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Summary. A fast boundary element method (FBEM) based on multilevel fast multipole algo-
rithm (MLFMA) is introduced for simulating acoustic emission from large vibrating structures.
The vibration of a structure is first simulated using a finite element method (FEM). The surface
velocity distribution, extracted from the FEM result, is then used a source term in FBEM. The
fast acoustic BEM solver utilizes a special broadband version of MLFMA that allows efficient
and accurate modeling of large scale acoustics problems on a broad range of frequencies.
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Introduction

Vibration of machines can lead into decreased life time and undesired noise to surrounding
environment. The capability of predicting acoustic field distribution generated by a vi-
brating structure with numerical simulations is thus of great importance in the designing
of new machinery. With the help of the numerical simulations, it is possible to optimize
the design so that vibration of the structure and noise emitted to the environment are
minimized.

Assuming a weak coupling between the structure (a machine) and surrounding medium
(air), the simulation work flow can be separated into two parts. First, the vibration of
the structure is simulated using a finite element method (FEM). An abundance of FEM
tools can be found for the mechanical modeling. Second, the surface velocity distribution
is extracted from the FEM results and resulting acoustic emission can be computed using
an acoustic simulation tool.

A linear wave equation forms an acceptable model for acoustic fields in many fluids,
such as air and water. Using assumption of time-harmonic excitation, the wave equa-
tion reduces to Helmholtz equation in the frequency domain. FEM and the method of
finite differences (FDM) are commonly used numerical approaches to find solutions for
Helmholtz equation. In wave scattering and emission problems containing unbounded
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domains the solution propagates into infinity requiring different solution strategies than
in problems where the domain is bounded. The boundary element method (BEM) [1, 2]
is an attractive option for that kind of problems, since the BEM solution automatically
satisfies the necessary radiation conditions at infinity, and avoids the use of additional
absorbing boundary conditions needed e.g., in FEM and FDM. Another great benefit
of BEM is that it requires surfaces meshes only. This property, compared to methods
requiring volumetric meshing, leads to a significant reduction on the number of degrees
of freedom and essentially simplifies the mesh generation procedure and required data
structures.

BEM takes into account all complex diffraction and multiple reflection phenomena
and thus provides accurate full-wave solutions for complex wave scattering and emission
problems. The main drawback of the traditional BEM based on direct linear system
solvers, however, is its bad scaling with respect to the number of degrees of freedom. Both
the time and memory needed to solve the problem increase very rapidly with respect to
the employed number of degrees of freedom.

Using iterative, e.g., Krylov subspace, techniques it is possible to enlarge the size of
the problems to be solved, but only up to a certain limit. As the size of the problem is
large enough the solution of the linear system still requires so much computer resources
that it is not doable even with the most powerful super-computing facilities. An answer
to this challenge is provided by fast solution strategies. These methods are advanced
techniques that significantly reduce the high computational load of BEM-based solvers
and enable solutions of several orders of magnitude larger problems than is possible with
standard solvers, iterative or direct. Recent advances in the fast multipole methods for
acoustics problems are reviewed e.g., in [3] and [4].

We introduce a special version of the multilevel fast multipole algorithm (MLFMA).
The employed version of MLFMA utilizes special translators [5] and interpolators [6, 7]
that allow efficient and error controllable solutions of problems containing up to a few
million of degrees of freedom in broad frequency range and arbitrary mesh density. The
method is used to solve the matrix equation arising from BEM formulation of the mixed
boundary value problem of Helmholtz equation based on the combined Helmholtz integral
equation, known also as Burton-Miller equation [8]. This equation avoids spurious internal
resonances and allows numerically efficient stabilization of the hyper-singular operator [9].
The original methodology introduced previously in [5, 9, 10] has been further enhanced
in [6, 7, 11].

In this study, a fast BEM solver based on special broadband version of MLFMA is
applied for simulating acoustic emission from vibrating structures. The surface velocity
distribution, extracted from the FEM result, is used as a source for the acoustic solver.
To efficiently model large vibrating structures also computation of the source term is
accelerated with MLFMA. An electric motor is used as a model problem and comparisons
with high-frequency approximation are made.

Acoustic modeling

We begin by introducing the acoustic wave problem and formulate it as a mixed bound-
ary value problem of Helmholtz equation. Then the boundary element method (BEM)
formulation is provided and it is demonstrated how the solution of the matrix equation
can be accelerated with the multilevel fast multipole algorithm (MLFMA).
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Reduced wave equation

Consider acoustic wave propagation in homogeneous isotropic medium with constant den-
sity ρ (e.g., in air 1.2041 kg/m3) and speed of sound c (e.g., in air 340 m/s). Particle
velocity v is obtained from velocity potential φ as

v =
1

ρ
∇φ. (1)

In the linearized theory, potential φ satisfies wave equation

∂2φ

∂t2
− c2∇ · ∇φ = 0 (2)

in a source free medium. By assuming harmonic time-dependence, i.e., all functions are
of the form

u′(r , t) = u(r) e−iωt, (3)

where ω = 2πf is the angular frequency, f is the frequency, and t is time, wave equation
(2) reduces to Helmholtz equation (

∇2 + k2
)
φ = 0. (4)

Here k = ω/c is the wavenumber and ∇2 = ∇ · ∇ denotes Laplacian operator. Pressure
of an acoustic wave is the time derivative of φ

p = −∂φ
∂t

= iωφ. (5)

Hence, also the acoustic pressure satisfies homogeneous Helmholtz equation. On the
surfaces the (specific) surface impedance is defined as the ratio of acoustic pressure and
the normal velocity

Z =
p

n · v
= ρ

p

n · ∇φ
. (6)

This can be further written in terms of the normal derivative of the surface pressure,
∂p/∂n = n · ∇p, as

Z = iωρ
p

∂p/∂n
. (7)

Thus, the so called impedance boundary condition on the surface defines the ratio of the
pressure and its normal derivative

∂p

∂n
= iωρ

1

Z
p. (8)

If some parts of the surface, or the entire surface, is vibrating, the boundary condition
needs to be modified according to

1

ρcZ
p+

1

ikρc

∂p

∂n
= uω, (9)

where uω is the driving velocity perpendicular to the vibrating surfaces. Using definition
of wavenumber k, and multiplying both sides of equation (9) with iωρ, gives

ik

Z
p+

∂p

∂n
= iωρuω. (10)

Writing this as

a p+ b
∂p

∂n
= c, (11)

with position dependent scalar functions a, b and c gives the mixed boundary condition
[12] used in this work.
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Boundary element formulation

Next we present the BEM formulation. Let D denote a bounded object in a homogeneous
medium and S the surface of D. Assume that a time-harmonic primary acoustic wave of
angular frequency ω is generated by a vibrating surface and denote the normal velocity
on that surface by uω. Assuming no other acoustic sources the pressure of an acoustic
wave p is found as a solution of homogeneous Helmholtz equation(

∇2 + k2
)
p(r) = 0, r ∈ Dext. (12)

Here r = (x, y, z)T is a point in space and Dext is the background, a domain exterior to
D. On surface S the pressure is assume to satisfy boundary condition (11) with given a
and b and c = iωρuω.

BEM formulation for Helmholtz equation is based on the surface integral representa-
tion that allows us to express the pressure p in terms of its Dirichlet, p|S, and Neumann
∂np|S, boundary values [13]

Ω(r)p(r) = D[p](r)− S[∂np](r). (13)

Here Ω is the relative solid angle subtended by the surface S. In the following, we assume
that for r ∈ S, Ω = 1/2, corresponding to a (locally) smooth surface. The single and
double layer surface integral operators included are defined as

S[u](r) =

∫
S

G(r , r ′)u(r ′) dS(r ′), (14)

D[u](r) =

∫
S

∂G(r , r ′)

∂n(r ′
u(r ′) dS(r ′), (15)

with the fundamental solution of the Helmholtz equation in 3D, the Green’s function,

G(r , r ′) =
eik|r−r

′|

4π|r − r ′|
. (16)

By taking the Dirichlet and Neumann traces of (13), and combining the resulting equations
with a parameter β = i/k, gives Burton-Miller integral equation [8](

D − 1

2
I
)

[p]− S [∂np] + β

(
∂nD[p]−

(
∂nS −

1

2
I
)

[∂np]

)
= 0. (17)

Here I is the identity operator.
Using boundary condition (11) the normal derivative of p can be expressed as

∂np = −a
b
p+

c

b
, (18)

provided that b(r) 6= 0 for all r ∈ S. Substituting (18) into (17), denoting g = c/b and
placing all known terms to the right hand side, gives the surface integral equation to be
solved (

D − 1

2
I
)

[p] + S
[a
b
p
]

+ β

(
∂nD[p] +

(
∂nS +

1

2
I
)[a

b
p
])

= S [g] + β

(
∂nS +

1

2
I
)

[g] . (19)

Once the surface pressure p has been found as a solution to this equation, the sound fields
outside the surface are obtained by substituting it to (13) with Ω = 1 and boundary
condition (18).

140



Weak formulation and discretization

Next a weak formulation for (19) is developed. Multiplying equation (19) with a suitable
differentiable test function w in the sense of symmetric L2 product,

〈w , u〉 =

∫
S

w(r)u(r) dS(r), (20)

using integration by parts [8, 14], the weak formulation for (19) reads〈
w ,

(
D − 1

2
I
)

[p]

〉
+
〈
w , S

[a
b
p
]〉

+ β
(
−〈rotw , S(rot′p)〉+ k2 〈wn , S[n ′p]〉

+

〈
w ,

(
∂nS +

1

2
I
)[a

b
p
]〉)

= 〈w , S [g]〉+ β

〈
w ,

(
∂nS +

1

2
I
)

[g]

〉
. (21)

Here rotw = n×∇su and rot′ u = n ′×∇′su denote the rotated surface gradient of scalar
functions and n ′ is the normal vector at the point r ′. The essential feature in this form
is reduction of the singularity of the operator ∂nD. This significantly simplifies numerical
evaluation of the integrals and improves numerical stability of the solver.

Assume next that the surface of an object is divided into planar triangular elements
with N nodes. By utilizing Galerkin’s approach, first the unknown function p is approxi-
mated as a linear combination of basis functions φn, n = 1, . . . , N ,

p (r) ≈
N∑
n=1

cn φn (r) . (22)

Functions φn, n = 1, . . . , N , are standard linear continuous nodal basis functions defined
on the triangular mesh. These functions get value one at one node point of the mesh
where they are defined, vanish at the other nodes, and are linear on each element.

Using functions φn as test functions, substituting approximation (22) into the weak
formulation (21), leads to the matrix equation

Ax = b. (23)

Here x = [c1, . . . , cN ]T contains the unknowns coefficients of approximation (22). Once
these coefficients are found, they are substituted to (22) to obtain an approximation of
p on the surface. This approximation can be then used to find the sound pressure levels
outside the surface S.

One should notice that system matrix A is dense and the matrix assembly requires
evaluation of integrals with singularities. For this purpose we have developed meth-
ods based on the singularity subtraction technique [15, 10]. In these methods, two or
three most singular terms are subtracted from the kernel, and computed in closed form.
The remaining functions are smooth enough to allow efficient numerical integration with
standard techniques. Methods to tackle problems due to the dense system matrix are
introduced in the following sections.

Acceleration with multilevel fast multipole algorithm

Due to the fact that the matrix equation arising from the discretization of integral equation
(19) is dense, both the memory requirement and the CPU time needed to solve the
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system become prohibitive high for problems with large number of degrees of freedom (i.e.
large N). Next we briefly introduce the multilevel fast multipole algorithm (MLFMA) to
accelerate the calculations.

The matrix equation (23) is solved iteratively with the GMRES method. In this
process one needs to be able to perform matrix-vector product with the system matrix A.
For this purpose the near field interactions are computed with standard BEM, resulting
in a sparse matrix, and the far field interactions are computed on the fly with MLFMA for
each matrix-vector product. Instead of calculating interactions of all individual sources
and targets, as in standard BEM, in MLFMA the sources and targets are grouped by
hierarchically dividing the object into cubes and by computing the interactions between
the groups by utilizing oct-tree like data structures [16].

Traditionally MLFMA has separate algorithms for the static (low frequency) and dy-
namic (high frequency) cases. The high frequency version is routinely applied for problems
involving objects that are significantly larger than the wavelength, but its application to
complex geometries with a lot of details that are small compared to the wavelength, is
much more challenging problem. The low frequency version based on multipole expan-
sions of the field components, on the other hand, becomes inefficient at higher frequencies
since the order of the required multipole expansions increases rapidly as the frequency is
increased. Further, in such implementations, the out-to-in translation is not of diagonal
form, which makes this operation relatively costly. The fundamental problem in MLFMA
is that neither of these two versions work efficiently simultaneously in the low and high
frequency regimes, or in the cases when the structure contains a lot of details that are
small compared to the wavelength of an acoustic wave.

In order to enable efficient broadband simulations, or modeling of geometries requiring
varying and fine element sizes, we have been working with a broadband version of MLFMA
that can be applied on arbitrary mesh densities and frequencies. This algorithm is based
on a hybrid multipole expansion - plane wave expansion approach. The idea is to use
traditional high frequency MLFMA with Rokhlin translation function [17]

T (k̂ ,D) =
ik

(4π)2

L∑
n=0

in(2n+ 1)h(1)
n (k|D |)Pn(D̂ · k̂). (24)

for division cubes larger or equal one lambda (“super-wavelength levels”). In these levels
Green’s function can be represented with a plane-wave expansion

G(D + d) =

∫
S(1)

T (k̂ ,D) eik
ˆk ·d dS(k̂), (25)

where S(1) is the surface of a unit sphere, D = r c − r ′c is the vector from the center
of the source cube (denoted with r ′c) to the center of the target cube (denoted with r c)
and d = (r ′ − r ′c) − (r − r c). The significant benefit of (24) is that the translator is
diagonal. On the other hand, the problem with (24) is that due to numerical problems
it becomes unstable as the size of the cubes becomes smaller than the wavelength. As a
remedy, for division cubes smaller than wavelength (“sub-wavelength levels”) we utilize
the low frequency stable plane wave expansion translator

T (k̂ ,D) =
ik

8π2
eik

ˆk ·D , ez · (D + d) > 0, (26)
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and the Green’s function is expressed using the spectral representation

G(D + d) =

2π∫
0

∫
Γ

T (k̂ ,D)eik
ˆk ·d sin θ dθ

 dϕ. (27)

Here the path Γ consists of two parts on the complex plane, propagating and evanescent
ones [18]. The challenge is that the spectral representation is only valid in half space,
and therefore requires different representations for each six main direction (±x,±y,±z).
In the propagating part the direction dependency can be embedded into the translation
function and exactly the same propagating representation as with the traditional Rohklin
translator can be used. This makes the switch from the exponential translation function to
the conventional one straightforward on the super-wavelength levels. For the evanescent
part this is not possible and another approach is required. To avoid the extra aggrega-
tions/disaggregations in the evanescent part we expand the radiating and receiving field
patterns for the evanescent part with multipole series. Conversion from the multipole
coefficients to plane wave samples and back can then be performed quickly with the aid
of fast Fourier transform (FFT) [19].

Global interpolators

The basic strategy in MLFMA is to use samples of the radiation patterns to represent
outgoing fields and samples of the incoming wave patters to represent incoming fields. In
order to transform samples from a level to another during the aggregation and disaggre-
gation stages special interpolation and anterpolation routines are required, respectively
[16]. This is due to the fact that the division cubes contain different amount of samples on
different levels. The available interpolators can be classified as belonging to either local
or global type.

Local interpolators are typically based on Lagrange interpolating polynomials [16].
They allow system matrix-vector multiplication to take place with the asymptotically
favorable O(N logN) CPU-time cost, but unfortunately require oversampling of the ra-
diation pattern. Also in practice the obtainable accuracy can be rather limited [20]. An
alternative for local interpolators is the global interpolator based on trigonometric poly-
nomial expansions [21, 6]. Such presentations have several useful properties: Conversion
between sample values and coefficients of the expansion can be performed effectively and
accurately with FFT. Global interpolators allow the storage of the sampled radiation pat-
tern components to take place in significantly reduced size compared to other alternatives,
and are used in this work.

Efficient evaluation of the source term

In cases where the source of an acoustics wave is generated by a vibrating surface, and that
surface is very large, e.g., the entire structure, the computation of an acoustic source, the
right hand side of (19), becomes a very expensive task. The computations scale similarly
as the assembly of the original matrix equation. To avoid that, we have applied MLFMA
to accelerate evaluation of the source term. This significantly improves the speed of the
algorithm in cases where large vibrating surfaces are present.
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Figure 1. The geometry of an electric motor. The surface mesh consists of 54984 triangular elements and
27494 nodes.

Simulation examples

As a model problem we investigate sound emission from an electric motor. The used
motor structure is simplified, typical 2-pole, 200 kW rib-cooled squirrel-cage induction
motor. The model geometry is shown in Fig. 1. The aim is to imitate the standardized
measurement approach (ISO-3745 [22]) to obtain the radiated sound power for the motor
at a given excitation. The measurement standard uses 20 equidistantly arranged micro-
phones in an anechoic space or 10 microphones in hemi-anechoic conditions. The sound
power is obtained by integrating pressure measurement data from all microphones. Since
the simulations can be easily extended to a large number of ”virtual microphones”, we
shall show how the changes in the number of measurement points affects the sound power
results.

We focus on the frequency range from 10 to 3410 Hz which is simulated in 100 Hz
steps. Two methods are compared for the sound power computations. First, the high-
frequency boundary element method (HFBEM) [23], is a Rayleigh integral type method
which assumes ray-like sound propagation and neglects many physical sound phenomena
such as diffraction and scattering. HFBEM is, however, relatively accurate for sound
power simulations and commonly used due to its simplicity. Second method, which is
referred as the fast boundary element method (FBEM), is outlined in the previous sec-
tions of this study. FBEM is a full-wave method and the solution includes all physical
phenomena characterized by the acoustic wave equation.

In both cases, the simulation work has the following steps:

1. The motor structure is modeled with FEM using Comsol Multiphysics.

2. Computation of complex eigenmodes up to 5 kHz is then carried out using material
model with hysteretic damping. Isotropic steel material properties with constant
structural loss factor of 1 % for casing and 0.5 % for stator (complex Young’s
modulus) were used in the FEM-simulations.

3. The modes are then imported to MATLAB for unit-wave response computation
using modal superposition and. Rotating radial unit-force wave applied on stator
surface (teeth) Fr = exp (i(rφ− wt))ur in cylindrical coordinates with r = 4. The
FEM based unit-wave responses for an electric motor are discussed in more detail
in [24].
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Figure 2. The normal surface velocity magnitude at two frequencies: 1110 Hz (left) and 1910 Hz (right).

4. The surface velocities for each frequency are extracted from the structural dynamic
simulations. The complex valued velocity is constant for each surface triangle of the
BE mesh. The BE mesh, consisting of 54984 surface elements and 27494 nodes, is
shown in Fig. 1. We note that the number of nodes is also the number of degrees
of freedom of the BE model.

5. The normal velocity of the surface is given as the boundary condition to the BE
model. We assume that the surface is rigid and set a = 0 and b = 1 in Eq. (11).

6. In FBEM, the acoustic pressure on the surface is solved from (19) for given normal
velocity distribution. To evaluate the sound pressure levels outside the surface, the
solution on the surface is substituted to (13) with Ω = 0, a = 0 and b = 1.

Two normal surface velocity distributions that are extracted from the FEM computations
are shown in Fig. 2. The frequencies are chosen to correspond the peak value of the
radiated power (at 1110 Hz) and the frequency on which the FBEM and HFBEM methods
have a large disagreement (1910 Hz, see Fig. 6).

The locations of the measurement points (virtual microphones) are shown in Fig. 3.
Opposed to the ISO measurement standard, which uses 20 microphones in an anechoic
case, the number of virtual microphones ranges from 812 to 15095. The effect of the
measurement point density can be seen from Figs. 4 and 5. For both methods, the coarse
point set gives a visible disagreement with the two dense point sets when the frequency
exceeds 1500 Hz. The discrepancy is 3-4dB at the highest frequencies. On the other hand,
the dense and extra dense point sets give a good agreement over the entire frequency range.

In Fig. 6, HFBEM and FBEM results are compared using the dense set of measurement
points. The largest disagreement can be observed at the lowest frequencies and in the
range 1500-2000 Hz.

Conclusions

In this study, a fast boundary element method (FBEM) is introduced for simulating acous-
tic emission from a vibrating structure. An electric motor is used as a model problem.
FBEM is based on the full-wave acoustic BE model accelerated with multilevel fast mul-
tipole algorithm (MLFMA). A special version of MLFMA is introduced. This algorithm
allows efficient and accurate acoustic modeling of large structures with fine details on a
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Figure 3. The virtual microphone locations used in the simulations. The extra dense set consists of
15095 measurement points (left), the dense has 7292 points (middle) and the coarse set has 812 virtual
microphone locations (right). The motor is positioned at the center of the measurement points.

Figure 4. The comparison of radiated sound power levels using HFBEM and a different number of
measurement points.
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Figure 5. The comparison of radiated sound power levels using FBEM and a different number of mea-
surement points.

Figure 6. The comparison of the radiated sound power levels that are computed using HFBEM and
FBEM; and the ”dense” set of measurement points.
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broad range of frequencies. The surface velocity distribution of the structure, computed
using a finite element method (FEM), is used as a source in acoustic FBEM.

A comparison of FBEM with a simplified sound propagation model (HFBEM) reveals
notable disagreement at low frequencies (>10dB), but, more importantly, also at frequen-
cies 1500-2000Hz which provide more significant contribution on the A-weighted decibel
scale. While the detailed analysis of the discrepancies is a topic of our next study, it
can be hypothesized that lower sound powers obtained using the FBEM are associated
with the finned structure of electric motor. Possibly, acoustic resonances in the air space
between fins (which are not taken into account by HFBEM) affect the overall radiation
of the sound.

The second interesting observation was that to model the radiated sound power ac-
curately, the number of measurement points surrounding the structure need to be large
enough. Especially at higher frequencies, sound may ”leak” between measurement points
resulting to erroneous sound power estimates.
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