
100

Rakenteiden Mekaniikka (Journal of Structural Mechanics)
Vol. 49, No 3, 2016, pp. 100-118
rmseura.tkk.fi/rmlehti/
©The Authors 2016.
Open access under CC BY-SA 4.0 license.

Surrogate-model based method and software for
practical design optimization problems

Sami Pajunen, Petri Laakkonen

Summary. In a practical simulation-based design process most of the required simulations are
carried out by using commercial software producing simulation responses but no gradient data.
When applying mathematical optimization routines to such design process all the function
evaluators must be considered as black-box solvers and the optimization can be integrated to
design process efficiently using e.g. surrogate modeling techniques or heuristic optimization
algorithms. In this paper we present a design optimization method that can be integrated very
easily to any simulation-based design process. Special attention is paid on software
implementation issues of the proposed method.

Key words: design, optimization, surrogate model

Received 24 August 2015. Accepted 1 June 2016. Published online 30 December 2016.

Introduction

Throughout the history of mathematical optimization, the main focus in majority of the
research projects has been the search of global optimum using various strategies. This
massive research has resulted in many fine-tuned and robust optimization algorithms for
different types of problems, e.g. the interior point method for linear problems [1] and
sequentially quadratic method for non-linear problems [2]. In some problem categories
even the finding of the global optimum can be guaranteed [3].

The practical design processes would benefit greatly from the adoption of these
optimization algorithms but there are certain barriers preventing the full scale utilization
of mathematical optimization methods. In industrial design environment the designers are
almost without exception using commercial simulation software, i.e. black box solvers
that produce only simulation results but usually not the gradient data. Hence, none of the
gradient based algorithms can be used as such. On the other hand, only the biggest
companies can administrate the best optimization software for every possible type of
optimization problems that may appear in their design processes. There are evidently also
many other reasons to the low usage of optimization in practice, but already these two

101

reasons lead us to an acute research problem statement: How to tackle in the most efficient
way all kind of industrial optimization problems in all the simulation environments. In
other words, how to develop a method that can be used to solve any optimization
problems in any design environment. Additionally, in the industrial processes the
keywords such as speed and robustness are highly appreciated and they should also be
the driving forces when designing the method. It is evident, that broadening the method's
capability to handle various optimization problem types will simultaneously decrease
some other features of the method. Usually this means that the search of the global
optimum must be replaced by the search of a better design. But at the same time the design
optimization process can be done more robustly and faster than before.

In this paper we present a surrogate-model based optimization method and the
associated software that can be adopted to any design process that uses parametric
simulation models. The software is used to formulate the optimization problem while the
simulation is carried out by using some black box solver and the generated optimization
sub-problems are solved using the best available optimization algorithm libraries. In the
optimization problem formulation the original simulation problem is replaced
sequentially by polynomial-based metamodels [4].

The paper is organized as follows. First, the basic features and advantages of surrogate
modeling techniques are concisely revised. In a subsequent section the details of the
proposed optimization method and the associated software implementation issues are
discussed. Two well-known benchmark problems and one industrial application problem
are solved using the proposed method and finally the main conclusions of the paper are
drawn.

Surrogate models in simulation-based optimization

In a practical design process the simulation models are typically rather complex, massive
and time-consuming to evaluate. Thus, it is of primary interest to minimize the simulation
model evaluation calls in the optimization process. Additionally, the simulation models
do not usually produce sensitivity data. Due to these features, one of the most efficient
strategies to apply optimization in to the design process is to replace the original
simulation model with an associated surrogate model. The most widely used surrogate
model techniques are the response surface method (RSM) [5], Kriging method [6], neural
networks [7], radial basis function method [8] and regression splines method [9].

In general, the surrogate-model based optimization can be divided into the following
four main stages [10,11]. First the required simulations are carried out with different
model parameter values at the so called design-of-experiments points (or design points),
then the simulated data is fitted to the selected surrogate model. Once the surrogate model
is formulated to mimic the original problem, it is straightforward to formulate the
optimization task and call the surrogate model whenever function evaluations are needed.

In the surrogate-model based optimization two different strategies are usually
adopted: global surrogate model fit, and iterated local surrogate models. In the local
strategy the surrogate model is fitted to the neighborhood of the previous optimum point

102

at every iteration cycle. This sequential strategy is used especially with the response
surface method. Accuracy of the response surface method is generally sufficient to
approximate only a small part of the design space [12]. As soon as the surrogate model is
constructed by the desired method, also the design variable sensitivities can be estimated.
Furthermore, it is noteworthy, that also discrete variables can be included in surrogate
models [13].

In addition to the property that surrogate modeling simplifies greatly the original
complex model it has also one fundamental advantage when used in addition to
optimization. The surrogate model is constructed using the computed responses at
separate design points that can be computed independently in parallel. Due to fully
distributing problem the parallel computing speeds up the computation almost linearly.
However, when applying surrogate modeling in optimization, one has to pay special
attention to the number of design variables. When the number of design variables
increases, the required amount of design points becomes rather big, when using higher-
order surrogate methods. And the other hand, purely linear surrogates are computationally
cheaper, but they may not be capable of predicting the model responses accurately enough
but only in rather small sub-spaces. Despite of the used surrogate models, the proper
formulation of the optimization problem is of primary interest and the selection of design
variables must be done with great caution.

The proposed method and software implementation

Leading principles

In the design of the optimization software based on the proposed method, the targets were
wide applicability, superior robustness and rapidity of the optimization task set up and
solution as well as prime user experience. To meet these requirements, an easy-to-use and
easy-to-learn simple graphical user interface was designed. Wide applicability of the
software was ensured by adopting modularity in all the implementations and enabling the
use of any kind of design variables. The kernel of the optimization problem formulation
was based on the successive response surface method that was found to be extremely
robust in earlier studies [4]. For the optimization problems solution, the best algorithm
consistent with the adopted surrogate model was chosen from existing algorithm libraries
such as Gurobi [14] and SCIP [15]. Parallel computations were performed using the
Techila middleware system [16].

Optimization problem formulation

Implemented optimization procedure is based on successive response surface method
with linear, pure quadratic or quadratic polynomial basis functions. In the design space
the surrogate model is spanned sequentially into an a priori chosen subspace called the
region of interest (ROI) so that approximation errors remain below a user-defined
acceptance limit. To construct the surrogate model in the subspace, the required model
responses are concurrently evaluated at the design points that are placed to the subspace

103

using the D-optimal design [17], and the data is fitted to selected polynomial form using
the method of least squares. The optimization problem at iteration cycle i is formulated
as

min 𝐟𝐟(𝐱𝐱)
𝐠𝐠(𝐱𝐱) ≤ 𝟎𝟎
𝐡𝐡(𝐱𝐱) = 𝟎𝟎

𝐱𝐱𝑖𝑖
L ≤ 𝐱𝐱𝐢𝐢 ≤ 𝐱𝐱𝑖𝑖

U

in which the subscript i refers to iteration cycle number and the superscripts L and U
denote the lower and upper limits of the design variable vector x, respectively. In other
words, the lower and upper limits define the region of interest in which the surrogate
model is spanned at the current iteration cycle. The constraint functions are collected to
vectors g and h and objective functions are collected in vector f. In the case of scalar
optimization problem, vector f simplifies to scalar function f. In (1) all the functions in
vectors f, g and h are approximated in the current region of interest �𝐱𝐱𝑖𝑖

𝐋𝐋, 𝐱𝐱𝑖𝑖
𝐔𝐔� according to

the adopted surrogate model. Once the optimization problem (1) is solved at current
iteration, the next ROI is spanned in the neighborhood of the found optimum as depicted
in figure 1 and the iteration is continued. The iteration is stopped either when the a priori
set number of maximum iterations is exceeded or when the convergence criterion is met.
The convergence criterion reads in

 TolFun
f

ff

i

ii ≤
− −

)(
)()(1

x
xx

 (2)

In practical design optimization problems, the objective functions rarely approach zero
in the optimum, but in such case, the convergence criterion should be based on e.g. the
iterative change of design variables.

More detailed derivation of the method can be found from [4]. When solving the
optimization problem (1), a consistent optimization algorithm is chosen according to
Table 1, in which all the implemented algorithms are introduced briefly. In the Table 1,
LP denotes linear problem, MILP mixed-integer linear problem, QCQP quadratically
constrained quadratic problem, MIQCQP mixed-integer quadratically constrained
quadratic problem.

High performance computing

In the design optimization tasks, the number of function evaluations at separate design
points can be very large [17]. A distributed computation system developed by Techila is
utilized to carry out parallel computation in cloud or computer clusters [16]. Techila
supports the several programming interfaces as MATLAB, which has been used in the
software.

(1)

104

Figure 1. Schematic optimization iteration progress from iteration cycle i to the optimum x*.
The size of the region of interest changes during the iteration according the approximation
errors (adaptive ROI) or remains the same (fixed ROI). Ω denotes the feasible region.

Table 1. Implemented optimization algorithms.
Optimization
algorithm

Applicable
RSM model

Vari
able
types
*

LP MILP QCQP MIQCQP non-
convex
QP

Multi-objective solution
method

MATLAB -
Interior Point

Linear C x - - - - Linear scalarization, Pre-
emptive optimization

MATLAB -
Simplex

Linear C x - - - - Linear scalarization

MATLAB -
Active set

Linear C x - - - - Linear scalarization

GUROBI Linear,
Pure quadratic,
Quadratic

CIB x x x x - Linear scalarization, Pre-
emptive optimization

SCIP Pure quadratic,
Quadratic

CIB - - x x x Pre-emptive optimization

MATLAB -
fminimax

Linear, Pure
quadratic,
Quadratic

C x - x - x Minimax

Discrete sets
(GUROBI/
SCIP)

Linear,
Pure quadratic,
Quadratic

CIBS
D

x x x x x Linear scalarization, Pre-
emptive optimization

Discrete sets
(fminimax)

Linear, Pure
quadratic,
Quadratic

CSD x - x - x Minimax

*Continuous (C), Integer (I), Binary (B), Independent discrete (S), Dependent discrete (D)

Ω

g j =0

g k =0

x i

x i +1

x i +2

x i +3 = x *

Region of Interest
at iteration cycle i

optimum at
iteration cycle i

105

GUI and interfaces

The software has been designed by following the Model-View-Controller (MVC)
architectural pattern. It separates an application into three main components: the model,
the view, and the controller. This makes it possible to develop these components
separately [18]. In the developed software the model is a database, the view is the graphic
user interface seen by the user and the controller takes care of the input given by the user.
The controller's application logic also launches the actual computation code. The software
and the interaction between parts are depicted at a general level in figure 2. The
computation code has been put into practice by using MATLAB, but on the other hand,
also Python and open source solvers could have been used instead. The figure 2 highlights
the four interfaces: a graphical user interface (GUI), database, computation code and
simulation software, which produces the model responses and is linked to any CAD-
system. The input parameters file is edited with a user interface or text editor and is given
to a computation code. When creating a new task, an output-folder to which the
parameters and results of the task will be stored, is created at the same time. The
parameters are also saved in the database for the user interface. The interfaces to
simulation packages such as ANSYS have been made with Python. The database is
implemented in SQLite.

Figure 2. Interfaces of the RapidDO software.

When designing the software, special attention was paid to the future augmentation needs
by following a modular structure and to carry out functions which can be easily
maintained. For the end user the software can be easily compiled to be executed in
Microsoft Windows. For prime user experience the entering of the tasks is executed as
proficiently as possible. The required task parameters are classified in Table 2.

106

Table 2. Task parameters needed in the optimization.

Mandatory parameters Parameters for experienced user
(otherwise program-controlled)

File location of the simulation model used
in the optimization (e.g. FEM-model
containing two-way link to CAD-model)

Multi-objective optimization method

ID-numbers of simulation model output
parameters used in objective or constraint
functions

Initial radius and adaptiveness of the
region of interest

ID-numbers of simulation model input
parameters used as design variables and
their types

Target relative error between the
surrogate model and the true simulation
model

Surrogate model (Linear, Quadratic or
Pure quadratic)

Number of maximum iterations

Optimization algorithm (according to
Table 1)

Relative convergence tolerance of the
objective functions (TolFun)

Discrete sets and dependencies of discrete
variables (if in use)

Constraint functions and Design
variables to be visualized during the
iteration

Activation of Techila parallelization Constraint tolerance for true responses

Discrete problems

The discrete sets are needed in practical design optimization tasks in which the variables
can get only certain discrete values or value pairs. The mathematical formulation of
optimization problem with discrete design variables is implemented in to the software as
detailed below [19].

Discrete variable can be selected from a finite set {s1,...,sm} as follows.

𝑥𝑥 = ∑ 𝑢𝑢𝑖𝑖𝑠𝑠𝑖𝑖
𝑚𝑚
𝑖𝑖=1 (3)

in which 𝑢𝑢𝑖𝑖 ∈ {0, 1}, 𝑠𝑠𝑖𝑖 ∈ 𝑅𝑅 and m is the number of discrete values. The binary variable
𝑢𝑢𝑖𝑖 is used to pick only one discrete value 𝑠𝑠𝑖𝑖 from the set according to equation (4)

∑ 𝑢𝑢𝑖𝑖
𝑚𝑚
𝑖𝑖=1 − 1 = 0 (4)

When discrete design variables are used, the constraint vector h in (1) is augmented with
the equality constraints (4) in the standard manner [20].

Discrete models have been derived for three cases. In the first case all the design
variables are chosen from discrete sets. In the second case the design variables are also
discrete but dependent on each other. In other words, all the allowed combinations of
design variables are defined. In practice, this often means the permitted configurations

107

that might appear e.g. in problems in which beam profile area and the second moment of
area must have consistent discrete values. In the third case the design variables can be
discrete and dependently discrete as above, but also continuous and integers.

Discrete values must be taken into account in the design of experiments, because the
optimized target, such as a parametric FE-model may not be able to analyze the model
with non-discrete values. In other words, the experimental design should be used only
with allowed combinations of given discrete values and dependent variables. In the
computational tool this has been solved by expanding the ROI so that sufficient number
of valid discrete points is included in it, and then forming the candidate matrix in the usual
manner according the D-optimal design.

Multi-objective problems

There are often conflicting objectives in practical design optimization tasks. In that case
the optimization problem can be formulated as multi-objective in which the solution is a
Pareto optimal set instead of a single optimum point as in the case on a single-objective
optimization problem. Mathematically, every Pareto optimal point is equivalent, but in
practice, however, only one solution is sought. There are many strategies for selecting the
final solution from the pareto-set as discussed in [21].

Three methods which appear generally in the literature are applied to the tool: The
linear scalarization method (called also as weighted sum method), pre-emptive
optimization method (called also as lexicographic ordering) and the minimax method as
explained in brief below. In the linear scalarization the objective functions are combined
into one objective function which will be then optimized as a task of one objective
function. This method does not work well with non-convex tasks because it cannot detect
all the Pareto optimal points. For this reason this method can be used in the computational
tool only with the linear surrogate model. It can be difficult to find suitable weighting
coefficients needed in the method. In the pre-emptive optimization method one objective
function is minimized at a time and the other objective functions are considered as
constraint functions. With this method the decision-maker must sort the objective
functions carefully to the order of importance because the order has a great impact for the
converging of objective functions. The minimax method minimizes the objective function
having largest value. This is the most straightforward from the adopted three methods
because the decision-maker does not need to make decisions before the optimization. The
best results can be achieved by running the same task with different methods and settings.
The user's knowledge about the behavior of responses facilitates the solving of the multi-
objective optimization task. Requiring the least amount of user input, MATLAB
fminimax is often a good choice to begin with.

The multi-objective optimization methods used with a sequential response surface
method return one pareto-optimal point at every iteration step once the iteration has found
the first Pareto optimal point, thus the number of Pareto optimal points is dependent on
the size of the used ROI. Therefore, in the multi-objective problems relatively small fixed
radius of ROI should be used to get enough points to the Pareto optimal set. Naturally,
this means more iteration cycles and at the same time more simulation calls. Figure 3

108

depicts Pareto optimal solution sets for a cantilever beam problem [22] obtained by using
the proposed method with fixed and adaptive ROI.

Figure 3. Pareto front using fixed ROI (a), and adaptive ROI (b).

Results and discussion

Even though the primary goal of the proposed methodology is to solve practical
simulation-based optimization problems, this chapter contains first two well-known
benchmark problems for verification use. Furthermore, one practical design problem
simulated by using the ANSYS FE-package and one multiobjective benchmark problem
are reported

Mass minimization of a pressure vessel

The first benchmark problem is a mass minimization of a pressure vessel [23]. In the
problem, the function to be minimized and the associated constraints are

 𝑓𝑓(𝐱𝐱) = 0.6224𝑥𝑥1𝑥𝑥3𝑥𝑥4 + 1.778𝑥𝑥2𝑥𝑥3

2 + 3.1661𝑥𝑥1
2𝑥𝑥4 + 19.84𝑥𝑥1

2𝑥𝑥3

(5)

𝑔𝑔1(𝐱𝐱) = −𝑥𝑥1 + 0.0193𝑥𝑥3 ≤ 0
𝑔𝑔2(𝐱𝐱) = −𝑥𝑥2 + 0.00954𝑥𝑥3 ≤ 0

𝑔𝑔3(𝐱𝐱) = −𝜋𝜋𝑥𝑥3
2𝑥𝑥4 −

4
3 𝜋𝜋𝑥𝑥3

3 + 1296000 ≤ 0
𝑔𝑔4(𝐱𝐱) = 𝑥𝑥4 − 240 ≤ 0,

x1 ∊ [0.625, 1.25], x2 ∊ [0, 0.625],
x3 ∊ [45, 50], x4 ∊ [100, 120]

in which x1 is thickness of the cylindrical part of the pressure vessel and x2 is thickness of
the hemispherical head. The inner diameter of the cylinder part of the container is x3 and
the length is x4. All the design variables are chosen from discrete sets listed in Table 3.

109

Table 3. Possible discrete values of the design variables.

x1 0.625 0.6875 0.75 0.8125 0.875 0.9375 1 1.0625 1.125 1.1875 1.25
x2 0 0.0625 0.125 0.1875 0.25 0.3125 0.375 0.4375 0.5 0.5625 0.625
x3 45 45.5 46 46.5 47 47.5 48 48.5 49 49.5 50
x4 100 102 104 106 108 110 112 114 116 118 120

A quadratic surrogate model and the adaptive ROI are used for the task. Because there
are only few design variables, a more accurate surrogate model can still be used
efficiently. The quadratic surrogate model is formed by using the minimum number of
design points, that is 15 in the case of four design variables [17]. Using convergence
tolerance TolFun = 0.1% the method converges after four iteration steps as depicted in
Table 4. The task requires totally 65 function evaluation calls from which 60 are for
surrogate model constructions and 5 are for approximation accuracy checks.

Table 4. Iteration history on the pressure vessel design.

Iteration x1 x2 x3 x4 Mass
0 1.25 0.625 50 120 9589.925000
1 1.125 0.5625 49 108 7770.049875
2 1 0.5 50 100 6643.235000
3 0.9375 0.5 48.5 112 6418.221581
4 0.9375 0.5 48.5 112 6418.221581

In table 5 the obtained result has been compared with the results found from literature
[23]. It is noteworthy, that the found optimum design is lighter than presented earlier in
[23], and the obtained solution is also a global optimum that is verified by enumeration.

Table 5. Design variables and values found for the best solutions for the pressure vessel design.

 Initial design point Proposed method The SNA method [23]
x1 1.25 0.9375 1
x2 0.625 0.5 0.5
x3 50 48.5 48.5
x4 120 112 112
g1(x) -0.285 -0.001 -0.064
g2(x) -0.148 -0.037 -0.037
g3(x) -170076.572 -9533.333 -9533.333
g4(x) -120 -128 -128
f(x) 9589.925 6418.222 6788.988
Max constraint
violation

0 0 0

110

Mass minimization of the Golinski’s speed reducer

The second benchmark problem, the Golinski's speed reducer, has seven continuous
design variables and highly non-linear objective and constraint functions. The objective
function and constraints are as follows [24]

𝑓𝑓(𝐱𝐱) = 0.7854𝑥𝑥1𝑥𝑥2

2(3.3333𝑥𝑥3
2 + 14.9334𝑥𝑥3 − 43.0934)

−1.508𝑥𝑥1(𝑥𝑥6
2 + 𝑥𝑥7

2) + 7.4777(𝑥𝑥6
3 + 𝑥𝑥7

3)
+0.7854(𝑥𝑥4𝑥𝑥6

2 + 𝑥𝑥5𝑥𝑥7
2)

(6)

𝑔𝑔1(𝐱𝐱) = 27𝑥𝑥1
−1𝑥𝑥2

−2𝑥𝑥3
−1 ≤ 1

𝑔𝑔2(𝐱𝐱) = 397.5𝑥𝑥1
−1𝑥𝑥2

−2𝑥𝑥3
−2 ≤ 1

𝑔𝑔3(𝐱𝐱) = 1.93𝑥𝑥2
−1𝑥𝑥3

−1𝑥𝑥4
3𝑥𝑥6

−4 ≤ 1
𝑔𝑔4(𝐱𝐱) = 1.93𝑥𝑥2

−1𝑥𝑥3
−1𝑥𝑥5

3𝑥𝑥7
−4 ≤ 1

𝑔𝑔5(𝐱𝐱) =
1

0.1𝑥𝑥6
3 ��

745𝑥𝑥4

𝑥𝑥2𝑥𝑥3
�

2

+ (16.9)106�
0.5

≤ 1100

𝑔𝑔6(𝐱𝐱) =
1

0.1𝑥𝑥7
3 ��

745𝑥𝑥5

𝑥𝑥2𝑥𝑥3
�

2

+ (157.5)106�
0.5

≤ 850

𝑔𝑔7(𝐱𝐱) = 𝑥𝑥2𝑥𝑥3 ≤ 40
𝑔𝑔8(𝐱𝐱) = −

𝑥𝑥1

𝑥𝑥2
≤ −5

𝑔𝑔9(𝐱𝐱) = 𝑥𝑥1/𝑥𝑥2 ≤ 12
𝑔𝑔10(𝐱𝐱) = (1.5𝑥𝑥6 + 1.9)𝑥𝑥4

−1 ≤ 1
𝑔𝑔11(𝐱𝐱) = (1.1𝑥𝑥7 + 1.9)𝑥𝑥5

−1 ≤ 1
x1 ∊ [2.6, 3.6], x2 ∊ [0.7, 0.8], x3 ∊ [17, 28], x4 ∊ [7.3, 8.3],
x5 ∊ [7.8, 8.3], x6 ∊ [2.9, 3.9], x7 ∊ [5, 5.5]

The problem is solved by using linear (L), quadratic (Q) and pure quadratic (PQ)
surrogate models using adaptively updated ROI as depicted in Table 6.

As seen from the table 6, all the used surrogate models resulted in nearly equally
results. Figure 4 shows that in the test run 2 the constraints are violated four times after
which the iteration is proceeding at the feasible region. The objective function value drops
drastically during the first iteration after which the convergence smoothly slows down
until the convergence limit is met. Because of a very small TolFun the test runs 1, 3 and
4 (linear and pure quadratic) stop when the maximum number of iterations has been taken.
With a linear surrogate model a rather good result is achieved with ca. 440 function
evaluations which is still quite reasonable when compared with e.g. genetic algorithm that
required 36 000 function evaluations [24]. The quadratic surrogate model (test run 2) is
the most accurate and converges slightly faster than the others. However, the differences
in the results are practically insignificant. The best result is achieved by using a pure
quadratic surrogate model (test run 4) and its results from two iteration cycles are
compared to the results given in [24] in Table 7. Again, the found optimum is slightly
better, than the one reported earlier in [24].

111

Table 6. Design variables and values found for the best solutions for the speed reducer design
(comparison of surrogate models), f(x0) = 5773.5431.

 Test run 1 Test run 2 Test run 3 Test run 4
Optimization algorithm MATLAB Interior-Point SCIP SCIP SCIP
Surrogate model type L Q PQ PQ
x1 3.499911 3.499999 3.499685 3.499592
x2 0.700000 0.700000 0.700000 0.700000
x3 17 17 17 17
x4 7.300000 7.300000 7.300000 7.300000
x5 7.800000 7.800000 7.80000 7.800000
x6 3.350382 3.350214 3.350223 3.350215
x7 5.286947 5.286682 5.286683 5.286681
f(x*) 2996.5239 2996.3472 2996.2266 2996.1867
Mean constraint violation 0.000012 0.000068 0.000054 0.000135
Max constraint violation 0.000127 0.000365 0.000449 0.000900
Best iteration/used iterations 33/50 26/28 36/50 186/200
Allowed number of iterations 50 50 50 200
TolFun 1e-6 1e-6 1e-6 1e-12
Analyzed design points 442 1000 785 3185

Figure 4. Convergence of the objective function in the Test run 2.

Optimization using ANSYS as function evaluator

In the task a similar hatch cover as in [4] is designed using the proposed optimization
method. The single-objective mass minimization problem contains 17 plate thickness
design variables and 37 constraint functions associated with normative rules considering
stress and buckling. The design problem is carried out by using both linear, pure quadratic
and quadratic surrogate models, and the associated results are highlighted in Table 8 as
well as in figures 5 and 6, in which the smooth convergence of objective function and the
design variables in the quadratic case are depicted, respectively. For detailed discussion
on the problem and the obtained results, see [4].

112

Table 7. Design variables and values found for the best solutions for the speed reducer design.

 Initial design
point

Proposed method,
Test run 4, constraint
violation similar to [24]

Proposed method,
Test run 4, no
violated constraints

APM [24]

x1 3.60 3.499930

3.500000

3.500000

x2 0.72 0.700000 0.700000 0.700000
x3 27 17 17 17
x4 8.25 7.300000 7.300000 7.300000
x5 8.25 7.800000 7.800000 7.800000
x6 3.85 3.350215 3.350218 3.350215
x7 5.45 5.286685 5.286684 5.286683
f(x) 5773.5431 2996.3221 2996.3492 2996.3482
Max constraint
violation

0 0.000100 0 0.000111

Table 8. Design variables and values found for the best solutions for the hatch cover design,
f(x0) = 22208.56.

Test run 1 Test run 2 Test run 3

Optimization algorithm MATLAB
Interior-Point

SCIP SCIP

Surrogate model type L Q PQ
f(x*) 20112.02 20098.43 20094.05
Mean constraint violation 0 0.000155 0.000149
Max constraint violation 0 0.005389 0.002626
Best iteration/used iterations 8 / 8 5/6 8/8
Number of allowed iterations 30 30 30
TolFun 1e-3 1e-3 1e-3
Analyzed design points 134 861 253

113

Figure 5. Convergence of the objective function.

Figure 6. Convergence of the design variables.

114

Multiobjective optimization of a cantilever beam

The last benchmark problem highlights the differencies of various optimization
algorithms in a multiobjective optimization problem. The test problem with two objective
functions is taken from [22]. The objective functions are weight and tip deflection, and
the constraints are associated with maximum stress and tip deflection:

f1(d,l)=ρ
πd2

4
l

f2(d,l)=δ=
64Pl3

3Eπd4

(7)

g1(d,l)=σmax=
32Pl
πd3 ≤ 300 MPa

g2(d,l)=δ ≤ 5 mm,
d (diameter) ∊ [10 mm, 50 mm],
l (length) ∊ [200 mm, 1000 mm].

The following parameter values are used:

ρ=7800 kg/m3, P = 1 kN, E = 207 GPa

The problem is solved by using linear (L) and quadratic (Q) surrogate models with three
different optimization algorithms as depicted in Table 9. All the three methods give
substantially similar Pareto-front as depicted in figure 7.

Table 9. Multiobjective cantilever beam problem [22] results obtained by using three different
algorithms.

 Test run 1 Test run 2 Test run 3
Optimization
algorithm

Fminimax Linear
scalarization

Pre-emptive

Surrogate model
type

L L Q

MO-method
settings

None Weights: 0.5, 0.5 Optimization order:
deflection, weight

Pareto-optimal
points:
 d (mm), l (mm)

(50, 200)
(40, 200)
(36, 200)
(32.4, 200)
(29.2, 200)
(26.2, 200)
(23.6, 200)
(21.3, 200)

(50, 200)
(40, 200)
(36, 200)
(32.4, 200)
(29.2, 200)
(26.2, 200)
(23.6, 210.3)
(22.3, 200)

(50, 200)
(40, 200)
(36, 200)
(32.4, 200)
(29.2, 200)
(26.2, 200)
(23.6, 200)
(21.3, 200)

115

(19.1, 200)
(19.3, 200)
(19.3, 200)
(19, 200)
(19.3, 200)
(19.6, 200)
(19.3, 200)
(19.6, 200)
(19.3, 200)
(19.3, 200)
(19.3, 200)
(19.3, 200)

(20.1, 200)
(19.2, 200)
(19, 200)
(19.3, 200)
(19.3, 200)
(19.3, 200)
(19.3, 200)
(19.3, 200)
(19.3, 200)
(19.3, 200)
(19.3, 200)
(19.3, 200)

(19.1, 200)
(18.9, 200)
(18.9, 200)
(18.9, 200)
(18.9, 200)
(18.9, 200)
(18.9, 200)
(18.9, 200)
(18.9, 200)
(18.9, 200)
(18.9, 200)
(18.9, 200)

Pareto-optimal
solutions:
weight (kg),
deflection (mm)
and max constraint
violent (g1: MPa)

(3.06, 0.042)
(1.96, 0.103)
(1.59, 0.156)
(1.29, 0.238)
(1.04, 0.363)
(0.84, 0.553)
(0.68, 0.843)
(0.55, 1.285)
(0.45, 1.959)
(0.46, 1.884)
(0.46, 1.885)
(0.44, 2.016)
(0.46, 1.886)
(0.47, 1.764)
(0.46, 1.892)
(0.47, 1.765)
(0.46, 1.892)
(0.46, 1.885)
(0.46, 1.885)
(0.46, 1.885)

(3.06, 0.042)
(1.96, 0.103)
(1.59, 0.156)
(1.29, 0.238)
(1.04, 0.363)
(0.84, 0.553)
(0.72, 0.98)
(0.61, 1.068)
(0.49, 1.623)
(0.45, 1.916)
(0.44, 2.02)
(0.46, 1.886)
(0.46, 1.885)
(0.46, 1.885)
(0.46, 1.885)
(0.46, 1.885)
(0.46, 1.885)
(0.46, 1.885)
(0.46, 1.885)
(0.46, 1.885)

(3.06, 0.042)
(1.96, 0.103)
(1.59, 0.156)
(1.29, 0.238)
(1.04, 0.363)
(0.84, 0.553)
(0.68, 0.843)
(0.55, 1.285)
(0.45, 1.959)
(0.44, 2.038)
(0.44, 2.057) (1.773)
(0.44, 2.041) (0.058)
(0.44, 2.057) (1.787)
(0.44, 2.041) (0.059)
(0.44, 2.057) (1.787)
(0.44, 2.058) (1.854)
(0.44, 2.058) (1.857)
(0.44, 2.041) (0.061)
(0.44, 2.041) (0.002)
(0.44, 2.057) (1.785)

Max constraint
violation

0 0 1.857 (g1)

Used iterations 20 20 20
Allowed number of
iterations

20 20 20

Feasible points 20 20 10
TolFun Not in use Not in use Not in use
Analyzed design
points

77 77 134

116

Figure 7. feasible set (dotted area) and the found Pareto optimal set (marked with circles) in
design and criterion spaces.

Conclusions

A relatively simple and fast method is proposed for practical optimization problems
appearing in simulation-based product design processes. The method can be applied to
any kind of simulation environment, but in this paper the method is applied to structural
design in which it is linked to a commercial finite element solver. The theoretical
foundation of the method is concisely described, and the main focus of the paper is on
implementation issues. The method is verified using two well-known benchmark
examples in which excellent results are achieved. Especially, when compared to genetic
algorithm that is often applied for practical optimizations, the proposed method requires
remarkably less function evaluations as in the Golinski’s example.

Acknowledgements

The funding from TEKES project Computational methods in mechanical engineering
product development - SIMPRO is gratefully acknowledged.

References

[1] Karmarkar N. A new polynomial time algorithm for linear programming.
Combinatorica, 1984;4:373–395.

[2] Arora JS. Introduction to optimum design. 2nd ed. Elsevier; 2004.

117

[3] Nesterov Y, Nemirovsky A. Interior-point polynomial methods in convex
programming, volume 13 of Studies in Applied Mathematics. SIAM: Philadelphia;
1994.

[4] Pajunen S, Heinonen O. Automatic design of marine structures by using successive
response surface method. Structural and Multidisciplinary Optimization,
2014;49;863-871. DOI: 10.1007/s00158-013-1013-7

[5] Roux WJ, Stander N, Haftka RT. Response surface approximations for structural
optimization. International Journal for Numerical Methods in Engineering,
1998;42:517-534. DOI: 10.1002/(SICI)1097-0207(19980615)42:3<517::AID-
NME370>3.0.CO;2-L

[6] Sakata S, Ashida F, Zako M. Structural optimization using Kriging approximation.
Computer Methods in Applied Mechanics and Engineering, 2003;192:923-939.
doi:10.1016/S0045-7825(02)00617-5

[7] Gupta KC, Li J. Robust design optimization with mathematical programming neural
networks. Computers & Structures, 2000;76:507-51. doi:10.1016/S0045-
7949(99)00125-X

[8] Acar E, Guler MA, Gerceker B, Cerit ME, Bayram B. Multi-objective crashworthiness
 optimization of tapered thin-walled tubes with axisymmetric indentations. Thin-
Walled Structures, 2011;49:94-105. doi:10.1016/j.tws.2010.08.010

[9] Friedman JH. Multivariate adaptive regression splines. Annals Statistics, 1991;19,:1–
141.

[10] Barton RR, Meckesheimer M. Metamodel-based simulation optimization. In:
Henderson SG. & Nelson BL (eds.). Handbooks in Operations Research and
Management Science, 2006;13:535-570.

[11] Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R, Tucker PK. Surrogate-
based analysis and optimization. Progress in Aerospace Sciences, 2005;41:1-28.
http://dx.doi.org/10.1016/j.paerosci.2005.02.001

[12] Barton RR. Simulation optimization using metamodels. In: Rossetti MD, Hill RR,
Johansson B, Dunkin A & Ingalls RG (eds.). Proceedings of the 2009 Winter
Simulation Conference 2009.

[13] Gary Wang G, Shan S. Review of Metamodeling Techniques in Support of
Engineering Design Optimization. J Mech. Des, 2006;129:370-380.
doi:10.1115/1.2429697

[14] Gurobi, documentation. 2014. Gurobi 5.6.
(http://www.gurobi.com/documentation/)

118

[15] Achterberg T, SCIP: Solving constraint integer programs, Mathematical
Programming Computation, 2009;1:1-41. doi:10.1007/s12532-008-0001-1

[16] Techila, documentation. 2014. Techila Fundamentals.
(http://www.techilatechnologies.com/technology/technology-docs/)

[17] Myers RH, Montgomery DC, Anderson-Cook CM. Response surface methodology:
process and production optimization using designed experiments, John Wiley &
Sons;2009.

[18] MSDN. 2014. Microsoft Developer Network. ASP.NET MVC.
(https://msdn.microsoft.com/en-us/library/dd381412(v=vs.108).aspx)

[19] Laakkonen P. Development of a computational tool for structural optimization.
Master of Science Thesis. Tampere University of Technology. 159 p. 2014.

[20] Arora JS, Huang MW, Hsieh CC. Methods for optimization of nonlinear problems
with discrete variables: A review. Structural optimization, 1994;8:69-85.

[21] Miettinen K. Nonlinear Multiobjective Optimization, Kluwer Academic
Publishers;1999.

[22] Dep K. Multiobjective optimization using evolutionary algorithms, Wiley;2001.

[23] Hsu Y, Dong Y. Hsu M. A sequential approximation method using neural networks
for nonlinear discrete-variable optimization with implicit constraints. JSME
International Journal Series C, 2001;44:103-112.
http://doi.org/10.1299/jsmec.44.103

[24] Lemonge, AC, Barbosa HJ, Borges CC, Silva FB. Constrained optimization
problems in mechanical engineering design using a real-coded steady-state genetic
algorithm. Mecánica Computacional, XXIX 2010; 95:9287-9303.

Sami Pajunen
Department of Civil Engineering
Tampere University of Technology
P.O. Box 600
33101 Tampere
sami.pajunen@tut.fi

Petri Laakkonen
Sorvimo Optimointipalvelut Oy
petri.laakkonen@sorvimo.com

