e.g. [5,7]) and
in particular ||-|lo denotes the L%-norm, i.e.

ol = [ it (12)

Tt should be pointed out the positive constants C in the error estimates in this paper
are all independent of the thickness ¢, which shows that the methods do not "lock”. It
should be remarked that the above estimate is far from optimal since it requires consid-
erable smoothness of the exact solution (compare with the optimal estimate (16) below).
Furthermore, the analysis given in [9] shows that the convergence is a consequence of
the assumptions of rectangular elements; for general quadrilaterals the method will not
converge. This we will below show numerically.

A considerable improvement over the SRI element is the MITC4 element introduced by
Bathe and Dvorkin [3]. (This element is very similar to both the T1 element of Hughes
and Tezduyar [7] and MacNeals QUAD4 element [11].) The element differs from the SRI
in the way the reduction operator is defined. For simplicity we will here only define it
in case of rectangular elements and refer to [3] for the general definition using covariant
interpolation. For an element K € Cj, we introduce the space

F](:{S:(SI,SQ)|31:a1+b1y, 32:(12-}-[)2.’1,‘} (13)

and define Rys| € I'i through
/ [(Rys—s)- T]ds=0 for every edge T of K. (14)
T

The method is then defined from

Eh(wh?ﬁh) = min Eh(’(),’l,[)), (15)
(va)elc,’:d

with Ej as defined in (8) and the above reduction operator. The shear force is then
calculated from (10).

The full numerical analysis of this method has not yet been carried out. Only the case
of rectangular elements have been considered [1,2]. The analysis of [1,2] show that the
method is closely connected to the well known @ — Po element for the Stokes problem.
Hence, anticipating an analysis where the results of [4] and [13] would be combined it
seems likely that the case when the mesh Cj, is obtained by uniformly dividing a coarser
quadrilateral mesh into 4 x 4 elements (see [13] for the details) can be handled. This
would give the following estimate

1Vw — Vewsllo + V8 = VBillo < Ch(lwlz + 1Bl2 + Irl2 + Iph +tlpl2)  (16)
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However, it is well known that for the Stokes problem the pressure obtained with the
@1 — Po method does not converge in general. Hence the analysis of the Stokes problem
given in [13] will not give any useful estimate for the shear. For the Stokes problem it is,
however, known that a certain filtering (cf. [13]) will produce a convergent pressure, but
1t is not clear how this filtering should be carried over to a possible filtering of the shear.
These theoretical results are in accordance with some recent numerical calculations
which show that the MITC4 can give rise to an oscillating shear. In the next section
we will give some further numerical evidence on this.

Next, let us turn to our modification of the MITC4 method. We still use the same finite
element spaces but we modify the energy expression to be the following

3 Grt®
E = q —— [ |Rup(p — Vu)|? d) — v dQ
N0 ¥) = 5o )+ sy R = VoP d- [ -
+ M-zpdl‘—/ Qu dr,

FM FS

where « is a positive constant. The approximation for the shear force is then obtained

from
Gkt?

= (2 T ah?)

Below this element will be referred to by "STAB”. This method is an example of a
recent stabilization technique for mixed finite element approximations. In connection
with Reissner-Mindlin plates this approach was first proposed in [12] and [8], but in
those papers it was required that the approximation for the deflection is one degree
higher than the approximation for the rotation. To obtain equal order approximations
is more difficult. In [4] we, however, proposed and analyzed a triangular element with
linear approximations for both the deflection and the rotation. The above element is
the quadrilateral analog to this. Again it seems more than likely that the analysis of [4]
can be carried out for this element as well. This would lead to the estimate (16), with
the difference that it would now be valid for an arbitrary regular (in the usual sense, cf.
[5]) quadrilateral mesh. Another difference to the original MITC4 is that we now also
get an estimate for the shear force, cf. [4]:

Qh Rh(ﬂ - V’UY). (18)

1Q ~ Qullo < C(Jwla + B2 + |rl2 + |ph + t [pla). (19)

We see that we can only show that the the shear force is bounded in the L*-norm,
and hence it does not necessarily converge. Numerical results also support this; the L2
convergence rate can wary depending on the smoothness of the solution. However, we
should emphasize that for the preceeding two methods, SRI and MITC4, one cannot
prove this estimate and hence it is expected that of the three methods the last one will
give the best shear. This we will also show by numerical examples.

COMPUTATIONAL EXAMPLES
To show the defiences with the SRI and MITC4 elements it is suffient to consider a very
simple test problem: a clamped square Kirchhoff plate (i.e. the limit solution obtained
when ¢ — 0) with a uniform load. In the calculations we choose the side length of the
plate equal to unity and we use the symmetry and discretize only one square of the
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plate. We have chosen v = 0.3, 1 = 0.01 (since we consider the Kirchhoff solution the

thickness used in the calculations act as a penalty parameter) and a = 0.1. First we
consider a finite element partitioning of N x N equal squares, see the figure below.

cL "
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FicurE 1. Example of a uniform mesh (N = 4)
With such a mesh all three methods work well. Next, we consider a distortion of this
mesh obtained by moving each interior node at random within a square centered at the
node and with sidelength 0.4k (h is the sidelength of the original element). In Figure 2
we show the three meshes obtained in this way.
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Ficure 2. The distorted meshes

In Tables 1-6 we list the normalized L*-errors for the deflection, the normal moment
and the normalized shear force, for the uniform and distorted meshes, respectively.

TaBLE 1. The error |jw — wplo/||wl]lo for the uniform meshes

N SRI MITC4 STAB
4 0.0697 0.0699 0.0408
8 0.0161 0.0161 0.0095

16 0.0026 0.0027 0.0025
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TABLE 2. The error ||w — wy|o/[|w||o for the distorted meshes

N SRI MITC4 STAB
4 0.1505 0.0768 0.0408
8 0.0795 0.0187 0.0094
16 0.0328 0.0032 0.0030

TaBLE 3. The error |M, — .M;‘HO/HMI”O for the uniform meshes

N SRI MITC4 STAB
4 0.3292 0.3292 0.3291
8 0.1668 0.1668 0.1668
16 0.0837 0.0837 0.0837

TABLE 4. The error ||M, — Mﬁ”o/”MIHO for the distorted meshes

N SRI MITC4 STAB
4 0.3847 0.3434 0.3407
8 0.2165 0.1764 0.1747
16 0.1145 0.0878 0.0873

TaBLE 5. The error ||Q — Q!lo/||Q]lo for the uniform meshes

N SRI MITC4 STAB
4 0.2546 0.2772 0.2757
8 0.1328 0.1761 0.1760
16 0.0784 0.1172 0.1174

TaBLE 6. The error ||@Q — Q"[o/||@]|lo for the distorted meshes

N SRI MITC4 STAB
4 3.0856 0.4701 0.3295
8 3.3147 0.5508 0.2402
16 2.2985 0.2531 0.1784

From the results we directly see that the distortion of the mesh completely distroys the
accuracy in the deflection and shear for the SRI method. For the MITC4 the distortion
does not affect the accuracy of the moment, but we see that the deflection and shear
become worse. We also see that the accuracy of all variables stays the same in our

modification of the MIT(C4.
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These results are in complete agreement with theory. As we mentioned, the analysis
of the SRI given in [9] use the assumption that the elements are rectangular. For
the MITC4 we mentioned that only a partial error analysis can be made whereas our
modification of MITC4 is uniformly stable.

One might object that the distorted meshes presented above are somewhat artificial and
only constructed in order to catch the SRI and MITC4, and that no mesh generator
would produce a mesh like this. However, we would like stress that we chose the square
domain only for simplicity (and because the exact solution is available) and that our
distorted meshes should be considered as models of coarse meshes for a problem with a
complicated geometry.

Tt should, however, be even more convincing to see that some of the drawbacks with the
unstable methods are already seen with meshes which are much less distorted. It seems
to have been common kowledge that many methods give bad shears (cf. the introduction
to [8]) but to our knowledge this has only recently been explicitely reported in [10]. We
will now give some numerical examples similar to those given in [10]. We again start
from the uniform finite element partitionings but we now move only one node. The
three meshes we obtained are shown below.

Ficure 3. The meshes with one node moved

TaBLE 7. The error ||@ — Q%||o/||Q]lo for the meshes with one node moved (t = 0.01)

N SRI MITC4 STAB
4 3.9151 0.6448 0.2886
8 1.2244 0.1808 0.1781
16 0.3906 0.1175 0.1177

The errors for the shears are given in Table 7 and when this 1s compared with Table 5 we
see that for the this minor change of the mesh has a disastrous effect on the accuracy for
the shear obtained with the SRI. For the MITC4 the shear is very bad for the coarsest
mesh but gets better when the mesh is refined. This is due to the stabilizing effect the
thickness has when it is of the same order of magnitude as the mesh length. We chose
it equal to 0.01, but if we change it to 0.001 this severly affects the accuracy of the
shear of the MITC4 as can bee seen from table 8. This is a good indication that the
method is not uniformly stable. With our stabilization of the MITC4 the shear 1s not
significantly affected by neither the mesh distortion nor the change of the thickness 2.
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TABLE 8. The error [|@Q — Q%[|o/||Qllo for the meshes with one node moved and ¢ = 0.001

N SRI MITC4 STAB

4 29.504 6.4140 0.2893

8 27.260 2.1085 0.1787

16 11.264 0.2150 0.1180
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ABSTRACT

In the study, the dynamic interaction between an elastic beam and an elastic half-
space is examined. The system is subjected to harmonic external forces. The analysis of
the beam-subgrade system is performed applying a global stiffness solution. The beam
is discretized by the finite element method. The subgrade impedance matrix is formed
by inverting a compliance matrix constructed through the use of the Green’s function.
The Green’s function is determined for a harmonic vertical point load on the surface of
the subgrade. On the interaction surface, a complete contact is assumed in the vertical
direction and a frictionless boundary condition is applied in the horizontal direction.
The practical example presented relates to the behaviour of a gas-turbine foundation.
The results pointed out that the flexibility of the foundation give the main contribution

to its dynamic behaviour.

INTRODUCTION

Machine Foundation: In the design of the machine foundation a basic goal
is to limit vibrations to amplitudes which will allow the satisfactory operation of the

machine. Traditionally the machine foundation is a massive and rigid reinforced concrete
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structure which acts as a high-tuned system. Nowadays, the frequencies of machines
have increased leading to the situation, where structural solutions, which give a low-
tuned support for the machine, are prefered. The aim of the study is to develop a method
to analyse flexible machine foundations resting on the soil considering the frequency
dependency of the dynamic behaviour of the soil medium. A computer program based
on the theory presented has been made as a part of the study.

Impedance Functions: In soil dynamics, impedance is defined as a ratio of a
the steady-state force to the resulting displacement of a massless foundation on the
soil medium. The dynamic force and displacement are generally out of phase. So the
displacement can be divided into two parts, one in phase or 180° out of phase and
the other 90° out of phase with the exciting force. It is therefore convenient to define
impedance as a complex-valued function.

Impedance functions are commonly presented as a function of the dimensionless
frequency ratio ag, defined by

ag = Q: (1)
cr
where w is the angular frequency of exitation, B a critical foundation dimension like
the radius of a circular foundation or one half of the width of a rectangular foundation.
cr is the shear wave velocity of the soil. Impedance funktions K, are often introduced
in the form
K, = K(k + taq¢), (2)

in which K is the static stiffness of the medium, k and c are real dimensionless functions.
The real component reflects the stiffness and inertia of the supporting medium. The
imaginary component reflects the radiation damping of the medium. The values of
impedance functions are calculated separately for each exitation frequency. Impedance
functions for rigid body models can be found from References /1/,/2/ and /4/.
Flexible Foundation: If the natural frequencies of the foundation itself are much
more higher than the natural frequencies of the modes in which the foundation behaves
as a rigid-body, then the foundation can be considered rigid compared to the soil. If the
natural frequencies of the foundation are much more higher than the main frequencies
of dynamic forces, then the foundation is rigid compared to the loading. In practical

situations, it is important to study carefully if a rigid-body model is a realistic one.
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GREEN’S FUNCTION

The Green’s function is determined for a harmonic point load of unit amplitude.
The load with the angular frequency of w is acting normal to the surface of an elastic
half-space. This is also called Lamb’s problem /6/. Cylindrical coordinates are used.
The load is acting in the origin and in the direction of the axis z. The half-space occupies

the region 2z > 0.

equations of motion with cylindrical symmetry are

In a three-dimensional elastic homogenous and isotropic medium, the governing
8 3} ow
(A+20) 5- ( + 234 )

o ow)_ P
o "8z ) TH\822 T 5roz) " Mo
8 (q 0q Ow Oq 8w 1/8q Ow _62_w
()‘+2#):9_z( 3r+az)~”[3raz_3r2+r 5z or )| " Poar )

where A and p are the Lamé constants, g is the radial displacement, w the vertical

displacemet and p is the density of the medium.

Displacements ¢ and w may be introduced through the potential functions ¢ and

x /3/

_ 09
~ or araz (5)
_9 10x &x
Y=%; ror ort (6)

There is a discontinuity in the normal stresses under the point load and 7., = 0 on
the surface. The solution is obtained by using the Hankel transform, and the Green’s
function for the vertical displacement on the surface of the half-space is /9/

k2

Wz=0 = 2‘"_“ (242 k2 _4a ﬂ(2 (TC)CdC, (7)

where a? = (2 —w?/c2 =(* —h? and B2 = (* —w?/ch = ¢? — k2. cr, is the velocity of
the compression wave and cr is the velocity of the shear wave in the half-space.

The improper integral in Equation (7) cannot easily be evaluated because of the
oscillatory nature of the integrand. The denominator F(¢) has also a simple pole s,
called Rayleigh pole. s is a root of F(s) = 0. In the current application, contour
integration over the complex plane is used to include the contribution from the Rayleigh
pole and the branch cuts associated with the points of m and m . To avoid
standing waves, one half of the residue of the Rayleigh pole must be substracted from
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it /12/. So it is convenient to introduce the Bessel function Jy as a combination of two

Hankel funktions /11/
1 1
Jo(r¢) = S Hy (7€) + 5 Hy (7). ®)

Conture integration is evalued in two parts. The Rayleigh pole is placed below the real
axis to point out that waves are propagating away from the point force /5/. Finally the

Green’s function can be written in the following form

Resy + Inty + Inty + Int; 4+t (Resy + Inty + Ints)], (9)

wz=0 e %[

where

rak?

1657 — 8k2 — 4 (252 + Zo7 + 208

[Tz VC + h2k? i
it /‘" T (202 + k2) — 4/ CT+ A2/ + kzczK"( ¢)¢dg, (11)

Res;, = Y, (s), (10)

o Vs
fnts = —/o (262 ~ k2)" + 4y/h7 — (23/k% — e g 1
__ /[ 4k — 2 (¢* - h?) K 3
fnte = ‘/h B my A 1s( Ry e (0
Res, = izl Jo (s), (14)

1652 — 8k2 — 4 (gsz +2s7 4 2a,6‘)
3 13 /R2 — Czk2

fnte= ‘/0 (20w + iy - Gy g o)
B k k2 — Cz (CZ _ h2) k2

[nts = —/;: (2¢2 — k2)* +16 (2 — h2) (k2 — (2)¢

JOCL. (16)

In Equations (10)-(13) Y5 is the Neumann function and Ko the modified Bessel function
of the third kind. The Green’s function can easily be evaluated numerically from
Equation (9), because the improper integral Int; coverges rapidly.

Poisson’s ratio v of the half-space cannot be factored out of the solution. Figure
1 shows the dependence of the Green’s function on v. r describes the distance between
the points of exitation and response. The solid line presents the real part of the Green’s

function and the dashed line presents the imaginary part.
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Figure 1. Green’s function. Poisson’s ratio v = 0.1.

SOIL STRUCTURE INTERACTION

Subgrade Impedance: The contact area A is divided into regtangular subregions.
Figure 2 shows the discretization graphically. It is assumed, that the traction can be
considered constant over each subregion. Only the relationship between vertical surface
response and vertical surface exitation is taken into account. A single term v;; of the

compliance matrix can be determined by integrating over the subregion A;

1
vij = A—// wz=0(w,1‘, CL,CT)da. (17)
J A;

The subgrade stiffness matrix K, is obtained as an inversion of the compliance matrix.

Figure 2. Subgrade discretization.

System Equations: The discretization process involves the definition of nodal
points the plane of which coincides with both the surface of the supporting medium

and the middle plane of the beam. The reaction force R between the medium and the
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structure is
R =K,U,, (18)

where U, is the vertical displacement on the surface of the soil. The dynamic behaviour

of the system is described by the equation
(Katr - szatr)Ustr +R=F, (19)

in which K,;, is the stiffness, M,y the mass of the structure and F is the dynamic force.
At nodal points conditions of equilibrium and compatibility are enforced between the

surface of medium and the structure. Thus Equation (19) can be written in the form
K, sU+K,U=F, (20)

where K..q include the stiffness and inertial properties of the structure. Finally, a full
complex system impedance matrix K can be obtained by combining K, and K,.4 and,

thus
KU=F. (21)

Rigid Beam Foundation: In order to test the accuracy of the computer program
developed, the behaviour of a rigid, massless beam in frictionless contact with the surface
of an elastic half-space is studied. The system is excited by a point load. The results
pointed out that when aspect ratio is larger than two and dimensionless frequency ratio
does not exceed the value ag = 1.5, the responses computed fall within 10% of the rigid
plate values presented in the litterature /8/. Figure 3a shows the effect of L/B for
the real part of vertical compliance, when v = 0.25. Figure 3b shows the corresponding
values for the imaginary part of compliance. With the method described, the transverse
contact stress is assumed to be uniform. This is the main reason that the beam model

cannot describe the behaviour of the plate in high frequencies.

EXAMPLE

A gas-turbine, which has the electric power of 40 MW, is fixed to a concrete block.
The length of the footing is 21 m, width 4 m and thichness 1.3 m. The total mass of
the foundation is 270000 kg, which is only a little more than the mass of the machine
210000 kg. The operating frequency of the turbine is 85 Hz and the rotating mass 10000
kg. For the generator, corresponding values are 50 Hz and 19000 kg.
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Figure 3. Effect of L/B for compliance function.

The foundation was analysed using the program developed in the study. The footing
was modelled by beam elements and it was located on the surface of the half-space.
The dimensionless frequency ratio ap was 1.5 at the operating frequency of the turbine
and 0.88 at the operating frequency of the generator. The amplitudes of exitation
under operating conditions were determined according to the VDI 2060 /10/ and the
eccentricity used was e-w=2.5 mm/s. The rotating mass was assumed to be concentrated
on the axes. The mass of the machine was described by discrete masses and discrete
moments of inertia.

At the operating frequencies the amplitude profile of the gas-turbine foundation is

illustrated in Figure 4. The solid line presents the flexible beam model and the dashed
line presents the rigid body model.
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Figure 4. Amplitude profile /7/.
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CONCLUSIONS

The dynamic force-displacement relationships for the harmonic vertical motion of

the flexible beam resting on an elastic half-space have been obtained. The beam model

is useful when aspect ratio is larger than two and dimensionless frequency ratio is less

than 1.5. These restrictions can be avoided by using a plate model which is the next step

of the study. The example presented pointed out the importance to take into account

the flexibility of the foundation.

10.

11.

12.
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RIDE VIBRATIONS OF AN AGRICULTURAL TRACTOR
DRIVING ON AN ASPHALT ROAD

MIKKO NISKANEN
Valmet Tractor Works
P.0.Box 557, SF-40101 Jyvéskyld
Finland

ABSTRACT

Strong ride vibrations on a smooth road occur when the excitation coming from the wheels is
at the same frequency as one of the natural frequencies of the tractor on its tyres. At normal
road speeds the eccentricity of the wheels is the main cause of strong ride vibrations.

With the help of a computer model the effects of structural improvements to the tractor’s
dynamic behaviour have been investigated. By changing the weight distribution, wheelbase and
tyre stiffnesses it is not possible to achieve good performance in field conditions and avoid
resonance on the road at the same time.

We also tested two different kinds of springs at the rear power lift. Firstly, we used the
electronic power lift control as an active spring. Secondly, we installed passive springs to the
power lift.

Laboratory measurements and test drives were made on a tractor with front and rear
weights. In test drives the rear wheels had eccentricity greater than normal in our tractors. The
time limit for maintaining proficiency (/SO 2631) at the resonance speed increased with active
springs from 7 minutes to 2 hours and with passive springs to 8 hours. The displacement
amplitudes at the driver’s seat decreased with active springs by about 75 % and with passive
springs by about 90 % when driven at resonance speed.

INTRODUCTION

Strong ride vibrations may occur when an agricultural tractor is driven on a smooth road with heavy
load and at a certain speed. The strong vibrations are harmful to the driver, because they reduce the
driving comfort and can even be dangerous for the health.

In figure 1 is shown measured displacement at the rear axle of a tractor with heavy rear weight.
The displacement is scaled to correspond with 1 mm eccentricity at the rear wheels. The displacement
is only slightly greater than eccentricity at the rear wheels when the driving speed is under 25 km/h.
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oDispIacement [mm peak]

Drlving Speed [km/h]

FIGURE 1: Measured displacement at the rear axle of the tractor.Tractor with heavy rear weight
driven on a smooth road. Eccentricity at the rear wheels 1 mm.

Displacement reaches a peak at the driving speed of about 35 km/h and then decreases rapidly
when the speed is still increased. It is the typical shape of a resonance phenomenom. So we may
assume, that strong ride vibrations on a smooth road occur when the exitation coming from the
wheels is at the same frequency as one of the natural resonant frequencies of the tractor on its tyres.
Pitch and bounce modes of the tractor are the most critical, because they are at frequencies of around
1-3 Hz. The rolling speeds of the wheels are in the same region when the tractor is driven at road
speeds. The eccentricity of the wheels Is the main cause of strong ride vibrations of an agricultural
tractor driven on smooth road.

COMPUTER MODEL CALCULATIONS

Pitch and bounce modes of a tractor with heavy front and rear weights are shown in figure 2. In pitch
mode the rotation center is situated between the axles and in bounce mode outside the wheelbase.
The mode shapes are calculated with a computer model. The model is made of a tractor weighing
4000 kg and equipped with front weights (450 kg) and a framework with extra weight at the power lift.
The mass of the rear weight is 1500 kg, which corresponds to a 4-furrow reversible plough. With the
help of this computer model the effects of the structural improvements to the dynamic behaviour of
the tractor have been investigated.

The effect on the natural frequency of the pitch mode when the positions of tractor components
have been changed one at a time is shown in figure 3. The position of engine, gearbex, PTO-box and
cab has very little effect on the natural frequency. The effect of wheelbase is much more significant.
In practice the rear wheels can't be moved backwards without lenghtening the hitch links. So, by
moving the front axle 800 mm forward the natural frequency of the tractor rises to 1.6 Hz, which
means a resonance speed of about 30 km/h if the rear wheels are eccentric.

In figure 4 is shown the effect of tyre stiffnesses on the natural frequency of the tractor body. Inc-
reasing the tyre stiffenesses by factor of 2.5 would rise the natural frequency of the pitch mode to the
value of 2.1 Hz, which corresponds to a reconance speed of 40 km/h when the rear wheels are
eccentric. In practice diagonal tyres would increase the stiffness by about 50 % and dual wheels by
about 100 % compared to reference tyres.
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MODE #1 1.37 Hz MODE #2 2.59 Hz

FIGURE 2: Calculated mode shapes of the tractor with front and rear welghts. R.C. =
rotation center.
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FIGURE 3: Calculated natural frequency (pitch mode) of the tractor body. The effect of
change in weight distribution of the tractor with front and rear weights.
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FIGURE 4: Calculated natura! frequencies of the tractor body with front and rear weights.
The effect of change in tyre stiffnesses.
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Calculated displacement under driver's seat when the tractor is driven on smooth road at different
speeds is shown In figure 5. The rear wheels have eccentricity of 1 mm. The red curve is the standard
tractor, the green curve is the tractor with weight distribution changed to optimum and the blue one
Is the tractor with optimum weight distribution and diagonal tyres. The weight distribution change and
stiffer tyres would increase the resonance speed from 25 km/h to 36 km/h, but the maximum driving
speed in Finland is 40 km/h, so it's not enough. So by changing the weight distribution, wheelbase
and tyre stiffnesses it is not possible at the same time to achieve both good performance in field
conditions and to avoid resonance situation on the road when the tractor is loaded with heavy
weights.
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FIGURE 5: Calculated displacement under driver's seat when the tractor with front and
rearweights is driven on a smooth road and there Is 1 mm eccentricity at the rear wheels. The
effect of changes in tractor boby weight distribution and tyre stiffnesses.
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FIGURE 6: Calculated displacement under driver's seat when the tractor with front and rear weights
is driven on a smooth road and the rear wheels have 1 mm eccentricity. Tractor with springs at the
power lift is compared to standard tractor.
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The best way to reduce ride vibrations on a smooth road is to keep the rolling radius variation of
the wheels as small as possible. The variation should be under 1 mm, but in practice it Is difficult to
achieve. Another way to avoid resonances is to attach the implements to the tractor with springs.
Figure 6 shows the effect of springs on the displacement under driver's seat. When the power lift is
equipped with springs, a new mode shape is born, let’s call it 'lift mode’. This is the relative movement
between the tractor and the rear weight; and its natural frequency depends heavily on the stiffness of
the power lift springs. If this new natural frequency is low enough, the natural frequencies of the
tractor body will Increase significantly. With light damping at the power lift, the resonance of the lift
mode s clearly seen, but the displacement under driver's seat is, however, much smaller than in
tractor without springs. When the damping at the power lift is increased, the resonance peak in the
displacement curve disappears.

LABORATORY MEASUREMENTS

In a real tractor, we tested two different kinds of springs at the power lift (fig.7). Firstly, we used the
electronic power lift control as an acfive spring. It works only if the implement is attached both with
the lower links and the top link and the centre of gravity of the implement is well behind the end of the
lower links. Secondly, we installed passive springs with quite heavy damping to the power lift.

Hydraulle m{g+a) m{g+a)

Cylinder

- — - —_— >
F Transducer Spring and
Damper
ACTIVE SPRINGS PASSIVE SPRINGS
Force F is kept constant by Spring constant at the C.G
moving the hydraulic cylinder of the rear weight: 56 kN/m

> acceleration at the rear

weight is kept constant Damping constant at the C.G

of the rear weight: 3600 Ns/m

FIGURE 7: Principles of springed power lift,

Laboratory measurements and test drives were made on tractor with 450 kg front weight and 1500
kg rear weight. In the laboratory we made a modal analysis for the tractor (fig.8). Measured mode
shapes of the tractor without springs (fig.9) are about the same as the calculated ones (fig.2). Natural
frequencies are little higher than the calculated ones, because the stiffness of a rolling tyre is lower
than the stiffness of a non-rolling tyre, and we used the values of rolling tyres in the computer model.
In figure 10, are the synthesized displacement /force- transfer functions at the rear axle of the tractor
calculated with the help of the modal model. The resonance of the pitch mode is clearly seen, and the
amplitude at the resonance frequency decreases by about 50 % (compared to the tractor without
springs) using active springs and by about 75 % using passive springs.
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FIGURE 8: Laboratory measurements of the tractor.

VALMET 8@5-4 WITH FRONT AND REAR WEIGHTS
MERSURED MODE SHAPES
NON-ROLLING TYRES

MODE #1 MODE #2
Freq: 1.69 Hz Freq: 3.31 Hz

FIGURE 9: Measured mode shapes of the tractor with front and rear weights,

TEST DRIVES ON THE ROAD

In test drives the tractor was driven on a smooth road at the resonance speed of the tractor without
springs. Rear wheels had eccentricity greater than normal in our tractors. Fig. 11 shows the
horizontal /vertical displacement of the drivers seat. As you can see the tractor without springs has the
greatest displacement. With active springs at the power lift the displacements in both directions have
decreased by about 75 % and with passive springs by about 90 %.
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FIGURE 10: Synthesized displacement/force transfer functions. Displacement and force at the
rear axle of the tractor with front and rear weights.
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FIGURE 11: Horlzontal and vertical displacement of the driver's seat. The tractor with front and
rear weights Is driven on a smooth road at the resonance speed.

In figure 12 the vertical acceleration of the driver's seat is compared to 1ISO 2631 boundaries. Dally
exposure time to maintain proficiency when driving the tractor without springs at resonance speed
would be about 1 hour. With active springs at the power lift daily exposure time could be about 8
hours and with passive springs about 9 hours.

In figure 13 is the horizontal acceleration of the driver's seat compared to 1SO 2631 boundaries.
When driving the tractor without springs , daily exposure time to maintain proficiency would be about
7 minutes. With active springs at the power lift daily exposure time could be about 2 hours and with
passive springs about 8 hours.

If the vertical and the horizontal accelerations are calculated together, the daily exposure times
to maintain proficiency are 7 minutes for the tractor without springs, 2 hours for the tractor with active
springs and 8 hours for the tractor with passive springs.
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FIGURE 13: Horizontal acceleration of the driver's seat compared to ISO 2631 “fatique-
decreased proficiency boundaries". The tractor with front and rear weights is driven on a smooth
road at the resonance speed.

With passive springs at the power lift the driver can't notice the resonance phenomenom between
the wheel excitation and the natural frequencies of the tractor at normal road speed. Springs at the
power lift are an effective way to reduce ride vibrations when the tractor is driven on a smooth road.
They also improve the driveability of the tractor when it is driven over a single bump.
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EVOLUTION OF NONLINEAR SHEAR WAVES

URMAS VALDEK
Department of Mechanics, Institute of Cybernetice
Estonian Academy of Sciences
200 108 TALLINN, ESTONIA

ABSTRACT

The +two-dimensional problem of propagating nonlinear shear
waves in solides by a bounded input is coneidered. Mathematical
model is based on a special modified constitutive equation of
the continuour nonlinear viscoelasgtic medium [i1. Using
appropriate scaling of dependent and independent variablesg, the
two-dimengional evolution equation of shear waves is derived.
The evolution process of shear waves 1is analyzed by means of
this egquation. The effecte of geometrical and physical
nonlinearities, dissipation and diffraction are taken into
account.

INTRODUCTION

The evolution equation approach hae been widely used in
dynamics of liquide =and gases. In dynamice of eolide such an
asymptotic description is less used, but several problems are
rather well analyzed. For example, one-dimensional longitudinal
waveg in solide have heen described by the Burgers equation,
which takes into account dissipation according to the Voigt
model [2]. In the case of relaxing media, the evolution
equation is, generally speaking. of integro-differential type.
The two-dimensional evolution equation of longitudinal waves
has also been derived and analyzed [3,4]. The corresponding
two-dimensional mathematical models of shear waves 1n solids

are much more complicated [5,8]. As to three-dimensional wave
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motion then only cases with simplified assumptions are
known(7].

In this paper three-dimensional shear waves are
investigated on a rather general basis. A special modified
constitutive equation of the continuous nonlinear visgcoelastic
medium is being used {1]. In contrast to the usual models, this
constitutive equation permits to explain better the physical
meaning of kernel functione, which describe viscous properties
of the medium.

MATHEMATICAL MODEL

The Lagrangian strain tensor is taken in ite full nonlinear
form

EIJ(t): 1/2(U0 u + (1)

J,1 ¥ %, 1%,5 )
are the components of displacement vector

1,0%
where t is time, UI
and a comma denotes the differentiation with respect to
Lagrange variables XI. The indices I,J run over 1,2,3.

It is assumed, that the Kirchoff peeudostrese tensor TIJ

can be expanded in a Frechet’ series in the form [1}]
t

- (1)
TIJ(t) = JGIJKL(t,T)EKL(T)dT +

0y ¢
(2)
+ JJ-GIJKLMN(t,T,Q)EKL(T)EMN(G)dT ds + (2)
o9

t t
(3)
+ I J JGIJKLMNPR(t,T,e,v)Ekl(T)EMN(G)EPR(v)dT dé d»
000
9 Y a G(l) G(z)

where T, , re time variables and 1JKL IJELMN

G(3)
IJKLMNPR

Expreggion (2) is a quasi-linear constitutive equation in

are relaxation tensors.

case EKL(t) = 0 when t < 0.

Further, processes in an isotropic medium are coneidered.
In this case relaxation tensors can be expresged by means of
gcalar relaxation functione and these relaxation functions may

be separated into singular and regular parts [8). Therefore the
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congtitutive equation can be expressed in the form [1]
Tyg(8) = A(0)6; jEpp(t) + 2u(0)Ep (t) +

+ v (0)6 B p (DB (t) + v, (0) [E 1B Epp (B)Ep  (£) +
+ 2B, (8)E;;(£)] + 205(0)Epp (£)E 1(t) +

+ 4 (OE, (OB ($)E (£)6, 5 + (3)
+ 20, (0) [Epgp (£)Ep \ (£)Ep 0 (£)61 5 + Epp (£)E; 1 (£)] +

+ Bug (0)Ep, (t)Ep  (£)Ep ;(t) +

+ 4:4(0)EKL(t)EKL(t)EIJ(t)

I [t - 7)8 4B kg (T) * 2py(t - T)E; (7)]dr

where A, u are the Lam& constants; 2K vz, vy are the third-
order elastic moduli; nl, “2‘ "3’ u4 are the fourth-order
elastic moduli; Kl(t), ul(t) are the modified relaxation kernel

functions, and 6IJ is the Kronecker delta-function.

The instantaneocus part of (3) ( with time-independent
elastic modull ) coincides exactly with the expression of the
stress tensor, which has been obtailned according to the nine-
constant theory of elasticity [(6,9]. The similar structure of
the linear 1instantaneous and +the regular parts in the
expression of stress tensor (3) enables us to interpret the
kernel functions kl(t), ul(t) as the time-dependent Lam2
coefficients for the stress-relaxation reeponse to a sudden
deformation at time t = 0 [10].

In order to simplify further analysis, vectors V, U and ©

are introduced

U1 Ll2 U3
=1 Y%,1 d=|Y%.,1], 8=1Y1 (4)
Uy,2 Uz, 2 Uz 2
U1,3 Uz, 3 Uz 3
Then the equations of motion can be written in the form
a7V 1 aV 2 a9 3 &V 4 oW 5 oW 6 I
I—+R +R8X+R0X Rox+Rax+RaX+
U UZ U 1 2 3
7 & a a8
+ R 5% R® 3% RY 7%, (5)

1 2



106

I[L (t r)aV(T) + LGt T)ZX(T) r L3t - )ZZ;T’ +
0
r LA - ”W‘T) ¢ 1Ot r)gﬁ(f) + 18t - 020
L8 2 1
LTt - r)aU(T) Jar = 0
M 1 oV aV 3 oV 4 M 5 O 6 o
IE + S ox S ﬁz'i' S ox S 3)'('14- S ﬁ2+ S o_X‘
7 oV g a¥ 9 aV
+ S ﬁ1+ S ﬁzi- S oX (6]
t
1 OV(T) 2 0V('r) 3 0ﬂ(’r)
+J[M (t_T)OX +M(t_T)ﬁ—_+M(t_T)0}{
) 1 2
+ e - r)gz(T) + M6 - r)ggiil + M8t - T)OU‘T
2 3
P Mt - )gg(T)]dT = 0,
3
al 1 &% 2 &% 3 av 4 O 5 W .6 OW
198 4 7t 22 S p 10 S 4 T S+ TY o 4T o 4
3t ogl ogz ogs 3%, ax, X,
7 8 8 & 9 &
+ T 5+ T 5+ T %+
oxl oxz 6)(3 (7)
+ I[Nl(t = r)%%ill + N2t - )ZX(T) + N3t - T)aﬁ(r) +
g 1 3 Xy
T CR ST (CARNR PR Y. (AR T r)fﬁiﬁl +
3 1
+ N (6 - T)aﬂ(T)]dT =0,
Xq
where matrices R s Sm, Tm, m = 1,...,9 consist of physical

coefficients and may be functions of UI,J' Due to the
complicated form of +the constitutive equation (3), these
matrices are rather complicated. Matrices Ln, M®, N, n=1,...,7
congirt of relaxation kernel functions. The Eas.(5),(6}),(7)
degcribe the complete wave field in 3D space. The next step is
to extract the single waves from system (5),(6),(7) by making
use of the asymptotic method [3,11). The physical description
of the problem under consideration is the following. The free
surface of the halfspace is subjected to the locally bounded
loading, caused either by impact or by an ultrasound
transducer. The eingle wave equations of shear waves are
derived wusing the proper scaling and the proper initial

conditions.
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EVOLUTION EQUATION

A shear wave is generated by a transverse source on the free
surface. Directing the axis X1 into the halfspace, deformation
U is generated at XI: 0 and is bounded in X2 and XS'

The process 1is described in the reference frame which

2,1

propagates with the velocity cq of a linear shear wave., It is a
bagic fact for shear waves that the shear component T21 of the

3
stress tensor TIJ (3) depends on U2’1 and (Uz,1) but does not

depend on (U2 1)2 [5,9]. Therefore the ray variables for a

shear wave in nonlinear theory are established in the following

form
¥ = clt - X1 y
2 (8)
Tl_ £ Xl , Tz = ch s 73 = sXs
Since U2 1 is a component of the vector W, the latter is

preferred wheﬁ V, W and T are expanded in series
v = £( VO + £2V1 + ..0)

_ 2
W= WO + & Wl + ..., (9)
0 = & Uo + szﬁl +...)
The following variables are introduced

_ -1 - - 1 _ 2 -1
3= uu, , u = UZ = U2,101 s @ = auy T Ty
m=ble, , r=ble, , r=<1eg, (10)

2 3
-2 -1

a,= 3/4|m1— m2|(ecl) . Cy= HP g

where ug is the maximal initial amplitude of the input. In this

case the ratios of the elastic constante turn out to obey
o, -1
m,= (X + 210 + 2v2 + 3v3 + 2u4) Iy ,

o * 2/3v3)2 fex + ;17 L, (11)
and the small parameter for this problem i=s

— 1/2 -1

e = 1/2 ( 3|m1— m2|) uyey . (12)
Then we obtain & nonlinear equation which describes

mo= (A + 21 + ¥

asymptotically the evolution of a plane-polarized shear wave in

three-dimensional space
£
£
8%

+ G I R[(( - T)Tc/cl] %?Lz#ﬂlgl-dr } = A ——g
0 m

(13)
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Eq.(13) contains two dimensionless rarameters which

involve dependendence on the ratio Tc/b

_ -1 -1/2 -1
M= (A + 20+ v, + 3/205) (A + 1) ( 3|m1— m2|) b .
A= - N[ 2(n + M)]—l Tg b—Z _ (14)
Relaxation parameter has the form
G = chile-z (15
and we have relaxation kernel function in the form
_ -1
R({T /) = vy (LT /) 1 (16)
DI SCUSSION

The terms on the right hand side of Eq.(13) describe the effect
of diffraction. It can be expected that wave diffraction in
golids is influenced by deformation perpendicular to the main
displacement vector. Particularly, 1longitudinal deformations
are involved in shear wave diffraction. This becomes obvious 1if
one looke at the system of equations which ig available before

elimination of U (nonlinear and relaxation terme are omitted

2,1
here)
i1 . _n %0, 4
a¢ >"'“arz
(17)
2 a1 x 99,1
e —= = - & 55—
a7y Py

On the basis of Eq.(13) and Eas.(1l7) it can be expected,
that the diffraction of eshear waves proceeds mainly in the
polarization plane (in the plane Ty rz), while in the plane
Ty T3 diffraction of the wave beam occurs much more slowly. On
that account the shear waves equation remains two-dimensional
although the asymptotice is based on +the three-dimensional
basic egquations. This means that in fact the Eq.(13) should
describe the three-dimensional evolution procegs of shear waves

in the limits of the applied approximation.

The diffraction parameter A for a shear wave is always
negative. The sign of the diffraction parameter does not affect

the wave amplitude transform but phase shiftes, which for
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longitudinal waves and shear waves are diametrically oppogite.

If deformation U2 1 is calculated by means of Eq.(13),

then deformation U1 1 can be determined in a shear wave-beam

. o X+ 24+ v, t 3/2v3 U2 )
1,17 2(N + u) 2,1
o, A Lol o5~ B’ i
Y £ (™)
812
4

An analogous result for the one-dimensional problem has been
obtained by Bland [9]1. The effect of finite longitudinal
deformation on the shear wave transform causes a complicated
nonlinear operator appearing in the Eq.(13). The structure of
the integro-differential operator indicates that the process
mugt be asymmetrical in the polarization plane of a beam.

The integro-differential term with the kernel function
R(£) in Eq.(13) describes viscous properties of a medium. If
the relaxation kernel functions in Eg.(3) have the form

Xl(t) = - A,t(t) s Hl(t) = - M,t(t) ) (19)
then the linear part of the constitutive equation (3) may be
divided into a preesure and a deviation part according to the
usual linear theory of viscoelasticity [1]. In this case it is
poesible to obtain the +two- or three-dimensional model
equations with 1linear dissipation from Eq.(13). In the one-
dimensional approximation +this equation is reduced +to the

modified Burgers equation [12].

REFERENCES

1. Ravasoco A. Some remarks on the guasi-linear theory of
vigcoelarticlity (to appear in Prcc.Est.Acad.Seci.).

™~

Nariboli G.A, Sedov A. Burgers-Korteweg-de Vries equation
for Viscoe%astic rode and plates. J.Math.Anal.Appl.,
32 (1970)., N=- 3, 661,

3. Engelbrecht J.Nonlinear wave processes of deformation in
solids. Pitman, London, 1983.

4, Peipman T. On distortion of the two-dimensional deformation
waves. Proc. Tartu Univ., 659 (1983), 76-82.



10.

11

12.

110

Valdek U., Engelbrecht J. An asymptotical description of
nonlinear longitudinal and transverse deformation waveg in
half—spacg. Izvestiya Acad.Sci.USSR, Mechanics of
Solids, N- 4, (1986), 101-105 (in Russian).

Peipman T., Valdek U., Engelbrecht J. Nonlinear two-
dimensional longitudinal and shear waves in solids
(submitted to Acoustica).

Zabolotskaya E.A. Sound beams in nonlinear isotropic solids.
Sov.Phys.-Acousticse, 32 (1986), 474-479 (in Russian).

Ilyushin A.A, Pobedriya B.E. Fundamentals of the
mathematical theory of thermo-viscoelagticity. Moscow,
Nauka, 1970 (in Russian).

Bland D.R. Nonlinear dynamic elasticity. Waltham etc.,.
Blaisdell Publ.Co, 1969.

Christensen R.M. Theory of viscoelasticity. New York,
Academic Press, 1971.

.Taniuti T., Nishihara K. Nonlinear waves. Pitman, London,

1983.

Nariboli G.A., Lin g.C. Anew type of Burgers equation.
Z.angew.Math.Mech., N- 53 (1973), 505-510.



111

EXPERIMENTAL MODAL ANALYSIS AND COMPARATIVE
FEM—ANALYSIS OF A GASTURBINE FOUNDATION PLATE

Pentti Varpasuo
Imatran Voima Oy, Rakennusosasto
P.0. Box 112, SF-01601 VANTAA, FINLAND

ABSTRACT

The modal analysis was carried out for common foundation plate of the
turbine and the generator before the installation of machinery. In order
to excite the modal shapes of the plate, the plate was shaken by a
servohydraulic  shaker using mainly broad band, white noise type
excitation. The plate was excited in three points. The most important
modal shapes detected were the following: (1) The rotation around the
longitudinal axis of the foundation with the frequency of 21 Hz and the
damping ration of 2.3 %; (2) the first verticl bending mode had the
frequency of 32 Hz and the damping ratio of 5 Z.

In FEM-analysis, the rotation mode around the longitudinal axis was
detected at the frequency of 20.71 Hz. In case of other modeshapes the
discrepacies berween the computed and the measured eigen frequencies were
considerably larger. One reason to this discrepancy seems to be the fact
that the excitation from three points only does not wake up all those
mode shapes which were detected using FEM-analysis.

INTRODUCTION

The purpose of the experimental part of the investigation was to deter-
mine the most important modal parameters of the typical gasturbine
foundation plate. The dimensions of the concrete plate were the follow-
ing: length 21 m, width 4 m and height 1.3 m. The measurements of the
foundation plate were carried out before the installation of the turbine-
generator set. In experimental modal analysis the structure is described
by the sum of simple oscillators. These oscillators are represented by
three modal parameters, namely: the eigenfrequency, the associated mode
shape and the damping ratio. The basic task of exprimental modal analysis
is the determination of the frequency response function. In order to
produce a frequency response function experimentally we need the response
of the structure in a given point and also we need to know the force
which has excited this response. By fitting a mathematical trial function
to this frequency response function within the interesting frequency
domain the above modal parameters can be solved. Usually structures have
tens of eigenfrequencies within the interesting domain so that the
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a: 4] UND..F= 8.9888 Hz

Figure 1. The location of the excitation points and the response points
in experimental modal analysis.
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Moaal Parameters, PARAM., REF 13Y
Amplitude
3.3820E-07

Label Freq Damping
1 18.985 0.01194
2 20,040 0.07579
3 20.833 0.01531
4 21.420 0.01341
5 22.504 0.01347
6 23.963 0.01953
8 26.382 0.01325
9 27.972 0.02675
19 29.716 0.01633
20 32.011 0.05280
21 32.771 0.02835
-4
7
Ed
#FS
S T :zords in use of
Rec 2 20,040 Hz,
Rec 3: 20.893 Hz,
Rec 4: 21.420 Hz,
Rec S: 22.504 Hz,
Rec 6: 23.963 Hz
Rec 9: 27.972 H:z
Rec 19: 29.716 Hz,
Rec 20: 32.0t1 Hz,
Rec 21%: 32.771 Hz,
Table 1.
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Figure 3. .The modal shapes for the eigenfrequencies 20.06, 20.71, 22.21
and 33.13 Hz solved by FEM.
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CHAOS AND ANOMALOUS CHAOTIC TRANSIENTS OF THE
BOUNCING-BALL DYNAMICS

Heikki M. ISOMAKI Marek FRANASZEK

Faculty of Information Technology Department of Computer Science
Helsinki University of Technology Higher Educational School
SF-02150 Espoo 15, Finland P1-30-084 Krakéw, Poland

The essence of mechanics is the symmetric structure of the canonical phase space (q,p)-
This allows us to present the dynamics of an autonomous N degrees-of-freedom system
in a 2N-dimensional phase space (or in a 2(N+1)-dimensional one in the nonautonomous
case), The history of the motion is then found by solving 2N Hamilton’s differential
equations of first degree. Due to the special symmetry between q and p the equations
can be solved using canonical transformations, which in a completely integrable system
produce N (not 2N) independent analytic single-valued first integrals of q and p. These
integrals comprise the constants along the calculated trajectory. Hence the trajectory
lies on an N-dimensional manifold that in virtue of the Poincaré-Hopf hairy-ball the-
orem is topologically an N-torus. An N-torus is a naturally periodic object consisting
of N independent periodicities. It is fixed by the canonically conjugate action-angle
variables. Practically the whole phase space is filled with tori corresponding to different
commensurate or incommensurate motions. However, these are not the only essential
dynamical objects of the phase space. There are also fixed points, which mostly are
elliptic or hyperbolic, and multidimensional separatrices, which connect the hyperbolic
points and separate the two kinds of existing tori, the librations and rotations. The
interactions and joinings of the separatrices are the key quantities in creating chaotic
flows. For integrable systems the generic joining of the separatrix manifolds is smooth
and consequently no chaos may exist.

The integrable systems with more than one degree of freedom cannot generally
be ergodic on (2N-1)-dimensional energy shell. However, the ergodicity on the lower-
dimensional tori is the rule rather than the exception. The simultaneously existing
incommensurate trajectories outnumber the commensurate ones on a given energy shell.
However, no phase space filling chaos is present. Hence for integrable systems the generic
trajectory dimensionality of the dynamics is N. Note the terminology: general equations
that can be solved by integrating may still be nonintegrable.

However, even most Hamiltonian systems are nonintegrable. So there remains a
question, whether or when the trajectory of the generic dynamics would fill a region in
the phase space of dimensionality greater than N. The answer to this question is qualita-
tively given by the celebrated Kolmogorov-Arnold-Moser (KAM) theorem. It states that
in a perturbed near-integrable system most trajectories still lie on tori. However, the
surviving tori are mainly incommensurate and there are chaotic trajectories that wander
through gaps where commensurate tori have been destroyed. In these gaps bordered by
incommensurate KAM surfaces the transversal homoclinic intersections of separatrices
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are responsible for hyperbolic chaotic flows. In 2-degrees-of-freedom systems these gaps
are disconnected but with more degrees of freedom the gaps form a single connected
chaotic region controlled by Arnold’s diffusion. Increasing the perturbation this local
chaos transforms into global chaos when more and more KAM surfaces start breaking
up.
The bouncing-ball dynamics were one of the first mechanisms in which the above
KAM analysis has been performed. Several variant configurations have been extensively
studied by Fermi, Ulam, Lieberman, Lichtenberg, Cohen, Zaslavsky, Chirikov, Rachko,
Brahic, Pustylnikov, Holmes and others. In this paper we study the dissipative variant,
which i1s much less explored.

The engineering systems are usually strongly dissipative. When the dissipation is
incorporated in the system the nice theory of mechanics breaks up: the symplectic sym-
metry and the integrability conditions disappear. The system experiences a structural
instability: tori are destroyed and converted into asymptotically stable attractors and
the Hamiltonian chaos is removed. However, dissipation does not damp out interesting
dynamics. The attractive property related to dissipation splits the chaotic dynamics
into two parts: final state chaos and transient state chaos. In these the dynamics may
fill exotic and complicated fractal phase-space sets exhibiting noninteger dimensions.
These exotic motions can be found together with new commensurate and incommensu-
rate attractors. And in virtue of the recent rapid development of the local and global
analysis of nonlinear dynamics it is also evident that many ideas and methods related
to the Hamiltonian chaos are carried to the theory of the dissipative chaos.

Why do we bother ourselves about the understanding of irregularity because all
problems after all have to be solved numerically? Why don’t we just concentrate in
developing numerical codes, which we anyway have to resort to? One answer is that
the irregularity is closely related to unpredictability. Forecasting and planning are
important in the engineering dynamics and hence it is essential to understand how
and when deterministic systems produce such irregularities that long-time predictions
become impossible. The loss of predictability has such surprising consequences that all
feasible numerical codes and computers are exhausted for rather small numbers of time
steps in future forecastings. However, even the modest knowledge of the underlying
mechanisms creating irregularities may help the engineers to avoid the worst pitfalls.

In many practical applications of the dissipative dynamic systems the transient mo-
tions are important. This understandably follows from the fact that in the study of real
complex systems it is often impossible to include large number of different interactions
in computations and one has to resort to simpler dynamical models in restricted phase
spaces. Then the exogenous variables can be thought to play the role of small perturba-
tions or to be added to the system so slowly that the basic deterministic short-time-scale
dynamics are essentially valid. Consequently the relevant variables fluctuate in the noisy
environment. But with a careful choice of the phase spaces we might expect that much of
the fluctuations can be extracted from the underlying endogenous deterministic dynam-
ics if we study the transient motions. Transient motions, on the other hand, can exhibit
complexity, which is comparable to chaos but which has time-dependent characteristics.
But the lifetimes of transients can be so long that the two dynamics are practically
indistinguishable. The repellors form the invariant sets controlling the transients. Re-
pellors are usually found after the boundary crises. A paradigm is the famous one-hump
map where by changing the parameter we can find scrambled sets continuously. But if
we suppose that those points that convey the motions close to the tangency regions are
finally all mapped out then what remains is the non-attracting hyperbolic invariant set,
repellor. Moreover, one believes that a chaotic repellor has discontinuities and holes
transversal to the unstable direction, i.e., a double-cantor structure. However, in this
paper we show how all this need not always be rigorously true and how consequently
the transient chaos may be a complex problem of a non-hyperbolic repellor without
characteristic holes.

The model studied in this paper is the dissipative bouncing-ball system that is
a slightly modified version of the classical Hamiltonian dynamics problem originally
raised by Enrico Fermi and Stanistaw M. Ulam. In our modified Fermi-Ulam problem
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[1,2,3,4,5,6] the ball is made to fly and impact dissipatively on a single sinusoidally
vibrating surface under the influence of the gravitational acceleration, which conse-
quently reverses the flight. The complete dimensionless equations of motion comprise a
two-dimensional map (%;,v;) as follows

vig1 = 62T, — ;) + (1 4 £)hits, tipn=Ti+t (1)
—T? + v, T + h; = higa, h; = H cost; (2)

In the above equations of motion ¢; is the moment of the i’th surface-ball impact, T; is
the flight time, A is the surface’s vertical position, h; = h(t;), v; is the ball’s velocity after
the i’th impact, H or the reduced number A = (1 + x)H denote the amplitude of the
surface vibration and x is the coefficient of restitution. Period-times are given in units
271 below. Our system is dissipative due to the non-elastic impacts with £k = 0.86 < 1
of the steel-ball experiments [1]. The motions can roughly be divided in simple and
complex ones corresponding to H < 2 and H > 2, respectively [2]. But even the simple
motions are very rich and relatively complicated as is depicted, e.g., for H = 1.8 with

(t,u) basin (Fig. 1), where t=¢; is the moment and u=wv; — h; is the relative velocity for
the start of the ball’s flight on the surface. In the basin we have five simultaneously
stable modes, namely three Zaslavsky-Rachko (ZR) modes, one fixed mute mode and
one exotic 3-impact period-3 mode [2,4].

In the following we study the transients of a temporarily-mute mode at A = 4.95,
which is so called chaotic self-reanimating mode [1,2]. In this mode the ball motion
gradually slows down and finally the ball sticks to the surface. This final standstill is
the ground state attractor, which follows the bouncing transient. Despite the fact that
the motion in the ground state has lost all memory of the previous bouncing transient
and is in this sense repeatable, the dynamics need not be really periodic if the transient
is chaotic and related to a chaotic repellor. Hence the motions are irregular walks among
unstable points because the chaotic bouncing transient always shadows some time the
repellor. This is nicely seen in the similarity between a single long transient orbit (Fig.
2a) and the numerically constructed repellor (Fig. 2b) [5].

The repellor in Fig. 2b is constructed by using the Kantz-Grassberger ensemble
method [7]. In this repellor we do not find any holes transversal to the unstable direction.
In a careful check using two other methods as well, the Nusse- Yorke PIM triple method
[8] and the overlapping manifolds method [9], we find the same result. In Figs. 2c and
2d we show how the stable and unstable manifolds touch each other tangentially in
vast regions of the phase plane. Moreover, these results are valid for wide ranges of the
control parameter H (or A) [5]. Because basin boundaries embody a chaotic saddle-
type repellor a practical consequence is [5] that the stable manifold is very dense with
a capacity dimension close to 2 as shown in Fig. 3. The calculated box dimension is
= 1.85 by using the uncertainty exponent method of Grebogi, Ott, Yorke and McDonald
[10]. Duc to this high dimension the computational difficulties increase drastically. For
instance, by increasing the initial condition accuracy by huge 6-7 decades in the black
region the yield of correct final states increases only by a factor of 10. A detailed
discussion about the above and other anomalies of the bouncing-ball problem will be

published elsewhere [5,6].
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Figure 1. (t,u) basin at H = 1.8 with five simultaneous attractors: the white denotes
the mute mode basin, the black denotes the exotic 3-impact period-3 mode basin and
the grey in three tones denotes the ZR mode 1-impact period-i, i=1,2,3 basins. The

main horizontal tongues of the ZR mode basins are marked with arrows.
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Figure 2. Poincaré sections (t,u) for H = 2.661 (A = 4.95), 7 = t + 7. a) single
chaotic transient; b) the repellor calculated by the ensemble method. Blow-ups of a
region where the stable (c) and unstable (d) manifolds are parallel.
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Ui

Figure 3. Basin for H = 2.661 (A = 4.95). The black denotes the chaotic self-
reanimating mode basin and the white denotes the ZR 2-impact period-6 basin. The
lower part shows the blow-up of a horizontal bar of 0.5 x 0.01 at the white throat of the
upper figure marked with an arrow. The refined grids are irom the top to the bottom
10, 50,100 and 1000, respectively.



The pressure profiles, the film shapes, and the shear stress distributions for two different
non-Newtonian fluid models were compared. The slide-to-roll ratio was varied between 0.0 and
10.0. Results show that the circle model is more severe model than the straight-line model and
that the pressure spike vanishes for both models when the slide-to-roll ratio is greater than two.
Furthermore, the maximum pressure decreases as the shear stress approaches the limiting shear
strength and the non-Newtonian effects become stronger. It was also found that the effects in
the film shape and the pressure profile are similar for both models when the shear stress is close
to the limiting shear strength. For the straight-line model this requires higher values of the
slide-to-roll ratio. The film collapses in the center of the contact when the shear stress is close
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ABSTRACT

to the limiting shear strength.

Hend

hend

NOMENCLATURE

slide-to-roll ratio, (un — ua) / 4

semiwidth of Hertzian contact, R (8W/r)""
dimensionless constant, tU/8W
dimensionless constant, 2W/n

modulus of elasticity, Pa

1
2
effective elastic modulus, Z{M + LD—E)I ,Pa
E, Ep

dimensionless materials parameter, o
dimensionless film thickness, hR/b2
dimensionless film thickness at X=X,nq
film thickness, m

film thickness at outlet, m
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constant, 311:2U/4W2

dimensionless pressure, p/ph

pressure, Pa

maximum Hertzian pressure, E'b/4R , Pa

; . 1 1Y
equivalent radius, [—+—| ,m
a b

radius of curvature, m
variable, ni/h t, = Cs (/H )

o (Ldp)_ o (H dP
variable, S Cy 3 dx‘J
dimensionless speed parametér, Now/E'R
velocity of lubricant in x-direction, m/s
mean velocity, (4a + Up)/2, m/s
dimensionless speed parameter, w/E'R
applied load per unit length, N/m
dimensionless coordinate, x/b
dimensionless outlet meniscus distance
coordinate in direction of movement, m
pressure viscosity coefficient of fluid, Pa”
limiting shear strength proportionality constant
shear strain rate, 1/s
absolute viscosity of fluid, Pa s
dimensionless viscosity, /Mo

dimensionless representative viscosity
effective viscosity, T/y

viscosity at atmospheric pressure, Pa s
Poisson’s ratio

lubricant density, kg/m3

dimensionless density of lubricant, p/gqg
density at atmospheric pressure, kg/m
shear stress, Pa

shear strength at atmospheric pressure, Pa
dimensionless shear stress, /T,
dimensionless initial shear strength, To/E’
dimensionless limiting shear strength, T /E’

Subscripts

a
b
eff

Elastohydrodynamic lubrication is a form of fluid-film lubrication, in which elastic deformation
of the contacting surfaces becomes significant. EHL is usually associated with nonconformal
contacts, such as rolling-element bearings and gears. In this kind of contact the load has to be
carried outby a very small lubrication area. The contact area is usually three orders of magnitude
smaller than the contact area in conformal contacts, and for this reason the contact pressure
builds up to a very high value (typically 0.7 - 3.0 GPa). This high contact pressure causes
significant elastic deformation in the contacting surfaces. Deformations are typically several
orders of magnitude greater than the actual minimum film thickness. Furthermore the viscosity
of the lubricant can vary by 8 orders of magnitude within the conjunction as a result of the
pressure variation. Thus both elastic and pressure-viscosity effects have to be incorporated in

lower surface
upper surface
effective

INTRODUCTION

the analysis of EHL.
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In most EHL analyses the lubricant is assumed to behave in a Newtonian manner. This
implies that the shear stress is linearly related to the shear strain rate. This assumption is valid
when the sliding speed and the pressure in the conjunction are relatively low. But in
nonconformal contacts, where the pressure is high, the lubricant experiences rapid and large
pressure variations and, particularly in sliding contacts, high shear rates. The great severity of
these conditions has called into question the assumption of Newtonian behavior.

It has been observed by Bair and Winer [1] and Jacobson [2] that at a given pressure and
temperature there is a critical shear stress at which the lubricant will shear plastically without
any further increase in the shear stress with increasing shear strain rate. This limiting shear
strength can be expressed as

=T+, (D

where 1;_is the limiting shear strength at pressure p, T, is the shear strength at atmospheric
pressure, 7 is the shear strength proportionality constant, and p is the pressure. A good way to
interpret various non-Newtonian models is to use the effective viscosity [3]. It can be defined
as

e

MNett == » (2)

-3

where T is the shear stress and ¥ is the shear strain rate. Using this form, the well-known
non-Newtonian models of Bair and Winer [3] can be written as

T]eff _ E

n = (-7 2
and

Nett T

e el 4
N tanh!'T @

where T = 1/T..

Houpert and Hamtock [4] used the Eyring model, which can be written as

MNeff _ (Ys)
N sinh(%g)’ (5)

where 7y is the shear stress at which the fluid first starts to behave nonlinearly when stress is
plotted against shear strain rate.

The behavior of all models presented so far is shown in Fig. 1. It can be seen that in the
models of Bair and Winer the effective viscosity approaches zero asymptotically as the shear
stress approaches the limiting shear strength, whereas in the Eyring model the effective viscosity
decreases slowly and there is no limiting value. In the new model the effective viscosity
decreases linearly with increasing shear stress.
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New fluid models describing the non-Newtonian behavior of lubricants have been
presented lately. One of the most interesting new models is the general model [5], which can
written as

nﬁff _ (1 _ T")%. ©)

When n=1 this model becomes the straight-line model

“;“ =1-7, %)

which was presented by Tivonen and Hamrock [6]. When n=2 it is the circle model

%:(l—%z)% ®)

of Lee and Hamrock [7]. When n is further increased, the general model approaches the
viscoplastic fluid behavior shown in Fig. 2. In this paper the film shape, the pressure profile,
and the shear stress distribution are compared for n=1 and n=2 (i.e. straight-line and circle
models). The method for solving the Reynolds equation is described in [8] in detail and will
not be repeated here. Only the relevant equations for both models are presented.

MODIFIED REYNOLDS EQUATIONS

The classical Reynolds equation has been obtained assuming the lubricant behavior to be linear
viscous. This equation has to be modified in order to incorporate the new non-Newtonian model
into it. In the following analysis the flow is assumed to be steady and isothermal. Furthermore
the length of the contact is assumed to be much greater than its width. This allows side leakage
to be neglected.

Ll
n

§ 5 Newtonian
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g z = melt ™, \
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Dimensionless shear stress, T/ Dimensionless shear stress, t/1,

FIGURE 1. Various viscous fluid models. FIGURE 2. General model.
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STRAIGHT-LINE MODEL

The modified Reynolds equation for the straight line model can be taken from livonen and
Hamrock [6]. The straight line model can be rewritten as

=

®

-2
I
S|a
-
al

The shear stress at surface a can be derived as

AST+T
Ta=1-——2 T=1—§—§coth|: (10)

-l @S+ )T ]
ASTHT _ | y

2

and at surface b as
=Ta+T, (11)

and the modified Reynolds equation as

f= H3%+K:r—1*(H%nd - H): 0, (12)

where

2
K=3nU P

(13)
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and

— T%/12 _

N =as+r @as+nr] . "
> coth 2 -1

a1

CIRCLE MODEL

The modified Reynolds equation for the circle model can be taken from Lee and Hamrock [7].
The circle model can be written as

. T T
=-E r. 15
V= Ty (15)

The dimensionless shear stress at surface a can be written as
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TABLE 1.
Relevant properties of the oil used.
Viscosity at atmospheric pressure Mp, Pas . . . . oo v i i e e 0.01326
Pressure-viscosity coefficient ct, Pal . 1.582x 108
Limiting shear strength proportionality cOnStant, Y . . . v v v v v v v v v e e 0.076
%)
_ T 1 1
Ta=—T=+AS a2 | (16)
2 A%S® 4

and the dimensionless shear stress at surface b as
T=Ta+T. a7n

Furthermore, the modified Reynolds equation can be written as

_,34dP —* Hend__ .
f=H dX+Kn(_§ HJ—O, (18)
where
3_

— T
=16 (19)

sin é—¢
and

1 1

e=%b(1—?c%) —Ea(l—i?,) : (20)

RESULTS AND DISCUSSION

One oil, a polyglycol synthetic oil was studied. The properties of that oil are given in Table 1,
where the value of y was taken from [9]. In the analysis the effect of the slide-to-roll ratio A on
the film shape, the pressure profile and the shear stress distribution was studied for fixed values
of the dimeqslionless load parameter (W = 0.6x107") and the dimensionless speed parameter

= (1.0x107""). The pressure profiles, the film shapes, and the shear stress distributions at
surface a for A=0.0 are shown in Fig. 3. For the operating parameters described above and for
low slide-to-roll ratios and low shear stresses, there is no difference between the two models.
‘When the lower body is stationary (4=2.0), the shear stress for the circle model is close to the
limiting value, as is shownin Fig. 4, The spike has almost vanished and there is a clear difference
in the shear stress between the models. The shear stress is approaching the limiting shear strength
faster for the circle model than for the straight-line model. This implies that the circle model is
a stronger model to describe the behavior of a non-Newtonian fluid. When A=5.0, the shear
stress for the circle model is exteremely close to the limiting shear strength at the central region
of the contact, as shown in Fig. 5. This causes changes in the pressure profile and the film shape.
The pressure gradient in the inlet region is getting steeper, and an additional nip is forming in
the film shape. Results for A=10.0 are shown in Fig. 6. The effects of the non-Newtonian
behavior for the circle model are stronger and the maximum pressure is decreasing, The shear



FIGURE 3. Results for A=0.0.
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FIGURE 4. Results for A=2.0.

stress for the straight line model has not yet reached the limiting shear strength and thus no
distortion can be seen in the pressure profile and the film shape. It can be expected that, as the
sliding speed is further increased, similar effects will be seen for the straight-line model as were
seen for the circle model. It is also shown in Fig. 6 that the non-Newtonian effects are causing
the film collapse in the center of the contact for the circle model.

[N

CONCLUSIONS
The following conclusions were drawn:

The circle model is more severe than the straight-line model.

For both models the pressure spike vanishes when the slide-to-roll ratio is greater than
two.

There are no distortions in the pressure profile and the film shape until the shear stress is
extremely close to the limiting shear strength.

The maximum pressure decreases as the slide-to-roll ratio is increased because the shear
stress approaches the limiting shear strength.

When the shear stress is close to the limiting shear strength, the results for both models
are similar.

As the shear stress approaches the limiting shear strength, the film collapses in the center
of the contact.
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ABSTRACT

Numerical calculations of the heat transfer by free convection across a tall, vertical
cavity filled with air are reported. Two commercial, general-purpose fluid dynamics
programs were used in the calculations. The calculated flow fields and temperature
fields were in good agreement with theoretical and experimental results found in the
literature. The average heat transfer coefficient could be predicted with good accuracy.
The onset of the flow instability was also studied, and the multicellular secondary flow
was observed.

INTRODUCTION

Rectangular cavities filled with air are commonly used for thermal insulation; they
can be found between window glazings, inside walls, and in solar collectors. The
heat transfer by free convection across such cavities has been extensively studied both
theoretically and experimentally, and the main features of the flow are well understood
today. The flow is uniquely determined by the Grashof number Gr, the Prandtl
number Pr, and the geometry of the cavity. For practical purposes, it is usually
sufficient to determine the average heat tramsfer coeflicient as a function of cavity
geometry and wall temperatures. Thus, we are looking for a relationship of the type
Nu = f(Gr,Pr,geometry), where Nu is the Nusselt number.

However, the problem is also of interest to those studying flow instability. As the
Grashof number is gradually increased, the flow becomes unstable at Gr ~ 10*, and
a row of steady, two-dimensional convection rolls develops. More complicated, three-
dimensional instabilities appear as the Grashof number is further increased, and the
flow finally becomes turbulent at around Gr ~ 10°. The first transition can be studied
with rather modest computer resources and therefore provides an excellent benchmark
for computational fluid dynamics.
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PROBLEM FORMULATION

Consider a rectangular cavity of height H and width L as shown in Fig. 1. The cas;ity
is assumed to be tall (the aspect ratio I' = H/L > 1) and vertical. In the z-direction,
at right angles to the plane of the figure, the cavity is regarded as extending to infinity.
Thus, the flow is expected to be two-dimensional.

The left sidewall of the cavity is held at a constant temperature 73 and the right
sidewall at a constant temperature T,. For the sake of simplicity, let us assume that
T, > Ti. The temperature difference AT = T; — T; is assumed to be small when
compared to the average temperature To = (T} +T3)/2. The top and the bottom of the
cavity are insulated.

The cavity is filled with air at atmospheric pressure py. The viscosity 7, the thermal
conductivity A, and the specific heat capacity ¢, of air are assumed to be constants.
The pressure variations are assumed to be small compared with py; thus, the density of
air can be assumed to be a function of temperature only:

p = ppo,T) = poll—Bo(T—Th) (1)

where py = p(po,To) and Bo = B(po,To). Here we have introduced the volumetric
coefficient of thermal expansion 8. Using the ideal gas law, we obtain By = 1/Tp.

L
ol _
By 0
9
y
H X
T=T4 T=T9
ol _
By 0
vV = vy= on dall sides

FIGURE 1. A sketch of a tall, vertical cavity.
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The conventional Boussinesq equations for steady, two-dimensional flow can now
be applied. In dimensionless form they can be written as:

a) Continuity

- 2
0z 3y ) (2)
b) Momentum
_ 85, _ 0%, op 1,85, 89,
nos T e = ez T Glom T op ®)
_ 0%, _ 0%, ap 1 0%, %%,
i ] Dy — e T 4
Y2z T " ag 5 Tailem T ap ) (4)
c) Energy
- @ + 9 @ — 1 ﬂ + _aii) (5)
Y25z Y85 ~  GrPr oz | 9y
and the boundary conditions are
- 1 . . - 1
2= -5 v,,:v,,:O,T:—E (6)
1 ~ 1
T = +5: Dy = 1.5], = 0, T = +§ (7)
. r 3 oT
y::tE: v,:vy=0,—a—g=0 (8)

These equations have been nondimensionalized by scaling z and y by L, v, and v,
by U, P by poU?, and T — Ty by AT. Here P = p+ pogy is the equivalent pressure and
U = L?gByAT/v is the characteristic velocity. The dimensionless parameters in Egs.
(3)~(5) are the Grashof number and the Prandtl number. They are defined as

L3gB, AT
Gr = vL . _gﬂ:_ (9)
v v
v

where v = 1/ po is the kinematic viscosity and @ = A/poc, is the thermal diffusivity. The
Prandtl number is a function of material properties only; for air at 300 K, Pr = 0.71.
Equations (2)—(5) and boundary conditions (6)—(8) indicate that the flow inside the
cavity is uniquely determined by Gr, Pr, and the aspect ratio I'.
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No analytical solution to the problem described above has been found. However,
Batchelor [1] has solved the problem for I' — co. The solution is

P = constant (11)
5, = 0 (12)
- 1. 1.

By = —Ezs + ﬂz (13)
T = 3 (14)

Thus, the flow is parallel to the vertical walls: the air rises near the hot wall and sinks
near the cold wall. The linear temperature profile indicates that heat is transferred by
conduction only (Nu = 1). The Nusselt number is defined as Nu = kL /A, where b is
the average heat transfer coefficient.

Experimental observations have shown that in tall cavities, the flow in the center
region can be accurately described by Eqs. (11)-(14) (see e.g. [2]). In the top and bottom
parts of the cavity, the flow turns around and the flow field is more complicated. As
the flow turns around, heat is also convected, and therefore Nu > 1 for cavities with a
finite height.

Batchelor also pointed out that laminar flow will only be observed if the Grashof
number is sufficiently small. He estimated that the flow will become unstable at
Gr > 19000. Later, Vest and Arpaci [3] carried out a more detailed stability analysis.
Their theoretical calculations showed that the critical value of the Grashof number is
7900, and that the primary flow instability sets in as a row of steady, two-dimensional
vortices. This flow pattern is called multicellular. Vest and Arpaci also verified their
theoretical results experimentally using a cavity with I' = 33. In the experiments,
however, the critical value of the Grashof number was found to be slightly higher
(Grcr = 8700).

At still higher values of the Grashof number, the multicellular flow pattern is
disrupted. Three-dimensional and unsteady instabilities appear, and the flow becomes
fully turbulent at around Gr &~ 10° (see e.g. [2], [4]).

Lee and Korpela [5] presented numerical calculations on two-dimensional unsteady
free convection in tall cavities. The calculations were in each case carried out until a
steady state was reached. The highest value of the Grashof number in their calculations
was 25000. In a cavity with ' = 20, the transition to the multicellular flow pattern took
place at 10000 < Gr < 11000. Lee and Korpela suggested that the higher value of Gr,,
compared with the value given of Vest and Arpaci was due to the stabilizing effect of
the vertical temperature gradient. For an infinitely tall cavity, T = % and the vertical
temperature gradient is zero. For a cavity with a finite aspect ratio, 7' = T(%,3) and
the vertical temperature gradient increases as the aspect ratio is decreased. Lee and
Korpela also found that the multicellular flow pattern only appeared if the cavity was
sufficiently tall; for Gr= 15000, the aspect ratio had to be at least 12.5.

Later, Chait and Korpela [6] analyzed the three-dimensional stability of free
convection in tall cavities. They found that the two-dimensional multicellular flow
becomes unstable at about Gr= 8600, and concluded that it is not physically meaningful
to calculate two-dimensional flow patterns at high values of the Grashof number.
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NUMERICAL CALCULATIONS

We studied a cavity of height H = 0.4 m and width I = 0.02 m; such a high aspect
ratio (I' = H/L = 20) was chosen to ensure the development of the multicellular flow
pattern at high values of the Grashof number. The average temperature Tp was chosen
to be 300 K. Three different values of the Grashof number were used in the calculations:
Gr = 8500 (AT = 8 K), Gr = 14900 (AT = 14 K), and Gr = 21200 (AT = 20 K). The
lowest value of Gr was chosen to be below the onset of instability, and the two higher
values of Gr were chosen to be above the onset of instability.

The calculations were first performed using the FLUENT program, which is based
on finite differences and has been developed by Creare Inc. Program version 2.99 was
used and the calculations were carried out on a VAX 8350 computer. Four different
grids were employed: 9x30, 12x42, 16x58, and 22x82 (horizontal x vertical). All grids
were uniform.

All twelve test cases were first calculated using the power-law discretization scheme
(the default scheme). The calculated temperature and flow fields were reasonable,
and the average heat transfer coefficient could be predicted succesfully. The values
of the Nusselt number obtained with Richardson extrapolation are given in Table 1 and
compared with calculated and experimental values found in the literature.

TABLE 1

Calculated values of the Nusselt number at different values of the Grashof number and
comparison with the numerical results of Lee and Korpela [5] and experimental results
of ElSherbiny et al. [7]

Grashof number
8500 14900 21200
this study 1.23 1.41 1.56
Lee & Korpela 1.21 1.41 1.55
ElSherbiny et al. 1.22 1.42 1.59

However, it has to be noted that ElSherbiny et al. applied a different boundary
condition for temperature at the top and bottom walls of the cavity. In their apparatus,
the top and bottom walls were made of highly conducting material, and a linear
temperature profile (T = Z) was thus established at y = +I'/2. Since the experimental
results are in good agreement with the numerical results, we may assume that for a
cavity with T’ = 20, the thermal boundary conditions at the top and bottom walls are
of less importance.

The onset of the flow instability could not be detected using the power-law
discretization scheme. The calculations with Gr = 14900 and with Gr = 21200 were
therefore repeated using the optional quadratic upwind discretization scheme (called

QUICK). Since the QUICK scheme needs more CPU time than the power-law scheme,
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the finest grid (22x82) was excluded from the calculations. It was found that when the
16x58 grid was used, two secondary vortices appeared in the cavity. This was observed
both at Gr = 14900 and at Gr = 21200. The two other grids (9x30 and 12x42) were
too coarse to resolve the flow pattern.

Some calculations were then performed using the FIDAP program, which is
based on finite elements and has been developed by Fluid Dynamics International
Inc. Program version 4.50 was used and the calculations were carried out on a
VAX 8650 computer. The solution strategy for FIDAP calculations was adopted from
the Example 7 of the FIDAP manual. This example deals with free convection in a
square cavity. Nine-node rectangular elements and two different meshes were employed:
5x20 and 7x28 (horizontal X vertical). Both meshes were uniform. Thus, the degree of
accuracy was expected to be similar to that of FLUENT calculations with 12x42 and
16x58 grids, respectively.

The FIDAP calculations with Gr = 8500 were carried out using both meshes. The
calculated temperature and flow fields and average heat transfer coefficients were in good
agreement with the FLUENT results. The FIDAP calculations with Gr = 14900 and
with Gr = 21200 were only carried out using the fine mesh (7x28). At Gr = 14900 the
results were in good agreement with the FLUENT results obtained using the QUICK
scheme, except that three secondary vortices appeared and that they were stronger. At
Gr = 21200 the solution did not converge. The reason for poor convergence is unclear,
but we speculate that perhaps FIDAP cannot find a steady, two-dimensional solution
at high values of the Grashof number because such flows would also be unstable in real
life.

Some results are illustrated in Figs. 2-4. The vertical velocity profiles and the
temperature profiles at the midheight of the cavity (y = 0) for Gr = 8500 are shown in
Fig. 2. The theoretical solutions (Egs. 13 and 14) and four different numerical solutions
are plotted: FLUENT solutions with the 12x42 grid and with the 16x58 grid, and
FIDAP solutions with the 5x20 mesh and with the 7x28 mesh. All numerical results
are in good agreement with the theoretical profiles. The horizontal velocity profiles along
the vertical centerline (¢ = 0) for Gr = 8500 are shown in Fig. 3. In the center region,
the horizontal velocities vanish as was predicted by the theoretical solution. Non-zero
horizontal velocities can be observed near the top and the bottom of the cavity, in the
regions where the flow turns around.

The horizontal velocity profiles along the vertical centerline (z = 0) for Gr = 14900
are shown in Fig. 4. Three different numerical solutions are plotted: the FLUENT
solution with the power-law scheme and 16x58 grid, the FLUENT solution with.the
QUICK scheme and 16x58 grid, and the FIDAP solution with the 7x28 mesh. The
secondary vortices can be observed in the FLUENT solution with the QUICK scheme
and in the FIDAP solution.
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FIGURE 2. Top: the vertical velocity profile at y = 0 for Gr = 8500. Bottom: the

temperature profile at y = 0 for Gr = 8500. The dashed line in the velocity plot

corresponds to v, = 0 and is included in the plot for the convenience of the reader.
For key see below.
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FIDAP results with the 7x28 mesh. The dashed lines correspond to v, = 0 and are
included in the plots for the convenience of the reader.
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CONCLUSIONS

Two commercial, general-purpose fluid dynamics programs were used to calculate the
free convection flow of air in a tall, vertical cavity. Both programs gave good results.
In fact, the programs could be succesfully used to study flow instability. Further effort
is needed, however, to assess their usefulness in more complicated practical problems.
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AN APPLICATION OF THE INERTIA FORCE METHOD IN FLUID MECHANICS

EERO-MATTI SALONEN
Institute of Mechanics
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Otakaari 1, 02150 ESPOO, FINLAND

ABSTRACT

The so called d’Alembert’s principle or perhaps more correctly the inertia force method is
rarely used in fluid mechanics although one quite often sees applications of the method in
particle and solid mechanics. The article first reviews some diverging opinions about the
value of the inertia force method in general. Thereafter the method is employed in fluid
dynamics making use of certain familiar results from fluid statics. A didactic qualitative
derivation of the result, that the pressure decreases in ideal fluid flow at a constriction —
which the students find sometimes difficult at first to believe — is finally given.

INTRODUCTION

D’Alembert’s principle

In the mechanics literature no generally accepted agreement seems (o exist on the actual
meaning of the so called d’Alembert’s principle. This fact is reflected for instance in the
following quotation, Lanczos [1, p. 89]: “It is exactly this apparent triviality which makes
d’Alembert’s principle such an ingenious invention and at the same time so open to distortion
and misunderstanding”.

One can divide the interpretations of the principle roughly in two groups which we shall
call here the engineering mechanics interpretation and the analytical mechanics
interpretation, respectively.

In the engineering mechanics literature d’Alembert’s principle is often said to reduce
dynamics to statics. As an example let us consider a system consisting of just one particle.
Let us write the equation of motion

-

=ma, (1)

Ty

where the meaning of the notation is obvious, in the form

N (N
F+F =0, @)

where
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The pedagogic merit of this procedure is that we can first start the derivations in a simplified
situation and finally obtain the general result just by a straightforward modification.

As a second application let us assume that we have solved the equations of motion of a
mechanism and as post processing want to determine the bending moment at a certain cross
section of a rod at a certain moment of time. Here it is quite convenient to use the inertia
force method to convert the problem to a static one as the acceleration is now a given quantity
and to employ the familiar routines hopefully obtained during the study of statics.

INERTIA FORCE METHOD AND FLUID MECHANICS

General

If one looks at the index of any particle or solid dynamics book one can nearly always find
the term d’Alembert’s principle (in the inertia force method meaning used here). In the fluid
dynamics literature, however, this is not the case which is a little surprising as the inertia
force method can be put to good use in certain situations also there.

Fluid statics
Let us recall the equilibrium equations of fluid statics:

Vp+pb=0 2
or

Vp=pb, (10)

where p is the pressure. The physical meaning of equation (9) or (10) is:

In a fluid statics problem the value of the pressure increases (decreases)
in the directions in which the body force has a positive (negative) component an
and the rate of growth is greatest in the direction of the body force.

The stress tensor can in general be expressed in the form

- — ¥
o=-pl +0, (12)

k=g - * . « . v
where 1 is the identity tensor and ¢ is the deviatoric stress tensor. For a fluid at rest the
deviatoric stress or in this connection the so called viscous stress disappears by definition and
we have just

G=-pT. (13)

This fact makes the stress distribution in a fluid statics problem very simple compared with
the solid mechanics one. When the body force field is given, the pressure distribution can be
found, at least qualitatively, by just looking at the problem and by making use of statement
(11). This is familiar from the hydrostatic pressure distribution due to gravity.

Fluid dynamics
The equations of motion in fluid dynamics are

-§p+§-3*+p5=p5. (19
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The apparent difference with respect to the solid mechanics equations (8) is due to the fluid
mechanics convention of using the decomposition (12) for the stress. We see that to arrive at
the present equation from the fluid statics one (9) we have to make the substitution

p5:=pg-p5+§-3*sp5e. (15)
The term pl-; ¢ introduced could be called the effective body force per unit volume. It cgnsisgs
of the real body force pb, of the inertia body force -pa and of the viscous body force V+ o .
Thus on the basis of statement (11) and expression (15):

In a fluid dynamics problem the value of the pressure increases

(decreases) in the directions in which the effective body force (16)
has a positive (negative) component and the rate of growth is

greatest in the direction of the effective body force.

The above result can in some cases be used to obtain a qualitative picture of the
pressure distribution., These cases are mainly those where the viscous terms are small
because expression V + & is difficult to estimate. It is also realized that due to the fluid
mechanics convention (12), it is perhaps in general not quite correct to call the use of
substitution (15) as a pure application of the inertia force method since the effect of viscous
stresses must be included, too.

An application
Let us consider the flow of fluid through a constriction (Figure 1(a)). We assume the flow to

(a) (b)
FIGURE 1. (a) Flow through a constriction. (b) Schematic examples of inertia body forces.

be steady, frictionless and incompressible. The well-known Bernoulli equation — obtained
through certain mathematical manipulation of the equations of motion — tells among other
things that the value of the pressure at section 2 is smaller than at section 1. This result is
often found to conflict strongly with the intuitive guess of a layman or even of a fluid
mechanics student. The wrong vague argument used goes somewhat along the following
lines: Certainly the pressure must increase as the fluid must be forced into a smaller space
when advancing towards the constriction.

Let us now explain how the pressure is really changing by employing the inertia force
method. The cross sectional areas of the streamtubes must in general clearly decrease
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towards the throat. As the fluid is incompressible the velocities must then increase which
means that the acceleration component a, along the streamlines (= streampaths here) must
also be directed fowards the throat and, finally, the corresponding inertia force components
-pa, must be directed away from the throat. Statement (16) now tells us that when we move
along a streamline towards the throat the value of the pressure is really decreasing (we do not
consider the possible contributions say due to gravity here).

A fluid particle has also a centripetal component a ., of acceleration directed towards the
center of curvature of the streamline. Based on the above observations the qualitative
acceleration and corresponding inertia force directions to be to be expected at two typical
points A and B are sketched in Figure 1(b). From the latter we see immediately that the
pressure is not uniform at the throat but must decrease towards the boundaries.

It should be remarked that if the fluid is compressible we cannot make easy quesses
about the velocity distributions of the basis of an assumed streamline distribution because
density is no more constant. In such cases the value of the inertia force method is
questionable.

CONCLUDING REMARKS
The term d’Alembert’s principle carries with it a rather heavy historical burden of different
meanings. Itis suggested that this term should be avoided in connection with the engineering
interpretation discussed above. The term “inertia force principle” or still better the “inertia
force method” would seem more appropriate.
The inertia force method can be used to advantage in the teaching of fluid dynamics to
give qualitative information about pressure distributions in a very simple and graphic way.
ACKNOWLEDGEMENTS
I wish to thank Mr. T. Paloposki for useful comments on the original manuscript and Mr. R.
Huhtanen for processing the figure.

REFERENCES

l, Lanczos C., The Variational Principles of Mechanics. Fourth edition. University of
Toronto Press, Toronto, 1974, 418 pages.

2. Rosenberg R.M., Analytical Dynamics of Discrete Systems. Plenum Press, New York,
1977, 424 pages.

3. Rosenberg R.M., d’Alembert and Others on d’Alembert’s Principle. Engineering
Education, April 1968, pages 959 - 960.

4.  Hamel G., Theoretische Mechanik. Springer, Berlin, 1967, 796 pages.
5. Meriam J.L., Dynamics. Second edition. Wiley, New York, 1975, 478 pages.

6.  Montgomery D.J., Precedents for use of d’Alembert’s Principle. Engineering
Education, September 1968, pages 62-63.



7.

8.

149,

Osgood W.F., Mechanics. MacMillan, New York, 1948.

Panlilio F., Interpreting d’ Alembert’s Principle. Engineering Education, September
1968, pages 61-62.



150



151

NUMERICAL SIMULATION OF COMPRESSIBLE FLUID FLOW
USING UPWIND METHODS

Timo Siikonen
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Abstract

The underlying theory of the upwind methods for compressible flow is presented. These
methods have been applied in the computer codes developed in the Laboratory of
Aerodynamics at the Helsinki University of Technology. Some computational results
for an airfoil and a wing are presented. These examples show the relative merits and
drawbacks of the upwind differences.

INTRODUCTION

In recent years upwind methods have become popular in the simulation of compressible
fluid flow. Upwind methods are intrinsically dissipative and require no additional
dissipative terms, which is the case if central differences are applied. Due to the intrinsic
dissipation, computational algorithms based on the upwind differences are usually also
more robust than the algorithms based on the central differences. The drawback of the
upwind methods is the strong numerical dissipation inside shear layers and in the case
of low Mach number inviscic flows.

In the case of incompressible flow the upwind concept is applied for the convection
terms by employing one-sided difference approximations for derivatives like du¢/dx
depending on the sign of the velocity w. The pressure gradient term in the momentum
equation can be treated as a source term and it is usually centrally differenced. For a
compressible flow the application of the upwind concept is not so straightforward. This
is due to the fact that the pressure and the density are strongly coupled, and it is no
longer possible to upwind the convection term separately from the pressure gradient.

The use of the upwind methods for compressible flow goes back to Godunov. A
description Godunov’s method can be found in Ref. {1]. To illustrate the basic idea of
upwinding, the one-dimensional equations of gas-dynamics

oU | OF

=t 5 =0 )



152

are discretisized as e

UPt = UF - Ry - Py 2)
Here U is the vector of the dependent variables, Fi+% is the numerical flux function to
be evaluated at the interface between cells ¢ and 7 + 1, At and Az are the time-step
size and the spatial increment. In order to compute the flux function, Godunov solved
the Riemann problem, which is the initial value problem for Eq.(1) with U(z,0) = U!
ifz <0,0r U if 2 > 0 (see Fig. 1). The solution is self-similar, U is the function of

£ = 2/t only. Godunov showed that the numerical flux can be expressed as
F=FU((¢=0)) (3)

where U({ = 0) is the solution of the Riemann problem.

rarefaction ‘ t contact
s
. ;
\\\ ) {f
NoOO N /
\ / shock

Ul

Figure 1 The Riemann problem

The upwind methods presently applied for the simulation of compressible low are based
on the same ideas as Godunov’s method. Several so-called approximate Riemann solvers
exist. The development of the flow solvers in the Laboratory of Aerodynamics at the
Helsinki University of Technology (HUT) is also based on these methods; namely on
the approximate Riemann solver of Roe [2] and on the flux-vector splitting method of
van Leer [3]. In this paper, the basic principles of these two methods are described.
Some computational results from two- and three-dimensional simulations are presented.
Both the accuracy and the effect of the numerical dissipation are evaluated.

NUMERICAL METHODS

Governing Equations
Fluid flow is governed by the Navier-Stokes equations. These can be written in a
conservative form using Cartesian coordinates as

ot Oz Oy 0z
where U =(p pu pv pw e )T is the vector of conservative variables, p the density;
the velocity components are u, v and w, and e is the total internal energy. The form of
the flux vectors F(U), G(U) and H(U) can be found in any text book of luid mechanics.

ou N OF(U) N OG(U) n OH(U) =0 (4)
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a) Geometry b)Location of variables'

Figure 2 Computational grid in a two-dimensional case.

In order to solve Eq.(4) in an arbitrary geometry, a finite-volume technique is applied.
The flow equations have an integral form

%/UdV+/F(U)-d§=0 (5)

Vv S

for an arbitrary fixed region V with the boundary S. A discrete cell face area can be
expressed using the Cartesian base vectors

S =58,i48,7+8.k (6)
The corresponding unit vector is

g (1)

Sy »
y]+?

i =ngi +nyj + nok Swz-"-l-
E k= — —_

yJ S S
Performing the integrations of Eq.(5) for a computational cell ¢ shown in Fig. 2a yields

du; -
Vig=-) SF (8)

faces

where the sum is taken over the faces of the computational cell and

F=n,F+n,G+nH (9)

Evaluation of the Fluxes

The calculation of the fluxes is performed in two stages. The convective part of the fluxes
is evaluated by solving approximately a locally one-dimensional Riemann problem on
the cell surfaces. The viscous part is centrally differenced and treated separately from
the convective part. In order to compute the derivatives of the viscous terms, the Gauss
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theorem is applied for the shifted control volume Vi+% between the cells ¢ and z + 1.

Details of the discretization of the viscous terms are given in [4].

The calculation of the convective part of the flux is based on the rotational invariance
of the flux term, Eq.(9). On a cell surface the convective flux is calculated from

F =T F(TU)] (10)

where T is a rotation matrix. Aftermultiplication by the rotation matrix the fluxes have
the same functional form F, as in the case of the Cartesian coordinates. Hence, the flux
can be evaluated in the direction normal to the cell surface in a locally one-dimensional
fashion.

The solution of the Riemann problem on the cell surface is a time-consuming process.
Fortunately, it is possible to solve the problem approximately. There are many ways to
do that, see e.g. [5]. In order to calculate the flux, the following definitions are made:

AFT =F" —F({U((=0)), AF =-F +F{U(=0), (11)
Using Eq.(3), the flux function can be written as

1

F
2

1
(F"+ FY — E(AFJ“ — AF7) (12)
Eq.(11) also gives F" — Fl = AFt 4 AF~ = AF. The flux differences AF* can be
considered as parts of AF caused by waves travelling to the left and right (see Fig. 1).

Nowadays, the most commonly used approximate Riemann solver is that developed
by Roe. In Roe’s method the flux difference is replaced by a linearization AF =
A(UT,UY)AU. The form of the Jacobian matrix A(UT,U") is derived in [2]. The flux
difference can be rewritten in terms of the right eigenvector r*) of the Jacobian matrix
A, the corresponding eigenvalue A*), and the inner product a'® of the left eigenvector

with AU as
K

AF =Y rBAEo® (13)
k=1
Here, K is the number of equations. In a three-dimensional case K = 5. By taking the
sign of the eigenvalue into account, the interface flux can be written

K
(F(U™) + F(U") - % PLCINCING (14)

k=1

| =

F=

N

L

The flux-vector splitting is an alternative approach. The flux function F(U) is divided
into positive and negative parts F(U)*. The interface flux is then computed from

F=FYUY+F(U") (15)

The flux functions used in Van Leer’s method are derived in [3].
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The first step in the calculation of fluxes either from Eq.(14) or Eq.(15), is the evaluation
of the solution vector on both sides of the cell surface (see Fig. 2b). If U and U" are
replaced by the average values of the solution vector within each cell, e.g. by U; and
Uiy1, the resulting method is first-order accurate. Second-order accuracy is equivalent
to an assumption of linear distribution inside the cell. Using this assumption, the cell
interface values can be calculated from

ULy = Uit i[u = &)U = Uict) + (1 + ©)(Uss1 = U3)] (16a)

foy = Uis = 110 = Uitz = Uiga) + (L )Uias — U] (160)

Several difference approximations can be obtained by inserting different values for
parameter x. Fully upwinded second-order discretization is obtained by choosing
k = —1. The second-order method contains no numerical diffusion. However, the
fully upwinded discretization implicitly includes fourth-order dissipation. In the case of
a viscous flow this leads to an inaccurate solution inside the shear layers. The remedy
is to bias the discretization towards the central difference scheme. A good compromise
is often to select k = 1/3, which leads to a third-order accurate upwind-biased scheme.
A so-called QUICK-scheme is obtained by inserting x = 0.5, while x = 1 yields the
central difference scheme. It should be noted that the central difference scheme does
not converge unless artificial dissipation terms are added. The role of the artificial
dissipation is similar to the intrinsic dissipation of the upwind-biased methods.

Solution Algorithm

In the case of compressible flow the resulting set of non-linear equations can be solved
by marching in time. Since the time-step size is limited with explicit time integration,
the computer codes developed at HUT utilize an implicit method. Even the use of an
implicit method leads to large computation times when the mesh is refined. Efficiency
is improved by applying a multigrid acceleration for the convergence. This has a
particularly nice feature that the number of iteration cycles does not depend on the grid
size. The computer codes of HUT are mainly run on the Cray X-MP supercomputer.
The codes are effectively vectorized, and with a sufficiently large mesh almost a tenfold
increase in speed is obtained by vectorization. The solution methods are described in

detail in Ref. [4].
RESULTS

The computer codes developed at HUT utilize either Eq.(14) or Eq.(15) for the
calculation of fluxes. Currently, two- and three-dimensional as well as axisymmetric
versions exist. The turbulence is evaluated from an algebraic model. In the following,
a few examples of the performed simulations are given. In the two-dimensional cases
the flow is over the NACA 0012 airfoil and the flux is calculated using the method of
van Leer. The three-dimensional example has been computed using both methods.

An example of the two-dimensional inviscid calculations is given for a flow over the
airfoil at Mach number (Ma) equal to 0.63 and angle of attack («) equal to 2°. The
surface pressure is depicted as a non-dimensional pressure coeflicient in Fig. 3. It 1s seen



156

that the results obtained by the higher-order methods practically coincide, whereas the
result of the first-order method is clearly inaccurate. The case has also been calculated
by applying a so-called flux-limiter with the fully-upwinded discretization.

The second simulation is at Ma = 0.85 and o = 1°. The Mach contours are shown
in Fig. 4a. In this flow case there is a strong shock on both surfaces of the airfoil.
The shock is tracked very accurately; this is a typical and nice feature of the upwind
methods. However, the intrinsic dissipation can produce error, which tends to increase
the drag coefficient and decrease the lift coefficient. This depends on the discretization
and also on other factors, like the angle of attack. This is shown in Fig. 4b, where
the drag coefficient is plotted as a function of the angle of attack. The result is for
a laminar flow over the NACA 0012 airfoil at Ma = 0.85 and Reynolds number (Re)
equal to 2000. It is seen that spurious numerical drag increases as the upwind-biasing
is increased.

An example of the application of van Leer’s method for turbulent flow is given in Fig.
Ba. The case is at Ma = 0.70, o = 1.49° and Re = 9 - 10°. If the flow is attached, as
in this case, or if the separation region is not too large, a reasonable accuracy can be
obtained using an algebraic turbulence model. However, when the angle of attack is
increased and the flow is highly separated, the accuracy is not satisfactory. This can
be seen from Fig. 5b, which shows the experimental and calculated lift coefficients as a
function of the angle of attack. The flow conditions are as in Fig. 5a.

As a three-dimensional example, a flow over the ONERA M6 wing has been simulated.
The flow is at Ma = 0.84, o = 3.04° and Re = 11.72 - 10°. The upper surface pressure
distribution as calculated by Roe’s method is shown in Fig. 6a. The friction coefficients
obtained by both the methods are plotted in Fig. 6b in a chordwise plane at about
midspan. In this case the difference between the predictions is small. Generally, van
Leer’s method is not as accurate as Roe’s method in the simulation of shear layers. Also
in this case van Leer’s method predicts a somewhat higher drag than Roe’s method.

CONCLUSIONS

The basic principles of the upwind discretization methods have been given. Two
methods have been applied for the simulation of compressible flow. The results show
that especially the shock waves are accurately reproduced with upwind methods. In
viscous cases upwind-biased methods should be employed in order to avoid the spurious
numerical dissipation inside shear layers.
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Figure 5 a) Pressure coefficient distribution at Ma = 0.70, a = 1.49° and Re = 9-10°,
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COMPUTER SIMULATION OF INJECTION MOULD FILLING

SEPPO SYRJALA
Department of Mechanical Engineering
Tampere University of Technology
P.0. Box 527, SF-33101 TAMPERE, FINLAND

ABSTRACT

In this paper a theoretical model is presented for the simulation of injection
mould filling. The Hele-Shaw approximation is used to simplify the general
flow equations, which are then solved over the flow domain utilizing the
analogy between the mould filling and conduction phase change. Numerical
computations are performed using a finite-element code ABAQUS. Calculated
results in rectangular cavity with varying thickness are provided and good
agreement is found between the current predictions and the predictions and
experimental results previously presented in the literature.

INTRODUCTION

From a commercial standpoint, the injection moulding is one of the most
important polymer processing operations. It is used in a wide spectrum of mass
production industries, ranging from toy production to automobile bumper
fabrication. The moulding cycle may be conveniently divided into three separe
stages, namely, filling, packing and cooling. During filling, polymer melt,
produced in an injection moulding machine by the shearing action of a rotating
screw combined with external heating, is injected into the mould cavity. Once
the mould cavity has been completely filled, additional material is forced
into the cavity under high pressure in order to compensate for the subsequent
shrinkage due to solidification of the polymer melt. Finally, cooling is
continued until sufficient solidification is achieved so that the polymer part
may be ejected from the mould without damage. The entire sequence is then
repeated in a cyclic manner.

For years, injection moulding knowledge has been based on experience and
empiricism and traditionally "trial-and-error" has been one of the key factors
in mould design procedure. Considerable time and money is often required to
test and, if needed, modify the mould before production may begin. However,
the demand for a shorter lead time in product innovation and a higher product
quality and the appearance of new materials on the market, for which no
experience exists, make the "trial-and-errcr" approach no longer acceptable.
Consequently, increasingly interest has been focused on the computer-aided
simulation of injection moulding process. If a computer simulation predicts
the process reliably, the design may be checked for possible errors and
adapted at an early point in the design process. This would speed up product
innovation and reduce costs considerably.

Simulation of injection moulding is mostly concentrated on filling stage,
as is the case in this study also. Filling flow simulation may provide
significant contributions to the mould design and subsequent process
optimization. For example, it becomes possible to observe filling faults such
as air entrapments and weld lines and correct these by a change of feed
point(s), polymer or process conditions before mould making.
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The modelling of mould filling is based on general conservation
equations. However, due to the fact that the filling process is very complex,
major simplifications are needed. A number of studies have been published,
which deal with the simulation of injection mould filling with various
simplifications and only few studies are mentioned here. The first attempts
were limited to one-dimensional flow in simple geometries, like a rectangular
strip with edge gating [1] or a circular disk with center gating [2]. However,
in order to be able to model the filling behaviour in more arbitrary mould
cavities, one-dimensional treatment is inadequate. Due to the physical nature
of the filling process, Richardson [3] suggested that it may be analysed using
the Hele-Shaw approximation [4]. This considerably reduces the complexity of
the governing equations, as is shown below in this paper, but however
describes reasonably the flow behaviour during the filling process. After
that, Hele-Shaw formulation has become a standard way to analyse the polymer
melt flow into a mould cavity. Various analytical solutions, based upon the
Hele-Shaw flow, have been given for simple rectangular -cavities [5,6].
Numerical studies have applied finite-difference method [7], finite-element
method [8,9] and finite-difference method with body-fitted curvilinear
coordinates [10]. From the rheological point of view an inelastic non-
Newtonian model for the viscosity is usually found to be adequate in filling
flow simulations, although elastic effects may be important in some
circumstances. In most of the studies mentioned above a power-law viscosity
model is applied.

The major additional complication in the mould filling simulation is the
fact, that the position of the advancing melt front is not known a priori, but
has to be determined as a part of the solution procedure. In fact, mould
filling problem belongs to a more general class of problems, commonly known as
moving boundary problems. Considerable information about these kind of
problems is available in the literature [11,12]. There are two basic
approaches for moving boundary problems in terms of meshing, namely fixed mesh
and moving mesh. In mould filling simulations fixed meshes are usually
employed. In fixed mesh approach, calculation mesh has been pre-selected to
contain the entire mould cavity and the flow front locations are determined at
various times during the filling by an interpolation procedure (for more
details see for example references [8] and [12]). In moving mesh approach,
calculation mesh is generated at each time step to contain only the fluid
domain. This kind of approach for the mould filling simulation is presented in
reference [10].

THEORETICAL BACKGROUND OF INJECTION MOULD FILLING

In the present study, the modelling of injection mould filling is based on the
isothermal flow. The general equations of continuity and momentum [4] are
simplified by assuming the fluid, i.e. polymer melt, to be incompressible and
by neglecting the elastic and gravitational effects during the filling.
Further simplifications are possible, since the Reynolds number, defined with
the cavity gapwidth as a characteristic lenght, is typically very small due to
the extremely high viscosity of polymer melt, indicating that viscous forces
are dominant and inertial forces can be neglected in the momentum equations.
In addition, since the gapwidth of the mould cavity is small compared with
other dimensions (injection moulded parts are typically thin walled), the
velocity and pressure variations in the gapwise direction can be neglected and
the shear stresses through the gapwidth can be assumed to be dominant compared
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FIGURE 1. Sketch of a thin cavity and the coordinate system.

with in-plane stresses. The assumptions stated above reduce the problem
locally to a two-dimensional one and lead to the Hele-Shaw formulation [4].

Adopting the cartesian coordinate system shown in Figure 1, where x- and
y-coordinates are in the plane directions and z-coordinate is in the gapwise
direction and following the assumptions stated above, the momentum equations

reduce to
8p . 8 (_8u) _
7% ¥ E[WE] =0 (1)
8p . 8 (. 8v] _
3y + b—z[n—a—z] =0 (2)

where p(x,y) is the pressure, u(x,y,z) and v(x,y,z) are the velocity
components in the x- and y-directions and n is the viscosity. In general case
it is dependent on the shear rate, which under the present assumptions is

given by
__ [(au 2+ av 172 -
7= 13z 8z

The continuity equation expressed in terms of the gapwise-averaged velocity
components is _ _
8(hu) |, 8(hv) _

3% +6—y— 0 (4)

where h is_the half of the gapwidth and gapwise-averaged velocity components
u(x,y) and v(x,y) are defined as
h

ulx,y) = é_hj u(x,y,z) dz (5)
-h
h

vix,y) = %H.[ v(x,y,z) dz (6)
-h

Appropriate boundary conditions in the z-direction are given by

u=v=~0 at z = th (7)
du av
E—E—O at z=0 (8)

which describe, that the velocity components are zero at the cavity walls and
symmetric velocity profile is assumed in the gapwise direction.
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The above equations can be rearranged into a form that is more suitable
for the numerical calculations. Since the pressure is independent of 2z (in
present approximation), the integration of momentum equations (1) and (2) with
respect to z together with the boundary condition (8) results in

u _ z dp

ol (9)
v _ z dp

=T (10)

c
L]
Q)[“O

Z 4 (11)
n

(12)
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Performing these integrations, using integration by parts, and making use of
expressions (5) and (6), the gapwise-averaged velocities can be written as

3 =.529dp
ulx,y) = - ¢ 3¢ (13)
- =-S%p
vix,y) = R 3y (14)
where a quantity S(x,y) (a measure of fluidity of the melt) is defined as
h 2
S = f = dz (15)
n
o

Expressions (13) and (14) can be combined with the continuity equation (4) to
give the following equation for the pressure field

8 (.8p) . 8 (.8p) _

&[sﬂ] N ay[say] -0 (16)

The shear rate is also easy to express in terms of pressure gradient by
substituting (9) and (10) into (3) with the result

2 29172
z| [op dp 4
- ﬁ[[BX] +(8Y] ] =5l )

In order to be able to calculate the quantity S, defined by equation (15), the
expression for the viscosity is needed. In a simple case with the Newtonian
fluid, the expression for S is readily obtained as

S = (18)

where u is a Newtonian viscosity. In a general case with the non-Newtonian
fluid, where the viscosity is dependent on the shear rate, the integration of
equation (15) must usually be performed numerically. In particular, for the
power-law model the expression for S is obtainable in a closure form. In the
case of power-law model the viscosity is written as

n = my"™" (19)
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where m and n are constants which depend on the polymeric material used.
Combining (19) with (17) the expression for the viscosity becomes as

(n-1)/n
m [M] (20)
m

and further by substituting (20) into the definition (15) and performing the
integration, the following expression for S is obtained

_n [ 1 ] /o (1+2n)/n

| (1-n)/n
m

~ 1+2n h P .

The governing equation (16) is of elliptic type and boundary conditions
need to be specified along all the boundaries (see Figure 1). The non-
penetration condition (i.e the requirement that the normal velocity vanish)
along the cavity and insert boundaries results in

p _
2= (22)

At the entrance gate the specified volumetric flow rate is given by

ap _
zﬂﬁ[- ﬁ] ds = Q (23)
C

where Q is the flow rate across the entire gap and C denotes any line contour
which encloses the gate. Two conditions are needed on the moving boundary,
i.e. advancing melt front, one to determine the boundary itself, since the
position is not known a priori, and the other to complete the solution of the
equation (16). Since the advancing flow front is in a direct contact with
vented air, its pressure is atmospheric (assuming the cavity to be properly
vented). Taking the atmospheric pressure as a reference value the boundary
condition for the moving melt front can be written as

p=20 (24)

The requirement of mass balance across the advancing melt front gives the
following additional condition

—Sa—p = hV+'n (25)

where n is a unit normal vector on the melt front pointing away from the melt
domain and V is a velocity vector at the same point on the front.

It is worth noting, that although the injection mould filling is clearly
time-dependent process, the governing equation (16) under present formulation
is independent of time. In spite of that, the entire model is time-dependent,
since the solution domain i.e. the region filled by melt, which is governed by
the boundary condition (25), changes with time. This kind of treatment of the
time-dependent phenomena is usually termed as quasi-steady.

SOLUTION PROCEDURE

As briefly discussed above, the mould filling belongs to a general class of
problems, usually termed as moving boundary problems. Another typical moving
boundary problem is heat conduction with phase change. In fact, as is shown in
Appendix, the mould filling and a special case of heat conduction with phase
change are analogous problems. Although the symbols in the governing equations
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and boundary conditions have different and unrelated physical meaning, they
are identical as far as the mathematical solution is concerned. The similarity
of governing equations and conditions at the moving boundary are readily seen
(see Appendix). As regards the other boundary conditions in the mould filling,
the condition (22) for the outer and the insert boundary corresponds
physically the situation of an insulated boundary in the heat conduction
analysis, whereas the boundary condition (23) at the entrance gate corresponds
the constant heat flux boundary condition.

Due to the analogy between mould filling and conduction phase change, the
techniques proposed for conduction phase change problems [13] are applicable
also for mould filling problems. This fact is utilized in the present study
and the commercial finite-element code ABAQUS ([14], which is capable to solve
conduction problems with change of phase, is used to solve the equations of
mould filling.

Although, in principle, the equations and boundary conditions are similar
in mould filling and conduction phase change problems, there are some
fundamental differences in a physical sense concerning the material
properties. In heat conduction analysis the latent heat is usually constant
throughout the whole domain, whereas in mould filling analysis the analogical
quantity h may change due to the changes of cavity thickness. However, this
does not cause any problems in the calculations. In the case of thermal
conductivity situation is more involved. It is known that in a general non-
linear heat conduction analysis thermal conductivity is dependent on the main
variable temperature, whereas in the non-linear mould filling analysis with a
non-Newtonian viscosity -the analogical quantity S is not dependent on the main
variable pressure, but on the pressure gradient (see equation (21)). In order
to implement this information into the analysis, some modifications for the
algorithm that computes the conductivity are required. In the case of the
Newtonian viscosity the value of S may be readily obtained from equation (18)
with the result that the governing equation becomes linear.

RESULTS AND DISCUSSION

As an illustration and to check the suitability of the proposed analogy for
the mould filling simulations, calculated flow front locations are presented
for a rectangular cavity with varying thickness using the Newtonian model.
Predicted and measured results presented in the literature are also given.

The cavity and the finite-element mesh used in the calculations are shown
in Figure 2, where also cavity dimensions are given. Constant volumetric flow
rate at the gate is such that the total filling time is 1 s. Predictions for
the melt front positions at various time steps are shown in Figure 3.
Calculated and experimental results presented in reference [9] for the same
situation are shown in Figure 4. The filling patterns in Figures 3 and 4 are
principally similar indicating that the analogy presented in this study can be
applied for solving the mould filling problem. The results presented in this
paper are limited to the Newtonian case, whereas in practise the viscosity of
polymer melts usually depends on the shear rate. As described above the shear
rate dependence of the viscosity can be included into the analysis. Some
results with the power-law model are presented in reference [15], where also
some convergence problems, concerning especially the starting solution, are
discussed and the methods to overcome these problems are presented.



165

3,5

inflow 2,0

3,5

a)

b)

FIGURE 2. a) A rectangular cavity (152 mm x 38 mm) used in the calculations.
Numbers indicate cavity thickness in millimeters b) A finite
element mesh used in the calculations (48 x 12, linear rectangular
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FIGURE 3. Calculated flow fronts at t = 0.05, 0.1, 0.15, 0.25, 0.3,
0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8. 0.85, 0.9

and 0.95 s (total filling time 1 s).
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FIGURE 4. a) Calculated and b) experimental flow fronts presented in [9].
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The major shortcoming in the present model is the assumption of
isothermal flow conditions. To keep the cooling time short enough and thus to
allow the mould toc be re-used at a sufficiently high rate, the walls of the
mould cavity are maintained at a temperature significantly below the
solidification temperature of the polymer melt leading to a non-isothermal
character of the filling process. This may affect to the filling flow
conditions due to the temperature dependence of the viscosity. Another
consequence is the formulation of a solid skin layer at the walls of the
cavity during the filling. The direct effect of boundary solidification is the
constriction of the flow path, which leads to increased pressure drop.
However, as was discussed in [9], in many cases reasonably good predictions
for the advancing melt front positions are available using isothermal flow
assumption, because the time period of filling stage is typically very short
and because the thermal conductivity of polymer melts is very low. On the
other hand, in the mould cavities which include extremely thin sections, say
under 1 mm, temperature changes should be taken into consideration.

As mentioned above, injection mould filling simulations are almost
entirely based on purely viscous flow considerations. As known in actual
practise the polymer melts exhibit both viscous and elastic effects [16].
However, the simulation of viscoelastic fluid flows is a very difficult task
even in simple geometries [17], not to mention the fact that cavity geometries
typically used in injection moulding are extremely complex. There are,
however, some qualitative information available in the literature, concerning
the role of melt elasticity in the mould filling [18]. It may be concluded
that in the regions with abrupt or sudden contraction or expansion the
elasticity can make considerable contribution to the pressure drop and, that
the net effect of elasticity is always to increase the pressure drop above
what it would be for an inelastic fluid of the same viscosity.

CONCLUSIONS

Theoretical background of injection mould filling process with appropriate
approximations is presented. The solution of mould filling process is based on
the analogy between mould filling and conduction phase change and the
commercial finite-element code ABAQUS is used for the numerical computations.
The capability of the model is demonstrated by analysing the filling of
rectangular cavity with varying thickness with the Newtonian fluid. The flow
front predictions are in good agreement with the results previously presented
in the literature.
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APPENDIX: Analogy between mould filling and conduction phase change

Assumptions for the conduction phase change problem:

1. Two-dimensional melting case, where solid region is initially at
the melting temperature.

2. Quasl-steady-state sltuation i.e. the latent heat effect domlnates
compared with the sensitive heat.

Symbols:
T temperature P pressure
Tm melting temperature P, atmospheric pressure
k thermal conductivity S measure of fluidity
L latent heat h  half of the cavity gapwidth

unit normal vector on the moving boundary

velocity vector on the moving boundary

moving boundary
(liquid-solid interface or melt front)

/

supplied
heat/melt liquid reglon solid region
or n or

melt region empty reglon

FIGURE. Schematic representation of conductlon phase change or mould filling.

HEAT CONDUCTION
MOULD FILLING WITH MELTING
Governing equations: g;[sgg} + gy[sgg} =0 g;[kgg] + gy[kgg) =0
Pp=p T=T
Conditions at moving ° B
boundary: _a9p _ ) o7 _ :
Sﬁ—hVn kﬁ-pLVn

Analogical quantities: px T; S«k; h«oL; p=1
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A NONLINEAR ALGORITHM FOR SIMULATING BERTHING OF A SHIP
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ABSTRACT

A time-step-method based simulation program gives the possibility to take into account most of
the factors that have an effect on ship's kinetic energy to find out the loads on fenders and
mooring ropes. The simulation is based on the solution of linear second order differential
equations for six degrees of freedom where the nonlinearities are taken into account by
re-evaluating all changing parameters at every time step. The solution is divided to two parts of
which the particular solution is for the first order wave forces and the homogeneous solution for
all other external forces. Compared with the test results found in literature the agreement of the
results given by the program was often very good but also some variencies could be seen. This
was supposed to follow from the fact that all the test arrangements were not known in details, but
also, because there still are some effects the adapted theories don't consider.

INTRODUCTION

The traditional equation based on the kinetic energy of the ship fixed with various kind of
coefficients doesn't take into account all factors that have an effect on the energy to be absorbed by
the fenders. The equations for wind, current and ice loads on ship don't include ship movements
or the kinetic energy of an ice float. The wave loads transmitted to fenders are highly dependent
on the dynamic properties of a mooring system and they can't be determined by simple
equations. Full scale tests are too expensive to make and results of small scale tests don't always
convince. One solution to the problems mentioned above is computer simulation.

SIMULATION ALGORITHM

The algorithm is based on a set of linear second order differential equations for six degrees of
freedom. The ‘equations are solved in ship coordinate system by a time-stepping procedure with
all external and reaction forces evaluated at every time step. During simulation two
right-handed Cartesian coordinate systems are used. The ship coordinate system is fixed in
ship's body with the origin at the center of gravity and the main coordinate system fixed in space.
The solution to one cycle of simulation loop is a combination of homogeneous and particular
solutions.
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FIGURE 1. The coordinate systems used in the algorithm.
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Homogeneous Solution
In solution of the homegenous matrix equation

[Myl(gy") + [Collgy ) + [Kplgy) = (0) (1)

where
[Mo] mass matrix for homogenous solution
[C,] dissipation matrix - " -

[Ko]  stiffness matrix -" -
(g,)  vector of general coordinates

with the well-known solution formulas all constant or slowly varying forces are taken into
account by evaluating the instantaneous virtual position of equilibrium as one of the two needed
initial conditions for every time step (the other one is the velocity at the end of the previous step)

Qoi tn=0) =F;/k; 2
where

i =1,2, ..6 index of directon

n n:th time step

i instantaneous spring constant

F= FA+Fc+FWH+Fl+FR+FH+FT

Fy wind force

Fo enrrent force

Fyll  second order wave force (drift force)

F ice force (crushing or drifting)

Fp reaction forces of mooring system including restoring rorces

Fyg hydrostatic side forces (cushion effects near solid quaywalls)
Fp special forces like the pushing effect of a tugboat

The new position of the ship in main coordinates is found out when the small deflections
arisen during one time step are firstly transformed into the main coordinate system and then
added to the previous position coordinate values.

The length of one time step depends on the maximum deflection allowed to arise on
fenders and mooring ropes during one step. The greater the nonlinearity of mooring system is
the smaller the deflection may be. However, there is a reasonable limit for the shortest time value
because of round-off-errors and for the maximum time, because the bigger time value is the less
the linearised system corresponds the real system.
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Particular solution
In this part of solution the first order wave forces are considered

Ml Iqy) +[Cy Xy ") + (K1 (@) = Fyd) (3

The time value is equal to the simulated time but also here the matrices and the force
vector are evaluated at every time step. Irregular waves are described as a sum of regular wave
components and the solution consists of responses for every single wave component solved in the
ship coordinate system and the transformed into the main coordinate system.

qlx(l‘)=2Q,JC‘0S (a)jt-&‘]-au) (4)
j=1

n
v (t) = - D00, sin (@;1- -0.;;)
j=1

where
n number of wave component
Q amplitude coefficient
® wave frequency
£ basic phase angle of a wave component
v} phase angle between motion and force
Matrices

The mass matrix is a sum of the ship mass matrix and the added mass matrix. Inertial effects of
water caused by ship movements affecting back the ship are taken into account by the added mass

matrix.

m an ass
m ap axu
. m an
M]1=[M,I+[A] = 0)
J1 ap Ay
J2 as ass
J3 ag
where
[Ms] mass matrix of a ship
[A]  added mass matrix

Because of the assumed symmetry planes in ship's body the mass matrix is almost
diagonal, but the center of gravity of the ship is generally on different level than the center of
bouyancy, hence the deviatoric terms a5 = a5;7 and g4 = a42 have to be included. This concerns
also the damping matrix C, where the single coefficients are evaluated as a sum of potential and
inertial components [2].
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C1t C15 ku kiskis
Cp Cx kn kyu kx
[C1= & K= 2 fals ©
e Cu kauksks
Cq Cs5 symm. kskss
Ces k&

The stiffness matrix K is defined by instantaneous spring constants of the tensioned
mooring lines and fenders in contact. Also the coefficients of the restoring forces and moments
caused by the water have to be included in terms kg3, kyy and k53

Forces

The equations for wind and current forces F 4 and F ¢ are based on dynamic pressure, in which

shape of structure is taken into account with drag coefficients [3, 4, 5, 6]

Fip=1/2pc; (@ v2 A (7)

where

1, 2 and 6 for current force

1,2,4 and 6 for wind force
density of air or water
speed of wind or current
drag coefficient

drift angle
wind or hull area, including moment arm in directions 4 and 6

;.e 0 oy e

The equation for wind and current driving an icefloat has the form [7]

F=cqA (8)
where

c drag coefficient for ice/wind or ice/water

g=1/2p 1924 dynamic pressure

U speed of wind at 10 m's altitude or speed of current at -0,5 m's level under

ice
A area of an icefloat
p density of air or water

If an icefloat is crushing against ship's hull the force is [8]

F=chb (9

where
c effective strength of ice
h thickness of ice
b=b(s) the breadth of crushing area is a function of penetrated distance
depending on the shape of ship's hull

Simulation of an icefloat's impact on ship's hull is based on the law of energy
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conservation which is assumed to have the form [1, 9]
WIO N WII = ch+ WK + WP- WID (10)

where
Wio- Wi the kinetic energy of ice at the moments ¢ =7, and¢=1;

Wic  the energy needed for crushing
Wg  the part of energy transferred to kinetic energy of a ship and

w at er
Wp  potential energy reserved in mooring ropes and fenders
Wip the increase of kinetic energy of ice during the time t; - ¢, caused by wind and

current

Irregular waves are described as a sum of small regular wave components. The force
effects are divided to the first order wave forces depending on single waves and to the second
order wave forces, also called the drift forces, depending on wave group properties on a longer
time period.

The strip theory is used to get total force on ship, hence the first order wave force in each
direction of freedom i is evaluated as a sum of n regular wave force components on N
cross-sectional elements

n N .
1 .
Fui(t)= 2. (Ajj5008 0t+Bsin ;1) Axy (11)
Jj k

where Ax;, is the length of section element. A and B are elemental force constants consisting of

inertial, damping and displacement components [10]. The ISSC-formula [11] is used for
describing spectral densities of natural waves and to determine and the parameters of single
wave components [12]. In formulating the equation for the second order wave forces the works of
Lgken, Olsen [13] and Faltinsen [ 5] (s. [1]) have been used

n n N

I i

Fii(t)= 20,2 ( 4, cos (@, -0,)t - €,-€) Ty Ary (12)
j mk
where

i=1,2and 6 directions of motion

a amplitude

T, transfer coefficent which depends on the shape of the hull and the drift

angle

The water between a berthing ship and a solid quaywall squeezes which introduces a
cushion effect that represents an extra force on the ship. Let's assume the ship's hull is long
enough, so that the water flow around the ship can be neglected. Based on the Bernoulli equation of
pressure there is a balance between the amount of water running down under the ship and the rise
of water level. After few manipulations [1]it follows that the lateral force caused by the unbalance
between the static pressures on the opposite sides of the hull can be evaluated by the formula

Fr=-1/2 pg Xzpplzpy + 2D) A, 13)

where
zpn=vp, v, | D2 /(2g d}2)  instantaneous hydraulic level

k=12 ..N section elements
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D draft
v velocity at the point of hull
d distance between hull and quaywall

FIGURE 2. Comparison between a berthing ship and interconnected vessels.
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Special features of simulation

The hydrodynamic effects, damping and added masses, are formulated for most directions of
motion as functions of circular frequencies which on the other hand are depending on damping
and added masses. In homogeneous solution this dependency relation can be solved by giving
suitable initial values to the frequencies and during next loops of simulation letting both
parameters to find their right values which also are changing all the time because of changing
conditions. In particular solution there are n different circular frequencies because of the n
regular wave components but the ship is using only one frequency at time in each direction. This
frequency is evaluated here as a mean value of the latest halth period of motion of the ship.

Sometimes the matrices are singular or they are too close the singularity. In that situation
the algorithm tries to solve smaller and better combinations of degrees of freedom separately and
Jjoin those solutions together.

Because of the continuous analysing of the situation also things like the friction between
ship's hull and fenders, hanging and pre-tensioning the ropes in the way decided previously,
hysteretic dissipation in fenders made of viscoelastic materials and the effects caused by flexible
structures and pre-tensioned extra fenders behind active ones can be taken into account.

RESULTS

The results given by the simulation program PRESS are compared below to some test results
found in the literature. Blokk and Dekker [15, 16] have done tests with a model of 200000 DWT
tanker at a scale 1:75 to find out the effects of eccentricity, fender stiffness and initial speed of a
ship on fender energy during ship's impact. In figure 3a the strike of fender is shown as a
function of initial speed and fender stiffness. The results of centric impact measured by Blokk
and Dekker agree very well with the simulated ones. In figure 3b the strike of fender is given as
a function of time in centric impact. The measured and simulated curves coinside well on the
compressive phase but not on the recoiling phase. After Blokk and Dekker the phases are not
symmetrical because during the recoiling phase the ship has to move “upstream". This effect is
not taken into account in the simulation algorithm.

The results concerning the effect of eccentricity given by simulation are compared with
the results given by Saurin [14] in figure 4. The symbol @ means the distance from the point of
contact to the center of gravity of the ship. The impact energy W is compared with the energy W,
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FIGURE 3. Stroke of fender as a function of fender stiffness, initial speed of a ship and (b) time.
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on centric impact. After simulation the sliding of ship's hull along the fender's face has an
influence on fender energy. The stiffness coefficient in the direction of the surface of the fender
is two times the coefficient in the direction of compression. When the friction coefficient p is
large enough to stop the sliding, the situation corresponds the test conditions and the theory, and
the agreement is good. The ship in Saurin's tests was a 32000 DWT tanker scaled 1:60.

FIGURE 4. The influence of eccentricity on fender energy after Saurin [14] and simulation.
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In figure 5 there is an example about the collision of an icefloat with a moored ship where
the crushing force, the speed of ice, the responses of the ship and the total reaction force are plotted
as a function of time. The ice float is hitting the ship at a straight angle.
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INFLUENCE OF DAMPING AND FEEDBACK CONTROL TO DYNAMIC
CHARACTERISTICS OF CANTILEVERED PIPES ASPIRATING FLUID.

Matti Kangaspuoskari, Jari Laukkanen, Antti Pramila
Engineering Mechanics Laboratory
Department of Mechanical Engineering
University of Oulu
Linnanmaa SF-90570 OULU,FINLAND

ABSTRACT

The theoretical background of the FEM program system developed by the authors for
analysing stability of fluid conveying pipes is presented. Parametric studies
concerning the effect of damping and non-Lagrangian coupling by means of feedback
control are made.

INTRODUCTION

This paper presents an investigation into the dynamies and stability of a long
cantilevered pipe aspirating fluid by FEM. For a long time it has been known that the
flow velocity necessary to cause flutter in a cantilevered pipe discharging fluid is so
high that it is unlikely to be encountered in practice. However, if long flexible pipe is
aspirating fluid from the free end and conveying it to the supported end the pipe is
inherently unstable, i.e. the critical velocity is zero [1]. The arrangement represents an
idealization of an ocean mining system where pipe is aspirating mixture of water and
nodules and conveying them to the ship. The real marine riser system does not lose
stability at infinitesimally small flow velocity because of damping caused by friction
between the pipe and external fluid.

In marine risers the cross section is varying, there are point masses due to the
itermediate pump stations and flexible supports due to mooring equipment, which are
difficult to model analytically but are well suited to finite element analysis. Also it is
very easy study the effect of a non-Lagrangian coupling to the system when the FEM is
used. The non-Lagrangian coupling by means of feedback control may stabilize the
system if it is in opposite phase with the unstable eigenmodes. The FEM has been applied
to gyroscopic nonconservative problems as early as 1971 [2], but to the knowledge of the
authors no commercial FEM-program contains possibilities for analysing dynamics of
fluid conveying pipes with all its essential features-gyroscopic and centrifugal terms.
The purpose of the present study has been to develop such a FEM-program. Thus far only
free vibration have been considered [3],[4].
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EXTENDED HAMILTON’S PRINCIPLE AND FEM DISCRETISATION

The system under consideration consists of a pipe of length L with cross-sectional area
A, flexural rigidy EI, mass per unit length myp, axial load P, and conveying fluid, mass
per unit length mf, with a constant axial velocity u. Extended version of Hamilton's
principle [5] taking into account the energies associated with inflow and outflow, is
employed in deriving the equations necessary.

It states that
tl
tz .
sl (T-v) dt-f myu(w+ uw') dw/xrdt = 0
tl
5 )

where the possible free end is at x=L. T is the kinetic energy of the system and V is the
potential energy of the system. A dot indicates differentiation with recpect to time t and a

prime indicates differentiation with recpect to the spatial coordinate x. § is the variation
symbol.

The kinetic energy of the pipe and fluid is

1 Lo .2 2 . 2
T == [myw +meu "+ mg(w+uw') ]dx
)

2
1 .2 .

where Mj and Jj are the mass and moment of inertia of the possible concentrated masses
on the pipe.
The potential energy is
L
vyl @w s pw -2qwd LS pw?e LSk
0 (3)

where kj and ky are the translational and rotational stiffnesses of the possible flexible
supports and q is the external transverse loading per unit length.

The fluid is assumed to be incompressible and the potential energy of the fluid is zero.
The equation of motion using expressions (1),(2) and (3) is

(mp+mg) W+ 2meuw - (P - mgu’) w'+ Elw™ = q @

If damping is taken into account the equation of motion must be changed. Internal

viscous damping causes an extra term E*Iw"". and external viscous damping causes a
term cw on the left hand side of equation (4).
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By using the typical FEM trial
w=[N]{a} (5)

where [N] is the shape function matrix and a contains the nodal displacements and
slopes, i.e.

{a} = [WI,W'I,Wz,W’Z, "'] (6)
we obtain from the first term of Hamilton’s principle (1) the discrete equation system
[M](a}+[G]{a}+[K](a)=(F) 6

where

(M1={ (me+rmp) [NI'[N]dx

0 (8)
L T i 'T
[G]=j meu([NTTINT-INT [N])dx
° €))]
L T
K.1=| EI [N]"[N] d
[Kpl=[ EI[NI" [N] dx o
L 2 T
[Kel=[(P-meu ) [N]' [N] dx
0 (11)
7 =f[N1Tq dx
o (12)

If the translation of the end of the pipe is possible, the last integral of Hamilton’s
principle (1) adds

2
AGyp 1,201 =mgu MKy g gy =WfU 13)

Thus G matrix is no more skew-symmetric and the stiffness matrix K becomes
unsymmetric.

The point masses, flexible supports and dashpots at the nodes cause additions to the
corresponding diagonal elements of (M J,[ KJand [C 1.

If damping is taken into account, we obtain the equations of motion
[M]{a}+[C+G]{a)+[K](a)={F) (14)

where the total damping matrix C is the sum of the internal damping Cj and external
damping Ce.
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Damping matrices are

E L T
[C]1=§[Kp]and[C]e=Lc[N] [N ]dx .

The non-Lagrangian coupling by means of feedback control can be taken into account
by following expressions

[M]{a}+[G]{a}+[[K]+a[H]{a)=(0) 16)
[M]{a}+[[G]+b[HII{a}+[K](a}={0) an
[M]+x[HI(a}+[G]{a}+[K]{a}=(0) 18)

where a,bk are the feedback gains and H is the feedback matrix. H has zeros
everywhere except for a one in row i, column j. In equation (16) we have a displacement
sensor, in (17) a velocity sensor and in (18) an acceleration sensor.

control
y
ﬁ i j Fi=-a Wy

Figure 1. Feedback control.

PARAMETRIC STUDIES

Following nondimensional quantities are used 19
1
/2 mg CL2
Ug=(52) uul BP=7—7—-— ©C=
T EI cr (me+ mg) ~YEI(my+ myg)
. 1
o E  EI /2 _ dL a1
= ( = =
L2g (mg+mpy) NEI (m,+ myg) A= E1
bL K (mg+ mg) g L3
= T = - P ) &
NET(my+ mg) m, ' EI

All the comparisons have been made using 24 elements. The mass ratio b used was
equal to 0.5

Figure 2 shows the effect of the external viscous damping C, to the critical velocity of
cantilevered pipe aspirating fluid. In figure 3 we have a dashpot, damping coefficient d,
at the free end. Critical velocity seems to be linear function of the damping and the
bigger is damping the bigger is critical velocity. Both systems loses stability by flutter.
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EXTERNAL VISCOUS DAMPING
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Figure 2 : The effect of the external viscous damping.
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Figure 3 : Dashpot at the free end of the pipe.

Next let us consider figure 4, where we have internal viscous damping e * With small
values of damping system loses stability by flutter and critical velosity is small. If e™>
0.5%10-4 flutter is ruled out and system loses stability by divergence at first eigenmodes.
At the point e¥= 2.0¥10-4 the first eigenmode regains stability and after that the critical
velocity is quite high.
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INTERNAL VISCOUS DAMPING
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Figure 4 : The effect of internal viscous damping.

Figure 5 shows the effect of the feedback control by a velocity sensor B to the critical
velocity of cantilevered pipe aspirating fluid. Nondimensional external damping C
was set equal to 1. The sensor j was used was at the free end of the pipe (x=L) and the
actuator i was at point (x=1/2).

VELOCITY SENSOA, EXTERNAL VISCOUS DAMPING C=4i
T T T y T T ¥

flutter

gemme=0

gamme=1i000

" L " i

-0.05 : : . -
[} .05 0.1 0.15 0.2 0.25 0.3 0.25 c.4 0.45 0.5

Figure 5 : The effect of feedback control, velocity sensor.
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The feedback could be propotional to displacement or acceleration, in the same way. In
all these three cases the critical velocity seems to be almost linear function of the
feedback gain and the bigger is feedback the lower is critical velocity. At last we can
find feedback value when critical velocity is zero, i.e. damped system is unstable at zero
velocity. The reason for this effect is that even this kind of single sensor/actuator pair
can stabilize only one eigeimode, in continous systems we have alweys higher
eigenmodes where feedback force is in phase with response. Structural damping can be
written in form

B

o
Ei=—+5 0

2
20, 20)

In the case of a = 0 we have Rayleigh damping propotional to stiffness in form &; =n * wj.
With feedback control we stabilize lower eigenmodes and Rayleigh damping stabilizes
those higher modes where feedback force is in phase with response. In figure 6 we have

damping &; = 0.02 * ®; and acceleration control I'. In this figure we obtain that critical
velocity is growing if feedback gain is increased.

ACCELERATION SENSDR, RAYLEIGH DAMPING PROP. TO STIFFNESS ﬁ':o,o]u,'

45
40
divergence ppmma=1000
s -
Eld g -1
5+ -
I
I
3
20 -
15 b
10 - <
givergence gemme=0
5F o
—
° i "
] 0.4 0.2 0.3 0.4 0.5 0.6 0.7

Figure 6 : Acceleration sensor, Raylaight damping propotional to stifness.
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CONCLUSIONS

Stability of pipes aspirating fluid has beed studiet using the FEM. The starting point for
the discretisation is the extended Hamilton’s principle. The non-Lagrangian coupling
by means of feedback control is taken into account.

Some parametric studies for the stability of cantilevered tube with external, internal and
pointwisely applied damping are presented. Also the effect of different kind of feedback
sensors at the case of external viscous damping and Rayleigh damping propotional to
stiffness are presented.

The results obtained that the effect of damping can be either stabilizing or destabilizing
depending on the configuration and other parameters involved. (Fig. 2-4).

The critical velocity of a cantilevered tube with external viscous damping and feedback
control is decreased if feedback gain is increased (fig. 5). In continous system have
allways eigenmodes where feedback force is in phase with response and these modes are
unstable.

If system have Rayleigh damping propotional to stiffness by form &j = m * wj situation is
different. (Fig.6). With feedback control we can stabilize lower eigenmodes and
structural damping stabilize higher modes, even those where feedback force is in phase
with response. In this aspect the minimization of feedback gain is worthwhile.
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ABSTRACT

Thermal ice expansion can cause significant loads against channel walls. The
problem was studied in a Sino-Finnish project to utilize the Yin-Mi canal also
during the winter time as an aqueduct for the city of Beijing. In situ thermal ice
pressure measurements were conducted by installing pressure sensing plates into
the ice. A numerical model is then needed for calculating the corresponding
thermal thrust. This is accomplished by observing transient temperature history
and nonlinear creep in the ice sheet.

Instrumentation, measurements, theoretical model and analysis methods are de-
scribed. Results indicate that the effects of air temperature changes in the ther-
mal pressure of ice can be simulated reasonably well. This enables to predict
thermal thrust also in more stringent conditions than what were met during the
short measurement period. Error sources of the present method are discussed and
improvements for the further research proposed.

INTRODUCTION

Thermal ice pressure is a result of ambient air temperature transients. Numerical
predictions for ice are however far less reliable than for more common materials
in thermal stress analysis in structural mechanics. The reason is in the mechani-
cal propertics of ice. Ice is anisotropic material with rheological behaviour. Even
though level ice can be modelled as an orthotropic plate for engiheering pur-
poscs, it still has gas or brine inclusions, cracks, thickness variations, etc., which
reduce mechanical properties. There is usually a temperature gradient through
the ice thickness, which has a strong effect on elastic modulus and creep rate.

Snow above the ice sheet is an effective insulator, and if snow is drifted, aerial
temperature distributions will also occur. In addition turbulent winds are present
during air temperature transients. Hence, only at large, statistical average ther-
mal ice pressure can be calculated, locally there will be variations.

The method for calculation of thermal ice pressure starts by solving the heat con-
duction equation in the ice sheet. From the known temperalure histories it is then
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possible to solve thermal stresses by observing ice rheological models and bound-
ary conditions. The total thrust can then be integrated through the thickness.

Thermal ice thrust can be measured directly at boundaries or indirectly by gauges
embedded in the ice sheet. The former method is prefcrred, bccause the result is
recadily usable in the design of similar structures. If ice pressure is measured a
numerical model is needed to translate ice pressure into local ice thrust and fur-
ther into thrust against boundaries.

Measurements in the field are prone to ambient weather and it is unlikely to hit
an optimum combination of snow and ice thickness, and air tcmperature rates to
match maximum design conditions. In laboratory, in the other hand, it is impossi-
ble to duplicate conditions in the nature. Hence, to utilize both the in-field data
and the numerical model looks the most promising approach. The numerical model
can be first calibrated and then applied for the most stringent design conditions.

Thermal ice thrust causes each winter damage to shorcline, channel walls, bridge
piers, marinas, etc. This paper is a by-product of winter water {low control project
in Yin Mi Canal, North of Beijing, China. Earlier this man made canal was drained
for the winter but the increasing demand of water required its winter operation as
well. Information was needed to judge whether the original canal wall construc-
tion can withstand thermal ice thrust. Thermal ice pressure was measured in the
winter 1990 and an analysis procedure was developed to predict total thrust and
further to predict maximums.

THERMAL THRUST MEASUREMENT

A direct method to measure thermal ice thrust is to make an instrumented wall
panel. Conventional load cells can  be used but the difficulty is in waterproofing
the load sensing plate, and preventing it from freezing on the foundation. The
foundation should bc as stiff as the original wall in order not to change ice load
paths at or near the instrumented panel. Water level changes are another prob-
lem. Due to variations many instrumented panels would be needed for reliable
measurements. This approach appeared to be too expensive.

An indirect method is to measure the thrust inside the icc shcet, which has to be
balanced by an equal boundary reaction, provided the gauges are sufficiently
close to the wall. Tt is possible to measure ice thermal stresses in different layers
through the thickness or to use a gauge that directly inlegratcs the average pres-
sure.

Soil mechanics type of instrumentation has been applied for measuring ice
stresses. Flat panels [3,4,7], small stiff cylindrical gauges, vibrating wire pressure
sensitive diaphragm, strain gauged cylinder [4], vibrating wire cylinder (also
planc state of stress) [2], etc. Thin liquid filled flat panels, based on measuring
their internal pressure, are most popular. Their registration ratio is close to 1:1 at
wide range of pancl to ice stiffness ratios, Eq.1 and Fig. 1.

E
2, H
o E 2D

01 ) (E 1 +£
EA 2D (1)
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where o is the true stress and o, the measured pressure, E, and E are the gauge and
ice modulus of elasticity, H the gauge thickness and D the diameter.

The registration dependence can be calculated by elastic analysis [1], but in prac-
tise the situation is more complicated due to ice creeping faster at edges where the
panel is most stiff. After a while creep relaxation makes the registration ratio to
approach that of an infinitely stiff pancl [4].
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Figure 1. The ratio of true ice pressure to thc measured gauge pressure,
(registration ratio), versus gauge to ice modulus of elasticity ratio, Eq.l.

If a flat pancl pancl extents exactly through the ice thickness an average ice pres-
sure, and hence thrust, is directly measured. However, this is not recommended
duc to easicr heat conduction in the gauge which will cause local melting near
bottom, and bridging at the top layer of ice. Flat pancls are thereforc embedded
totally inside the icc sheet and will measure only average pressure for a part of ice
thickness. Only compressive unidirectional stresses can be measured. With three
gauges it is possible to solve the components of the plane state of siress.

For this research a 108 mm diameter, 7 mm thick oil filled flat panel, Fig.2, was
designed, manufacturcd and calibrated in laboratory, [5]. Commercial pressure
transducers were used to measure the internal pressurc. With the chosen geome-
try the measured pressure follows closely the actual ice pressure, as E,i/Ei. > 0.2
and H/D = 0.065, compare Fig. 1. In the analysis of measurement data the calibra-
tion data was was used. It includes the effects ol pressure transducer and ampli-
fiers in addition to the gauge mechanical registralion ratio.
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Figure 2. Ice pressure gage.

HEAT CONDUCTION

Average thermal thrust analysis allows ice cover temperature distribution to be
modelled in one dimension only. Time dependent temperature distribution T(z,t)
through the thickness is covered by the differential equation:

2
4T _ 4T

dt 2
dz (2)

where a=1.15E-6 m?2/s, is the ice thermal diffusivity. For a more complicated anal-
ysis the heat flux due to solar radiation should be added. Also the heat exchange
from the air and water to the ice could be observed; which would need the knowl-
edge of heat exchange coefficients, temperatures and velocities both at air and
water interfaces. However Eq.2 can be simply used by assuming a known ice top
surface temperature history, which already includes the effects of snow isolation
and heat exchange from the air and sun. Temperature at the bottom of ice sheet
can be assumed to be 0 °C. The solution for lincarly changing surface temperature
can be found by using Fourier series:

3 2
=9 bd. -at/d
T(z,t) = (1- i)(T0+bt) +y bidy e !

n=1 a n (3)

- 1)sini
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where d is ice thickness, b temperature rate, and dpn = d/nm. The first term in the
right hand side does not fulfil the differential equation 1. It can be regarded as a
time dependent initial condition upon which the solution of heat conduction is su-
perposed. Another possibility to solve Eq.2 is a convolution type integral, [6].

2

T(Z,t) = _;(na)Tf (k _ T)TT(O,‘C) e421([-1:) &

(4)

In practice as the temperature profile is smooth only few terms in the Fourier-
series solution, say n<10, is needed for accurate enough results. A general
temperature history can be superposed by adding diffcrent (emperature rates b
with a time shift corresponding to the change of initiation times. To simulate
typical temperature transients a simple model in Fig. 3 can be adopted. The initial
temperature T, represents ice top surface temperaturc after a long cold period
when ice temperature distribution has established to be linearily varying through
the thickness. Then temperature rises to T, in t; hours, and stays constant until a
decrease starts at time 1, etc. By varying paramcters in Fig. 3, different thermal
transients can be simulated, e.g daily fluctuations. As the heat diffusion is slow,
variations are much smoother soon below the top surface, and hence the "corners"
in the simplified top layer temperature history have little effect on overall be-
haviour in practise.

TA

T1_
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. T ==
-0 0 |t |t
tl 2 3 t

Figure 3. Thermal transicnt at ice surface.

THERMAL STRESSES AND THRUST

A great many of ice rheological models have been presented. Main features in-
clude elastic response, transient creep (delayed elasticity) and nonlinear creep.
These models have been established in laboratory conditions for homogencous ice
in uniaxial creep tests. Only limited creep data is available for mulliaxial state of
stress. In ficld the situation is more complicated duc to inhomogenities in ice.
Thermal stress predictions with laboratory rheological models yield to too high
stress levels. The reason is partly in size factor, which includes the effects of pore
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and brine inclusions, cracks, and eccentric compression, which make the full size
ice more compliant. A semi-empirical creep equation for river and lake ice, [3],
observes the elastic response and nonlinear creep eflects:

m;, D
d_":Ad_T_B(L) (_)
dt dt 1-T/ \s (5)

where A= 45 kPa/9C, observes the coefficient of thermal expansion and the modu-
lus of eclasticity of ice, B=2.2E-13 kPa/s is creep parameter, reference stress s=1 Pa,
exponent m=0.2 and n=1.8. It can be seen that there is an effect on creep rate by
the temperature T. E.g. in -15 °C creep rate is only 57 % from that at zero tempera-
ture. Creep exponential n=1.8 is smaller than what is the customary 3.0 for the ice.
However thc value n=1.8 is based on experimental in-ficld test data with actual
river ice, [3], as well as the olher parameters in Eq. 5.

The tempcrature rate can be calculated by derivating Eq. 3 in relation to time:

2
= 2 bd -at/d
d—sz(l—i)-Z—“e " sinZ
dt d d d,

n=1

(6)

Again superposition with corresponding time shifts allows to construct arbitrary
temperature rate histories, e.g. according to Fig. 3.

At last the total ice thrust P can be calculated by intcgrating thermal stresses from
Eq. 5 through the thickness of ice sheet:

P(t) = dc(z,t)dz
-I; (7

A TFortran program to observe Eq. 2-7 was written to solve thermal stresses in the
ice by finite difference method and the total thrust. For the numerical solution ice
thickness is divided into 20 layers. Temperatures, tempcrature rates and stresses
with time at each layer will be calculated and the total ice thrust integrated.
Samples of analysis results are presented in Fig. 5 and 6.
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Figure 4. The location of pressure cell in stress ficld.
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To compare pressure cell reading with the analytical model an average of ice pres-
sure at those layers of the ice sheet, that are in contact with the pressure cell, is
calculated, Fig. 4. In present tests these layers were between 5 and 15 cm from the
top surface of ice. Also the circular shape of the pressure cell disk has to be taken
into account. Then this average pressure can be compared to measured pressure
and further to the total ice thrust.

APPLICATION EXAMPLE

Measurements were conducted at two locations in the Yin Mi Canal. Ice thickness
was less than anticipated and only four transducers could be installed. During the
test period temperatures were rising and caused in the second location the center
of canal to melt open making thermal ice thrust measurements obsolete. In the
first location some good data was gathered at the beginning of test period.

The environmental data on January 25, 1990, was uscd to test and calibrate the nu-
merical modcl. Temperature rise time in the air has been about 6 - 8 hours. Due to
boundary layer cffects the minimum ice top surface tcmperaturc has been less
than that of air. Hence the data for initial conditions, paramcters in Fig. 3, have
been chosen to be: t;=6 hours, t,=9 hours and t;=15 hours, and (emperatures To=-12
oC, T,;=-0 °C and T;=T,. The maximum thermal pressure occurs a little after time t
and hence the final temperature T; has no significant effect.

lce thickness .32 m
Initial temperature —-12 C
Rise time 6 Hours

T T T T T T T T T T T T T T 1
Maximum Thrust 73.0 kN
Cell Pressure 347.3 kPa THERMAL ICE THRUST from O to 135 hours

Figurc 5. Thermal ice thrust, 0.32 m thick ice.

The results of analysis are plotted in Fig. 5. The calculated maximum thermal
thrust is 73 kN/m, and pressure in the measuring ccll 347 kPa. The predicted pres-
sure is in good agreement with the measured 380 kPa. If instead of the assumed
initial temperature -12 °C, a value of -14 °C is used, the predicted pressure would
exceed the measured one by 5 %. The same effect results if only 10 % higher value
is chosen for the empirical modulus of elasticity value, (1 GPa instcad of 0.9 GPa in
coeflicient A in Eq. 5).
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The effect of warm up time is insignificant, now lcss than 6 % when the warm up
time is varied from 2 to 10 hours. The maximum thrust occurs with 9 hour warm up
time. More important is time t2 when the next cooling phase starts.

DISCUSSION

With the theoretical model it was possible to get a good fit with the measured data.
Hence the model can be used to predict thermal ice pressures in other conditions.
Highest possible thermal pressures will occur with an optimum warming rate for
each ice and snow thickness. The ice also has to be over 24 hours in low tempera-
ture before warming up starts.

Ice thermal thrust is almost linearly dependent on the total temperature change.
With thin ice the ice thickness has a significant effect, but with over 0.3 m thick-
ness the daily temperature fluctuations are getting too fast to induce highest pres-
sures, Fig. 5. The warm-up time with no snow isolation should be 9 hours already
for 0.3 m thick ice. For a 0.5 m ice thickness over 20 hours are needed. As a maxi-
mum with 12 °C temperature risc a total thrust of 100 kN/m and a cell pressure of
370 kPa can be expected for a 0.5 m thick ice, Fig.6.

lce thickness .50 m
Initial temperature -12 C
Rise time 20 Hours

rrrrT7rrrrrrrrrrrrrvrmorr1rrrrorrTr il

Maximum Thrust 100.1 kN
Cell Pressure 369.8 kPa THERMAL ICE THRUST from O to 36 hours

Figure 6. Thermal ice thrust, near optimum rise time.

The numerical model used rigid boundary conditions. The total ice thrust will be
significantly reduced if the walls of the canal are resilient. With rigid concrete
walls maximum thermal pressure can be expected.

The ice thickness across the canal was not even. At the center ice thickness was
about two thirds of that near the walls. Hence the stresses at the center will be
50 % higher and creep relaxation about two times faster. Hence total ice thrust
will be smaller in the case of uneven ice thickness profile. As the measured
pressure in the cell was higher than the numerically predicted, it suggests, that a
higher empirical modulus of elasticity value than 0.9 GPa, in cocfficient A in Eq. 5,
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should be used. A reliable application of theoretical model needs also to measure
the ice thickness profile across the channel.

In the measurement data there was an evident decay of daily thermal pressure
peaks. First natural explanation is that at the beginning of measurement period
the air temperature change occurred in .a much colder temperature, which re-
duced creep relaxation. Another is that duec to daily fluctuations there will be
residual stresses, which will counterbalance new thermal stresses. Third explana-
tion is that the average air temperature was rising which made ice softer and
stresses smaller. Another chance is that warm water in the canal had an access to
pressure cell in the relatively thin ice, hereafter the better heat conduction in the
steel may have caused a melt cavity around the pressure cell inducing the de-
crease of pressure readings.

The indirect thermal thrust measuring allows a simple instrumentation to be used
but needs a theoretical model to relate pressure readings to total thrust. For the
numerical model calibration, ice top surface temperature history and ice thick-
ness profile across the channel have to be measured. Then it is possible to adjust
the site specific parameters in the numerical model to reliably predict thermal ice
thrust also in other design conditions that cannot be met during usually short
measurement periods.
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AUTOMATIC DESIGN OF STEEL FRAMES IN A CAD-SYSTEM

MARKKU HEINISUOQ, ARTO MOTTONEN, TUULA PALONIEMI, PAAVO NEVALAITNEN
Inginddritoimisto KPM-suunnittelu Oy
Yliopistonkatu 60 C, 33100 TAMPERE, FINLAND

ABSTRACT
The paper deals with one possibility to automatic design procedure
for steel frames. The program generates the calculation model [rom
tLhe geomelric model and checks Lhe strengbh of the [rame. The

special 2.5 dimensional analysis is performed for Lhe profiles of
the frame and the plastic Lheory is used for the design of the
joints. The elfects ol boundary conditions of joints for the linal
design is studied.

INTRODUCTION

There has been a soflware development project taking place al. KPM-
suunnittelu Ov during last Lwo years. The project is financed
partly by TEKES. The aim of the project is to develop Lhe CAD-
system for the design of steel sructures. This includes both the
preparation of the drawings for manufacturers and Lhe calculations
concerning the strength of Lhe sruclure. The presenl paper deals
with the 2.5-dimensional analyzing method for the steel [rames.
The CAD-system includes also the design of Jjoints. Paper /1/ gives
some general information concerning the CAD-syslem developed.

CALCULATION MODEL

First, the designer creates the geometry of a structure in the
plane, The designer chooses profiles and connections for the
initial calculations. The designer can change profiles or
connections or some initial data afterwards to obtain better
result. The plane geometry is built into the system by using the
special recursive algorithm which makes the system very flexible.
The same algorithm controls both the geometry of the frame and the
geometry ol the joints. E.g. cutting lists of the profiles can be
plotted from this geometrical model. :

The program generates automatically an analysis model for the
linear plane frame program f[rom a geometrical model. 'The program
generaltes four [inite elements beltween gtructural joints so the
error in Lhe linear buckling analysis is small enough for design
purposes when considering the column type elements. There are no
flexible joints generated automatically in the program to the
model, wvet. The designer can creale flexible joints by introducing
amall springs to Lhe joints if he thinks it is necessary. The
program generales aulomalically also the calculation models of Lhe
joints from the geomelrical model. The joints are modelled by
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using small eccentricity elements which cause discontinuities to
bending moments (Fig. 1). Any systematic procedure to create these
small elements could not be found in the literature so these
elements for specific joints must be considered case by case.

\I/
v
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lFigure 1. Eccentricity elements of joints

Next the designer gives loadings to the frame. Loads can be either
forces or displacements. The continuous loads can be given for
groups of elements, After the loads and support conditions are
given the program calculates nodal displacements by using the
usual beam elements of six degrees of freedoms. Firstly, the linear
elastic analysis is done, The KPM-FRAME-program is used for this
purpose and the normal output of the frame program is then
available. The designer can draw the displaced frame and e.g.
shear f(orce diagrams of the frame for the different loading cases.
Next step in Lhe program is either to check the strength of the
Joints or the strength of the profiles chosen by the designer.

DESIGN OF PROFILES

The program checks the strength of profiles in 3-5 points per
element. The Finnish code B7 /2/ is used. The design philosophy of
that code is near the ideas of the forthcoming EUROCODE. The program
checks capacities against the axial {orces, shear forces and
bending moments and the von Mises strengths of the elements
following the rules in Lhe codes. The cross-sectional properties of
the profile are calculated according to elastic or plastic theory
the latter occurring occassionally when allowed by Finnish codes.
Load factors, material strength factors and material strenghts

can be given following local codes. The designer gets the
information of the used capacities of the profiles in the special
report seen in Fig. 2.

Next the stability of the plane frame system is checked by
calculaling the critical elastic collapse load factor n of the
structure. This procedure gives the eigenvalue for the plane frame
buckling and this eigenvalue is used for each beam- or column-type
elements when designing these elements ie. when checking the state
of the stress according to the codes. The critical axial load, the
Euler load, is the eigenvalue times the axial load in Lhe most
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Figure 2. Profile report

eritical ecross-section of the element. The program creates
automatically the stiffness matrix and the geometrical matrix of
Lhe elastic plane system for the linear elastic buckling analysis.
The designer chooses the designing eigenvalue for the specific
element. The system proposed by Yang et al /3/ uses automatically
the lowest eigenvalue for the design. It can be seen from Fig. 3
that this is not necessarily the designing eigenvalue e.g. for the
columns of the frame. There are also special elements in the frame
whose buckling length can be estimated beforehand and these are
programmed to the system in order to minimize the calculation
time. These are e.g. the bracings of the trusses for which the
buckling length = 0.9 times the system length is used.

After that program generates Lhe 3-dimensional calculation model
for beam- and column-type elements of the structure. These elements
are proposed by the designer. This 3-dimensional analysis is done
only for elements with open cross-section. The elements with closed
cross-section do not usually need any torsional or lateral buckling
analysis. The program uses the beam elements of 14 degrees of
freedoms /4/ for this 3-dimensional analysis. The splines for

axial and lateral displacements are the normal polynomials and the
splines for torsional displacements are the exact solutions of
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Vlasov's theory; i.e. hyperbolic lunctions. In Lhis early slage of
Lhe projecl. these 3-dimensional elements are used f(or Lhe
calculaljon of elastic collapse loads for oul of plane buckling,
torsional buckling and laleral buckling. After that the strength
Lests demanded by codes can be done.

n=2

AN ANTANVAN AN o \YAVANEL

n=5

Figure 3. Buckling modes of a [rame
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It is seen that Lhis 3-dimensional analysis needs four extra

degrees of freedoms per node compared to the plane analysis. The
three dofs are the same as in the plane analysis and the loading

is transferred by tLhe program to these nodes as displacement loads.
The two of these extra dofs caused some difficulties in the project
because not much information concerning them was found in the
literature. These two dofs are the torsional and warping
displacements of the cross-section. The information designer needs
are the boundary conditions in the joints of steel frames when using
Lhis kind of 3-dimensional finite element for design purposes.

The first diploma thesis done within this project dealt with this
problem /5/. Some results concerning the effect of torsion and
warping in Lhe joints for the critical loads and for the final
design values of steel frames were found by doing some parametric
sludies for the joints which are important in every day design
rputines. The crane beam or the bracing of the wall (Fig. 4) was
modelled by using the rotational spring element and the usual
slaving technique for the column,

< ] —r o

o G) K ‘I‘L;

== = : ° X
©

Figure 4. Modelling of a joint

The torsional and lateral buckling loads were calculated by changing
the stiffness of the rotational spring and the location of the
lakeral support. These critical loads were compared to the critical
loads of the column supported by the infinitely stiff rotational
support at the same place as the rotational spring (Fig. 5), As a
conclusion it is said that the crane beam can be considered as the
supporl which can prevent the lorsional and lateral displacements

if Lhe cross-sectional properties of the crane beam are about Lhe
same as those of the column. Moreover, it was found that the warping
displacement did not have much effect to the design of the column.
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Figure 5. Crilical loads of a column
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were also done concerning the ground conditions
The parametric studies were based on the simple
model and the ground was modelled by using the
proposed by Cederfelt /6/. It was found that the

most of the deformation takes place under the concrete footing,

not much deformation takes place in the joint between the concrete
footing and the steel column. Moreover it was found that stiffening
the ground under the footing must be payed special attention if

tLthe joint is modelled as rigid one. There can be found some more
information on this sub,ject in Ref. /5/.

DESIGN OF JOINTS

The second diploma thesis of the project deals with the design of
joints. The joints are designed following the plasticity theory by
using forces calculated by the forementioned linear plane frame
program. The design of the joints is almost the same than that
proposed by the EUROCODE. That is so because there are more detailed
rules given for the design of joints than in the Finnish codes of
practise. The program can currently design welded joints between
Lubular structures, bolted joints between columns and footings and
between columns and beams. The extra load factor (n+l1)/n is used
for the joints which cause second order moments for the frame and
if the joints may have some deformation which is not taken into
account in calculations,

The Joints between tubular structures are designed following the
book of Wardenier /7/. The program performs checks of dimensions
of the joint and the capacity of the (joint. Figure 6 presents Lthe
tvpical report of the joint design of the tubular structure. The
program checks the gometrical properties of the joint and the
punching shearand the effective width criteria and cord wall
buckling and cord Face failure by yielding as seen in the figure.
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Figure 6. RHS-joint report

When analysing the bolted joints the general plasticity check of
Lthe end plate according to Zoetemeljer /8/ is done by the program.
Moreover, the program checks if there is enough space between bolts
and the profile or the edge of the profile. These parts of the
program are made to be very general so they can be used when
designing many kinds of joints. The four plastic mechanisms seen in
Fig. 7 including the prying effect are alwavs checked for the
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bolted ,joint according to Ref. /8/. These mechanisms can occur in
the end plate of the joint or in the flange of the column etc.
Figure 8 presents the examples of the cases where these mechanisms
are nsed. The Ref. /9/ is also used for the design of the column
footings and the parts of the Ref. /10/ are used for the design of
column-beam connections. Figure 9 presents the typical report of
Lhe design of the bolted conneclion.
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Figure 7. Plastic mechanisms Figure 8. Bolted connections
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STRESSES AND DISPLACEMENTS IN A REINFORCED CONCRETE
GROUND SLAB DUE TO THE FRICTION BENEATH THE SLAB

MIKKO KILPELAINEN
Department of Civil Engineering
University of QOulu
P.0. BOX 191, SF-90101 OULU, FINLAND

ABSTRACT

The shrinkage of a reinforced concrete ground slab produces friction be-
tween the slab and its subbase. Friction forces act horizontally on the
slab.

The article deals with the stresses and the displacements in a slab caused
by those forces. The vertical loading of the slab is supposed to be
uniformly distributed and therefore the friction forces act rotationsymmet-

rically.

First the loading and the stresses and the displacements of a circular slab
are examined in a polar coordinate system. Then the loading and stresses
and displacements of a rectangular slab are examined in a rectangular coor-
dinate system based on different simplifying procedures.

INTRODUCTION

The shrinkage of a reinforced concrete ground slab is directed towards the
shrinkage centre of the slab (point 0, Fig. 1a). This movement produces
friction forces between the slab and its subbase. Those forces are directed
oppositely with the shrinkage movement (Fig. 1b). The forces give rise to
tension stresses in the slab, because of which the cracking of the slab may

occur.

The magnitude of the friction force H is depending on the horizontal
movement of the slab and on the pressure and the friction coefficient
between the slab and its subbase.

For the sake of simplicity the friction is mostly supposed to be totally
developed, i.e. independent on the magnitude of the movement. If the slab
thickness is constant and if the loading is wuniformly distributed, the
friction force H can be obtained from the equation
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H=p-p=p- (¥ _-h+q) , (1)
where p is the friction coefficient, p the pressure of the subbase [MN/mZ],

Yo is the volumetric weight of concrete [MN/m3] h the thickness of the
slab [m] and q the uniformly distributed load [MN/m 1.
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Figure 1. The shrinkage movement a) and the friction forces b) of a con-
crete ground slab.

This paper deals with circular and rectangular slabs having constant slab
thickness. They are supposed to rest on an even subbase and to have
constant friction coefficient u. The loading of the slab is supposed to be
uniformly distributed, i.e. g=constant, because of which the friction force
H is uniformly distributed as well. In this kind of ideal case, the shrink-
age centre is located at the centre of the slab.

CIRCULAR SLAB

Let’s examine a circular slab with radius R (Fig. 2a) in a polar coordinate
system, the origin of which is located at the centre of the slab. Let’'s
take a differential slab element for the closer examination (Fig. 2b). The
stresses acting on the element are shown in Fig. 2b as well.

As a consequence of the equilibrium of the forces acting on the element we
obtain (h=constant)

dor or—o¢ H
T T TR (2)
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Figure 2. A circular concrete ground slab a) and a slab element b).

According to Hooke’s law we obtain

E

1—v2

E
o = (e +v-e¢) ; o= 5 (e +v-sr) i (3a,b)

where E is the modulus of the elasticity of the slab [MN/mZ], v the
Poisson’s ratio and e and ew are the radial and the tangential strain of

the slab.

Using the radial displacement u we can write

£ e i e =" (4a,b)
r dr ¢ T

Substituting the equations (4) and (3) to the equation (2) we obtain

" o (5)

V)
E-h

d 1, d(r-u) + (1-
dr r dr

By integrating the equation (5) twice we obtain

(1-

1 ‘H 2 1 2
= - (6)

<

u=-
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Using the equilibrium of the forces, which act on the slab element, we ob-
tain
do dt H do dt

H
X ¥X X _ y Xy Y -
dx *"3;“* h 0, dy & T 0 (11a,b)

If we assume, that Tx =T x=constant, we obtain Gx and oy from the equations

a

_H X . _H

o = J—— dx 0y i y (12a,b)
X

b

I_L_.d
x2+y2 3 |x2+y2
After integration the equations (12) reduce to

=%}-[Jx2+b2 —»]x2+y2 ] (13a,b)

X y
Since
du __ _1 _— L I S P——
= T (vx v oy} , ay cy 3 (oy v ox] (14a,b)

we obtain the equations

X Yy
. 0. =1, -
u= = J(ox v 0y)dx = V=g I(@y v ox)dy (15a,b)
0 0

for the displacements u and v. After integration they can be reduced to the
form

2 | 2,2
u= H . X'J32+y2 -(1-v)- _)(_.Jx2+y2 +y_-lnu
E-h 2 2 y

2 2.2
X 2.2 b XX +b

2 2. 2
2, 2 —(1-v)-(-2L-|x2+y2 +-§——-1n y+Jx +y ]

_ H
V__E-h [y b +x 5

(16b)

-V

y 2.2 a2 y+Jy2+a2
. 7.y.{.a _Z_.lnia

The stresses ¢_ and oy acting at the coordinate axes are presented in Fig.

5. They have been determined from the equations (13). We can recognize,
that the stresses have their maximum values in the origin, i.e. at the cen-
re of the slab, where
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H-a 0l (17a,b)

o‘ - ——— o‘ =
xmax h ' “ymax h

The corresponding stresses determined by the finite element method using
quadratic plane stress elements are shown in Fig. 5 as well. FEMP- program

/1/ has been used for computing the diagrams.

The stresses ox and oy, which act at the coordinate axes of the

slab, according to the equations (13) ( ), to the equations
(18) (—-—-—) and obtained by the finite element method (- - -).

Poisson's ratio v=0,15.

Figure 5.

The tension stresses o and oy are often calculated in practice from the e-

quations
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H _H S
- (a—x) , vy_TT (b-y) (18a,b)

These stresses have their maximum values at the coordinate axes of the slab,
where they can be computed from the equations

c = Ha ¢ ki (19a,b)
Xmax h ymax h

The equations (19) are identical with the equations (17). The diagrams of
the stresses obtained from the equations (18) are presented in Fig. 5. as
well.

Figure 6. The displacements u and v of the midpoints of the edges of
max max

a rectangular slab, according to the equations (20) ( ), to
the equations (21) (-+—'-) and obtained by the finite element

method (- - -).

The displacement u has probably its maximum value at the midpoint of the
edge of a slab (x=a, y=0) and correspondingly v its maximum value at the
midpoint of the other edge (x=0, y=b). Using the equations (16) we can
write for the maximum values of those displacements the following dimen-
slonless equations:

Unax_ 2-E-h B

2 ' 2
- H-a -[1+V—V'[J1+BZ +Bz.1n.l:_liﬁ__]] , (20a)
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2 | 2
v = Iy -[1+v—v-[Ja2+1 +a2-ln—1i—5—i1—]] , (20b)

max 2-E'h «

when a=a/b and B=b/a.

On the other hand, using the equations (18) and (14) we can write for the
displacements of the midpoints of the slab edges the following expressions:

2
- _Ha (1 _ b
umax_Jex dx_'fFTf_ [?f_ Ly ]’ (21a)
0
. Hbe (1 a
vmax=I€y dFW‘[?"" F] (Giib)
0

The diagrams of maximum displacements Uox and Viax 2T€ presented in Fig. 6

as functions of the side ratio and of Poisson’s ratio, obtained from the e-
quations (20) and (21). The diagrams, which are computed with the finite
element method (FEMP- program) are presented in Fig. 6 correspondingly.

SUMMARY

The equations of the horizontal stresses and displacements acting on a cir-
cular slab can be written in an ideal case in a closed form. For the
rectangular slabs the stresses and displacements must be calculated with
the approximate methods.

From three approximate methods investigated in this study the finite ele-
ment method gives most accurate and smallest values for the stresses and
displacements. On the other hand some generally used formulas for manual
calculations give most unaccurate and biggest values for them. When we sup-
pose the shear stress of a slab to be constant the stresses and
displacements of a slab can be calculated manually with a reasonable

accuracy.

The results of this investigation can be applied to the structural analysis
of reinforced concrete ground slabs. The nonlinearity of the o-e- curve of
the concrete, the creep of the concrete, the cracking of the slab and the
uneven distribution of the friction cause inaccuracy to the results. The
influence of those factors needs further investigations.
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STABILITY OF ARCHED ROOF MADE OF PROFILED STEEL SHEETING
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ABSTRACT

An investigation of the structural behaviour and design criteria of an
arched roof structural system is described. Double shell arch system
constructed by using corrugated steel sheets bent to a form of
two-layered curved roof vault is specially investigated by applying
specific structural model developed for the system. In this model
consisting of a plane bar system, transverse hat profiles connecting two
curved shell layers together are stated as radial connection bars and
stiffness characteristics for these bars simulating structural behaviour
of transverse hat profiles are experimentally determined by shear tests.
Analyses and calculations made by applying the double shell arch model
are based both on geometrically linear and non-linear behaviour of the
arch. Stability of the arched roof is also studied in the analyses by
determining critical loads both for global buckling of the roof vault
and for local buckling of the curved shell layer between transverse hat

profiles.

INTRODUCTION

Free span of a steel roof deck can be considerably extended by using an
arched roof instead of flat decking with profiled sheetings. These
self-supported arched roof-vaults are made of trapezoidally corrugated

steel sheetings bent during cold-forming process in form of an arch,
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usually having geometrical proportion of L (span) = R (radius). An
arched roof structure is especially effective in form of a double-arch
system i.e. a two-layered arch of profiled steel sheetings connected
with transverse members e.g. with hat profiles. This new type of arched
roof system was first developed and patented some three years ago by
Austrian company ZEMAN & Co (GmbH) in Vienna. In applications of this
arched roof structure, a steel tie-bar connecting arch-bases in span is
usually added to the structural system. In Finland this arched roof

system was first adopted and applied by company PAAVO RANNILA Oy.

Structural behaviour of arched roof system described above is
studied in this research for finding out and introducing design criteria
for arch in respect to design specifications and recommendations. This
study is made by using specific structural model for two-layered arch
with profiled sheetings connected by transverse hat profiles. For this
model consisting of a plane bar system, stiffness characteristics of the
bars simulating hat profiles between two arched sheetings are

experimentally determined.

STRUCTURAL MODEL

Plane Frame Model of the Arch

In the structural model used for analysis and calculations, the original
two-layered arch (Fig. la) is replaced by a plane frame as illustrated
in Fig. 1lb. 1In this frame, the curved parts of profiled steel sheetings
between transverse connecting members i.e. hat profiles (spacing 1.2 -
1.5 m) are replaced by straight beam elements. This means that in
dimensioning the arch, the original curvature of the arch between hat
profiles is to be taken into account as an eccentricity causing extra

bending moment to the beam element.

Hat profiles connecting the two profiled steel sheetings are
replaced in the model by short bar elements and these bars are assumed
to be clamped to the lower and pinned to the upper profiled steel
sheeting. Values of the bending and shear stiffness characteristics for

these bar elements are experimentally determined.

The so called system lines of the structural model (Fig. lc) are
thus defined by gravity center axes (G.C.A.) of hat profiles and by
neutral axes (N.A.) of profiled steel sheetings determined by applying
effective cross-sectional area for the compression side of the profiled

cross-section.
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FIGURE 1.

Structural model of arch.

a) Two-layered arch with profiled sheetings and transverse hat profiles.

hat profiles 120/1.0

170/1.2
Upper sheeting

Lower sheeting

1 Y T

b) Plane frame model of arch.

c) System lines of arch model.




218

As cross-sectional forces and moments of an arch usually are also
dependent upon deflections caused by external loading then for analysing
this geometrically non-linear behaviour, calculation methods used are to
be based on the second order theory. In this study, both linear and
non-linear behaviour of the arch is analysed by using the plane frame

model described above.

Cross-sectional and Stiffness Properties for the Model

Longitudinal bars. For calculating bending moment, normal force, and

shear force (M,N,V) in an arch cross-section, bending stiffness (EI) and
axial stiffness (EA) is to be known in each cross-section of the arch.
Because of the local buckling phenomenon on compression side of the
cross-section, stiffnesses EI and EA are dependent upon loading state.
Thus for determining these stiffnesses, effective cross-sectional areas

are to be applied for compressed parts of the profiled sections.

Effective cross-sectional areas can be determined by reducing
certain parts (widths) of the profiled section on compression side.
Furthermore, in case of edge stiffeners and intermediate flange and web
stiffeners reduction for effective area is also to be applied to the
sheet thickness (t) on these parts of the compressed cross-section. In
this study, effective cross-sectional areas are calculated according to
the Finnish code /1/. This corresponds mainly to the Swedish code /2/

and to the German code DIN 18807 /3/.

In case of the two-layered arch made of profiled steel sheetings,
for calculating exactly the effective cross-sectional area A and the
effective moment of inertia I of section an iterative proceéure is to
be applied. In practice, how;ver, values for A and I can be taken in
calculations with an adequate accuracy as minim;m Valués of A and I
determined from all possible cases i.e. A= minA and I = minI. These
values are then applied in each cross—sec%ion of the arch. Table 1
compares the effective values of A and I as minA and minI with the
corresponding gross-values maxA and maxI for profiled sheetings of the

arch used in this study.

Transverse bars. Experimental investigation carried out in this

study showed that as basic stiffness value EI of hat profile can be
taken secant stiffness EI -value correspondiné load level two third of
ultimate load (P ) i.e. Is= I if Q9 < 2P /3 (Q = shear force in hat
profile). Transvgrse benéangsstiffness %alues EI determined by tests
for hat profiles RA-120/1.0 and RA-170/1.2 are listed in Table 2
together with maximum allowable values Q of shear forces caused by

allow.

nominal loading in validity ranges of I -values. For bar elements in
o
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structural model, bending stiffness values EI can then be determined
" ;
with I -values by using following formula
o

I = (L /H)BI (1)

where L represents theoretical length of bar elements in structural

H
model (distance between neutral axes of sheetings) and H height of hat

profiles (120 mm or 170 mm). In cases of variable sheeting thicknesses
(t # 0.9 mm) I - and Q -values are to be reduced.
[} allow.
TRBLE 1.

Minimum effective cross-sectional values A and I for profiled sheeting

sections compared with correspondlng gross- sectlonal values.

Sheeting t I A
min min
mm I A
45/0.7 0.63 0.82 0.82
45/0.9 0.82 0.89 0.88
45/1.1 1.01 0.94 0.92
120/0.8 0.67 0.91 0.75
120/1.0 0.85 0.94 0.82
120/1.2 1.03 0.97 0.88
TABLE 2.

I -values for hat profiles 120/1.0 and 170/1.2 with allowable shear
0
force values.

-9
Hat Lower I x10 Q
0 allow.

profile sheet

m /m KN/m
120/1.0 45/0.9 2.73
120/0.9 1.78
170/1.2 45/0.9 10.57 12

120/0.9 8.23 12
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STRUCTURARL DESIGN OF ARCH

In basic design of two-layered arch with profiled sheetings connected

with hat profiles, combined compression (N) and bending (M) is to be

separetaly checked both for upper and lower sheeting section under
After cross-sectional forces (M,N,V)

local and global buckling of

maximum effect of combined loads.
are determined by usual linear analysis,
arch can be taken into account by following interaction formula

(1+0.5% (1-N /N ))N /N +(1+0.5% (1-N /N ))N /N +(M+Ne/2)/M <1 (2)
ki d Rci d Reci kg d Rcg d Rcg d d R
where N = design value of normal force
Nd = global buckling force of arch baced on ECCS buckling
e curve "c"
N = local buckling force of arch-layer between hat profiles
e based on ECCS buckling curve "c"
M = design value of bending moment
Md = f W = bending capacity of arch section
eu = eéé;ntricity i.e. distance between original curved
axis of sheeting and straight axis of sructural model
% = modified slenderness of arch based on combined cross-

section of sheetings

7% = modified slenderness of arch-layer between hat profiles

ki
based on sheeting section.

In case when cross-sectional forces (M,N,V) are determined by using

non-linear (second-order) theory, formula (2) is reducing to form

(1+40.5% (1-N /N ))N /N + (M+Ne/2)/M <1 (3)
ki 4 Rei 4 R 4 d ®

i

In design formulae (2) and (3), for effective cross-sectional area

A and effective moment of inertia I minimum possible values of A and I
(minA and minI) are used and also for effective elastic section modulus

W corresponding minimum value of W in case of pure bending.

e

In determining values for N in formula (2) or (3), buckling

Reg

shape of arch is to be known. In case of a circular arch, critiecal

buckling mode is asymmetric and thus effective buckling length can be

determined with multiplying half arch length by a trigonometric factor

dependent upon central angle of arch. In case of arch geometry of R = L,

this factor is equal to 1.02.

For determining global buckling force N of two-layered arch,

Rcg
ideal slenderness A of double-arch is to be determined for a plane
id
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frame system when interaction between two layers connected by bar
elements is to be taken into account. This ideal slenderness can be

determined by following formula
A =(A +nair) (4)

where A = slenderness of arch with fully compact two-layered
cross-section
A = slenderness of separate arch sheeting layer between
hat profiles having minor section stiffness value
= constant, a = 1.3 for screwed fastenings

n = 2 in case of major axis bending.

Modified slendernesses in design formulae (2) and (3) can be

written as follows:

,
]

- 1/2
A X (£/E) /m (5)
14 Y

kg

>|
n

1/2
L(f/E) /7vi (6)
i Y o
L in formula (6) is the length between transverse bar-elements in
i
structural model and i is effective radius of gyration of cross-section

e

. 172
i = (I/A) (7)
o o -
In ECCS buckling curves used for N - and N -values, choice of
Rci Rec
type of curve (a,b,c,d) is dependent upon initialgimperfections in arch.
Usually curve "c" can be used for arch and then maximum initial

deflection is assumed as L/400.

In formulae (2) and (3), design bending moment is added by term
N e/2 where distance e is caused by difference between axis of curved
d
sheeting part between hat profiles and corresponding straight line axis

in structural model.

DESIGN CALCULATIONS AND COMPARISONS

In design calculation by using a plane bar system as structural model
for two-layered arch of profiled steel sheetings connected with
transverse hat profiles, validity of the model was tested by comparing

results of calculations based on linear (first-order) and non-linear
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(second-order) theories. Also influence of horizontal restraint stiffness
at base supports on arch behaviour was studied by comparing design
calculations in case of horizontally fully restrained support and of

tied arch with different axial stiffnesses in the tie between base

supports of arch.

Calculations were performed for a fixed arch geometry i.e.
L (span) = R (radius) with three L-values of 10, 15 and 22 m. In all
cases both linear and non-linear calculation methods were applied. In
non-linear case, initial imperfections (max. L/400) according to ECCS
buckling curve "c" were assumed in arch geometry as downward initial
deflection on half of heavier loading and upward deflection on half of
lighter loading. Loading cases were dead load (g = 0.3 - 0.4 kN/mz) and

asymmetric live load (snow) as shown in Fig. 2.

FIGURE 2.

Nominal and design loads for arch R = L = 22 m.

q ' q/2

3.6 kN/m2
2
5.76 KN/m

[

g = 0.4 kN/m
g = 0.64 kN/m

112 1/2 )
L .!, *_

Table 3 shows as an example results of design calculations on arch
having span L (=R) = 22 m, both upper and lower sheeting of 120/1.0
(f = 320 MPa) and hat profiles of 170/1.2 (f = 320 MPa). As can be
seén from Table 3, horizontal restraint stif%ness at base supports seems
to have a minor influence on load-bearing capacity of arch, at the

utmost some percents between two extreme restraint stiffness cases of

arch supports.



223

TRABLE 3.

Interaction of design stresses (M in kNm and N in kN) for arch R=L =22 m

calculated applying formulas (2) and (3).

Case Lower sheeting Upper sheeting
1. order 2. order 1. order 2. order

N 40.86 37.20 25.51 36.01
bl M 7.59 10.13 5.97 8.24
3;4 0.990 0.803 0.707 0.676
N 40.08 36.64 27.25 37.80
2 M 7.72 10.28 6.06 8.32
3;4 0.990 0.811 0.733 0.688
N 39.32 36.08 28.96 B9 5[0
<) M 7.85 10.44 6.15 8.40
3:4 0.990 0.819 0.759 0.700

Case 1: Horizontally fully restrained base supports
2
Case 2: Steel tie-bar with cross-sectional area A = 400 mm /m

2
Case 3: Steel tie-bar with cross-sectional area A = 200 mm /m

CONCLUSIONS

In analysis made for evaluating structural behaviour and load-bearing
capacity of arched roof with protiled sheetings connected with
transverse hat profiles, both linear and non-linear calculation methods
were applied. It was found out by these calculations that as effective
cross-sectional areas and section stiffness values could be chosen
minimum values determined on the basis of all possible loading
situations of the arch. The effective cross-sectional areas for arched
roof sheeting sections can thus be determined correspondingly to values

of flat sheeting sections.

Structural model for two-layered arch roof consisting of a plane bar
system with double polygonal frame of beam elements connected with
transverse bar elements was succesfully used in analyses and design

calculations of arch after stiffness values for the bar elements
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simulating behaviour of transverse hat profiles between two arched
sheetings were experimentally determined in connection of this research

project.

Design calculations of the arch were showing that linear
calculation methods can be applied with sufficient accuracy within the
limits of arch spans (R = 10, 15, 22 m) and geometry (L = R) assumed in
this study. It was also observed by analyses and calculations that the
influence of horizontal restraint stiffness of arch base supports (i.e.
axial stiffness of steel tie-bar between base supports) on stability and
load-bearing capacity of arch is relatively small i.e. at maximum in
extreme support stiffness cases only some percents on arch capacity

values.
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ABSTRACT

For analysis of the residual stresses in glass specimen of
complicated shape integrated photoelasticity 1s the most
suitable method. However, in the general case theory of Lhe
method is very complicated. Theory of integrated
photcelasticity is considerably more simple if the
birefringence of the specimen is weak or if rotation of the
principal axes on the light rays is weak. In case of the glass
items one Cor bothd of these assumptons are often fulfilled.

Théory of integrated photoelasticity in the case of weak
birefringence will be briefly considered. Data about stresses
in bottles of beer and champagne, and in a fiber preform of
nonaxisymmetric form will be presented.

INTRODUCTI ON

Devel opment of the glass technology (lightweighting of

~

bottles, fabrication of fibers and fiber preforms of
complicated c¢ross section, replacement of the annealing
technology by the tempering technolegy etc.) demands more
exact knowledge of the residual stresses in glass products. The
finite element method can be successfully applied to calculate
stresses in glass containers due to external loads (1]. In
case of residual stresses the results of calculation are not

so reliable since certain hypoteses are tc be made concerning
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the temperature distribution and change of the material
characteristics during different phases of production process.
Thus, experimental methods for evaluation of residual stresses
are indispensable.

Unfortunately, c¢lassical photoelasticity permits only
qualitative estimation of residual stresses in glass specimen
of complicated shape. However , using integrated

photoelasticity [2] several new methods have been developed

recently for that purpose.
METHOD

For evaluation of residual stresses the model is put in
an immersion bath to avoid refraction of light, and viewed in
a polariscope. Dealing with two dimensicnal objects one can
measure the isoclinlic parameter and the optical retardation in
every polnt. In the case of three-dimenst{onal stress
distribution three types of experimental data can be measured
on each ray. Namely, primary and seccondary caracteristic
directions Cao and a*) and characteristic phasze retardation y
t2]. In the case of wcak birefringence, these are related to
components of stress tensor on the ray by simple integral
relationships [3]

W
c

- _ e 3
Y COSLG°+G*) Cjtcz ox,dy, ci>
o
y*
y 31nLao+u*3=CJETEXdy, 2
o
Y E Ye !
—~2 - — -
tanCa, -a >=C cj‘c.sz chfafzxdt.dy J‘erzxfc.:-z o ddtdyd, gcy)
o o 6] (o]

where C is the photoelastic constant, s: ©, and T, are
companents of the stress tensor in the plane perpendicular to
the light ray, t and y are distances measured along the light
ray. It can be shown [2] that thesze relationships are valid

when y is less than n-2.
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In many cases o, is equal to a,. The sum aaﬂxﬂE can be
then taken as a double isoclinic parameter 2¢ and measurements
can be preformed using cdinary polariscope. This case has been
considered in paper [4]. For example, a o, if we have an
axisymmetric model or when the cilindrical specimen has no
gradient along its axis.

Using relationships C1) and (2) and also equations of
equilibrium and compability it is possible to determine the
axisymmetric stress distribution due to external loads (S].

In the case of axisymmetric stress where axial stress
gradient is present we have to preform measurements in two
planes separated by a distance Az. Shear stresses T, and T
in the first and second plane accordingly can be evaluated
using eguations (2> in these planes. First we have to use
simple coordinate transformations and express T, through T,
and after it solve integral equation (2) with respect to LA
using measured values y and @ on several rays. Now we can use

the equilibrium condition for direction x of a

three-dimensional segment cut out from the boedy (Figure 1).

74 Az
¥

YAZ2A

L
e =y

Yy,

—Y y'
f X Yo
k b

J

FIGURE 1 Considering the equilibrium condition of a
three-dimensional segment.

After some mathematical transformations we get

= R R

: = sin(2pddx - vsinl 2 dx, S 4D
2CAffcxd_v _!'r inC2gDdx> f‘,v inC2¢Dd 4
v o 2 X

[N}
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where ¥y, 2¢° belong to the first- and py', 2¢° to the second
plane, R is the radius of the specimen. Equation (4> allows us
to elliminate c. in equation (1> and it is easy to calculate
the distribution ef G, from there using tomographic methods.

Knowing stresses & and =T the meridional stress S, on
2z zr

the outer surtace of specimen can be determined. In the case
of' containers the meridional stress on the inner surface can
also be evaluated. The meridional stresses play an important
role in predicting the reliability of class containers, and
therefore their determination is of great importance.

We may study alse nonaxisymmetric specimen. In this case
the equilibrium condition for x axes allows us to eliminate
the stress component o . in eqation (1) and equation (12 can
be solved in respect to c, using standard tomographic methods.
The method of tomography is widely used in medicine for
restoring scalar fields [8]. Since we apply the same method
for evaluating the stress tensor components, the method is
named tensor field tomography (7).

For evaluating the distribution of c_ we have to preform
measurements using many different viewing angles (rotating the
specimen round the z axis)., Distribution of the axial stress
o.is determined using Radon inversion.

If the axial stress gradient is not present, we can
calculate Airy stress function F. It can be evaluated from the

egquation

AF=az—x F|=O, 8F/3n|=0. 3D
R R

where A is Laplace operator ¥ is a harmonic function, n is the
normal to the boundary. If we have found F, other stresses in
the plane under investigation can be calculated from the

equations
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cx=—aZF/ay2, 6D

ov=—82F'/'ax2 , C7

v =d°F oxay. Ced
Xy

The method for complete determination of stress
components described here can be used only in the case of'
prismatic specimen without axial stress gradient (8].

In the case of specimen of arbitrary shape only
distribution of stress component o _ can be determined Cz is
the axes arcund which the specimen is rotated during

measurements),

EXPERIMENTAL INVESTIGCATIONS

For measurements a polariscope with synchronous rotation
of the polarizer and analiser was used. The optical
retardation was measured using a compensator. As immersion
liquid a mixture of the a-bromnaphtaline and of the sunflower
oil was used.

Figure 2 shows the distribution of meridional stresses at
the internal and external surfaces of a champaygie bottle
before and after opening and figure 3 shows the distributions

of az in two sections.

317 mm

4 5
y 44

L4 Niwr

0 10 -10 0 [MPa]

o ]

o

17

FIGURE 2 Meridional stresses at the internal ot and external
af surfaces of a champagne bottle before (-3 and after

- - -2 opening.
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FIGURE 3 Distribution of o, in two sections of french

champagne bottle before (-3 and after (- - -3 opening.

Figure 4 shows meridional surface stresses in a beer
bottle and Figure S the distribution of c, through the wall in

two sections.
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FIGURE 4 Distribution of meridional surface stresses in a beer
hottle.
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FIGURE S Distribution of the lengitudinal
bottle.

In figure & the axial stress distribution in a fiber preform

is shown.
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FIGURE & A bow tie Lype fiber preform: distribution of 5. -
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CONCL.UST ONS

Using integrated photoelasticity and assuming that
birefringence is weak, several methods for the determination
of different stress components are developed. Application of
the methods is illustrated by examples of experimental

investigations.
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DEVELOPMENT OF DEFLECTION AND STRESSES IN WOODEN BEAMS UNDER
CYCLIC CHANGES OF SURROUNDING HUMIDITY
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Technical Research Centre of Finland (VTT)
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Kemistintie 3, SF-02150 Espoo, Finland

ABSTRACT

This paper demonstrates the development of stresses and
deflection of wooden beams under bending load when the
surrounding humidity conditions change in a cyclic manner. A
solid wood beam with a small cross-section and a glulam beam
with a larger cross-section are considered to study the size
effect. The moisture diffusion problem is solved numerically
using Fick's second law. The resulting moisture content
distributions are used in a structural FE-analysis in which a
constitutive equation taking into account the mechano-sorptive
creep behavior of wood is adopted. Besides cyclic changes with
the moisture content cycles the deflection increases with each
cycle. Similarly, the bending stresses show a tendency to
change.

INTRODUCTION

The creep of wood is strongly influenced by the changes of its
moisture content (ratio of the weigth of contained water to dry
weight). These changes arise from the hygroscopic i.e. water
absorbing nature of wood and the changes of relative humidity
(RH) in the surrounding air. Simultaneous moisture content
change and load bring about deformation, which would not be
caused by moisture expansion and loading consecutively. This
phenomenon is generally called mechano-sorptive c¢reep. An
interesting subject that has not yet been thoroughly
investigated is what happens to loaded wooden construction
members in final use under naturally changing humidity. In the
present paper such situations are simulated by analyzing wooden
beams under cyclic humidity changes and under constant bending
moment using three-dimensional finite element model with
mechano-sorptive material properties. Water diffusion
characteristics which determine the internal moisture
distribution and the constitutive parameters of wood along with
the moduli of elasticity are the factors that determine the
stress and strain state as a response to a known humidity
history and loading.
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DIMENSIONS, LOADING AND HUMIDITY CONDITIONS

Two different size beam cross-sections were analysed. The first
and smaller one was thought to be cut along the grain so that
the pith is located outside the cross-section. The other beam
was a glue 1laminated (glulam) beam with 20 laminae. The
dimensions of beams and pith locations for each cut are
illustrated in Fig. 1la and b.
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FIGURE 1
a) and b) Cross-sections of analysed beams. c) Loading of
beams, L = 1000 mm for the smaller beam and L = 4000 mm for

the glulam beam.

The beams were loaded with a constant bending moment with
linearly distributed bending stress at the ends. Surface
magnitude was 10 MPa compression at the top and tension at the
bottom. The loading is illustrated in Fig. lc.

To simulate the conditions beams undergo in the climatic
environment of the Nordic Countries five different humidity
histories were used. The annual cycles of humidity in a heated
indoors location were modelled with two histories, a moderate
one and a severe one:
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RH 45% + 10% sin(27t/lyr), t 0 ... 2 yrs, (1)

RH 45% + 20% sin(27t/lyr), t =0 ... 2 yrs. (2)

The annual cycle of humidity in a sheltered non-heated
environment was modelled with the following:

0 ... 2 yrs. (3)

RH = 75% + 15% sin(2wmt/1lyr), t

Besides annual cycles the humidity fluctuates also in
shorter irregular patterns due to the temporary changes in
environmental factors. These fluctuations have an irregqularly
changing amplitude and period. For simplicity they were thought
to have a period of about 10 days and an average amplitude of
+10 $ RH and were modelled with the following cycle:

RH = 45% + 10% sin(27t/10 days), t = 0...20 days. (4)

The maximum amplitude of these variations was assumed to be
+20% RH and a corresponding cycle is

RH = 45% + 20% sin(27t/10 days), t = 0...20 days. (5)

Besides the cycles described above there are also daily
fluctuations in the humidity conditions which have a more
regular pattern but because of the relatively slow rate of
desorption and adsorption in wood these fluctuations were not
considered at all. For all cases the temperature was considered
for simplicity as constant at 20°C.

DIFFUSION

The internal moisture distributions in the cross-sections were
first calculated by JAM-2 moisture flow program [1] which uses
finite difference method to solve Fick's second 1law of
diffusion two-dimensionally:

ac a ac ] ac
— = — (Dy — ) + — ( Dy, — ’ (6)
at Ix X ax ay 3 ay

where C denotes water content (kg/m3) and D, and Dy are
diffusion coefficients.

The moisture distribution was assumed to be constant along
the length of the beams. The results of diffusion simulation
were converted into input data for the finite element analysis
for the calculation of stress state and displacements three-
dimensionally.

The values of the diffusion coefficients were assumed to
be equal in all directions in the plane perpendicular to grain
and their values in different moisture content values were
based on 1litterature [2] and range nearly 1linearly from
1.0%10710 m2/s at 0.06 moisture content to 2.8%10” 10 mz/s at
0.20 m.c. The so called sorption curve which gives the
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equilibrium moisture content value of wood at any RH value was
adopted from Zuritz's numerical curve [5] at 20°C temperature.

S8TRESS ANALYSIS

The mechanical material behavior of wood was taken into account
in the finite element analysis by using the constitutive
equation for wood proposed by Ranta-Maunus [3] and its
implementation into ABAQUS structural analysis program [4]. The
constitutive equation is expressed in one-dimensional form

€ = 0/E + (a + mo)ﬁ , (7a)

where € is deformation, o stress, E modulus of elasticity, u
moisture content and a coefficient for moisture expansion. The
notation ° stands for the time derivative. The mechano-sorptive
parameter m has different values depending on whether wood is
drying or wetting:

m, u< o0,
m = nt, u > o, (7b)
mtt, for first wetting.

The creep equation (7) does not take into account the
"normal" viscoelastic creep so that the only time dependence of
the model comes through moisture diffusion.

If relation like (7) is assumed between all components of
stress and strain, the constitutive equation can be generalized
to a matrix formulation for the purpose of three-dimensional
application by the finite element method:

(€} = [S%1(0) + ((a) + [S™S](a))u |, (8a)

(s™S*], u > o
[s™8) = ’ (8b)

[s™57], u<o

where [S®] is the compliance matrix and [S™®] the matrix of the
mechano-sorptive coefficients. The effect of the first wetting
is neglected and only the long-term effects of mechano-sorptive
creep are considered. The numerical values of the matrices are
given in Appendix A.

The finite element analysis was performed with ABAQUS
structural analysis program using a mesh of three-dimensional
20-node brick elements. The implementation uses Euler forward
method for time integration. 48 time increments were used for
the annual cycle and 40 increments for the short-term
simulations.



237

RESULTS

The smaller beam was analysed in all humidity conditions
described in (1)...(5). The glulam beam was analysed only in
the severe annual ones (2) and (3). In all cases the initial
moisture distribution was constant throughout the beam. An idea
of the variation of the internal moisture content can be
obtained through Fig. 2 in which the moisture content resulting
from the humidity cycles are shown in some locations of the
beams' cross-sections. The moisture content throughout the
smaller beam follows well - with only some delay and small
damping - the annual changes of the surface moisture content
which correspond to the RH value of the surrounding air. But
the changes in the innermost parts of the glulam beam have a
considerably smaller amplitude and a greater delay. The short-
term cycles of surface moisture content seem to be able to
penetrate only few mm's from the surface.

molsturs content [-] Beam S50mm x 200mm mojsture content (-] Glulam Beam 140mm x S00mm
.22 .22

o T W s M 0 T2 4 8 b 10 42 14 16 18 20 2 a4

10 12
time [months) tims [months]

moisturs content [-} Beam 50mm x 200mm
a2

o 10 1@ 1" 16 18 2]
time [days)
FIGURE 2
Moisture content histories at different locations indicated in
Fig. 1. Numbering of the humidity histories:

1) RH = 45%+10%sin(2nt/1yr)
2) RH = 45%+20%sin(2nt/1lyr)
3) RH = 75%+15%sin(27t/1lyr)
4) RH = 45%+10%sin(27t/10 days)
5) RH = 45%+20%sin(27t/10 days)
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The maximum deflection of beams against time is shown in
Fig. 3. Besides a periodic change with the cycles of humidity a
gradual increase can be seen to take place in all cases. This
increase seems to be the greater the severer changes and higher
absolute value humidity has.

deflection [mm] Beam S50mm x 200mm detlection [mm] Glulam Beam 140mm x 900mm
1.4 4.6

nu

e TF T4 6 0 16 12 14 % b @ 2 @ 0 2 4 6 ® 0 12 14 65 B ¥ 2 H
time [months or daysl tina [months|

FIGURE 3
Maximum deflection of beams. Numbers refer to humidity
histories as in Fig. 2.

The variation of the bending stress with time is
illustrated in Fig. 4 at top and bottom surfaces and a small
distance underneath the surfaces. The surface stresses vary
according to the shrinking and swelling of the surface layer
and the layer underneath the surface seems to balance these
variations. The reason for the amplltude of these changes in
compression to be greater than in tension are the numerical
values of the mechano-sorptive parameters that increase the
effect of moisture shrlnkage and swelling in the case of
compression and decrease it in tension. Also a slow tendency of
the surface tensile stress to decrease and the compressive
stress to increase can be observed.
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COMPUTER ATDED MEASUREMENT OF STEEL AND COMPOSITE MACHINE
ELEMENTS AND SIMULATION BASED ON MICRO- AND MACROMECHANICS

Heikki Martikka, Harri Eskelinen, Raimo Suoranta
Department of Mechanical Engineering
Lappeenranta University of Technology

P.0.Box 20, SF-53851 LAPPEENRANTA, FINLAND

ABSTRACT

Some tensile and other tests were performed on a low alloy steel with
various grain sizes. Experimental results were analyzed using computer
programs to obtain true stress- true strain curves. These tests were
simulated using dislocation mechanics and dynamics and strain, grain
boundary, solution and dispersion hardening theories of multiphase and
dispersion alloyed materials. Using these macro- and micromechanical
behaviour models the initial discontinuous yielding and the subsequent
work hardening was satisfactorily predicted. Temperature and strain
rate effects were also considered.

INTRODUCTION

Most nominally homogeneous materials are actually multiphase materials
either at macroscopic, microscopic or at  both levels. Inclusions and
second phase dispersions cause inhomogeneities in the stress and
strain fields during deformation. This is due to differences in their
elastic, yielding and strain hardening behaviours and morphologies.

The analysis of the plastic deformation and work hardening of multi-
phase structures is generally done either using micromechanical models
or using continuum mechanics. Karlsson and Linden [1] have studied
two-phase structures using these methods to calculate plastic
deformations of ferrite-pearlite structures having different isotropic
yield and work hardening properties. Mechanies of yielding and
strengthening are reviewed by Ashby [2] and Martin [3].

This investigation is part of a wider program by which it is aimed
to develop and use integratedly micromechanical and macromechanical
models for simulating nonlinear material behaviour and test them
experimentally.

The objective of the present study was to integrate simple but
physically realistic models to simulate observed experimental tensile
test results of a low alloy steel.

MATERTALS AND METHODS

The material used in this study was commercial low carbon steel of type
Fe 37B SFS 200 with composition (in wt %) 0.13 C, 0.20 Si, 0.51 Mn,
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0.017 P, 0.028 S, 0.15 Cr, 0.09 Ni supplied in the form of plates of 3
mm thickness.

Initial state was after hot rolling. Specimens were heat treated
to different grain sizes shown in Table 1.

TABLE 1.
Data for specimens
Grain Rm/ Rm/
Ser. Heat size HB ReL ReH Rm Rmt Rf Z R8 HB

initial .009 139 340 343 447 534 712 .655 3
750 ¢/1h  .012 133 337 338 435 528 801 .675 3.
900 C/1h .025 125 322 324 417 500 900 .672 3
1050C/1h .06 100 137 138 227 275 625 .775 3

o 0w

Legend: ReL = lower yield point, ReH = higher yield point

Rm = nominal UTS, Rmt = true UTS, Rf = true fracture strength after
Bridgman correction , Z = reduction in area. Stresses are in (MPa) and
grain size D in (mm). HB = Brinell hardness

R8 = nominal yield strength at 8 percent linear strain = DPN = HB
hardness

Normal tensile tests and hardness measurements were performed.
Microstructure was studied using optical and SEM photography. Typical
results are shown in Figure 1.

FIGURE 1. Microstructure of a typical steel specimen.
a ) Optical photograph showing the typical microstructure of mostly
ferrite and low volume fraction of pearlite.(Series B /spec.6). Volume
fraction of pearlite is about 0.17.
b ) SEM micrograph of series B showing dimple structure typical of
ductile fracture (Series B/spec. 4). Dimple size 4is about 0.01 mm or
close to the ferrite grain size.

Tensile test curves were analyzed with a program to obtain fully
corrected true stress - true strain curves. A typical tensile test
curve is shown in Figure 2 for series B/spec.3. This material has a
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microstructure which exhibits a strong discontinuous yield behaviour
and strong initial work hardening at the end of the Luders strain.

i 3R R s o 1 8
10
F
[kN]
5
0

0 10 20 AL [mm]

FIGURE 2. Tensile test curve for series B /spec.3. Tensile force is
plotted dependent on the elongation of the specimen (initial length
70 mm).

THEORY OF SIMULATIONS

The studied material is composed of aggregates of ferrite and pearlite
and a dispersion of 1inclusions in the ferrite. It 1is possible to
describe the properties of an aggregate in terms of the mechanical
behaviour properties of the individual constituents if it is known how
strain and stress are distributed between the constituents, and how
they interact during deformation.

The macroscopic constituents are individually also microalloyed in
their individual microstructures. The ferrite contains in addition of
carbon also Si, Mn, Cr and Ni which strengthen the ferrite by solution
hardening and by forming inclusions and precipitates.

The yield stress of two ductile phases

If it 1is assumed that no strain gradients exist at the aggregate
level, so that both phases undergo the same strain, then the stresses
in each phase are different and the yield stress of the composite will
be given by the simple 'law of mixtures':

oy = f oyl + (1 - ) oy (1)

where oy and o, are the yield stresses of the phases in isolation,
and f is the voXume fraction of phase 1.

The yield stress of a hard phase aggregate in ductile phase

In this situation the hard phase is likely to be undeformed at yield,
at which case the yield stress will correspond to that of the matrix.



246

Thus in pearlite-ferrite structures pearlite is found to have only a
small effect on the yield stress. Gladman, Ivor, and Pickering [4]
have adopted an equation:

Oy = flp Uyl + (l - flp) Oyz (2)
where o, and oy9 are the yield strengths of ferrite and pearlite in
isolation, and I; is the volume fraction of ferrite, and exponent p was
found to have a very low value p = 0.01, indicating that the yield
strength of the aggregate was dependent on the ferrite strength until
the structure was almost completely pearlitic.

The yield strength of ferrite

The effect of alloying and polygonal grain size D on the yield strength
of ferrite can be described by the Hall-Petch equation:

oy = 03 + ky D_ll2 = g; + Acg (3)
where o; is the friction stress given by ref.[4] as
oy = K + Aci (4)
where
Aoy = 37 (wtZ Mn) + 83 (wtZ Si) + 2918 (wt% free N ) (5)
and
K = 88 MPa for air cooled material and
K = 62 MPa for furnace cooled material
and k, = 15.1 (MPa mm! 2) when grain size D (mm).

This Hall-Petch formula is typical of a more general formula which
takes into account also that yielding may occur continuously or
discontinuously and the metal may strain harden by various mechanisms.

oy = opug + Aog + Aoy + Aop + Aogg (6)
Let us consider various terms in eq. (6).

It 1is now assumed that the intrinsic strength of pure

polycrystalline material with some mobile dislocations may be

combined to the Luders stress which corresponds to the discontinuous
yielding and subsequent continuous yielding.

°Lud =K (7)

It is also possible to consider them separately as having separate
physical origins. Solute hardening is caused when solute atoms pin
dislocations and cause a strength increment

A oy =a G cl/2 (8)
where c is atomic fraction of solute and a is some constant.

Assuming a linearly additive contribution of various sources of
strength the solute hardening may be associated to the stress Ao; of
eq. (5) proposed in ref.[4]. Thus

AUM = AOi (9)

Increase of dislocation density hinders motion of dislocations and
leads to increase of yield strength by an amount:
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where p is dislocation density and B is a constant. Dislocations may
be classified as geometrically necessary and statistically stored.

In a two-phase alloy deformation gradients cause geometrically
necessary dislocations to be stored close to particles. Increment of
hardening caused by particles is described by Ashby [2] as

b f €p i
Aop = C G [ ] (11)
d

where d is the average particle diameter, € is plastic strain, f is
volume fraction of hard equiaxed particles in a ductile matrix with
Burgers vector, b, and shear modulus, G. C; is a constant {21:

Cp = 0.25 and
M = 2 is orientation factor for bcc crystals.

The factor M is used to transform single crystal shear stress =
vs shear strain g relation t(g) into polycrystal o(e) relation by
t= o/ M, g= Me.

If grain boundaries are regarded as obstacles to slip acting with
slip distance equal to grain size D then the increment of yield
strength by grain boundaries is described by Ashby [2] as

r bey 73
D
where
c, = cymd/2 , cg=0.35 (13)

If the strengthening mechanisms interact strongly 1like moving
dislocations and particles, then the effects of mechanisms must be
added nonlinearly as

Ao = (Aoy? + Aop2)t/2 (14)

Transition from elastic to plastic yielding

The onset of plastic yielding 1is described by the dynamical theory of
discontinuous yielding. This type of yielding is prominent in low
alloy carbon steels. Three prerequirements for the occurrence of this
type of yielding are proposed:

1. The first requirement is a low initial number of mobile
dislocations. In bcc metals the in grown dislocations ( 10% - 10

disl/mm? ) are immobilized by interstitial atom locking to give about 1
disl/mm2 initially. [6]

2. The second requirement is a dislocation velocity v which increases
with stress

g n
o [_-] (15)
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where o is the applied stress and Oy is the stress for unit velocity.
It is taken in Ref. [2] as 0, = 180 MPa for v = 1 mm/s. For iron n = 35
is used according to Wyatt et al. [6].

As the number of dislocations increases a linear work hardening
law is assumed [6]:

Ao = ae, (16)

Wyatt et al.[6] estimate g = 3000...4000 MPa. In the Luders
range the effective hardening rate is smaller. Hence the dislocation
velocity is retarded as the back stress Ac decreases the effective
stress moving the dislocations

(17)

3. The third requitrement is rapid dislocation multiplication, involving
double cross slip of screw dislocations and trailing lines of edge
dislocation dipoles, which break up into prismatic loops and
subsequently generate further dislocations by the Frank-Read type
mechanism. The number of active dislocations has been roughly
approximated by [6]:

p = f(py+Cep?) (18)

where f is the proportion of dislocations which are mobile (typically
0.1), €p is the plastic strain , Po is the initial dislocation density
(disl/mm? ). For decarbonized iron C = 1.6 107 and a = 0.8 and for
0.2 per cent iron C = 4.7 105 and a=1.5 [6]. Now values C = 1.107
and a = 1 were chosen.

The dimposed strain rate de/dt equals the number of mobile
dislocations moving with velocity v and contributing strain b

e = 0.5bpv (19)
where the factor 0.5 averages the various orientations of slip planes.

When equations (17), (18) and (19) are combined then the stress-
strain curve at initial discontinuous yielding is obtained as:

(e} = AO + ULud (20)
r € * Eraf 1/n
o =4q ep + o ]
0,5 b v, f Ranf*Tempf ( Po + C epa )
(21)
where Eraf is a factor for changing strain rate , Ranf is a random

factor for simulating the statistical effect of obstacle distribution
on the dislocation wvelocity and Tempf is a factor used to apply
thermal activation.

RESULTS

First the nominal stress-linear strain test curves were converted to
true stress - true strain curves. Typical result 1is shown in Fig. 3
for series B, spec.3.



249

UET0Z.BAS -program by Heikki Martikka LTKK/KOTE,14.2.1991

| Tensile test of low alloy steel specimen number specno = 3

Horizontal scale x: plastic strain, etod , en (-.1,.58)

Vertical scale y: true and nominal stress (HPa) (@, 1668)

I~ Rel ReH Fnt Rm (fPa) Iemp(C) grain(mm) = 2952 382 45?7 377 758 6.8118
2 Su So apr Bridg SigBrid (MPa)

0.7187 ©.4580E-86 3.8666E-85 0.9827 1.1978 798.4

— elud Rlud eg Rat n ¥ e
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linear §tmin
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FIGURE 3. Conversion of a test curve to true stress -true strain scale
( Series B /spec.3 ). Curve C shows nominal stress-linear strain, curve
B true stress - true strain and curve A shows application of Bridgman
correction to curve B.

Results of simulation of the tests are shown in Figures 4 and 5.It
may be seen the simulated curves fit reasonably with the experimental
curves considering many uncertainties in the theory of the models and
their parameters.

YIELDPZ.BAS - progran by Hefkki Martikka LTKK/XOTE,18.2.1998

Simulation of tensile test of low alloy steel using dislocation mechanics
Horizantal scale x: ep = true plastic strain ( from -.1 to .58)
Uertical scale y: sig (MPa) = true stress ( fron 8 to 1600)

I~ Parameters in the dislocation density model r = f ( rdz + c» ep”aa )

f rdz ¢ aa r= .1 188 1E«7? 1 2738185

Grain sizes (mm) grain(1), grain(2), grain(3) = .812 .B25 .86

— ssig sigk DsH DsT DsK6 siglud Spetch sigo grain ky

293 8 3 44 088 43 99 48 B8.6688 22.8

. grain = .86 EXPERIMENTAL

Grain size
D (mm)

500 (—

\ 0.012
SIMULATION
I Grain slxe
0 ﬂ?!
c(€o) O (zm)
MPa
R X N e
0.025 ) - “\g.060
9.025

TENSILE TEST BAR
WITH LUDERS STRAINS

0.060

ep = true plastic strain
| | | |
° 0.1 0.2 0.3 c.

FIGURE 4. Comparison of true stress - true strain curves. Experimental
curves and grain sizes D are: B/3 with 0.012 mm, C/11 with .025 and
D/16 with 0.06. Simulated curves are plotted with grain sizes D =
0.012, 0.025 and 0.06.
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YIELDPZ.BAS - Program by Heikki Martikka LTKR/KOTE,23.2.1991

— Similation of tensile test of low alloy steel using dislocation mechanics
Horizontal scale x: ep = plastic true strain (-.8082 - 6 - .6081)

Vertical scale y: sig (MPa) = Luders stress (8, 568/5)

Parameters in the dislocation density model r = £ ( rdz + ¢ » ep”aa )

f rdz ¢ aa r= .1 188 1E«@7 1 Z738B185

— Lincar strain hardening rate q = Dsigsrep of the Luders region 288
Paremeters n, Sigo of the dislocation velocity v = ( Sig/Sigo )*n 35 46
temperature (X)= T T1 12 rrf q 588 273 580 .8679526 280

50 |—
o (€Eu) =
[MPa]} Temperature T (Kelvin)
I ] e T
Strain rate log(erate)
0
0
ep = true plastic strain 2 anie
FIGURE 5. Simulation of true Luders stress - true strain tensile test

showing initial discontinuous yielding. The curve has been made using
a random factor simulating the statistical obstacle distribution effect
on the dislocation velocities. The effect of changes of strain rate
and temperature are also shown. Effective strain hardening rate is set
to q = 200.

DISCUSSION

Tensile tests are commonly used to obtain restricted information about
the yielding, work hardening and ductility properties of materials.One
goal of this study is to show that much more useful information may be
obtained from tensile tests using computer aided analysis and physical
models. -
It may be seen in Figure 4 that the curves for smaller grain sizes
fit quite well with the tests curves but the large grain specimen is
softer by 30 MPa than predicted. It may be possible that high
temperature annealing has reduced the internal friction stress by this
amount. Grain growth and diffusion may have cleaned the ferrite from
impurity atoms.This effect 1is also possible to take into account
later. Initial yielding may sensitively depend on actual initial
substructure whose model parameters were estimated. The present models
were fitted to data wusing reasonable estimates : ky = 22 ,volume
fraction of particles 0.01, diameter 1 um , initial dislocation density
100 disl/mm%2, a = 1, C = 1-107 and o, = 40 MPa. It is known [6] that
for steels the ratio Rm/DPN is about 3.5. but for series D Rm/HB was
only 2.3.

Results of static tests are related to the fatigue strength of
steels. For example Grosch [7] gives several empirical models 1like a
typical model by Just

Oy = ( 0.24 + 0.4 Z ) Rm (22)

where oy, is ideal fatigue strength in rotating bending test. This
model agrees with the empirically observed constancy of the ratio
Opy/ Bm = 0.5 for steels with Rm < 1400 MPa only within the range
Z = 0.67.. 0.68.

For estimating push-pull fatigue strength amplitude the
suggested models are [7]:

o = 0.2 ( Re + Rm) + 57 (MPa) (23)

zdw
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Ozdw = 0.42 Rm + 40
where Re is the yield strength and Rm = UTS tensile strength.
Application of these gives the following results:

Small grain series B : o, = 224, Oyqw = 211, 182
Large grain series D : opy 124, Ouay 130, 135

This example shows how the usefulness of these microstructure
based models may be expanded to predict more accurately some fatigue
properties from static test data. It is feasible to incorporate models
for estimating thermal activation, strain rate effects, ductile
fracture and wear strength.

CONCLUSIONS

L It may be concluded that the mechanical behaviour of typical
Steels in tensile tests may be simulated semi-quantitavely

using microstructural mechanics of discontinuous yielding and
work hardening.

23 One advantage of this method are that detailed physical
models are utilized much more effectively when they are
unified into a flexible larger model. By comparing these model
predictions with analyzed experimental tensile test curves

useful insight is obtained  for optimizing steel
microstructures as an essential part of macroscopic steel
structures.

3. Not only static strength but also fatigue properties may be

estimated using these models and known empirical models
relating static strength and ductility to fatigue strength.

4, Many technical materials exhibit similar behaviour and are
amenable to similar analysis. In the next stage of this
project relationships between micro- and macrostructural
behaviours are studied further with computer aided methods and
measurements.
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THERMOMECHANICAL MODELLING OF WATER SATURATED POROUS MEDIUM

MARTTI MIKKOLA
Laboratory of Structural Mechanics
Helsinki University of Technology

Rakentajanaukio 4, 02150 ESPOO

ABSTRACT

The governing equations for the mixture of elastic skeleton and

incompressible liquid are derived using the basic principles of

continuum mechanics and thermodynamics. The principle of the ac-
companying local equilibrium state provides the constitutive e-

quations. Darcy’s and Fourier’s laws follow from the dissipative
properties of the mixture. An equation corresponding the classi-
cal equation of consolidation by Terzaghi can also be derived.

BASIC CONCEPTS AND NOTATIONS

A completely saturated soil is considered. Soil particles form
the skeleton of the porous medium and all the pores are filled
with water. The volume fractions of the constituents are B,
(skeleton) and B, (water).They satify the obvious conditions

B.+B,=1520,8,20 (1)

As the sgoil is saturated, the volume fraction of water equals
the porosity of soil M. The true densities of constituents p,
and p, are taken as constants. The mass fractions (mass per unit
volume of porous medium) are PJX and Pwﬂw. The porous medium is
considered as a mixture of constituents, where volume fractions
are defined at every point of the continuum.

The velocities of the particles of constituents are denoted

by U, and U,. The relative velocity of water with respect to

s w
skeleton is U,=U,-U,. The material time derivatives of a

quantity f following constituent k is

d¥f  of -
Tt —§+gradf.uk (2)
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The rate of deformation is

= 1 T
D, =D(Uk)=5{g1'aduk +(gradV, ) } (3)
The displacement vector of skeleton is ﬁs and the infinitesimal

strain tensor is given by the operator D

E,=D(d,)= %{gradl_is +(grad)') -

The general conservation law of continuum mechanics /2/
d - =
—~[AdQ=- [@.Rdr+ [A,dQ+ [AdQ
dt P

Q F) Q ) (5)

is frequently used in this paper. In eq.(5), A denotes the
quantity studied, @ is the flux lost through the surface of the
volume considered, Hd the given rate of production of the

quantity and Hp the unknown rate of production of the quantity.

n is the outward unit normal of surface Q. The local form of
the conservation law (5) is

A (i o .
S +aiv(al+d)-A, =R, in 0 o

where U is the velocity of the material.

BALANCE LAWS OF MIXTURE

The balance laws of mass, momentum and energy for the mixture of
skeleton and water are derived by use of the general
conservation law (6) (see /2/).

The rate of production of mass of constituent k is

6, = %(pkﬁk) + div(pkﬂkl_jk)’ ke{sw}

(7)
The conservation law holds for each constituent
6=00,=0 (8)
The rate of production of linear momentum is
N O] =

m, =-divo, -1, +p. B, L +6U,, ke{s,w}

dt (9)
The balance of linear momentum is
m,+m, =0 (10)

O} is the stress tensor of constituent k and fk the body force
per unit volume. The total stress acting on a surface element is

(0}+0@)ﬁ~ In the application to the soil problem, the inertia
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terms in eq. (9) will be neglected.

The rate of production of energy obtains the form

9 1 paoa ), o 1 oo Ve L @
Ik=—(ek+—pkﬁkuk.uk)+dw (ek+—pk,BkUk.Uk)Uk+qk—Uk.c;k -r -

ot 2 2

-f.U, ke{sw} (11)
The balance law of energy is
IL+1,=0 (12)
In eq.(11l), @y is the internal energy of constituent k per unit

volune, ﬁk the heat flux from the volume to the exterior, ry the
given rate of production of heat inside the body. Again, the
kinetic energy in eq.(11) will be neglected in the application
to the soil problem.

ENTROPY INEQUALITY

Next, the second principle of thermodynamics is evoked. The rate
of production of entropy per unit volume is

k rk
e k >
T) 7 kel (13)

where $); is the entropy of constituent k per unit volume and T

-

o8 | (o .
Y, = T?ti + le(SkUk)+ dlv(

the absolute temperature, which is assumed to be the same for

both constituents. Introducing the free energy ‘Pk=ek—Tsk (per
unit volume) and employing the expression (11), eq.(1l3) can be
brought into the form

= (k) ®) . . - @
)—[d P ys d T}—‘I’kdivuk—m,(.Uk———q“'gTadTHk

= G"'D(U“ at Tt dt T (14)

According to the second principle, the rate of entropy
production is non-negative

T(y,+7.)20 (15)
This is the Clausius-Duhem inequality, which has to be satisfied
for all actual evolutions of the mixture. The expression of
dissipation in eq. (15) is divided, as usual, into the intrinsic
or mechanical dissipation

gl ® L.
d1=2{0'k:D(Uk)—d ¥ s, 8 T—‘Pkdika—mk.Uk}
k

dt dt (16)
and the thermal dissipation
q,.gradl q. gradT
d:-— k = -
! zk" T T (17)



256

It is required that both the intrinsic and the thermal
dissipation are separately non-negative for any real evolution
of the state of the mixture.

CONSTITUTIVE EQUATIONS

The entropy inequality does not directly give any constitutive
laws but rather gives a certain condition to be satisfied in
admissible evolutions of the phenomenon. As a matter of fact,
the constitutive behaviour is determined by the choice of the
variables describing the state and the dissipative properties of
the material and by the choice of the expressions of the free
energy and of the pseudo-potential of the constituents. Here,
the set of variables defining the the state of porous medium is
chosen

{T’ﬂs’ﬁw’n(us)} (18)
The volume fractions, however, are not independent but
constrained by conditions (1). To begin with, smooth convex

functions of volumetric free energies are assumed
¥, =¥, (T.8.8,)
¥, = ¥,(T.5,.8,.0(i,)) (19)

The intermnal constraints (1) imposed on volume fractions are
taken into account by adding the indicator function IB,.8,) (see
/1/) to the sum of free energies of constituents. Hence, the
free energy of the mixture takes on the form

¥ =¥ +¥, +TI5,6,) (20)
The indicator function is multiplied by the temperature in order

to have the internal energy which does not contain |. The

indicator function is a function from R’ to R =RU{+e}

I(8..8,) =0, if (8,,8,) € C, +o otherwise (21)

The set CcR® is the convex set defined by the constraints (1)
(see FIGURE 1)

C={(8..B.,)<R|B, +B, =1.8,2 0,8, >0} (22)
Thus, the constraints are considered as material properties. By
means of the indicator function the free energy is forced to
take only the values which comply with the constraints.

Next, the expression of dissipation (16) will be formed.
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For water, the smooth expression of free energy (19),; is used,
but the indicator function is added to the free energy of
skeleton. To shorten the writing, the notation
p, =24

Ip; (23)
ig introduced. For the non-smooth indicator function, the
concept of subdifferential is used (see /1/)

(ﬁs,ﬁw)e oI(B,.58.) (24)

i.e. the subgradient defined by the set (B,,B,) belongs to the

subdifferential g} of function |. From FIGURE 1 it can be seen

that B,=B, in case B >0, B,>0 while B,2B, in case Bs=1, PB,=0.
Further, it is taken into account that the derivatives (ﬂwﬁj/dt

and dwﬂj/dt are not independent but according to formula (2)

related by
d(w)ﬂ. d(s)ﬁ. .
— =14 .
at - at hegmadh (25)
The expression of dissipation (16) can now be written in the
form
N v, = T E dwﬁs
dl = O'S.D(US)—a—ES'.D(US)—\PSdIVUS —(Bss +Bs +Bws)—dt—+
- - N (w)
+0,:0(0, ) - ¥,divl, —(Bsw +B, +wa)d B _
dt
~{#h, - (B... +8, )erad, +B,,gradf |0, o
Bw
1 (Bs, Bw)

0 /1 B

FIGURE 1.Subgradients of the indicator function of convex set C.

The dissipative behaviour of the mixture is assumed to

depend on the mass flow of water p,B,, (with respect to the
skeleton) and on the heat flow

D = (Dl(pwﬂwl-jw)’ ®, = (Dz(a) (27)

The functions of pseudo-potential @ are required to be convex,
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non-negative and zero at the origin.

According to the principle of the accompanying local
equilibrium state /3/, the intrinsic dissipation is
20, -
o 'pwﬂwuw
p.B,Y, (28)
which is always non-negative because of the properties of ®,. It

1=

is required that the intrinsic dissipation (26) equals the ex-
pression (28) for any real evolution, i.e. an evolution satis-
fying the mass balance conditions (8). Thus, the Clausius-Duhem
inequality will be satisfied, if the dissipation (26) augmented
by mass balance conditions by means of Lagrange multipliers 17,
and 1,

d, +n.6,+1,0, (29)
equals the dissipation (28) for any evolution. This yields the
relationships

-]

=K,
o®=0
P, =—%n§§s -, +B,(B, +B,,+B,)
p,=-%, +ﬁw(Bsw +8B,, +ﬁw)

90, 1

— =l (B, +B,)gradp, +B,,grad, |
apBY,  P.B, { (30)
Above, the division of second order tensors into deviatoric and

spherical parts has been employed, e.g. o=6P-pl, P=- (trc)/3. The
four first equations (30) are the equations of state while the
last one is a complementary constitutive equation. The thermal
dissipation (17) and the dissipation potential @, lead to the
generalized Fourier law of heat conduction

ob, 1
-2 = ——gradTl
29 Tgr (31)
The complete system of equations is constituted by mass
balance equations (8), momentum balance (10), energy balance
(12), constitutive equations (30) and (31) and the condition

(1), altogether 25 equations. The unknowns are 1lﬂwﬂwJL,waa,0;,

A A

g, and B,=B,, also 25 in number.
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APPLICATION

The expressions of free energy (19) and of dissipation potential
(27) are still in a rather general form, limited only by the
choice of variables, and, consequently, so are also the consti-
tutive equations (30) and (31). Here, a specific choice of free
energies is made

¥ = ﬁs{—psCsTln(Tl) + %Ks(trEs)z +uEP:EP - 30 K, (tE (T -T, )}

0

)  T-T
¥ =pB,{-C,T| — |-L——=
P { (To) T } (32)

The coefficients Cg and C, are the specific heat capacities. The

constant L is related to the latent heat of fusion of water ¢:
defining the latent heat as discontinuity of specific internal
energy f=@'—@ ,the relationship f=(C;‘C;NB+L follows. Ty is

the temperature of fusion, 0°C in normal conditions. Ks'“s and

o, are the bulk modulus, the shear modulus and the coefficient

of thermal expansion of skeleton, respectively. Expression (32),
means that water is considered incompressible. The dissipation
potentials are chosen as quadratic functions with constant
coefficients Kz and Kq

-

__L @ =L (G)
=% (p.B.0.) @, = 2K, @ (33)

Use of expressions (32) and (33) in egs. (30) and (31) results in

constitutive equations

o, =B, {2usE£ + Ks[trEs -3¢,(T-T, )] -~ ﬁs}

p, =58,
= k 1] f
0 - 25)
Pu p.B.) p.B.
. kg _
q= TgradT— AgradT (34)

Eq. (34) 5 means that the interstitial pressure of water Dw/ﬂw=

~

B, is indeterminate. Eqg. (34)3 can be recognized as Darcy'’'s law
of water flow in porous medium, and eq.(34), is the classical
Fourier’'s law of heat conduction. The coefficient of hydraulic

conductivity is K=Kg/p,. g is the acceleration of gravity.
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The equations of the problem permit to derive the well-
known equation of consolidation of saturated soil by Terzaghi

/4/.In fact, denoting the porosity of soil by h=f,, and assuming
the stress of skeleton also to be spherical, 0,=-P,1, and the

temperature field uniform, the system of equations can be
written in the form

an . . .
—ﬁ+d1v[(l-n)us]—0

an .o s A
Ht—+d1v(nUs)+d1v(nUw)—0
~grad(p, +p,,)+1, +1, =0
p, =-(1-n)K divu, +(1-n)u
p, =nu

- f
p.ng,; p,ng (35)
U is the true interstitial pressure of water. Further, assuming

the total pressure P=P,+P, to be independent of time and
neglecting the spatial variation of porosity,the equation of
consolidation can be derived

u_ K[(1-n)K, +p —u]div grad( d J
ot .9 (36)
Eq. (36) 1is comparable to the equation of Terzaghi, if the
modulus of compressibility is taken as

M =(1-nK,+p-u (37)
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DISLOCATION CORE STRUCTURES IN METALS

JUHANI VON BOEHM and RISTO M. NIEMINEN
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ABSTRACT

The atomic core structure of the imperfect [112] edge dislocation in gold is studied as a
generic example of dislocation core structures in fcc metals. Molecular dynamics simulation
1s used. The interatomic interactions are modelled by the many-body ATVF and glue models.
Newton’s equations of motion are solved with the velocity-Verlet algorithm. The
computations are carried out using a rectangular geometry with periodic boundaries along the
[112]-direction and fixed boundaries determined by the linear elasticity theory in the
perpendicular directions. The imperfect [112] edge dislocation appears as two partial [112]
dislocations with a stacking fault ribbon in between. The range of the transition from the fcc
stacking into the hcp stacking fault is about 20 A. Most pronounced changes occur near the
edge. Detailed atomic core structures are reported.

INTRODUCTION

The (isotropic) elasticity theory gives for the total energy stored per unit length of a straight
dislocation the following expression:

Kb* (R
w, = In| — |+ w,
4 Ty

(M

where the first term on the right-hand side is the strain energy of the linear elastic field per
unit length, K is a constant (energy factor), b is the magnitude of the Burgers vector, R is the
outer radius of a circular cylinder within which the energy is evaluated (the dislocation line
being the axis of that cylinder), r, is the core radius, and wj, is the core energy per unit
dislocation length [1]. When r, approaches zero the first term on the right-hand side
diverges. This artifact is due to the neglect of the discrete atomic structure.

The purpose of the present study is to obtain realistic atomic core structures in the
neighbourhood of a straight edge dislocation. Although we study the special case of the
imperfect [112] edge dislocation in gold we believe that our results are generic for face
centered cubic (fcc) metals.

The fcc crystal structure of gold is shown in Fig. 1. The [112] edge dislocation (z-axis)
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FIGURE 1. Face-centered cubic crystal structure of gold. a denotes the lattice constant and b the Burgers-vector
of the perfect [112] edge dislocation. b; and b, denote the partial Burgers-vectors. The circles with a bar
represent atoms in the (117)glide-plane (shaded). The circles with a dot represent atoms in the (111)-plane
which contains the edges of the partial dislocations. The small filled circles represent atoms behind this plane.
The open circle represents an atom in the (111)-plane in front of the glide plane.

can be formed energetically most easily because the corresponding Burgers vector
b=au, /2 has the smallest possible length and thus minimizes the stored energy
proportional to b% (Eq. (1)). The (111) plane is most densely packed and acts as the glide-
plane. However, since b contains two atomic planes, it can be further divided into two partial
Burgers vectors b; and by:

b=b+b,=(au, /2 ~au,/6)/2+(au, /N2 +au,/6)/2 . )
Since

b* > b} +b; (3)
the edge dislocation containing two half-planes has a tendency to separate into two partial
dislocations containing one half-plane each.

The starting geometry was prepared as follows [2]. The half-planes I and II were

removed (see Fig. 1) and the half-plane III was moved by —b /2. Then the atoms for x > 0
were displaced using the isotropic elasticity theory [1] by

ux=i arctan(l)+ L 2xy ~
2w x/ 2(0-v) 2*+y

L[U—Zv)ln(mF x } @

xt+y?
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and the atoms for x < 0 symmetrically with respect to the x = 0 plane (v is the Poisson ratio).

In all cases we used a rectangular geometry with periodic boundaries with the period of
v6a or 1.5- \J6a containing 12 or 18 atom planes, respectively, in the [112]-direction (z-axis
in Fig. 1). The (110) surfaces were fixed and the (111) surfaces were either free or fixed
(thickness of the fixed layer 8-10 A).

METHODS

The traditional pair-potential approximation (PPA) has following deficiences. The Cauchy
ratio C,,/C,, in PPA equals 1 whereas in reality it equals 1.5...3.7 for fcc metals. The energy
ratio e, /e, (e, is the vacancy formation energy, e, is the cohesion energy/atom) in short-
ranged PPA equals about 1 whereas in reality it equals 0.25...0.36 for fcc metals. To describe
these and also some other properties correctly one must go beyond PPA. One practical way
of doing this is to use the recently derived semiempirical many-body approximations where
the total energy is written in the following generic form [3-9]

V_l N' N 5
_EZ <I)(Ir‘.—r}|)+i§‘U(n‘.) &)

ij=1
where
N
m=3 pln-) ©

j=1

In Egs. (5) and (6) @ is the mainly repulsive pair-potential, r; is the position vector of nucleus
i, U is the mainly attractive many-body potential, ' indicates that i = j term should be omitted
in the summation, n; is the background density at nucleus i determined by the density
functions p of the surrounding atoms. By taking the proper derivatives of Egs. (5) and (6) we
get for the force acting on nucleus i the following expression:

F = _Viv =
! 1 ] i 1 r‘ - rj
:—z {d) (|t;.—rj|)+[U (ni)+U(nj)]p (|l}—rj|)}|r "l €))
i il
where ' in @, U and p denotes a derivative with respect to the argument.
Newton’s equations of motion
mi=F  i=12,-N ®)

(m is the mass of the atoms) were solved using the velocity-Verlet algorithm [10]:
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a) r(t+61)=r()+8tv,(H)+ %&Zai ®
b) v,(r +%5t) =v()+ %Sta,.(t)
¢) at+8t)=F(t+5t)/m (from Eq.(7))

i(
(1+61)= vi(t+%5t)+%5tai(t+ ar)

&)

d) v,

i

where the time step 8¢ used was 5 fs, v, =f and @, = ¥ .

The solution of Egs. (8) corresponds to the normal molecular dynamics (MD) where the
number of atoms N, the volume of the system V and the total energy E are constant. We also
used modified equations of motion [11,12]

Lr-¢:
m

i

where & is the friction coefficient controlling absolute temperature T, Q is the thermal inertia
parameter, 7, is the degrees of freedom (= 3N) and kg is Boltzmann’s constant. The solution
of Equations (10) corresponds to the constant - NVT MD. Equations (10) were solved using
our modified velocity-Verlet algorithm [13].

i =
(10)

™M=

mr’ -n, kBT)

1

1l

RESULTS AND DISCUSSION

All the simulations either with the ATVF [8] or glue model [5,6] and either with free or fixed
(111) surfaces resulted in a quite similar structures. Figures 2 and 3 show as a typical

o @e@ég D) g
, O@gag PIPo
3 8 PP
962 @9980
0°0~0P0C0C°

5A X

FIGURE 2. The structure of the left partial dislocation. The atoms of the glide plane (circles with a bar) and the
two neighbour planes are shown. The filled circles represent the atoms of the edge of the partial dislocation.
For further information see Fig. 1 and the text.
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FIGURE 3. The structure near the edge of the left partial dislocation. The filled circles represent the atoms of
the extra plane. The circles with a bar belong to the glide plane. For further information see Fig. 1 and the text.

example the structure of the left partial dislocation core obtained from an ATVF constant-
NVE MD simulation (Eq._(8), 4694 atoms out of which 408 fixed on the (110) surfaces,
17880 time steps, free (111)surfaces, period v6a with 12 atom planes, x- and y-dimensions
of the movable region 180 and 40 A, respectively). The distance between the left and right
partial dislocations is 33 A that should be compared with the estimated value of 40 A. Ttis
immediately obvious that the crystal near the edge of the partial dislocation is by no means
“bad”. The change from the fcc stacking on the left hand side in Fig. 2 to the hcp stacking
fault ribbon on the right hand side takes continuously place in the region of about 20 A. The
effect of the extra half plane (black circles in Figs 2 and 3) is to distort the surroundings quite
regularly. As can be expected the most pronounced changes occur near the edge.

CONCLUSIONS

This study shows that the molecular dynamics simulation is a powerful method in obtaining
microscopic information about extended defects in crystals. This paper presents the detailed
atomic structure of the [112] imperfect edge dislocation in the fcc metal gold. The atomic
arrangement around the partial dislocation is seen to be quite regular.
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INFLUENCE OF THE FOUNDATION ON THE COMPRESSIVE STRENGTH OF
THIN PLATES

PAAVO HASSINEN
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ABSTRACT

Buckling strength values of plates supported by an elastic foundation are needed in the
design of some civil engineering applications. In the literature several foundation models
have been presented beginning from the simple Winkler's foundation model to elastic half
space models inclusive nonlinear and tensionless foundations. The paper studies the buckling
behaviour of long simply supported plates on elastic foundations, The linear buckling stresses
of these plates can in many loading cases be solved analytically and some expressions are
given in the paper. The evaluation of the ultimate compressive strength is a more complicated
problem. In the paper some numerical results are given and discussed.

INTRODUCTION

The analysis of beams and plates on elastic foundations is a very common problem in
the civil engineering practice. The usual question is the influence of the foundation on
bending moments, shear forces and deflections of a beam or a plate. The most often used
elastic foundation models are the Winkler's foundation, two-parameter foundation models
and the elastic half space. Beside the elastic foundation also nonlinear elastic and viscoelastic
foundation models are developed especially for the use in geotechnics. The methods of the
analysis of beams and plates supported by a foundation depend very much on the chosen
foundation model. If the horizontal displacements are neglected, as it is done in most one-
and two-parameter models, the solution can be found by solving the governing differential
equation for a plate (1), in which the additional parameter is the foundation coefficient C. In a
general case a coupled problem of the foundation and the structure has to be solved. To study
the behaviour of beams and plates on viscoelastic or nonlinear elastic foundations efficient
iterative procedures have been developed. The choice between the foundation models
depends usually on the possibilities to define the foundation parameters experimentally.

?w Pw 3w
DV4w+Cw=q+Ng—+2ny—+N;—
ox2 oxay ay2

¢y

In some civil engineering applications beams and plates on an elastic foundation are
loaded by compressive forces in their plane and therefore, the buckling strength value of
them is needed. Among these e.g. piles and sheetings in the ground and face plates of sand-
wich panels can be mentioned. The utilization of the stiffness and the strength properties of
this lateral support is beside the theoretical interest a thing of the utmost consequence also in
the practical design work. This paper discusses the influence of the linear elastic foundation
to the behaviour of uniaxially compressed long simply supported plates. The significance of
the slenderness of the plate and the stiffness of the foundation are studied and analytical and
numerical examples as well as some practical calculation models are given. The paper is
limited to local buckling problems. The global buckling phenomena and the interaction
between the local and global failure modes in plated structures are not studied.
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POTENTIAL ENERGY EXPRESSIONS

The total potential energy of an uniaxially compressed plate with straight boundaries
and supported by an elastic foundation can be given to a half buckling wave length by

U=UB+Us+Uc-V

where the strain energy of the bending of the plate
D
Up=- il (Aw)?2 dxdy
200
the strain energy due to the stretching of the middle surface
t
Ug=—1 ?(AF)Z dxdy
2E 00
the strain energy of the foundation consisting of an elastic half space
U= : Ja P J?O dxdyd
c= P 000((7x Ex + Oy &y + 07 &5 + Tyy Yay + Tyz Vyz t Tzx Yzx) dxdydz
or of the foundation with negligible horizontal displacements and stresses
Up= : Ja F Ioo dxdyd
C=5 000 (Gz &2 + Tyz Yyz + Tzx Yox) dxdydz
or
1
U =—JaFCw2dxdy
C 200
and the work done by the axial force N, (y)

t ow
V=t g Ny()uix=a,y)dy = Ef)(r; Ny (y) (5;)2 dxdy

@

3

C)

(Ga)

(5b)

(5¢)

(6

The stresses and displacements are assumed to vanish in a linear way or exponentially

over the height of the foundation.

FIGURE 1. Notations used to an uniaxially loaded plate on an elastic foundation.
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COMPARISON BETWEEN THE LINEAR BUCKLING STRESSES

When evaluating linear buckling stresses of a long plate strip, simply supported on its
longitudinal boundaries (x, y = 0, a) the following sinusoidal expression can be assumed to
the deflection w(x,y,z)

w(X,y,z) = L hy(z) w,, sin (nx/a) sin (n wy/b) @

where a is an still unknown buckling half wave length. The deflection w and the horizontal
displacements u and v in an elastic half space are solved using the Navier's equations for
homogeneous isotropic bodies. Complicated mathematical calculations produce the following
foundation coefficient to a thick foundation layer with vanishing displacements at the bottom
of the foundation and vanishing horizontal displacements on the top of the foundation

2(1-vp) Eg 1 n2

=— " " n|=+— 8
(1 +v)(3 - 4ve) a2 b2 &

Cy

which is dependent on the wave length of the buckled plate.

The function hq(z) to the foundation model with neglected horizontal displacements
over the whole depth of the foundation (egs. 5b, c) is usually written by a simple expression

hy(z) = e™kZ )

k is a decay factor which is solved from the condition 0U/dk = 0. Assuming Gyz =G,y =
G, the method results a foundation coefficient

/1 n2
C2=1t\JEcGC a_2+b_2 (10)

Using the equations (7) with hj(z = 0) = 1 and (5¢) and minimizing the total potential
energy expression (2) with respect to wy, gives the following equation to the buckling stress

1t2E t
2 (11)

Ocr 1,2=K1,2m "
1 1
where Ky 5 = (q-) +020)2 + Ry 5 ¢ (;2+ n)1/2 (12)
o =ab (13)
_Eg¢ 12(1-v3)  2(1-vy) b)3 14
" 13 (Q+voB-4vy
VEcGe' 12(1-v3) b
Ry= EC C 5 (15)

The critical buckling stress is finally found by minimizing the coefficient K with
respect to ¢. The first eigenvalue (n = 1) is shown to be critical in the cases 0 < Ry <200
(Fig. 2).

Several approximate formulae have been given to the critical buckling coefficient K.
Using the least squares method the author has defined to the elastic half space foundation
model the second and third expressions in table 1. These expressions are exactly valid to steel
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plates (v = 0.3) and to foundations with a Poisson's ratio v = 0.25. The fourth expression in
table 1 is found by Davies and Hakmi. It is based on experimental results of polyurethane
foamed sandwich panels and is therefore suitable to the practical design work of these panels.

TABLE 1.  Approximate buckling coefficients for uniaxially compressed long plates
simply supported on their longitudinal edges.

Foundation Buckling coefficient Parameter
Cb b
Winkler's foundation | K = 2[R + 1)1/2 + 1] R=0.112— ()3
E t
by Rell3
elastic half space | K=0.703R2-0415R+4.00 |R= —(——)
Er, Vv A
cr Ve
b , EcGey /6
elastic half space K=0985R2-0474R+4.00 |R=- ( )
Ec, GC t E2
b . E~G )1/2
design, el. half space | K=[16 + 7R +0.002R2]12 | R=0.35 ()3 =
Ec, Ge 12/ t E

An important special case can be found by giving to the equations (11) and (12) b — oo,
Minimizing the buckling stress with respect to the wave length a, the following expressions
to the critical wave length and to the stress of this column-type plate strip can be found. The
approximate expressions above are based on the Poisson's ratios v = 0.3 and v, = 0.25.

1 +v)B-4v\3 /E /3 EZ \l/6
a =m<—2—> <— > ~ 1816t <—> (16)
M2(1-v3(1-vy) /[ \E/ EcGe/
1 \I3, E2\U6 g2 \l/6
() ) e () -
6(1-vo) ECGC ECGC
(1-ve)? 173
Ggp 1 = 1.8899 ( ) (Ec2B)13
el 3 +v2G-dv2a vy C
(18)
~0.823 (ECG(E) /3
EcGCE )”3
Gcro = 1.8899 (7 ~0.852 (EcGcE)!/3 19
cr,2 2049 (EcGcE) (19)

The influence of the foundation stiffness to linear buckling stresses and to the buckling
wave lengths in comparison with the pure steel plate (K = 4.0, ¢ = a/b = 1.00) can clearly be
seen in the fig. 2.
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FIGURE 2. a) Buckling coefficients Ky and b) relative half buckling wave lengths a/b
depending on the parameter Ry and the number of buckling half waves in y-
direction.

COMPARISON BETWEEN THE COMPRESSIVE STRENGTHS

In evaluation the compressive strength of plates on elastic foundations the b/t-ratio, the
boundary conditions and the yield strength of the plate as well as the stiffness of the founda-
tion are important parameters. One of them can be dominant so, that the plate behaves like a
plate without any lateral support, e.g. low b/t-ratios, or like a beam-column in an infinite elas-
tic medium, e.g. very stiff foundation. No analytical models are available to evaluate the
ultimate compressive strength of these plates.

For comparison numerical analyses were performed using the ABAQUS finite element
code. In the analysis four thin plates were modelled, two of them with and two without a
foundation. The plates are simply supported on their longitudinal edges (x, y = a, b) and their
b/t-ratios are 100 or 500. The foundation model in the analyses corresponds the elastic half
space in which the horizontal displacements are taken into consideration (Fig. 3). The lengths
a in the models were defined using the analytical calculation methods and they correspond
the first critical wave length.
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FIGURE 3. Deformed FEM models of thin steel plates on an elastic half space. One half
wave length and the full width of the plate is modelled. The faces consist of 8 x
8 8-node shell elements and the foundation of 8 x 8 x 2 20-node solid elements.
a) b/t = 100 and b) b/t = 500.

The results of the numerical analysis show the both linear buckling stress and the ulti-
mate compressive strength to increase due to the foundation (fig. 4 and table 2). The increase
is more significant to the more slender plate (b/t = 500), to which the foundation is a more
dominant stiffening medium compared with the effect of the longitudinal edges. The founda-
tion increases also the post-buckling axial stiffness (E = do/de), the more the more slender
the plate is. In the post-ultimate limit state the rigid plates (b/t = 100) show a fast decreasing
load bearing capacity while the more slender plates keep the load level high, but are involved
in large deformations and deflections.

The buckling wave length decrease with the increase of the stiffness of the foundation.
This yields high bending moments and bending stresses in the post-buckling area to plates on
an relatively stiff foundation. So the strains caused by axial stresses and bending together
exceed the yield strain faster in the plates supported by a foundation than in the plates
without lateral continuous support. Large strains are not concentrated to the axial load
bearing longitudinal edges, but occur also in the middle surface of the plate, where the high
bending stresses are. The plastic strain field in the top and bottom faces of the plates on an
foundation is more smooth and wide compared with the plates without foundation, in which
the plate is yielding more locally near the longitudinal edges at the ultimate limit state.
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FIGURE 4. a) Out of plate deflection and b) mean axial compressafe strain of two_steel
plates with and without a foundatlan E = 210000 N/mm“, Ec = 1 N/mm?, v =
0.3,vc=0.25 and f =320 N/mm~.

The difference in the strain fields between the plates with and without a lateral founda-
tion and further between the "rigid" (b/t = 100) and "slender” (b/t = 500) plates can be seen in
figs. 6 and 7. The relative difference between the ultimate compressive stress and the stress
corresponding the first yielding is smaller in the plates supported by a foundation. This is
because of the high and wide bending strain fields and reduced bending stiffnesses in a wide
area in the plate after the first yield loading level.

For the engineering design work some simplified approximate formulae have been
developed to evaluate the compressive strength of an axially loaded long plate supported by a
foundation. The fourth expression to the buckling coefficient K in the table 1 /2/ is based on
the foundation model no. 2 in the previous chapter (eqs. 5b, 10 and 15). This expression
together with the well known Winter's formula (20) is developed and used in the design of
face plates for foam core sandwich panels. The formula (20) is found to be valid in the area 0
< R2 < 200.

o, = fy (1-0.22/A)/A < fy (20)

where
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FIGURE 6. Axial strains in the steel plate a) in the place of the maximum out of plate
deflection (point x = a/2 in the fig. 1.) and b) in the place of the vanishing out of
plate deflection (point x = a in the fig. 1.). b/t = 100. The numbers refer to the
locations of integration points in the shell elements in the fig 5.



275

TABLE 2. Characteristic strength values (&x) to the plates used in the comparison. The
values on the last line are calculated using the expression (20).

b/t 100 100 500 500
foundation no yes no yes
a/b 1.00 0.83 1.00 0.244
linear buckling stress, MPa 75.9 97.7 3.03 41.8
stress corresponding 119.0 132.7 42.5 60.8
first yielding, MPa
ultimate strength, MPa 144.5 156.3 43.5 69.1
ECCS-model (20), MPa 139.2 153.9 - -
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FIGURE 7. Axial strains in the steel plate a) in the place of the maximum out of plate
deflection (point x = a/2 in the fig. 1.) and b) in the place of the vanishing out of
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integration points in the shell elements in the fig 5.



276

CONCLUSIONS

The foundation under an axially loaded slender plate increases the buckling stress and
the compressive strength of the plate. The extent of the increase depends on the b/t- and
o./f,-ratios and on the stiffness of the foundation, so that it is higher to slender plates on a
rc‘iatizely rigid foundation. The foundation changes the shapes of the eigenmodes. The mode
with one buckling half wave in the transverse direction is not necessarily the lowest eigen-
mode to a long simply supported plate. Further, there possibly exist several eigenvalues very
near each other, which makes the numerical analyses strongly sensitive to the intitial mode
and to the solution strategy.

NOTATIONS

half buckling wave length in x-direction

width and effective width of the plate

f. yield strength of the plate

i number of buckling half wave lengths in y-direction

t thickness of a plate

w deflection and deflection coefficients of the plate

G, Cq, Cy foundation coefficients

E Young's modulus for the plate

Ec, G(i( Young's modulus and shear modulus of the foundation
» B2

K, K buckling coefficients
N (yg axial load
Rﬁ{ R R2, parameters
vV, Ve Poisson's ratio of the plate and of the foundation
A, relative slenderness of the plate
) =a/b
Ocp Oy critical axial stress and compressive strength of the plate
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ABSTRACT

As an introductory example an approximate calculation of the post-buckling behaviour of
the elastica is presented. Using a simple interpolation for curvature, and integrating the
displacements from this approximation, yield fairly good results in the whole post-buckling
regime with relative ease.

The paper also discusses the generalization of this procedure, which can be utilized in
the finite element method. The construction of element equilibrium equations are briefly
described.

BACKGROUND

Ideas to this study emanated during the course of structural stability held in the Helsinki
University of Technology during the autumn period 1989. Basic aim was to demonstrate the
post-buckling behaviour of continuous elastic systems, such like beams, plates and cylindrical
shells. For example, evaluation of the post-critical equilibrium path of an inextensional Euler
elastica requires lengthly, but however, quite straightforward calculations [2]. Even the ap-
proximate procedures result in lengthly manipulations, when the standard potential energy
formulation® in connection with the perturbation approach is used. Also the validity of results
are quite limited.

A simple remedy is to approximate the strain quantities (i.e. curvatures in beam and
plate structures) and integrate the displacements, which are only needeed in the expression
of the potential of external loads.?

“permanent address: Department of Structural Engineering, Helsinki University of Technology
1Standard potential energy formulation = strains are derived from assumed displacement field.
2 And of course to fulfill the boundary conditions.



AN

Figure 1: Inextensional simply supported beam.

AN EXAMPLE

As a simple example a uniform inextensional simply supported compressed beam is considered,
see Fig. 1. Expression of the total potential energy has the form

L
Ip =1 /Em?ds — PA(k), (1)
0

where ET is the bending stiffness, L the length and & the curvature of the beam. The external

compressive force is denoted by P and A is the end shortening.
The most simple approximation to the curvature & is naturally a constant. After a few

lines of simple manipulations the potential energy is rewritten as

2 L
Mp = } BIKL - PL(1 - —sin=5)).
From the stationary condition, the following relationship between load and curvature is ob-

tained pL -
L
(2)

—_— = ) ]C = KL.
EI smk! k2{2! — cos(k/2)

Usually the load-displacement curve is of interest. So, to accomplish the analysis the midpoint
deflection is expressed as a function of curvature

v 1
I~ E[l — cos(k/2)], (3)

and the resulting path is shown in Fig. 2
Much better accuracy is achieved when a trigonometric approximation

k(8) = Ko cos %
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is used.? Integrating the slope angle from the fundamental equation:
de
— = 4
= (4)

the expression

(L-4)/2 L/2 L/2
d—/ Od—/ (ko2 sin ™*)ds
z= [ cosbds= [ cos(ro—sin—
0

/2
= A(ke) = L[1 - % / cos(asin z)dz],
0

to the end shortening is obtained (@ = koL/7,z = ms/L). Expanding the integrand into a
Taylor series, integrating and inserting it into the potential (1), the following relation can be
obtained from the stationary condition

PI? B k (5)
EI ) i k.Zn—l(_l)n+1 1o, (2( + 1) 2
Z (2n—1)in?e 2n — 24

where k = koL. The midpoint deflection v is integrated from the expression

L/ L/2

v

. . L, 7ws
/dy: /s1n0ds=— / sm(ﬂo;Slﬂf)dsa
0

0 0
which gives

T = (2n + 1)l antd

e

1& - [ 2 -2
[H 2n — (20— 1)] : (©)

=0
Results of Equations (5) and (6) are shown in Fig. 2.

AN ASSUMED CURVATURE BEAM ELEMENT

In this section a simple non-linear beam element is derived from an assumed curvature dis-
tribution. As a model problem, a cantilever beam is considered.
Legendre polynomials
c 1 d? g, ®
Pp(§) = oD e [(E -1 ] (7)

are chosen for the curvature interpolation. The constant ¢ is obtained from the normalization

requirement*

1
JRHGLEE
-1

3Note: s is measured along the beam’s axis.
“When integrated over the length of an element: % A0 fil P2(¢)d¢ = AON
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Figure 2: Horizontal deflection at the beam’s midpoint. Solid curve is the analytical solution.
Dashed line corresponds to Equations (2) and (3). Dotted lines are the results of using
Equations (5} and (6), when the sum is taken with two, four or ten terms.

Polynomials up to order three are
Po(§) =1, Pi()=V3E, Py(€)= ¥E(36%— 1) and Py(€) = YIE(1562 - 9).
Thus, the interpolation for the curvature can be expressed as
n
K(€) = Y Bi(€)ki, (8)
=0
where the curvature parameters are denoted by ;.

Derivation of the equilibrium equations for an arbitrary element (e) can be started from
the basic relationship (4), equations

j—z = cos b, % =siné, (9)
and the potential of an element e
h(e) hle) h(e)
Hgf) =3 / EIx%ds — / fods — / guds, (10)
0 0 0

where f and 7 are the distributed vertical and axial loads, respectively. From the fundamental
equations (4) and (9), expressions for the axial displacement u and the vertical deflection v
can be obtained
R(€) — Aule) s
u(®)(s) = uge) + Aul®)(s) = uge) + ) - / dr = uge) + Ale) /cos 6ds, (11a)
0 0
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2@(s) = ol + AvE)(s) = v{®) 4 / sin 6ds, (11b)
0

where uge) and vge) are the displacements at the left end of an element e. Performing transfor-
mation to a dimensionless coordinate system & € [—1,1] and integrating the rotation 8 from

the equation (4) yields®
0(&; ki) = 61 — AO(E; K4),

where

AB(E k) = 113 PHER:
=0

and the notation P} means polynomials which have been integrated from the Legendre poly-
nomials (7) of order ¢, i.e.

¢
PHO) = [ PUO)ac.
-1

Translational displacements (11) can be expressed in the form

¢ ¢
u(€) = u1 + h[1— % /cos 0((;ki)d¢l and v(é) = + %h/sin@((; ki)dC,
-1 -1

which after simple manipulations can be written as

w€)=u +h{1- -;- (&5 ki) cosby + L, (& k:) sin01]}, (12a)
v(€) = v + %— [Ic(é; ki) sin by — I,(&; k;) cos By], (12b)

where

4 ¢
I (& k) = /cos AB(C; k)¢ and I (& k) = /sin AG(C; k;)dC.
-1 =

For construction of a practically useful element a nodal degrees of freedom should consist
of translational displacements and rotations, i.e. (ug,v1, 61, ua, v2,6;). However, in the model
problem considered, the discretized equilibrium equations can be formulated elegantly by
using only rotational degrees of freedom and assuming constant curvature. The curvature
parameter g is expressed in terms of rotations

62 — 6,

0 = 0(1; k) = 61 — AB(1;R0) = ko=~ . (13)

Carrying out the manipulations on the translational displacements Au and Awv, give

Au = h(1 - 02301 sinez’;g1 cosaz-;e1
S 2h ., O+ 6 6y — 61
Ay = 0s .

90, " T 2 T3

), (14a)

(14b)

5The element label (e) has been dropped out for convenience.
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computed
number of | critical load P/Pg
elements | Pg = zn EI/L*

1 1.2159
2 1.0525
4 1.0128
8 1.0031
30 1.0002

Table 1: Critical loads of the model problem,

Parameters uq and vy of an element e are calculated from
e—1 . e-1 .
uff) S Z Au®  and vge) = Z Av, (15)
=1 i=1

Tnserting now Equations (12),(13),(14), and (15) into the potential (10), the non-linear equilib-
rium equations expressed in terms of rotations can be obtained from the stationary condition.
These parametrized equations can be solved by using a continuation algorithm.

The model problem is solved under a single concentrated compressive load. Obtained
critical loads are shown in Table 1. Uniform element meshes are used. Convergence seems to
be quadratic as it would be expected.

The above described procedure seems to be difficult to generalize for two-dimensional
problems, such like plates and shells. Hence, a more conventional approach to formulate the
assumed strain elements is described in the next section. It might also give some insight to
the shear locking phenomena.

MORE ON ASSUMED STRAIN ELEMENTS

Tormulation of an assumed strain element is started from the generalized variational principle,
also called the Hu-Washizu principle, see Ref. [3] p. 434,

llg = /V {a(eij) + ®(us) — 0ij [eij — 5 (wig + wji + wrires)]} 4V +L U(u;)ds,  (16)

where it is assumed that the displacement field u; satisfies the kinematical boundary con-
ditions and ®, ¥ are the body force and surface traction potentials. Straightforward use
of the Hu-Washizu principle results in a system where all of the three independent fields:
displacements wu;, strains e;; and stresses oy; are separately approximated. Practically it is
not reasonable to have independent approximations to both strains and stresses. Thereby,
stresses are expressed as functions of strains by using the constitutive law o0;; = Cijpient-

Limiting the present discussion only to geometrically and materially linear case, the Hu-
Washizu functional for a Timoshenko beam takes the form

my = 1 /I(EIHZ + GAyY)da — /If_vdm - /1 [ETk(k + 64) + GAY(7 — v0 +0)] da,
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which can be arranged to the form
My =1 / (EIR? + GAY?)ds — / Fdo - / EIRf odz — / GAv(ve — O)ds.  (17)
I I I I

It is well known, that standard approaches to construct a Timoshenko beam element
where equal order interpolation for deflection and rotation are used, will lock in a limiting
case when the thickness ¢ of a beam tends to zero. This is due to the shear energy term
a, = % JiGA(ve — 6)2dz which does not have the possibility to vanish when a beam is
subjected to a constant bending moment, because the shear strain will vanish only if v, — 8,
which is possible only if v — 0 and § — 0. A natural way to circumvent this problem
is to interpolate deflection by using an interpolation polynomial whose degree is one order
higher than the one used for the rotation. So, the approximate displacement field has the
possibility to satisfy the vanishing shear strain condition. Fortunately, exactly the same
element equilibrium equations are obtained, when a reduced numerical integration is used,®
which also results in a much more economical computation, especially in materially non-linear
cases.

Substituting the interpolations

k=Ngqx, 7=Nyqy, v=N,qy and 6=Ngqe

into the functional (17), the discrete compatibility and equilibrium equations

A-mc 0 0 Buﬂ ¢ 0

0 A, By By ay | _) ©

0 By, O 0 @ [ ) F (18)
By. B Oy 0 0 qs 0

are obtained from the stationary condition.
If the Legendre polynomials (7) are used in interpolation of strains, i.e x and 7, the
matrices A, and A, are diagonal

Ape = —EIRI, A, = —GAhI,

where I is a unit matrix. Thus, the inversion of these matrices, needed in the static conden-
sation process, is an easy task. The other matrices in Equation (18) are

Bu = — / EINTNg.dz, Byo = — / GANIN, .dz, By = / GANT Nydz.

In the functional (17) the problems might arise from the last term. However, if a constant
approximation for the shear strain and linear interpolation of deflection and rotation are
used, it is immediately clear that the contribution from this term will vanish in the limiting
case of vanishing shear strain. Hence, exactly the same stiffness matrix than in the reduced
integrated standard Timoshenko beam element is obtained.”

S At least in cases of linear and parabolic interpolation for v and 6.
"In this case there is no difference if either constant or constant + linear interpolation is used for the

curvature.
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In the Reissner-Mindlin plate theory the Hu-Washizu functional has the form, [3] p. 498,
llg = /A [a(T) = fw — Mo(Te — ) — My(Ty — ¢y) = May(Tay — ¥y — b))
_Qy(rzz - w,z - lb) - Qy(ryz - w,y - ¢>)] dA - /;' (Mam"/) + Myn¢ + Vzw)dsv

where the strain energy a(T') can be divided into bending- and shear energies®

a(r) = ab(r-’m Fya me) + aa(I‘a:z 71Fyz)
1D [(Ta+Ty)? + 3(1 - v)(T2, - 4T.1y)] + § GH(T2, +T2,).

Rotations ¢ and i are related to the right-hand-rule rotations ¢4, ¢, about z- and y-axes by
definitions: ¢ = —¢g, 1 = ¢,. Using the expressions

Ma: . D(Fw + V]-—‘y)a Qm - Gtrﬂz?
My, = D(I‘y +vTy), Qy = Gil'y.,
May = 3(1-v)Dlgy,

for the stress resultants, the modified functional
1 = - [ {a(@)+ fu}da
+ [ ADUTa+ VDo + (g vTa)by + 3 (1= 1)yt 4 6.0)
+ Gler(g+9)+ Tyelwy + O} dA + [ (w9, 9)ds (21)

is obtained.

Special care to the selection of appropriate interpolation functions of shear strains I',
and I'y, should be paid. Obviously constant values of I'z;,I'y, are good choises. However,
in a formulation of a well behaving four-node plate element in Ref. [1], a slightly improved
selection has been made. Making use of the modified Hu-Washizu functional (21), it is now
tried to explain: *why this particular element behaves well?’

A square plate element subjected to a pure bending (M, = M, M, = M,, = 0) is
considered. The shear strain v, obtained from the interpolation of w and ¥ contains now
terms (1,z,y,2y). If the interpolation of the independent shear variable T'y, is linear in y-
direction and constant in the z-direction, as it is done in Ref. [1], it will be harmless, resulting
to zero contribution of the term [, GiTq,(w, — 1)dA. Similar reasoning can be done when
the plate is bent in the other direction.®
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ABSTRACT

Spline Finite Strip Method (SFSM) tries to combine well known Finite Element Method
(FEM) and less known semi-analytic Finite Strip Method (FSM). In this paper mainly
linear elastic buckling of prismatic beam structures is studied.

Spline Finite Strip Method allows use of other boundary conditions than simply
supported ends. Loading may consist of longitudinal and transverse normal stresses and of
shear stress. These are main differences between FSM and SFSM. Main differences
between SFSM and FEM are discussed and demonstrated with a simple example.

Method is compared with semi-analytic Finite Strip and commercial Finite Element
packages as ABAQUS and MSC/NASTRAN. SFSM results are taken from references.
Special problems with eigenvalue buckling prediction are discussed. Mathematical methods
for eigenvalue prediction are discussed briefly.

SFSM seems to be an alternative method for FEM. It requires almost as much
numerical processing as FEM. FSM seems to most practical method that can take distor-
tion effects of beam into account. Because of its limitations FSM suits best to comparing
alternatives.

INTRODUCTION

Increasing use of thin-walled structures arose the problem of non-classical buckling modes
over a decade ago. If for example a high strength column is well designed, it will not
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usually buckle in flexural mode. Because of the need to analyze local and distortional
modes many researchers worked in the late 70°s with Finite Strip Method. FSM was
originally developed by Cheung [1] mainly for static analysis of bridges.

In FSM prismatic structure is divided into strips, which are joined at longitudinal
nodal lines. In longitudinal direction trigonometric functions are used as shape functions.
This shape function is ideal for many cases, because analytical solutions for e.g. local
buckling, column flexural buckling and beam lateral buckling under constant moment are
trigonometric series t00. In transverse direction relatively simple polynomials are used as
shape functions. Most popular are linear shape functions for membrane displacements and
third order hermit polynomials (beam shape functions) for transverse displacements.

FSM has not been commercially very popular despite of its good qualities. The only
applications so far have been made in universities and have been more or less for aca-
demic use. Best part of FSM is that it doesn’t require much storage in computer and most
cases can be solved in a few minutes although every possible buckling length must be
solved separately.

There are a few restrictions with FSM. Firstly it is possible to use only simple
supports at ends. If one chooses shape functions that would simulate other end conditions,
all modes would couple and create enormous bandwidth. In some cases using a few modes
may be a good idea, for example Fischer [2] used a few modes simultaneously to han-
dle longitudinal gradient of moment. For many cases it is necessary to take into account
interactions at different lengths. Because of orthogonal shape functions FSM can’t do that.
Interactions at selected length are anyhow taken into account.

SFSM was developed to solve these problems. Carl de Boor [3] made mathemati-
cal basis for beta-splines available in the late 70’s and in early in the 80’s Cheung and Fan [4]
devised SFSM for structural analysis. A few years ago Hancock and Lau [5] used SFSM
to analyze buckling of flat plates. Most recent developments are handling arbitrary cross-
section geometrically nonlinearly [6],[7] and eigenvalue buckling of arbitrary shaped
plates using subparametric mapping [8].

SFSM is numerically much heavier than FSM because trigonometric shape functions
in longitudinal direction are replaced by series of third order beta-splines. Compared to
shell-FEM it has less degrees of freedom due to fact that there are only four dofs per node
and quite good longitudinal shape functions. Bandwidth tends to be high in SFSM because
each shape function is nonzero over four sections.

ENGINEERING INTRODUCTION TO SPLINE FINITE STRIP

Spline Function

Main difficulty in understanding SFSM is the use of spline function. Engineers who are
familiar with displacement based FEM find it rather difficult to cope with function
multipliers instead of nodal displacements and rotations. In usual FEM engineer sets nodal
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displacement boundary conditions, applies nodal forces and gets nodal displacements as a
result from analysis. When spline functions are used this cannot be done directly. Applying
end boundary conditions is done by modifying shape functions, nodal forces are divided
to four adjacent splines and even displacement results have to be calculated after the
analysis. In fact one must know shape functions and boundary conditions to be able to
calculate displacement results. These things can be hidden from the user but they may
cause some headache to programmers.

Mathematical definition for third order beta-spline can be found in many textbooks.
Main point is that it is piecewise defined continuous third order polynomial that has
continuous first and second derivates. Its usefulness is based on that it is nonzero only in
four intervals. Many authors give definition only for equal spaced B,-spline [6], but more
general approach can also be used [9]. Piccewise definition for B,-spline is shown in
Table 1.

TABLE 1
Definition for B;-spline.
nel ] o.M
M- M A,(Tl _n,‘-g)3
ni—l’ ni A;{n_n;_z)s-*-cl'(n“ngq)‘}
T]," T’li+1 B£(1]102_n)3+Dl(nx'l_n)s
n,‘+1? 1'1.42 B,'(n,‘+2-n)3
1

Where multipliers are: A=
hi—l(hi—l +h.‘)(h

. 1
C okt Rt h R
C= ~(h_y*hithy, *h;.)
R R, )
~(hy thihy, +h;.;)
i )y )
and =N Ng,

+hi +hi*l)

i+1

i+1 i+l

Examples of equal spaced and nonequal spaced splines are shown in Fig. 1. Equal spaced
is defined by points at -2, -1, 0, 1 and 2. Definition points for nonequal spaced spline are -
2,0, 1, 1.5 and 2.
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FIGURE 1. Examples of B,-splines

To satisfy the support conditions at the two ends of the strip, the local splines at and
immediately adjacent to the end-point have to be modified in accordance to Table 2, in
which the restrictive condition 1, = 1, has been adopted.

TABLE 2
Modified Local Spline for End Support
Modified local spline
Boundary condition 0., 0, 0,
Free o, 0, 0,
Simple-supported Eliminated 0,40 _ 0,0,
Clamped Eliminated Eliminated 0,-0.50,+0_,

Tip Loaded Cantilever Beam by Spline Finite Strip

To describe the use of SFSM a step by step solution for tip loaded cantilever beam is
given below. Description for studied case is given in Fig. 2. Basic knowledge of elements
based on assumed displacement is expected, see e.g. [10] pp. 82.

‘ ok
] R ]
10
F=5.25 N
E=210 GPa
1=8.33E-10 m*

Dimensions are given here in mm

FIGURE 2 Description for studied cantilever beam

Because we have only one section and it is of unit length, all the multipliers A; and

B, are ! and C; and D, are -2. Shape functions for splines 1 and 2 are given in eq (1).
3 3
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Shape function for spline | is modified and splines -1 and O are deleted as described in
Table 2.

= ZMm+1y-2(n-0)°
-0.5(22-)*-2(1-1)?)
vy )
_18n*-11n’
12
@,(n)=1(n-0)°

Strain-displacement matrix is then given by eq (2) and stiffness matrix by eq (3).

d? 11
B] = —[N] = [3-__n, @)
(B] dnf 1=103 5

452.08 -58.33
sym  58.33
Load vector is defined by eq (4). Terms in load vector are obtained by multiplying force
and value of shape function at loading point.
(f1=F{9,(1),0,(1)}=(3.0625,0.875} €Y

Solving these linear equations gives the spline multipliers. These multipliers are in this
case 0.01 and 0.025. Displacements at specified places are obtained by calculating dot
product of multipliers and shape functions values at those points. E.g. at tip, displacement
is given by eq (5), which is same as by beam theory when transverse shear displacement
is ignored (Euler-Bernoulli).

8,,=(9,(1),0,(1))0.01,0.025)=0.01 ®)

1
i =E1ﬁB]T[B]a'nz 3
Q0

COMPARISON BETWEEN DIFFERENT METHODS

Studied case
Only one example is discussed here. Because there was no SFSM program available, case

had to be from [6] or from [7]. A plate girder in uniform bending from [7] was selected
because interaction between lateral and distortional buckling had been failure mode at short
lengths. Girder was simple supported at ends and loaded with uniform bending. Measures
are shown in Fig 3.
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E=210 GPa
Poissons ratio = 0.3

440

100
FIGURE 3. Geometry of the plate girder.

Methods used

SFSM results are taken from [7] pp 2.22 - 2.23. FSM calculations are made by own
analysis program, which is based on [11]. This program will be available for public
use later in this year. FEM calculations are made by ABAQUS [12] and MSC/NAS-
TRAN [13]. With ABAQUS both eigenvalue buckling analysis and nonlinear analysis
we