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Summary. This paper is devoted to techniques in bifurcation analysis for continuous mechan-
ical systems, concentrating on polynomial equations and implicitly given functions. These are
often encountered in problems of mechanics and especially in stability analysis. Taking a classi-
cal approach, we summarize the relevant features of the cubic polynomial equation, and present
some new aspects for asymptotics and parametric representation of the solutions. This is fol-
lowed by a brief look into the implicit function theorem as a tool for analyzing bifurcations. As
an example from mechanics, we consider bifurcations in the transverse free vibration problem
of an axially compressed beam.
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Introduction

Many important problems of theoretical and applied mechanics require qualitative and
quantitative analysis of solutions of cubic and higher order polynomial equations. In this
context it is sufficient to refer to numerous problems related to the determination of the
principal axes of stress and strain tensors.

Dynamic stability analysis for linear elastic systems, extending Euler’s method, was
extensively studied by Bolotin [3, 4], based on the pioneering general work by Lyapunov.
Bolotin’s method also leads to polynomial equations, which must then be solved to de-
termine the local stability exponents of the system under study.

In mechanics, the method applies to both continuous systems (described by partial
differential equations) and discrete systems (described by systems of ordinary differential
equations). In the case of partial differential equations, the equations are first discretized
in space, and Bolotin’s method is applied to the resulting semi-discrete form (which is
discrete in space, but continuous in time), represented as a system of ordinary differential
equations.
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Specifically for cubic polynomial equations, many classical methods exist for their
solution, such as the historical Cardano formula, and the numerically stable trigonometric
algorithm given e.g. in Press et al. [9] (which, as the authors note, dates back to the 17th
century, being originally due to Viète [16]). Such specific algorithms, provided that they
are numerically stable, are in the present day highly useful as routines for fast numerical
solvers.

However, sometimes such an approach may meet difficulties, especially when separate
continuous branches of solutions are detected, and the dependence of solutions on the
problem parameters is of interest. Specifically, the solutions returned by a numerical
solver may be in a random order, which in a parametric study then requires additional
effort to detect which points belong to the same curve.

Some approaches to bifurcation problems and estimation of critical parameters have
been presented by Nečas et al. [8] and Neittaanmäki and Ruotsalainen [7]. Modern
developments of bifurcation and stability analysis are known as the theory of catastrophe
(see Thompson [13]). This theory includes a variety of new problems of stability analysis
and qualitative topological methods. In the books by Troger and Steindl [15] and Thomsen
[14], the authors have applied bifurcation theory on many practical engineering problems.
The book by Seydel [11] contains a comprehensive literature review about the topic.

As for classical approaches to bifurcation theory and its application to statical and
dynamical problems, arising in mechanics and engineering, and in mathematical physics,
there exists corresponding literature, such as Thompson [12] and Lacarbonara [6].

In this study, we consider some bifurcation analysis techniques. We first concentrate
on the cubic equation, taking a classical approach, but presenting some new aspects as
for asymptotics and parametric representation of the solutions.

This is followed by a brief look into the implicit function theorem as a tool for analyzing
bifurcations, reported in more detail in our study Banichuk et al. [1]. As an example
from mechanics, we will consider bifurcations in the transverse free vibration problem of
an axially compressed beam.

Statement of the problem

Consider the cubic equation
ey3 + ay2 + by + c = 0 , (1)

where e, a, b and c are arbitrary real coefficients. Let us focus on the non-degenerate case,
where e 6= 0. The problem is to find the solution of the equation (1) in an analytical form,
and to analyze the solutions as a function of the coefficients of the considered equation.

Equation (1) is dependent on the four given parameters e, a, b and c, but generally,
it can be reduced to a canonical form, which has only one parameter. To perform this
reduction, we begin by dividing both sides of the equation by e, obtaining

y3 + a′y2 + b′y + c′ = 0 , (2)

where a′ = a/e, b′ = b/e and c′ = c/e. Any one of the terms (except the highest-
degree one) can be eliminated by linearly shifting the coordinates. This requires solving
a polynomial of degree 3− k, where k is the degree of the term being eliminated.

The standard approach is to depress the cubic equation, i.e. eliminate the second-
highest-degree term, as doing this requires solving only a linear equation. With this in
mind, let us apply a shift of coordinates, defining a new auxiliary variable z:

y = z − h , (3)
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where h is a constant to be determined later. Inserting (3) into (2), we have

(z − h)3 + a′(z − h)2 + b′(z − h) + c′ = 0 . (4)

Expanding the parentheses in the standard manner by the binomial theorem

(α + β)n =
n∑

k=0

(
n

k

)
αn−kβk

and collecting the result in powers of z, we have

z3 + (−3h+ a′)z2 + (3h2 − 2a′h+ b′)z + (−h3 + a′h2 − b′h+ c′) = 0 . (5)

From (5) we see that the second-highest degree term is eliminated if we choose the shift
constant h as

h =
a′

3
=

a

3e
. (6)

We thus obtain the depressed cubic corresponding to equation (1):

z3 + pz + q = 0 , (7)

where

p = b′ +
1

3
a′2 − 2

3
a′2 = b′ − 1

3
a′2 =

b

e
− a2

3e2
, (8)

q = c′ − 1

27
a′3 +

1

9
a′3 − 1

3
a′b′ = c′ +

2

27
a′3 − 1

3
a′b′ =

c

e
+

2

27

a3

e3
− ab

3e2
. (9)

Now, let us scale the coordinates. Let us define a second auxiliary variable x:

z = rx , (10)

for r a constant to be determined later. Equation (7) becomes

r3x3 + prx+ q = 0 . (11)

Provided that we choose r such that r 6= 0, we may divide (11) by r3, obtaining

x3 +
p

r2
x+

q

r3
= 0 . (12)

By the choice
r = 3
√
q , (13)

which is valid (for use in (12)) whenever q 6= 0, the problem is reduced to the canonical
form

x3 + γx+ 1 = 0 , γ =
p

3
√
q2
, (14)

where p and q are as above. In terms of the original coefficients of (1), we have

p =
b

e
− a2

3e2
, q =

c

e
− ab

3e2
+

2

27

a3

e3
. (15)
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In the special case q = 0, equation (7) becomes

z(z2 + p) = 0 , (16)

where z and p are as defined above; this problem is solved trivially. One solution is z = 0,
valid for any p. The other solutions are z = ±

√
−p. These solutions are real when p ≤ 0;

for p > 0, they are complex conjugates. The only bifurcation point exists at p = 0, z = 0.
For the rest of this study, we will concentrate on the general case q 6= 0.

Taking into account that with the exception of the special case q = 0, all cubic
equations with real coefficients can be transformed to the canonical form (14), we conclude
that all qualitative singularities of the solutions of the cubic equation (in the general case)
are determined by the only real parameter γ.

Bifurcation analysis of the canonical cubic equation

In the following, we perform bifurcation analysis using the canonical equation (14). Let
us denote the solutions of the cubic equation (14) by x1(γ), x2(γ) and x3(γ). These
solutions represent the different branches of the function x(γ), defined in implicit form by
the equation

F (x, γ) ≡ x3 + γx+ 1 = 0 .

The solutions are visualized in Figure 1.
Following the approach presented in Banichuk et al. [1] (for a summary, see the section

titled Bifurcation of continuous systems, below), we note that according to the implicit
function theorem, the bifurcation points of the equation F (x, γ) = 0 are given by the
conditions

F (x, γ) = x3 + γx+ 1 = 0 ,
∂F (x, γ)

∂x
= 3x2 + γ = 0 . (17)

In other words, the point being sought is a solution of the problem, i.e. F (x, γ) = 0, while
it also violates the uniqueness criterion of the theorem. This implies that a bifurcation
takes place, because at that point, a unique local representation of x = x(γ) does not
exist.

The only solution of equations (17) is

x∗ =
1
3
√

2
, γ∗ = − 3

3
√

22
. (18)

Thus we have a unique value γ = γ∗ of the problem parameter, for which bifurcation takes
place. Consequently, we have one (or three) real solutions of equation (1) when γ < γ∗,
and for γ > γ∗, we respectively have three (or one) real solutions.

Because the cubic equation (14) has a unique real solution x = −1 for γ = 0 > γ∗, we
conclude that there exists only one real solution for γ > γ∗, denoted x1(γ)(γ > γ∗). For
γ < γ∗, there exist three real solutions denoted x1(γ), x2(γ) and x3(γ).

Note also that x = 0 is not a solution of equation F (x, γ) = 0 in (17) for any value of
γ, and consequently the curves xi(γ), i = 1, 2, 3, never cross the line x = 0. Each of them
must thus lie in one of the half-planes x > 0 or x < 0 of the plane (x, γ). In particular,
we have x1(γ) < 0 in the interval −∞ < γ <∞. At the same time

x2 (γ∗) = x3 (γ∗) =
1
3
√

2
(19)
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Figure 1. The real-valued solutions of the canonical cubic equation x3 + γx+ 1 = 0 as a function of the
(real) parameter γ, computed numerically using the trigonometric algorithm given in [9]. The unique
bifurcation point (γ∗, x∗) given by equation (18) is indicated. Note that the curves never cross the line
x = 0. The asymptotic behaviour far away from the origin is given by expressions (25).

at the bifurcation value γ = γ∗, and consequently, the functions x2(γ) and x3(γ) are
always positive. As real-valued functions, they exist in the interval −∞ < γ < γ∗, ending
at the bifurcation point.

Qualitative analysis and asymptotic expressions

To present qualitative analysis of the solutions xi(γ), we use the derivative of an implicitly
defined function, obtaining

dxi(γ)

dγ
= −

∂F

∂γ
∂F

∂x

= − xi
3x2

i + γ
, i = 1, 2, 3 . (20)

Note that in accordance with (17) and (18), the interval γ ∈ (−∞,∞) is divided by the
value γ = γ∗ into two parts (−∞, γ∗) and (γ∗,∞), in each of which the sign of ∂F/∂x
does not vary (due to continuity, and the only zero of the derivative being located at γ∗).
Observe that

∂F

∂x
= 3x2 > 0 , ∀x ∈ R
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for γ = 0 > γ∗. Consequently, ∂F/∂x > 0 when γ ∈ (γ∗,∞). But in the interval (−∞, γ∗),
the sign of ∂F/∂x depends on the considered function xi(γ).

In particular, the value ∂F/∂x cannot be equal to zero for the function x1(γ) (one
of the three solutions does not participate in the bifurcation; we denote that one as
x1(γ)), and for this function, the inequality ∂F/∂x > 0 holds for any value of γ, because
∂F/∂x = 3x2 > 0 for γ = 0 > γ∗.

Because x1(γ) < 0 and ∂F/∂x > 0 for x1(γ), from equation (20) we arrive at the
conclusion that x1(γ) is a monotonically increasing function of γ in the interval −∞ <
γ <∞. In a similar manner, we see that the function x2(γ) is a monotonically decreasing
function, and x3(γ) is a monotonically increasing function of the parameter γ when −∞ <
γ < γ∗.

Finally, let us consider the asymptotic behaviour of equation (14). We will find that
in the asymptotic range, short, explicit analytical expressions for the solution curves x1,
x2 and x3 can be obtained as functions of γ. Let us first look for solutions where |x| � 1.
In this case, we may drop the x3 term (now being the cube of a small quantity), leading
to the asymptotic equation

γx+ 1 = 0 , |x| � 1 , (21)

whence the asymptotic solution is

x ≈ −1

γ
, |γ| � 1 . (22)

In rewriting the condition of validity, we have used the fact that by the form of the solution
(22), the original assumption |x| � 1 is equivalent with |γ| � 1.

Equation (22) is valid for both positive and negative large γ. For γ > 0, this must be
the only asymptotic solution, because by the bifurcation analysis already performed, we
know that (14) has only one real solution in this range.

Alternatively, it is possible that |x| � 1. Let us look for the corresponding asymptotic
solutions. In this case, we may drop the constant term in (14), leading to

x(x2 + γ) = 0 , |x| � 1 , (23)

which has the solutions x = 0 (inconsistent with the condition of validity of (23), hence
rejected) and

x ≈ ±
√
−γ , −γ � 1 . (24)

We have again rewritten the condition of validity, this time using the fact that by the
form of (24), the assumption |x| � 1 (and real) is equivalent with γ < 0, −γ � 1. Hence
these two additional asymptotic solutions are valid for large negative γ.

Three asymptotic solutions have been found. Because the original equation is a cubic,
no further solutions exist.

In conclusion, to summarize the asymptotic results (and identifying the representations
against Figure 1), we have

x1(γ) ≈ −1

γ
, γ � 1 ,

x1(γ) ≈ −
√
−γ , x2(γ) ≈

√
−γ , x3(γ) ≈ −1

γ
, −γ � 1 . (25)
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Parametric representation of the solutions

In this section, we will derive exact, analytical parametric representations γ(τ), x1(τ),
x2(τ) and x3(τ) as functions of a real parameter τ . As is well known, the cubic equation
(14) can be factored as

x3 + γx+ 1 = (x− x1)(x− x2)(x− x3) = 0 , (26)

where x1, x2 and x3 are the roots. Equating equal powers of x, we have the equations
x1 + x2 + x3 = 0 ,

x1(x2 + x3) + x2x3 = γ ,

x1x2x3 = −1 .

(27)

As was previously shown, the function x1(γ) is negative and monotonically increasing in
the interval γ ∈ (−∞,∞).

The functions x2(γ) and x3(γ) are, respectively, positive monotone decreasing and
increasing in γ ∈ (−∞, γ∗), and complex conjugate in γ ∈ (γ∗,∞).

The complex conjugate property follows from the last equation in (27), our observa-
tions above, and the fundamental theorem of algebra. It is known that a polynomial of
the kth degree always admits exactly k complex-valued roots (which in general need not
be distinct). Above, we already observed that in γ ∈ (γ∗,∞), there is only one real root,
x1. Hence in this interval, x2 and x3 must be complex, with a nonzero imaginary part.
Then, because x1 is always real, the only way the last equation in (27) can hold is to have
x3 = conj(x2), so that Im (x1x2x3) = 0; which is required because the imaginary part of
the right-hand side is zero.

Let us introduce the new variables σ and s, defined by

s = x2 + x3 , σ = x2x3 , σ, s ∈ R ∀ γ ∈ (−∞,∞) . (28)

Using (28) we can rewrite (27) as 
x1 + s = 0 ,

x1s+ σ = γ ,

x1σ = −1 .

(29)

As x1 is always negative, let us introduce a new positive variable τ = −x1 (τ > 0) and
eliminate x1 from equations (29). From the first equation we immediately have s = τ ,
and the other two equations become

σ = τ 2 + γ , σ =
1

τ
, τ > 0 . (30)

We thus obtain τ 2 + γ = 1/τ , and find the following parametric representations for σ and
γ:

σ(τ) = τ 2 + γ , γ(τ) =
1− τ 3

τ
, τ > 0 . (31)

Note that dγ/dτ < 0, and thus γ(τ) is a monotonically decreasing function of the param-
eter τ . In addition, the values τ � 1 correspond to γ � 1, and γ → −∞ when τ � 1
(i.e. when x1 = −τ → −∞).
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We also obtain a parametric representation for x1(γ) for γ ∈ (−∞,∞):

x1(τ) = −τ , γ(τ) =
1− τ 3

τ
, τ > 0 . (32)

It follows from (32) that τ = 1 for γ = 0, and x1(γ = 0) = −1. Thus the curve x1(γ) passes
through the point (0,−1) in the plane (γ, x). Taking the derivative of a parametrically
defined function (via the chain rule), we have

dx1

dγ
=

dx1

dτ
dγ

dτ

=
τ 2

1 + 2τ 3
> 0 , τ > 0 , (33)

and consequently, x1(γ) is a monotonically increasing function of the parameter γ for
γ ∈ (−∞,∞).

It is possible to use the parametric representation for an alternative starting point for
asymptotic analysis. Using (32), we study the asymptotic behaviour of the solution x1(γ)
for asymptotic values of parameter γ, i.e. |γ| � 1. When γ → +∞, the right-hand side
of the second equation in (32) must be dominated by the first term (i.e. τ is small), and
hence dropping the second term and using the result in the first equation, we immediately
have

x1(γ) = −1

γ
, γ � 1 . (34)

Similarly, when γ → −∞, the right-hand side must be dominated by the second term
(i.e. τ is large), and hence γ(τ) = −τ 2 < 0 (τ ≈

√
−γ, γ < 0) and we find asymptotic

behaviour for x1(γ) at γ → −∞ in the form

x1(γ) ≈ −
√
−γ, γ → −∞ (35)

These asymptotic expressions coincide with the corresponding asymptotic expressions in
equation (25). The present analysis has the additional advantage that the solution curves
are identified automatically.

Let us now return to the general analysis, and construct parametric representations
also for x2(γ) and x3(γ). To this purpose, we rewrite the relations (28) taking into account
s = τ , x1 = −τ and σ = 1/τ , τ > 0, from equation (30). We have the following relations:

x2 + x3 = τ , x2x3 =
1

τ
, τ > 0 , (36)

which are considered as a system of equations with respect to the variables x2 and x3.
The solution of the system can be written in the form

x2,3(τ) =
1

2

(
τ ±

√
τ 2 − 4

τ

)
. (37)

Using the parametric representation for γ from equation (31), we find the parametric
representations for x2(γ) and x3(γ):

x2,3(τ) =
1

2

(
τ ±

√
τ 2 − 4

τ

)
, γ(τ) =

1− τ 3

τ
, τ > 0. (38)
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For brevity we write x2,3 instead of x2 and x3 in equations (37) and (38), where the plus
and minus signs in the ± correspond, respectively, to x2 and x3.

Note that x2(τ∗) = x3(τ∗) at τ = τ∗ =
3
√

22. At this point, the square root is equal to
zero in the equations (37) and (38). As follows from (38), at this point we have

γ∗ = γ(τ∗) = − 3
3
√

22
, x2(τ∗) = x3(τ∗) =

1
3
√

2
(39)

If τ > τ∗, then τ 2 − 4/τ > 0, and the functions x2(γ) and x3(γ) are real when γ < γ∗.
In the case τ < τ∗, the inequalities γ > γ∗, τ

2 − 4/τ < 0 are satisfied, and the functions
x2(γ) and x3(γ) are complex-conjugate when γ > γ∗.

The value γ∗ in the equation (39) coincides with the value γ∗ obtained with the help
of bifurcation analysis of the cubic equation, given in equation (18).

Finally, using the parametric representations (38), we can evaluate the asymptotic
behaviour of the functions x2(γ) and x3(γ) when γ → −∞. As was already pointed out
above for equation (32), it follows that γ → −∞ when τ →∞.

In the case of the plus sign in (38), the result is obtained trivially. For τ � 1, we may
drop the second term inside the square root, immediately obtaining

x2(τ) = τ , τ � 1 . (40)

The case with the minus sign is more complicated, because the obvious leading-order term
cancels out. In order to access the next term, we develop the square root into a Taylor
series at τ →∞. To do this, we change variables into

k =
1

τ
, (41)

develop the series at k = k0, take the limit k0 → 0+, and then transform back. In terms
of k, equation (38) reads

x2,3(k) =
1

2

(
1

k
±
√

1

k2
− 4k

)
. (42)

After developing the square root into a Taylor series around k = k0, and then letting
k0 → 0+, we have

x2,3(k) =
1

2

(
1

k
± 1

k
∓ 2k2 ∓ 2k5 +O(k6)

)
. (43)

The upper and lower signs correspond to each other. The representation for x2 (upper
signs) coincides with the results obtained above.

For x3, we pick the lower signs. Taking just the leading-order term, we have

x3(τ) =
1

τ 2
, τ � 1 . (44)

Summarizing, for τ →∞, we have obtained the following asymptotic representations:

x2(τ) ≈ τ , x3(τ) ≈ 1

τ 2
, τ � 1 . (45)

For τ � 1, we have γ ≈ −τ 2 (again, τ ≈
√
−γ, γ < 0), leading to

x2(γ) ≈
√
−γ , x3(γ) ≈ −1

γ
, γ → −∞ . (46)
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Bifurcation of continuous systems

In this section, we will briefly look at the use of the implicit function theorem as a tool
for bifurcation analysis for continuous mechanical systems. A more detailed treatment
can be found in Banichuk at al. [1].

Many problems in continuous mechanical systems can be represented in the following
general form:

L(u(x), λ, γ) =
m∑
k=0

n∑
`=0

λkγ`Lk`(u(x)) = 0 , (47)

where γ is a real-valued loading parameter, λ is a spectral parameter (typically, eigen-
value to be determined), and Lk` are given differential operators applied to the behaviour
function u(x), defined in the domain Ω (x ∈ Ω). Boundary conditions are considered as
included in the differential operator L(u(x)).

For example, γ may represent applied tension or compression in a vibration problem,
or the axial drive speed in problems of axially moving materials. The eigenvalue λ is then
the complex-valued eigenfrequency, and a representation of the form (47) is obtained after
inserting the standard time-harmonic trial function into the original partial differential
equation. The operators Lk` include only space differentiation, the time dependency
having been factored out in the choice of the trial function.

Let the function v(x) be the eigenfunction (corresponding to an eigenvalue λ) of the
spectral problem

L∗(v(x), λ, γ) = 0 , (48)

which is adjoint to the problem (47). For simplicity, let us focus on the case where the
eigenvalues are distinct.

Multiplying equation (47) by the adjoint eigenfunction v(x) and integrating over Ω,
we obtain a functional equation

Φ(λ, J00, . . . , Jmn, γ) =
m∑
k=0

n∑
`=0

λkγ`Jk` = 0 , (49)

where the functionals Jk`, k = 0, 1, 2 . . . ,m; ` = 0, 1, 2, . . . , n are defined as

Jk`(v, u) =

ˆ
Ω

v(x)Lk`(u(x)) dΩ . (50)

Note that (49), which states that Φ(λ, γ) = 0, can be interpreted as an implicit relation for
λ = λ(γ), determining a set of functions λ1(γ), . . . , λm(γ) corresponding to the eigenvalue
curves of the problem under study. (There are m (possibly complex-valued) eigenvalues,
because (49), understood as a polynomial in the variable λ, is of degree m.)

It turns out that for the purposes of the following analysis, the fact that the values
of the Jk` depend on γ and λ (because they depend on the eigenfunctions u and v), does
not matter (this is shown in Banichuk et al. [1]). Hence we may write Φ = Φ(λ, γ).

A bifurcation of λ = λ(γ) can occur for some values

λ = λ∗ , γ = γ∗ , (51)

at which the condition for the uniqueness of the local representation, in the theorem on
implicit functions, is violated. The theorem on implicit functions (see e.g. Rektorys [10])
states that a unique solution of

Φ(λ, γ) = 0 (52)
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exists in a small neighbourhood of the point (λ, γ) = (λ̃, γ̃), if ∂Φ/∂λ 6= 0 at the point

(λ̃, γ̃).
Therefore, in other words, the bifurcation values λ∗ and γ∗ can be found with the help

of the equations

Φ(λ∗, γ∗) = 0 ,
∂Φ (λ∗, γ∗)

∂λ
= 0 . (53)

The first equation in (53) requires that the point being sought is a solution of the problem.
The second equation requires that the uniqueness of the local representation of λ = λ(γ)
is violated: in other words, the solution experiences a bifurcation.

Let us denote by
(λ∗1, γ

∗
1) , (λ∗2, γ

∗
2) , . . . (54)

the solutions of the system of equations (53), representing points on the (λ, γ) plane,
and investigate the behaviour of the functions λi = λi(γ) (where i = 1, 2, . . . ,m) in a
small vicinity of the bifurcation points (λ∗k, γ

∗
k). For brevity, the subscript indices of the

considered functions and points will be omitted.
Let us represent the function Φ(λ, γ) as a series expansion developed at an arbitrary

bifurcation point (λ, γ) = (λ∗, γ∗):

Φ(λ, γ) = Φ (λ∗, γ∗) +
∂Φ (λ∗, γ∗)

∂λ
[λ− λ∗]

+
∂Φ (λ∗, γ∗)

∂γ
[γ − γ∗] +

1

2

∂2Φ (λ∗, γ∗)

∂λ2
[λ− λ∗]2 (55)

+
∂2Φ (λ∗, γ∗)

∂λ∂γ
[λ− λ∗] [γ − γ∗] +

1

2

∂2Φ (λ∗, γ∗)

∂γ2
[γ − γ∗]2 + . . .

A bifurcation point satisfies the relations (53), i.e. Φ (λ∗, γ∗) = 0, and ∂Φ/∂λ = 0. This
eliminates the first two terms on the right-hand side. Retaining only the lowest order
non-zero terms, we are left with

Φ (λ, γ) =
∂Φ (λ∗, γ∗)

∂γ
[γ − γ∗] +

∂2Φ (λ∗, γ∗)

∂λ∂γ
[λ− λ∗] [γ − γ∗] +

+
1

2

∂2Φ (λ∗, γ∗)

∂λ2
[λ− λ∗]2 + . . . (56)

Let us now represent the behaviour of the function λ = λ(γ) in the vicinity of the bifur-
cation point (λ∗, γ∗) in the form

λ (γ) = λ∗ + α [γ − γ∗]ε + . . . (57)

where α and ε are unknown constants to be determined with the help of the condition
Φ (λ, γ) = 0. By substituting (57) into (56), equation (56) is transformed into

Φ̃ = Φ̃ (γ − γ∗) ≡ 0 , (58)

which must be satisfied identically. Here Φ̃(γ − γ∗) denotes the series expansion (56),
expressed in terms of the only remaining perturbation variable γ − γ∗, after λ − λ∗ has
been eliminated using the representation (57). Explicitly, we have

Φ̃ (γ − γ∗) =
∂Φ (λ∗, γ∗)

∂γ
[γ − γ∗] + α

∂2Φ (λ∗, γ∗)

∂λ∂γ
[γ − γ∗]1+ε +
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α2

2

∂2Φ (λ∗, γ∗)

∂λ2
[γ − γ∗]2ε + · · · ≡ 0 . (59)

To find an approximation in the lowest nonzero order, we try picking different values for
ε to match the orders of different terms in (59). Once a value is chosen, we omit any
remaining higher-order terms and analyze the result.

There are three possibilities. First, ε can be chosen to match the order of the first two
terms by taking ε = 0. This however eliminates them in favour of the third term, which
becomes a constant. If this constant is nonzero, this is not a solution of (59). The second
possibility is to match the orders of the last two terms with ε = 1, eliminating them and
leaving only the first term. If the coefficient ∂Φ/∂γ 6= 0, this is not a solution of (59).

The final possibility is to match the orders of the first and third terms with 2ε = 1,
eliminating the second term. This is the typical general case. It is valid when

∂Φ (λ∗, γ∗)

∂γ
6= 0 ,

∂2Φ (λ∗, γ∗)

∂λ2
6= 0 . (60)

If either or both of these terms vanish, the analysis must be repeated retaining the lowest-
order terms for that particular case. Inserting ε = 1/2 into (59) and dropping the higher-
order terms obtains

Φ (λ, γ) =
∂Φ (λ∗, γ∗)

∂γ
[γ − γ∗] +

α2

2

∂2Φ (λ∗, γ∗)

∂λ2
[γ − γ∗] + · · · = 0 , (61)

which is satisfied identically in the lowest nonzero order by

α2 = −2

(
∂Φ (λ∗, γ∗)

∂γ

)(
∂2Φ (λ∗, γ∗)

∂λ2

)−1

. (62)

With ε = 1/2 equation (57) gives the asymptotic representation

λ(γ) = λ∗ + α
√
γ − γ∗ , |γ − γ∗| � 1 , (63)

provided that the inequalities (60) are satisfied. As is pointed out in Banichuk et al. [1],
this square root shape of λ = λ(γ), valid in a small neighbourhood of any bifurcation
point, holds for all systems in the considered class.

Transverse free vibrations of an axially compressed beam

Let us finish with a concrete example from mechanics. We consider the problem of small
transverse free vibrations of an axially compressed Euler–Bernoulli beam of length `, with
its ends resting on simple supports. Refer to Figure 2.

This is the classical prototype of a family of problems whose gyroscopic versions appear
in the stability analysis of process industry applications, such as paper making. See e.g.
the book by Banichuk et al. [2].

Figure 2. Axially compressed Euler–Bernoulli beam of length `, with ends resting on simple supports.
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For simplicity, we restrict our consideration to the classical case where the beam is
made of homogeneous material having Young’s modulus E, and has a cross-section of
constant shape and area. The partial differential equation describing the dynamics of
small transverse displacement w = w(x, t) of the beam mid-surface in this case reads

ρ
∂2w

∂t2
+ F

∂2w

∂x2
+ EI

∂4w

∂x4
= 0 in 0 < x < ` , (64)

where ρ is the linear density of the beam ([ρ] = kg/m), I is the moment of inertia (second
moment of area) of its cross-section, and F > 0 is the compressive axial force.

From the viewpoint of the transverse displacement, the compressive axial force appears
as a transverse projection term that tends to amplify any existing local curvature of the
beam, leading to elastic instability at a critical value of the compressive loading.

Let us transform the problem into dimensionless coordinates. Let x′ ≡ x/` and t′ ≡
t/τ , where τ is a characteristic time (a dimensional arbitrary constant whose value can
be chosen later, [τ ] = s).

Let us represent also the transverse displacement in a dimensionless form, w′ = w/h,
where h is an arbitrary constant. Since each term in the equation is linear in w, we may
immediately cancel h from the equation. In other words, for free vibrations (no transverse
loading), transverse scaling (and hence the maximum amplitude of the small vibrations)
does not affect the dynamics.

In terms of the dimensionless variables, equation (64) transforms into

ρ

τ 2

∂2w′

∂t′ 2
+
F

`2

∂2w′

∂x′ 2
+
EI

`4

∂4w′

∂x′ 4
= 0 in 0 < x′ < 1 . (65)

Multiplying the equation by `4/EI, we have

ρ `4

EI τ 2

∂2w′

∂t′ 2
+
F`2

EI

∂2w′

∂x′ 2
+
∂4w′

∂x′ 4
= 0 in 0 < x′ < 1 . (66)

Inserting the standard time-harmonic trial function

w′(x′, t′) = exp(iω0t
′)u(x′) , (67)

where i =
√
−1, ω0 is a dimensionless angular frequency, and u(x′) is dimensionless, we

obtain

exp(iω0t
′)

[
d4u

dx′ 4
+
F`2

EI

d2u

dx′ 2
− ρ `4

EI τ 2
ω2

0u

]
= 0 in 0 < x′ < 1 . (68)

This equation holds for all t′ if and only if the expression in the brackets vanishes:

d4u

dx′ 4
+ γ

d2u

dx′ 2
− ω2u = 0 in 0 < x′ < 1 , (69)

where we have defined the dimensionless compressive loading γ, and the scaled dimen-
sionless angular frequency ω:

γ ≡ F`2

EI
, ω ≡ ρ `4

EI τ 2
ω2

0 . (70)

The simply supported (pinned, hinged) boundary conditions are expressed as(
d2u

dx′ 2

)
x′=0

=

(
d2u

dx′ 2

)
x′=1

= 0 , u(0) = u(1) = 0 . (71)
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Let us now investigate the asymptotic behaviour of ω as a function of the loading
parameter γ, i.e. ω = ω(γ), using the perturbation method explained in the previous
section. In this example, ω plays the role of the spectral parameter λ.

Let us develop the problem into a variational form. To do this, we take the complex-
valued L2 inner product of equation (69) and u. Explicitly, we multiply equation (69) by
u∗(x′), which is the complex conjugate of u(x′), and integrate over the domain Ω = {x′ :
0 < x′ < 1}. We have

ˆ 1

0

u∗
d4u

dx′ 4
dx′ +

ˆ 1

0

u∗
d2u

dx′ 2
dx′ − ω2

ˆ 1

0

uu∗ dx′ = 0 . (72)

In the considered case, u∗ = u (i.e. u is real-valued), because the problem (69), (71)
is self-adjoint with respect to the complex-valued L2 inner product on Ω. This is easily
shown by applying integration by parts to (72) until all differentiations have been moved
to operate on u∗, and using the boundary conditions (71) to note that the boundary terms
vanish.

We note in passing that this is the main difference between this prototype problem and
those encountered in process industry applications, since problems involving gyroscopic
terms are not self-adjoint; there u will typically be complex-valued. In this example, for
simplicity we have chosen to examine the classical self-adjoint case.

We rewrite the left-hand side of (72) as an implicit function Ψ:

Ψ (ω, a, c, d, γ) = −aω2 − γc+ d = 0 , (73)

where the functionals a, c and d are given by

a =

ˆ 1

0

uu∗ dx′ > 0 ,

c = −
ˆ 1

0

u∗
d2u

dx′ 2
dx′ =

ˆ 1

0

du

dx′
du∗

dx′
dx′ > 0 ,

d =

ˆ 1

0

u∗
d4u

dx′ 4
dx′ =

ˆ 1

0

d2u

dx′ 2
d2u∗

dx′ 2
dx′ > 0 .

The last forms of c and d follow by integration by parts and the boundary conditions (71).
Each integrand is the squared complex norm of a quantity, ‖z‖2 = zz∗; this gives the result
that a, c and d are positive for any u 6≡ 0.

It turns out that in general, when applying the method explained in the previous sec-
tion, for bifurcation analysis purposes we may treat Ψ as a function of only two variables,
Ψ = Ψ(ω, γ); details can be found in Banichuk et al. [1].

The functionals a, c and d can be expressed with the help of eigenmodes of free
vibrations of the beam,

uk(x) = Bk sin(kπx) , k = 1, 2, . . . , (74)

where Bk is an arbitrary constant. To obtain (74), we have used the boundary conditions
(71). For the kth mode, we have

ak =

ˆ 1

0

(uk(x))2 dx =
1

2
B2

k ,
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ck =

ˆ 1

0

(
duk(x)

dx

)2

dx =
1

2
k2π2B2

k , (75)

dk =

ˆ 1

0

(
d2uk(x)

dx2

)2

dx =
1

2
k4π4B2

k .

Inserting the expressions (75) into (73) and multiplying the equation by 2/B2
k, we have

2Ψ

B2
k

= −ω2 − γk2π2 + k4π4 = 0 . (76)

From the general explanation in the previous section, the bifurcation points (ω, γ) =
(ω∗k, γ

∗
k) must satisfy Ψ = 0 and ∂Ψ/∂ω = 0. From (76), the condition on the derivative

gives −2ω = 0 and thus ω∗k = 0. Inserting this into (76) and solving for Ψ = 0 gives
γ∗k = k2π2. Summarizing, the bifurcation points are located at

ω∗k = 0 , γ∗k = k2π2 . (77)

Using the general formulas (62) and (63), the asymptotic behaviour of ω in the vicinity
of the bifurcation points is then described by the expressions

ωk = ωk(γ) = ±α
√
γ − k2π2 ,

∣∣γ − k2π2
∣∣� 1 , (78)

where the value of the coefficient α is given by the relation

α2 = −2

(
∂Ψ (ω∗k, γ

∗
k)

∂γ

)(
∂2Ψ (ω∗k, γ

∗
k)

∂ω2

)−1

= −k2π2 , (79)

and thus
α = ikπ . (80)

Inserting (80) into (78), we obtain the final result

ωk = ±kπ
√
k2π2 − γ . (81)

Equation (81) tells us that in terms of the loading parameter γ, when γ < k2π2, the
scaled dimensionless angular frequencies ω for the eigenmode k, i.e. ωk, are purely real.
This corresponds to stable vibrations of the system (for the mode k). When γ > k2π2,
the frequencies become purely imaginary. One solution in the pair then correponds to
an exponentially damped mode, while the other corresponds to an exponentially growing
mode; in other words, elastic stability is lost.

Finally, note that this example is one of those cases where the angular frequencies ω
are initially purely real. As Bolotin [3], pp. 99–100, cautions, in such cases one needs to
be careful when applying a free-vibration analysis to make conclusions about stability.

In reality, most if not all mechanical systems exhibit some finite amount of dissipation.
If the system is acted upon by conservative forces only (such as in this example), the
Kelvin–Tait–Chataev theorem (see [5], p. 163) guarantees that the addition of small but
finite dissipation to the idealized model (which does not account for dissipation) does not
change the stability conclusions that are obtained by a free vibration analysis.

However, if the system is non-conservative, no analogous theorem can exist; perhaps
the most famous counterexample demonstrating this is the double pendulum loaded by a
follower force, investigated by Ziegler [17]. For non-conservative systems, the addition of
small but finite dissipation may significantly decrease the critical value of the loading.
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Conclusion

In this paper we analyzed some bifurcation problems. In problems of mechanics, espe-
cially in the context of stability analysis, polynomial equations and implicit functions are
encountered; these were the focus of this study.

Cubic polynomial equations were analyzed, presenting new analytical insights con-
cerning parametric analytical representation of the solutions, and asymptotic behaviour
of the solutions for large values of the parameter in the canonical form.

The implicit function theorem was considered for bifurcation analysis for continuous
mechanical systems. An asymptotic property for the behaviour of the natural frequency
curves in the small vicinity of each bifurcation point was shown, covering all systems in
the considered class.

The free vibration problem of a stationary compressed beam was presented as an
example. This is the classical prototype of a family of problems whose gyroscopic versions
appear in the stability analysis of process industry applications, such as paper making.
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