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Surrogate-model based method and software for 
practical design optimization problems 
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Summary. In a practical simulation-based design process most of the required simulations are 
carried out by using commercial software producing simulation responses but no gradient data. 
When applying mathematical optimization routines to such design process all the function 
evaluators must be considered as black-box solvers and the optimization can be integrated to 
design process efficiently using e.g. surrogate modeling techniques or heuristic optimization 
algorithms. In this paper we present a design optimization method that can be integrated very 
easily to any simulation-based design process. Special attention is paid on software 
implementation issues of the proposed method. 
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Introduction 

Throughout the history of mathematical optimization, the main focus in majority of the 
research projects has been the search of global optimum using various strategies. This 
massive research has resulted in many fine-tuned and robust optimization algorithms for 
different types of problems, e.g. the interior point method for linear problems [1] and 
sequentially quadratic method for non-linear problems [2]. In some problem categories 
even the finding of the global optimum can be guaranteed [3].  

The practical design processes would benefit greatly from the adoption of these 
optimization algorithms but there are certain barriers preventing the full scale utilization 
of mathematical optimization methods. In industrial design environment the designers are 
almost without exception using commercial simulation software, i.e. black box solvers 
that produce only simulation results but usually not the gradient data. Hence, none of the 
gradient based algorithms can be used as such. On the other hand, only the biggest 
companies can administrate the best optimization software for every possible type of 
optimization problems that may appear in their design processes. There are evidently also 
many other reasons to the low usage of optimization in practice, but already these two 
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reasons lead us to an acute research problem statement: How to tackle in the most efficient 
way all kind of industrial optimization problems in all the simulation environments. In 
other words, how to develop a method that can be used to solve any optimization 
problems in any design environment. Additionally, in the industrial processes the 
keywords such as speed and robustness are highly appreciated and they should also be 
the driving forces when designing the method. It is evident, that broadening the method's 
capability to handle various optimization problem types will simultaneously decrease 
some other features of the method. Usually this means that the search of the global 
optimum must be replaced by the search of a better design. But at the same time the design 
optimization process can be done more robustly and faster than before. 

In this paper we present a surrogate-model based optimization method and the 
associated software that can be adopted to any design process that uses parametric 
simulation models. The software is used to formulate the optimization problem while the 
simulation is carried out by using some black box solver and the generated optimization 
sub-problems are solved using the best available optimization algorithm libraries. In the 
optimization problem formulation the original simulation problem is replaced 
sequentially by polynomial-based metamodels [4]. 

The paper is organized as follows. First, the basic features and advantages of surrogate 
modeling techniques are concisely revised. In a subsequent section the details of the 
proposed optimization method and the associated software implementation issues are 
discussed. Two well-known benchmark problems and one industrial application problem 
are solved using the proposed method and finally the main conclusions of the paper are 
drawn. 

 
 

Surrogate models in simulation-based optimization 

In a practical design process the simulation models are typically rather complex, massive 
and time-consuming to evaluate. Thus, it is of primary interest to minimize the simulation 
model evaluation calls in the optimization process. Additionally, the simulation models 
do not usually produce sensitivity data. Due to these features, one of the most efficient 
strategies to apply optimization in to the design process is to replace the original 
simulation model with an associated surrogate model. The most widely used surrogate 
model techniques are the response surface method (RSM) [5], Kriging method [6], neural 
networks [7], radial basis function method [8] and regression splines method [9].  

In general, the surrogate-model based optimization can be divided into the following 
four main stages [10,11]. First the required simulations are carried out with different 
model parameter values at the so called design-of-experiments points (or design points), 
then the simulated data is fitted to the selected surrogate model. Once the surrogate model 
is formulated to mimic the original problem, it is straightforward to formulate the 
optimization task and call the surrogate model whenever function evaluations are needed.  

In the surrogate-model based optimization two different strategies are usually 
adopted: global surrogate model fit, and iterated local surrogate models. In the local 
strategy the surrogate model is fitted to the neighborhood of the previous optimum point 
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at every iteration cycle. This sequential strategy is used especially with the response 
surface method. Accuracy of the response surface method is generally sufficient to 
approximate only a small part of the design space [12]. As soon as the surrogate model is 
constructed by the desired method, also the design variable sensitivities can be estimated. 
Furthermore, it is noteworthy, that also discrete variables can be included in surrogate 
models [13]. 

In addition to the property that surrogate modeling simplifies greatly the original 
complex model it has also one fundamental advantage when used in addition to 
optimization. The surrogate model is constructed using the computed responses at 
separate design points that can be computed independently in parallel. Due to fully 
distributing problem the parallel computing speeds up the computation almost linearly. 
However, when applying surrogate modeling in optimization, one has to pay special 
attention to the number of design variables. When the number of design variables 
increases, the required amount of design points becomes rather big, when using higher-
order surrogate methods. And the other hand, purely linear surrogates are computationally 
cheaper, but they may not be capable of predicting the model responses accurately enough 
but only in rather small sub-spaces. Despite of the used surrogate models, the proper 
formulation of the optimization problem is of primary interest and the selection of design 
variables must be done with great caution.  

The proposed method and software implementation 

Leading principles 
 
In the design of the optimization software based on the proposed method, the targets were 
wide applicability, superior robustness and rapidity of the optimization task set up and 
solution as well as prime user experience. To meet these requirements, an easy-to-use and 
easy-to-learn simple graphical user interface was designed. Wide applicability of the 
software was ensured by adopting modularity in all the implementations and enabling the 
use of any kind of design variables. The kernel of the optimization problem formulation 
was based on the successive response surface method that was found to be extremely 
robust in earlier studies [4]. For the optimization problems solution, the best algorithm 
consistent with the adopted surrogate model was chosen from existing algorithm libraries 
such as Gurobi [14] and SCIP [15]. Parallel computations were performed using the 
Techila middleware system [16].  
 
 
Optimization problem formulation 
 
Implemented optimization procedure is based on successive response surface method 
with linear, pure quadratic or quadratic polynomial basis functions. In the design space 
the surrogate model is spanned sequentially into an a priori chosen subspace called the 
region of interest (ROI) so that approximation errors remain below a user-defined 
acceptance limit. To construct the surrogate model in the subspace, the required model 
responses are concurrently evaluated at the design points that are placed to the subspace 
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using the D-optimal design [17], and the data is fitted to selected polynomial form using 
the method of least squares. The optimization problem at iteration cycle i is formulated 
as 
 

min 𝐟𝐟(𝐱𝐱) 
𝐠𝐠(𝐱𝐱) ≤ 𝟎𝟎 
𝐡𝐡(𝐱𝐱) = 𝟎𝟎 

𝐱𝐱𝑖𝑖
L ≤ 𝐱𝐱𝐢𝐢 ≤ 𝐱𝐱𝑖𝑖

U 
 
in which the subscript i refers to iteration cycle number and the superscripts L and U 
denote the lower and upper limits of the design variable vector x, respectively. In other 
words, the lower and upper limits define the region of interest in which the surrogate 
model is spanned at the current iteration cycle. The constraint functions are collected to 
vectors g and h and objective functions are collected in vector f. In the case of scalar 
optimization problem, vector f simplifies to scalar function f. In (1) all the functions in 
vectors f, g and h are approximated in the current region of interest �𝐱𝐱𝑖𝑖

𝐋𝐋, 𝐱𝐱𝑖𝑖
𝐔𝐔� according to 

the adopted surrogate model. Once the optimization problem (1) is solved at current 
iteration, the next ROI is spanned in the neighborhood of the found optimum as depicted 
in figure 1 and the iteration is continued. The iteration is stopped either when the a priori 
set number of maximum iterations is exceeded or when the convergence criterion is met. 
The convergence criterion reads in  
 

    TolFun
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i

ii ≤
− −

)(
)()( 1

x
xx

        (2) 

In practical design optimization problems, the objective functions rarely approach zero 
in the optimum, but in such case, the convergence criterion should be based on e.g. the 
iterative change of design variables. 

More detailed derivation of the method can be found from [4]. When solving the 
optimization problem (1), a consistent optimization algorithm is chosen according to 
Table 1, in which all the implemented algorithms are introduced briefly. In the Table 1, 
LP denotes linear problem, MILP mixed-integer linear problem, QCQP quadratically 
constrained quadratic problem, MIQCQP mixed-integer quadratically constrained 
quadratic problem.  
 
 
High performance computing 

In the design optimization tasks, the number of function evaluations at separate design 
points can be very large [17]. A distributed computation system developed by Techila is 
utilized to carry out parallel computation in cloud or computer clusters [16]. Techila 
supports the several programming interfaces as MATLAB, which has been used in the 
software.  
 
 
 

(1) 
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Figure 1. Schematic optimization iteration progress from iteration cycle i to the  optimum x*. 
The size of the region of interest changes during the iteration according the approximation 
errors (adaptive ROI) or remains the same (fixed ROI). Ω denotes the feasible region. 
 

Table 1. Implemented optimization algorithms. 
Optimization 
algorithm 

Applicable 
RSM model 

Vari
able 
types 
* 

LP MILP QCQP MIQCQP non- 
convex 
QP 

Multi-objective solution 
method 

MATLAB - 
Interior Point 

Linear C x - - - - Linear scalarization, Pre-
emptive optimization 

MATLAB - 
Simplex 

Linear C x - - - - Linear scalarization 

MATLAB - 
Active set 

Linear C x - - - - Linear scalarization 

GUROBI Linear,  
Pure quadratic, 
Quadratic 

CIB x x x x - Linear scalarization, Pre-
emptive optimization 

SCIP Pure quadratic, 
Quadratic 

CIB - - x x x Pre-emptive optimization 

MATLAB - 
fminimax 

Linear, Pure 
quadratic, 
Quadratic 

C x - x - x Minimax 

Discrete sets 
(GUROBI/ 
SCIP) 

Linear,  
Pure quadratic, 
Quadratic 

CIBS
D 

x x x x x Linear scalarization, Pre-
emptive optimization 

Discrete sets 
(fminimax) 

Linear, Pure 
quadratic, 
Quadratic 

CSD x - x - x Minimax 

*Continuous (C), Integer (I), Binary (B), Independent discrete (S), Dependent discrete (D) 

  

Ω   

g j =0   

g k =0   

x i   

x i +1   

x i +2   

x i +3  =  x *   

Region of Interest  
at iteration cycle i   

optimum   at  
iteration cycle i   



105 
 

 
 
GUI and interfaces 

The software has been designed by following the Model-View-Controller (MVC) 
architectural pattern. It separates an application into three main components: the model, 
the view, and the controller. This makes it possible to develop these components 
separately [18]. In the developed software the model is a database, the view is the graphic 
user interface seen by the user and the controller takes care of the input given by the user. 
The controller's application logic also launches the actual computation code. The software 
and the interaction between parts are depicted at a general level in figure 2. The 
computation code has been put into practice by using MATLAB, but on the other hand, 
also Python and open source solvers could have been used instead. The figure 2 highlights 
the four interfaces: a graphical user interface (GUI), database, computation code and 
simulation software, which produces the model responses and is linked to any CAD-
system. The input parameters file is edited with a user interface or text editor and is given 
to a computation code. When creating a new task, an output-folder to which the 
parameters and results of the task will be stored, is created at the same time. The 
parameters are also saved in the database for the user interface. The interfaces to 
simulation packages such as ANSYS have been made with Python. The database is 
implemented in SQLite. 
 

 
Figure 2. Interfaces of the RapidDO software. 

 
When designing the software, special attention was paid to the future augmentation needs 
by following a modular structure and to carry out functions which can be easily 
maintained. For the end user the software can be easily compiled to be executed in 
Microsoft Windows. For prime user experience the entering of the tasks is executed as 
proficiently as possible. The required task parameters are classified in Table 2.  
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Table 2. Task parameters needed in the optimization. 

Mandatory parameters Parameters for experienced user 
(otherwise program-controlled) 

File location of the simulation model used 
in the optimization (e.g. FEM-model 
containing two-way link to CAD-model) 

Multi-objective optimization method 

ID-numbers of simulation model output 
parameters used in objective or constraint 
functions 

Initial radius and adaptiveness of the 
region of interest 

ID-numbers of simulation model input 
parameters used as design variables and 
their types 

Target relative error between the 
surrogate model and the true simulation 
model  

Surrogate model (Linear, Quadratic or 
Pure quadratic) 

Number of maximum iterations 

Optimization algorithm (according to 
Table 1) 

Relative convergence tolerance of the 
objective functions (TolFun) 

Discrete sets and dependencies of discrete 
variables (if in use) 

Constraint functions and Design 
variables to be visualized during the 
iteration 

Activation of Techila parallelization Constraint tolerance for true responses 
 
 
Discrete problems  
 
The discrete sets are needed in practical design optimization tasks in which the variables 
can get only certain discrete values or value pairs. The mathematical formulation of 
optimization problem with discrete design variables is implemented in to the software as 
detailed below [19]. 
 
Discrete variable can be selected from a finite set {s1,...,sm} as follows. 
 

𝑥𝑥 = ∑ 𝑢𝑢𝑖𝑖𝑠𝑠𝑖𝑖
𝑚𝑚
𝑖𝑖=1       (3) 

 
in which 𝑢𝑢𝑖𝑖 ∈ {0, 1}, 𝑠𝑠𝑖𝑖 ∈ 𝑅𝑅 and m is the number of discrete values. The binary variable 
𝑢𝑢𝑖𝑖 is used to pick only one discrete value 𝑠𝑠𝑖𝑖 from the set according to equation (4) 
 

∑ 𝑢𝑢𝑖𝑖
𝑚𝑚
𝑖𝑖=1 − 1 = 0      (4) 

 
When discrete design variables are used, the constraint vector h in (1) is augmented with 
the equality constraints (4) in the standard manner [20]. 

Discrete models have been derived for three cases. In the first case all the design 
variables are chosen from discrete sets. In the second case the design variables are also 
discrete but dependent on each other. In other words, all the allowed combinations of 
design variables are defined. In practice, this often means the permitted configurations 



107 
 

that might appear e.g. in problems in which beam profile area and the second moment of 
area must have consistent discrete values. In the third case the design variables can be 
discrete and dependently discrete as above, but also continuous and integers. 

Discrete values must be taken into account in the design of experiments, because the 
optimized target, such as a parametric FE-model may not be able to analyze the model 
with non-discrete values. In other words, the experimental design should be used only 
with allowed combinations of given discrete values and dependent variables. In the 
computational tool this has been solved by expanding the ROI so that sufficient number 
of valid discrete points is included in it, and then forming the candidate matrix in the usual 
manner according the D-optimal design. 
 
 
Multi-objective problems 

There are often conflicting objectives in practical design optimization tasks. In that case 
the optimization problem can be formulated as multi-objective in which the solution is a 
Pareto optimal set instead of a single optimum point as in the case on a single-objective 
optimization problem. Mathematically, every Pareto optimal point is equivalent, but in 
practice, however, only one solution is sought. There are many strategies for selecting the 
final solution from the pareto-set as discussed in [21]. 

Three methods which appear generally in the literature are applied to the tool: The 
linear scalarization method (called also as weighted sum method), pre-emptive 
optimization method (called also as lexicographic ordering) and the minimax method as 
explained in brief below. In the linear scalarization the objective functions are combined 
into one objective function which will be then optimized as a task of one objective 
function. This method does not work well with non-convex tasks because it cannot detect 
all the Pareto optimal points. For this reason this method can be used in the computational 
tool only with the linear surrogate model. It can be difficult to find suitable weighting 
coefficients needed in the method. In the pre-emptive optimization method one objective 
function is minimized at a time and the other objective functions are considered as 
constraint functions. With this method the decision-maker must sort the objective 
functions carefully to the order of importance because the order has a great impact for the 
converging of objective functions. The minimax method minimizes the objective function 
having largest value. This is the most straightforward from the adopted three methods 
because the decision-maker does not need to make decisions before the optimization. The 
best results can be achieved by running the same task with different methods and settings. 
The user's knowledge about the behavior of responses facilitates the solving of the multi-
objective optimization task. Requiring the least amount of user input, MATLAB 
fminimax is often a good choice to begin with. 

The multi-objective optimization methods used with a sequential response surface 
method return one pareto-optimal point at every iteration step once the iteration has found 
the first Pareto optimal point, thus the number of Pareto optimal points is dependent on 
the size of the used ROI. Therefore, in the multi-objective problems relatively small fixed 
radius of ROI should be used to get enough points to the Pareto optimal set. Naturally, 
this means more iteration cycles and at the same time more simulation calls. Figure 3 
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depicts Pareto optimal solution sets for a cantilever beam problem [22] obtained by using 
the proposed method with fixed and adaptive ROI. 
 

 
Figure 3. Pareto front using fixed ROI (a), and adaptive ROI (b). 

 

Results and discussion 

Even though the primary goal of the proposed methodology is to solve practical 
simulation-based optimization problems, this chapter contains first two well-known 
benchmark problems for verification use. Furthermore, one practical design problem 
simulated by using the ANSYS FE-package and one multiobjective benchmark problem 
are reported 
 
Mass minimization of a pressure vessel 

The first benchmark problem is a mass minimization of a pressure vessel [23]. In the 
problem, the function to be minimized and the associated constraints are 
  
 𝑓𝑓(𝐱𝐱) = 0.6224𝑥𝑥1𝑥𝑥3𝑥𝑥4 + 1.778𝑥𝑥2𝑥𝑥3

2 + 3.1661𝑥𝑥1
2𝑥𝑥4 + 19.84𝑥𝑥1

2𝑥𝑥3 

(5)   

𝑔𝑔1(𝐱𝐱) = −𝑥𝑥1 + 0.0193𝑥𝑥3 ≤ 0 
𝑔𝑔2(𝐱𝐱) = −𝑥𝑥2 + 0.00954𝑥𝑥3 ≤ 0 

𝑔𝑔3(𝐱𝐱) = −𝜋𝜋𝑥𝑥3
2𝑥𝑥4 −

4
3 𝜋𝜋𝑥𝑥3

3 + 1296000 ≤ 0 
𝑔𝑔4(𝐱𝐱) = 𝑥𝑥4 − 240 ≤ 0, 

x1 ∊ [0.625, 1.25], x2 ∊ [0, 0.625], 
x3 ∊ [45, 50], x4 ∊ [100, 120] 

 
in which x1 is thickness of the cylindrical part of the pressure vessel and x2 is thickness of 
the hemispherical head. The inner diameter of the cylinder part of the container is x3 and 
the length is x4. All the design variables are chosen from discrete sets listed in Table 3. 
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Table 3. Possible discrete values of the design variables. 

x1 0.625 0.6875 0.75 0.8125 0.875 0.9375 1 1.0625 1.125 1.1875 1.25 
x2 0 0.0625 0.125 0.1875 0.25 0.3125 0.375 0.4375 0.5 0.5625 0.625 
x3 45 45.5 46 46.5 47 47.5 48 48.5 49 49.5 50 
x4 100 102 104 106 108 110 112 114 116 118 120 

 
A quadratic surrogate model and the adaptive ROI are used for the task. Because there 
are only few design variables, a more accurate surrogate model can still be used 
efficiently. The quadratic surrogate model is formed by using the minimum number of 
design points, that is 15 in the case of four design variables [17]. Using convergence 
tolerance TolFun = 0.1% the method converges after four iteration steps as depicted in 
Table 4. The task requires totally 65 function evaluation calls from which 60 are for 
surrogate model constructions and 5 are for approximation accuracy checks. 
 

Table 4. Iteration history on the pressure vessel design. 

Iteration x1 x2 x3 x4 Mass 
0 1.25 0.625 50 120 9589.925000 
1 1.125  0.5625 49  108 7770.049875 
2 1 0.5 50 100 6643.235000 
3 0.9375 0.5 48.5  112 6418.221581 
4 0.9375 0.5 48.5  112 6418.221581 

 
In table 5 the obtained result has been compared with the results found from literature 
[23]. It is noteworthy, that the found optimum design is lighter than presented earlier in 
[23], and the obtained solution is also a global optimum that is verified by enumeration. 
 
 
Table 5. Design variables and values found for the best solutions for the pressure vessel design. 

 Initial design point Proposed method The SNA method [23] 
x1 1.25 0.9375 1 
x2 0.625 0.5 0.5 
x3 50 48.5  48.5 
x4 120 112 112 
g1(x) -0.285 -0.001   -0.064 
g2(x) -0.148 -0.037 -0.037 
g3(x) -170076.572 -9533.333 -9533.333 
g4(x) -120 -128 -128 
f(x) 9589.925 6418.222 6788.988 
Max constraint 
violation 

0 0 0 
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Mass minimization of the Golinski’s speed reducer 

The second benchmark problem, the Golinski's speed reducer, has seven continuous 
design variables and highly non-linear objective and constraint functions. The objective 
function and constraints are as follows [24] 
 

 
𝑓𝑓(𝐱𝐱) = 0.7854𝑥𝑥1𝑥𝑥2

2(3.3333𝑥𝑥3
2 + 14.9334𝑥𝑥3 − 43.0934) 

−1.508𝑥𝑥1(𝑥𝑥6
2 + 𝑥𝑥7

2) + 7.4777(𝑥𝑥6
3 + 𝑥𝑥7

3) 
+0.7854(𝑥𝑥4𝑥𝑥6

2 + 𝑥𝑥5𝑥𝑥7
2) 

(6) 

  

𝑔𝑔1(𝐱𝐱) = 27𝑥𝑥1
−1𝑥𝑥2

−2𝑥𝑥3
−1  ≤ 1 

𝑔𝑔2(𝐱𝐱) = 397.5𝑥𝑥1
−1𝑥𝑥2

−2𝑥𝑥3
−2 ≤ 1 

𝑔𝑔3(𝐱𝐱) = 1.93𝑥𝑥2
−1𝑥𝑥3

−1𝑥𝑥4
3𝑥𝑥6

−4 ≤ 1 
𝑔𝑔4(𝐱𝐱) = 1.93𝑥𝑥2

−1𝑥𝑥3
−1𝑥𝑥5

3𝑥𝑥7
−4  ≤ 1 

𝑔𝑔5(𝐱𝐱) =
1

0.1𝑥𝑥6
3 ��

745𝑥𝑥4

𝑥𝑥2𝑥𝑥3
�

2

+ (16.9)106�
0.5

≤ 1100 

𝑔𝑔6(𝐱𝐱) =
1

0.1𝑥𝑥7
3 ��

745𝑥𝑥5

𝑥𝑥2𝑥𝑥3
�

2

+ (157.5)106�
0.5

≤ 850 

𝑔𝑔7(𝐱𝐱) = 𝑥𝑥2𝑥𝑥3 ≤ 40 
𝑔𝑔8(𝐱𝐱) = −

𝑥𝑥1

𝑥𝑥2
≤ −5 

𝑔𝑔9(𝐱𝐱) = 𝑥𝑥1/𝑥𝑥2 ≤ 12 
𝑔𝑔10(𝐱𝐱) = (1.5𝑥𝑥6 + 1.9)𝑥𝑥4

−1 ≤ 1 
𝑔𝑔11(𝐱𝐱) = (1.1𝑥𝑥7 + 1.9)𝑥𝑥5

−1 ≤ 1  
x1 ∊ [2.6, 3.6], x2 ∊ [0.7, 0.8], x3 ∊ [17, 28], x4 ∊ [7.3, 8.3], 
x5 ∊ [7.8, 8.3], x6 ∊ [2.9, 3.9], x7 ∊ [5, 5.5] 

 
The problem is solved by using linear (L), quadratic (Q) and pure quadratic (PQ) 
surrogate models using adaptively updated ROI as depicted in Table 6. 

As seen from the table 6, all the used surrogate models resulted in nearly equally 
results. Figure 4 shows that in the test run 2 the constraints are violated four times after 
which the iteration is proceeding at the feasible region. The objective function value drops 
drastically during the first iteration after which the convergence smoothly slows down 
until the convergence limit is met. Because of a very small TolFun the test runs 1, 3 and 
4 (linear and pure quadratic) stop when the maximum number of iterations has been taken. 
With a linear surrogate model a rather good result is achieved with ca. 440 function 
evaluations which is still quite reasonable when compared with e.g. genetic algorithm that 
required 36 000 function evaluations [24]. The quadratic surrogate model (test run 2) is 
the most accurate and converges slightly faster than the others. However, the differences 
in the results are practically insignificant. The best result is achieved by using a pure 
quadratic surrogate model (test run 4) and its results from two iteration cycles are 
compared to the results given in [24] in Table 7. Again, the found optimum is slightly 
better, than the one reported earlier in [24].  
 
 



111 
 

Table 6. Design variables and values found for the best solutions for the speed reducer design 
(comparison of surrogate models), f(x0) = 5773.5431. 

 Test run 1 Test run 2 Test run 3 Test run 4 
Optimization algorithm MATLAB Interior-Point SCIP SCIP SCIP 
Surrogate model type L Q PQ PQ 
x1 3.499911 3.499999 3.499685 3.499592 
x2 0.700000 0.700000 0.700000 0.700000 
x3 17 17 17 17 
x4 7.300000 7.300000 7.300000 7.300000 
x5 7.800000 7.800000 7.80000  7.800000 
x6 3.350382  3.350214  3.350223 3.350215 
x7 5.286947 5.286682 5.286683 5.286681 
f(x*) 2996.5239 2996.3472 2996.2266 2996.1867 
Mean constraint violation 0.000012 0.000068 0.000054 0.000135 
Max constraint violation 0.000127 0.000365 0.000449 0.000900 
Best iteration/used iterations 33/50 26/28 36/50 186/200 
Allowed number of iterations 50 50 50 200 
TolFun 1e-6 1e-6 1e-6 1e-12 
Analyzed design points    442 1000 785 3185 

 
 

 
Figure 4. Convergence of the objective function in the Test run 2. 

 
Optimization using ANSYS as function evaluator 

In the task a similar hatch cover as in [4] is designed using the proposed optimization 
method. The single-objective mass minimization problem contains 17 plate thickness 
design variables and 37 constraint functions associated with normative rules considering 
stress and buckling. The design problem is carried out by using both linear, pure quadratic 
and quadratic surrogate models, and the associated results are highlighted in Table 8 as 
well as in figures 5 and 6, in which the smooth convergence of objective function and the 
design variables in the quadratic case are depicted, respectively. For detailed discussion 
on the problem and the obtained results, see [4]. 
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Table 7. Design variables and values found for the best solutions for the speed reducer design. 

 Initial design 
point 

Proposed method, 
Test run 4, constraint 
violation similar to [24] 

Proposed method, 
Test run 4, no 
violated constraints 

APM [24] 

x1 3.60 3.499930 
  

3.500000 
  

3.500000 

x2 0.72 0.700000  0.700000  0.700000 
x3 27 17 17 17 
x4 8.25 7.300000  7.300000  7.300000 
x5 8.25 7.800000  7.800000  7.800000 
x6 3.85 3.350215  3.350218  3.350215 
x7 5.45 5.286685 5.286684 5.286683 
f(x) 5773.5431 2996.3221 2996.3492 2996.3482 
Max constraint 
violation 

0 0.000100 0 0.000111 

 
 
 
 

Table 8. Design variables and values found for the best solutions for the hatch cover design,  
f(x0) = 22208.56. 

 
Test run 1 Test run 2 Test run 3 

Optimization algorithm MATLAB 
Interior-Point 

SCIP SCIP 

Surrogate model type L Q PQ 
f(x*) 20112.02 20098.43 20094.05 
Mean constraint violation 0 0.000155 0.000149 
Max constraint violation 0 0.005389 0.002626 
Best iteration/used iterations 8 / 8 5/6 8/8 
Number of allowed iterations 30 30 30 
TolFun 1e-3 1e-3 1e-3 
Analyzed design points    134 861 253 
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Figure 5. Convergence of the objective function. 

 
 

 

 
Figure 6. Convergence of the design variables. 
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Multiobjective optimization of a cantilever beam 

The last benchmark problem highlights the differencies of various optimization 
algorithms in a multiobjective optimization problem. The test problem with two objective 
functions is taken from [22]. The objective functions are weight and tip deflection, and 
the constraints are associated with maximum stress and tip deflection: 
 

f1(d,l)=ρ
πd2

4
l 

f2(d,l)=δ=
64Pl3

3Eπd4 

(7) 

g1(d,l)=σmax= 
32Pl
πd3 ≤ 300 MPa 

g2(d,l)=δ ≤ 5 mm, 
d (diameter)  ∊ [10 mm, 50 mm],  
l  (length) ∊ [200 mm, 1000 mm]. 

 
The following parameter values are used: 

ρ=7800 kg/m3, P = 1 kN, E = 207 GPa 
 
The problem is solved by using linear (L) and quadratic (Q) surrogate models with three 
different optimization algorithms as depicted in Table 9. All the three methods give 
substantially similar Pareto-front as depicted in figure 7. 

 
 
 

Table 9. Multiobjective cantilever beam problem [22] results obtained by using three different 
algorithms. 

 Test run 1 Test run 2 Test run 3 
Optimization 
algorithm 

Fminimax Linear 
scalarization 

Pre-emptive 

Surrogate model 
type 

L L Q 

MO-method 
settings 

None Weights: 0.5, 0.5 Optimization order: 
deflection, weight 

Pareto-optimal 
points: 
 d (mm), l (mm) 

(50, 200) 
(40, 200) 
(36, 200) 
(32.4, 200) 
(29.2, 200) 
(26.2, 200) 
(23.6, 200) 
(21.3, 200) 

(50, 200) 
(40, 200) 
(36, 200) 
(32.4, 200) 
(29.2, 200) 
(26.2, 200) 
(23.6, 210.3) 
(22.3, 200) 

(50, 200) 
(40, 200) 
(36, 200) 
(32.4, 200) 
(29.2, 200) 
(26.2, 200) 
(23.6, 200) 
(21.3, 200) 
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(19.1, 200) 
(19.3, 200) 
(19.3, 200) 
(19, 200) 
(19.3, 200) 
(19.6, 200) 
(19.3, 200) 
(19.6, 200) 
(19.3, 200) 
(19.3, 200) 
(19.3, 200) 
(19.3, 200) 

(20.1, 200) 
(19.2, 200) 
(19, 200) 
(19.3, 200) 
(19.3, 200) 
(19.3, 200) 
(19.3, 200) 
(19.3, 200) 
(19.3, 200) 
(19.3, 200) 
(19.3, 200) 
(19.3, 200) 

(19.1, 200) 
(18.9, 200) 
(18.9, 200) 
(18.9, 200) 
(18.9, 200) 
(18.9, 200) 
(18.9, 200) 
(18.9, 200) 
(18.9, 200) 
(18.9, 200) 
(18.9, 200) 
(18.9, 200) 

Pareto-optimal 
solutions: 
weight (kg), 
deflection (mm) 
and max constraint 
violent (g1: MPa) 

(3.06, 0.042) 
(1.96, 0.103) 
(1.59, 0.156) 
(1.29, 0.238) 
(1.04, 0.363) 
(0.84, 0.553) 
(0.68, 0.843) 
(0.55, 1.285) 
(0.45, 1.959) 
(0.46, 1.884) 
(0.46, 1.885) 
(0.44, 2.016) 
(0.46, 1.886) 
(0.47, 1.764) 
(0.46, 1.892) 
(0.47, 1.765) 
(0.46, 1.892) 
(0.46, 1.885) 
(0.46, 1.885) 
(0.46, 1.885) 

(3.06, 0.042) 
(1.96, 0.103) 
(1.59, 0.156) 
(1.29, 0.238) 
(1.04, 0.363) 
(0.84, 0.553) 
(0.72, 0.98) 
(0.61, 1.068) 
(0.49, 1.623) 
(0.45, 1.916) 
(0.44, 2.02) 
(0.46, 1.886) 
(0.46, 1.885) 
(0.46, 1.885) 
(0.46, 1.885) 
(0.46, 1.885) 
(0.46, 1.885) 
(0.46, 1.885) 
(0.46, 1.885) 
(0.46, 1.885) 

(3.06, 0.042) 
(1.96, 0.103) 
(1.59, 0.156) 
(1.29, 0.238) 
(1.04, 0.363) 
(0.84, 0.553) 
(0.68, 0.843) 
(0.55, 1.285) 
(0.45, 1.959) 
(0.44, 2.038) 
(0.44, 2.057) (1.773) 
(0.44, 2.041) (0.058) 
(0.44, 2.057) (1.787) 
(0.44, 2.041) (0.059) 
(0.44, 2.057) (1.787) 
(0.44, 2.058) (1.854) 
(0.44, 2.058) (1.857) 
(0.44, 2.041) (0.061) 
(0.44, 2.041) (0.002) 
(0.44, 2.057) (1.785) 
 

Max constraint 
violation 

0 0 1.857 (g1) 

Used iterations 20 20 20 
Allowed number of 
iterations 

20 20 20 

Feasible points 20 20 10 
TolFun Not in use Not in use Not in use 
Analyzed design 
points  

77 77 134 
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Figure 7. feasible set (dotted area) and the found Pareto optimal set (marked with circles) in 
design and criterion spaces. 

Conclusions 

A relatively simple and fast method is proposed for practical optimization problems 
appearing in simulation-based product design processes. The method can be applied to 
any kind of simulation environment, but in this paper the method is applied to structural 
design in which it is linked to a commercial finite element solver. The theoretical 
foundation of the method is concisely described, and the main focus of the paper is on 
implementation issues. The method is verified using two well-known benchmark 
examples in which excellent results are achieved. Especially, when compared to genetic 
algorithm that is often applied for practical optimizations, the proposed method requires 
remarkably less function evaluations as in the Golinski’s example. 

 

Acknowledgements 

The funding from TEKES project Computational methods in mechanical engineering 
product development - SIMPRO is gratefully acknowledged. 

 

References 

[1] Karmarkar N. A new polynomial time algorithm for linear programming. 
Combinatorica, 1984;4:373–395. 

[2] Arora JS. Introduction to optimum design. 2nd ed. Elsevier; 2004. 



117 
 

[3] Nesterov Y, Nemirovsky A. Interior-point polynomial methods in convex 
programming, volume 13 of Studies in Applied Mathematics. SIAM: Philadelphia; 
1994. 

[4] Pajunen S, Heinonen O. Automatic design of marine structures by using successive 
response surface method. Structural and Multidisciplinary Optimization, 
2014;49;863-871. DOI: 10.1007/s00158-013-1013-7 

[5] Roux WJ, Stander N, Haftka RT. Response surface approximations for structural 
optimization. International Journal for Numerical Methods in Engineering, 
1998;42:517-534. DOI: 10.1002/(SICI)1097-0207(19980615)42:3<517::AID-
NME370>3.0.CO;2-L 

[6] Sakata S, Ashida F, Zako M. Structural optimization using Kriging approximation. 
Computer Methods in Applied Mechanics and Engineering, 2003;192:923-939.         
doi:10.1016/S0045-7825(02)00617-5 

[7] Gupta KC, Li J. Robust design optimization with mathematical programming neural 
networks. Computers & Structures, 2000;76:507-51.  doi:10.1016/S0045-
7949(99)00125-X 

[8] Acar E, Guler MA, Gerceker B, Cerit ME, Bayram B. Multi-objective crashworthiness 
 optimization of tapered thin-walled tubes with axisymmetric indentations. Thin-
Walled Structures, 2011;49:94-105. doi:10.1016/j.tws.2010.08.010 

[9] Friedman JH. Multivariate adaptive regression splines. Annals Statistics, 1991;19,:1–
141. 

[10] Barton RR, Meckesheimer M. Metamodel-based simulation optimization. In: 
Henderson SG. & Nelson BL (eds.). Handbooks in Operations Research and 
Management Science, 2006;13:535-570.  

[11] Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R, Tucker PK. Surrogate-
based analysis and optimization. Progress in Aerospace Sciences, 2005;41:1-28. 
http://dx.doi.org/10.1016/j.paerosci.2005.02.001 

[12] Barton RR. Simulation optimization using metamodels. In: Rossetti MD, Hill RR, 
Johansson B, Dunkin A & Ingalls RG (eds.). Proceedings of the 2009 Winter 
Simulation Conference 2009. 

[13] Gary Wang G, Shan S. Review of Metamodeling Techniques in Support of 
Engineering Design Optimization. J Mech. Des, 2006;129:370-380. 
doi:10.1115/1.2429697 

[14] Gurobi, documentation. 2014. Gurobi 5.6. 
(http://www.gurobi.com/documentation/) 



118 
 

[15] Achterberg T, SCIP: Solving constraint integer programs, Mathematical 
Programming Computation, 2009;1:1-41. doi:10.1007/s12532-008-0001-1 

[16] Techila, documentation. 2014. Techila Fundamentals. 
(http://www.techilatechnologies.com/technology/technology-docs/) 

[17] Myers RH, Montgomery DC, Anderson-Cook CM. Response surface methodology: 
process and production optimization using designed experiments,  John Wiley & 
Sons;2009. 

[18] MSDN. 2014. Microsoft Developer Network. ASP.NET MVC.  
(https://msdn.microsoft.com/en-us/library/dd381412(v=vs.108).aspx) 

[19] Laakkonen P. Development of a computational tool for structural optimization. 
Master of Science Thesis. Tampere University of Technology. 159 p. 2014. 

[20] Arora JS, Huang MW, Hsieh CC. Methods for optimization of nonlinear problems 
with discrete variables: A review. Structural optimization, 1994;8:69-85. 

[21] Miettinen K. Nonlinear Multiobjective Optimization, Kluwer Academic 
Publishers;1999. 

[22] Dep K. Multiobjective optimization using evolutionary algorithms, Wiley;2001. 

[23] Hsu Y, Dong Y. Hsu M. A sequential approximation method using neural networks 
for nonlinear discrete-variable optimization with implicit constraints. JSME 
International Journal Series C, 2001;44:103-112. 
http://doi.org/10.1299/jsmec.44.103 

[24] Lemonge, AC, Barbosa HJ, Borges CC, Silva FB. Constrained optimization 
problems in mechanical engineering design using a real-coded steady-state genetic 
algorithm. Mecánica Computacional, XXIX 2010; 95:9287-9303. 

 

Sami Pajunen 
Department of Civil Engineering 
Tampere University of Technology 
P.O. Box 600 
33101 Tampere 
sami.pajunen@tut.fi 

Petri Laakkonen 
Sorvimo Optimointipalvelut Oy 
petri.laakkonen@sorvimo.com 


