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Numerical modelling of quasi-brittle fracture with 
the rate-dependent multiple embedded 
discontinuity approach   

Timo Saksala 

Summary. This article deals with 2D numerical modelling of fracture in quasi-brittle 
materials. For this end, a rate-dependent multiple embedded discontinuity model is developed to 
simulate quasi-brittle fracture within the finite elements context. In the present modification of 
the embedded discontinuity approach, the discontinuities are pre-embedded (before the analysis) 
into each finite element of the mesh. With the chosen constant strain triangle element, this 
results in three discontinuity lines each oriented parallel to the sides of the triangle element. 
Each discontinuity line has its own displacement jump and loading surface. The displacement 
jumps and elemental stresses are simultaneously solved with the multisurface plasticity 
techniques. Rate-dependency is incorporated with the viscoplastic consistency approach. The 
global equations of motion are solved in time by explicit time integration. The model 
performance is demonstrated in numerical examples where the uniaxial tension and 
compression tests are simulated.   
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Introduction 

Numerical modelling of quasi-brittle fracture has been gaining increasing interest during 
the last few decades due to its importance in many fields of engineering, such as 
concrete structures and geotechnical analyses. Many numerical codes based on the finite 
element and the discrete element methods have been developed to simulate the brittle 
fracture. For a review on computational methods for fracture in brittle and quasi-brittle 
solids, see [1]. The major challenge in such analyses is the numerical modelling of crack 
propagation. 

 A promising numerical technique to describe crack propagation is the embedded 
discontinuity approach [2-5]. These techniques allow either a strain (weak) or 
displacement (strong) discontinuity inside a finite element. This is achieved by 
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enhancement of the strain or displacement field in order to capture the discontinuity. 
Saksala [6] successfully applied this method for numerical modelling of rock fracture. 

A close relative of this method is the extended finite element method (XFEM) which 
enriches the element interpolation (nodal) basis by exploiting the partition of unity 
property [7]. However, the embedded discontinuity approach is chosen in this paper 
because it has a computational advantage over the XFEM due to the completely local 
nature of the required enhancements while offering the same kind of accuracy and 
convergence. Particularly, the additional degrees of freedom, representing the 
displacement or strain jump, can be eliminated by static condensation. Moreover, the 
additional degrees of freedom are global in the XFEM and thus increase during the 
propagation of discontinuity. 

In the usual application of the embedded discontinuity method for quasi-static 
analyses, single embedded discontinuity (a crack) with a normal parallel to the first 
principal direction of the stress tensor is introduced (during the analysis) into a finite 
element when the first principal stress exceeds the tensile strength of the material. A 
variant implementation based on multiple or intersecting discontinuities embedded 
successively parallel to element facets (edges) is proposed in [8]. Multiple 
discontinuities approach effectively alleviates the stress locking and spreading problems 
typical for embedded discontinuity approach, as shown in [9, 10]. The implementation 
of multiple discontinuities parallel to element edges is similar to the classical interface 
or cohesive zone elements method but considerably simpler and computationally more 
efficient as neither cohesive zone elements requiring duplication of mesh nodes nor 
contact interfaces are needed upon closing cracks.  

In the present paper, a modification of the multiple discontinuities approach where 
the discontinuities are embedded before the analysis parallel to the edges of the constant 
strain element (CST) is presented and applied to simulation of rock fracture. Each 
discontinuity has its own rate dependent loading surface so that the computational 
multisurface techniques can be employed in solving for the displacement jumps and 
element stresses. Rate-dependency is introduced for numerical stability reasons with the 
viscoplastic consistency approach. The model performance is demonstrated in 2D 
numerical examples of rock compression and tension tests solving the equations of 
motion explicitly in time.  

Theory of the model 

The theory of the present model is presented in this section. First, the strong 
discontinuity kinematics is briefly described. Then, the finite element implementation of 
the embedded discontinuity kinematics is presented. Finally, the multiple embedded 
discontinuity model is summarized and the solution method for the displacement jumps 
is outlined.   
 

Strong discontinuity kinematics 

A body occupying domain Ω in R2 with a boundary ∂Ω (see Figure 1) is split into two 
disjoint parts Ω+ and Ω−  by a strong discontinuity line Γd defined by its normal n and 
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tangent m. The displacement and strain field (assuming infinitesimal deformation) can 

be decomposed as a function of the location x ∈ Ω as 
where s∇ is “the symmetric part of the gradient” operator, )(xu  represents the 
displacement field without the discontinuity, )(xu  is the displacement jump at Γd due to 
discontinuity, and )(x

d
HΓ is the Heaviside function at the discontinuity. Function )(xϕ is 

defined in a subdomain −+ Ω∪Ω=Ω ϕϕϕ  so that 0)( =xϕ  when −− ΩΩ∈ ϕ\x , 1)( =xϕ  

when ++ ΩΩ∈ ϕ\x  (with \ signifying the set theoretic difference), and it is C0-continous 
between 0 and 1 when ϕΩ∈x . The reason for using the decomposition in (1), instead of 
the natural one with 0)( ≡xϕ , is that both )(xu and )(xu  may be nonzero at the 
boundary ∂Ω which means that their effect should be taken into consideration in the 
finite element context when imposing the essential boundary conditions. It is more 
convenient to use decomposition (1), as function )(xe

d
M Γ , appearing in Equation (1), 

restricts the effect of the displacement jump to subdomain ϕΩ . 

 

Figure 1. Domain crossed by a discontinuity line. 

Moreover, the result n
dd

H ΓΓ =∇ δ  on Dirac delta function 
dΓ

δ  and constant 
displacement jump assumption yielding 0u =∇ s were used in the derivation of the 
strain in (1).  
 

Finite element implementation of strong discontinuity kinematics 

As the body in Figure 1 is discretized with the CST elements, the embedded 
discontinuity becomes a straight line (inside an element) as is illustrated in Figure 2. 
The FE version of Equation (1) reads  
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where the displacement jump is denoted by dα , while iN and e
iu are the standard (linear 

with CST) interpolation functions and nodal displacements (i = 1,2,3 with summation 
on repeated indices), respectively. It is noted that the dependency of the quantities on 
the placement vector, x, in Equation (1) and henceforth are omitted for brevity of 
notations. 

 

Figure 2. CST element with a discontinuity line (a), function e
d

M Γ (b), and three discontinuities 
parallel to element sides (c). 

Thus, in the finite element context function ϕ in Equation (1) is identified with the 
interpolation function Nsol related to the solitary node, ssol, with its support being a 
single element. Finally, it is noted that according to the enhanced assumed strains (EAS) 
concept, the terms comprising the discretized strain can be identified as the compatible 
part ε  and the enhanced part ε  [8]. 

The FE discretized version of the weak form of the balance of linear momentum can 
be obtained by standard arguments and is not shown here. The variation of the enhanced 
part of the strain (see Equation (2)) is based on the EAS concept where the enhanced 
modes are constructed in the strain space, orthogonal to the stress field. Applying the 
EAS concept and the Petrov-Galerkin formulation, the variation of the enhanced strain 
and the L2-orthogonality condition can be written as [8] 

where βd ∈ R2 denotes an arbitrary variation of the displacement jump, Ae is the area of 
a finite element, and ld is the length of a discontinuity. Substitution of εδ  into the 
second equation in Equation (3) gives, after some manipulations 

With the CST element this equation – representing essentially a weak form of traction 
continuity – becomes also the local (strong) form of traction continuity, i.e. ,nσt ⋅=Γd
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since the integrands in Equation (4) are constants. This EAS concept based formulation 
provides a very simple implementation where neither the explicit position of the 
discontinuity line within the element nor its length is necessary to be known.      
 
Rate dependent multiple embedded discontinuity model  

A three-surface intersecting discontinuity model is presented here. As mentioned in 
Introduction, the discontinuities are placed into each element of the mesh parallel to 
element sides, as illustrated in Figure 2c. Thereby, the unit normal for each 
discontinuity is calculated as  

where Ni is the interpolation function of node i. The single discontinuity kinematics can 
be extended in a straightforward manner to the multiple discontinuity case since each 
discontinuity has its own displacement jump. Thereby, Equation (2) becomes 

With this expression for strain, the traction vector for each discontinuity i can be written 
as    

with E being the elasticity tensor. It should be noted that the stress tensor σ in (7) is 
common to all discontinuities in the same element. The loading functions (similar to 
those in [9]), softening rules and evolution laws for each discontinuity i are defined as  

where |x| denotes the absolute value of scalar x, mi denotes the unit tangent of a 
discontinuity i, ii κκ , are the internal variable and its rate related to the softening law for 
a discontinuity i, and σt and s are the tensile strength and the viscosity of the material. 
Moreover, hi is the softening modulus of the exponential softening rule. Parameter g 
that controls the initial slope of the softening curve is calibrated by the mode I fracture 
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energy GIc. Finally, β is a shear control parameter that governs the interaction between 
the tensile (mode-I) and the shear (mode-II) component of the traction.  

The formal similarity of Equation (7) and (8) to plasticity theory enables (after 
eliminating the rate of the internal variable iλ ) the exploitation of standard 
computational multisurface plasticity techniques in solving for the displacement jumps 
and updating the internal variables, see [9]. In particular, the increments of the 
magnitudes of the displacement jumps δλi can be solved generally as (assuming φi > 0  
for all i =1,2,3) 

where matrix notation is used and nx
i are ny

i are the components of ni. After the 
increment δλ is solved, the increments of the displacement jumps, traction vectors and 
the internal variables are updated according to Equation (8). The new stress state is then 
calculated according to the definition of stress in Equation (7). It should be noted that 
the case where the magnitudes of all three displacement jumps are active in the end of 
the stress integration. i.e. )3,2,1(0 =>∑=∆ iii δλλ , does not actually realize. This 
follows from the partition unity property of the interpolation functions giving 

03
1 =∇∑ = ii N . Thus, only two independent edge modes are possible in 2D [8].    
The presented formulation results in a simple computational scheme where the 

global equations of motion are solved with an explicit time integrator and the local 
problem for stresses, displacement jumps and internal variables with the elastic-plastic 
operator split. Finally, it is emphasized that the present model incorporates loading rate 
sensitivity so that it can be applied in dynamic loading conditions. Moreover, on solving 
for δλ the diagonal entries of G must remain positive. This may become crucial, if the 
softening curve is extremely steep, i.e. the absolute value of hi is greater than the 
stiffness term. Thus, the positivity is secured by the presence of term s/∆t, which is 
usually of several orders of magnitude.  

Numerical examples 

Present model performance is tested in this section both at the material point level using 
a single element mesh and at the structural level where the uniaxial compression and 
tension tests on rock like material are simulated. The material properties taken from [10] 
(valid for Stanstead granite) and model parameters for simulations are given in Table 1. 
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Table 1. Material properties and model parameters  
Quantity Symbol Value Unit 
Young’s modulus E 67.3 GPa 
Elastic limit stress in tension σt 8.9 MPa 
Poisson’s ratio ν 0.27  
Material density ρ 2616 kg/m3 
Mode I fracture energy GIc 0.0355 N/m 
Viscosity for discontinuity s 0.001 MPa⋅s/m 
Shear control parameter β 1  

 

Material point level tests 

Before the laboratory sample level simulations, the model predictions are demonstrated 
at the material point level in tension. For this end, the model response is tested with the 
single CST element model and boundary conditions shown in Figure 3.  

 

Figure 3. Single element model and boundary conditions for material point level simulations. 

The element side length d is set to 10 mm and the magnitude of constant velocity is 
0.001 m/s in each load case. The effect of viscosity is tested in LC1 while in other load 
cases the value given in Table 1 is used. The simulation results are shown Figure 4.   

 

Figure 4. The model predictions at the material point level simulations: effect of viscosity in 
LC1 (a), and model response in LC2, LC3 and LC4 (b). 
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The effect of the viscosity modulus on the model response shown in Figure 4a is 
typical for viscoplasticity models, i.e. the higher the modulus, the higher the peak 
strength and the more ductile the post-peak behavior. Only crack 3 (shown in Figure 3) 
opens in LC1. In LC2, the model prediction is naturally identical in both x and y 
direction as the magnitudes of crack 2 and 3 opening develop equally. When the loading 
is imposed on node 3 only in x direction (LC3), only the shear stress of the element 
differs from zero (Figure 3b). In this load case, crack 1 and 2 both open in the beginning 
of the softening process. However, crack 1 becomes inactive almost immediately so that 
only crack 2 opening develops during the loading. Finally, in LC4 crack 1 and 3 both 
open first upon reaching the tensile strength but then almost immediately after only 
crack 3 opening remains active so that in the end of the softening process, crack 1 
opening is only 6.6E-5 mm while that of crack 3 is 0.03 mm.       

 
Laboratory sample level tests 

Uniaxial tension and compression tests are simulated here with the model shown in 
Figure 5 in order to demonstrate the model performance at the laboratory sample level. 
The material properties and model parameters are those shown in Table 1.  

     

Figure 5. Model, CST mesh (4276 elements), and boundary conditions for uniaxial tension and 
compression simulations.  

The constant velocity boundary condition with vy = 0.02 m/s in the tension test 
simulations and vy = −0.1 m/s in compression is applied here. The simulation results 
with two different values of the shear control parameter are shown in Figure 6 and 7. 
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Figure 6. Simulation results for uniaxial tension test: Axial stress vs. strain curves (a), final 
failure modes with β = 1 (b), and β = 0.5 (c). 

The final failure modes in Figure 6b and c are presented in terms of the magnitude of 
the sum of displacement jump vectors norms for each element. The effect of the shear 
parameter is obvious in the results: value β = 1 leads to a double crack system with an 
inclined trend indicated in Figure 6b by a dashed line. When the shear parameter value 
is decreased to β = 0.5, the macrocrack is approximately orthogonal to the loading 
direction, which is the observed case in the experiments for rocks and concrete. With 
this smaller value of β, the predicted material response is more brittle as well. Finally, 
the uniaxial compression test results are shown in Figure 7 (the geomechanics 
convention of regarding compressive stress and strain positive is adopted here). 

 

Figure 7. Simulation results for uniaxial compression test: Axial, lateral and volumetric strain 
vs. axial stress curves (a), final failure modes with β = 1 (b), and β = 0.65 (c). 

The stress-strain curves in Figure 7a exhibit typical features observed in the experiments 
of rock under uniaxial compression [10]. Volumetric strain is first compactant but 
changes then to dilatant when enough cracks are opening. The effect of shear parameter 
is substantial here: decreasing its value from 1 to 0.65 doubles the peak stress. Thus, 
two extreme modes of model behaviour with respect to this parameter can be identified.  
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The first is given by value β = 0 which allows an infinite shear component for the 
traction vector resulting in an infinite compressive strength in uniaxial compression test. 
The second is given by increasing β infinitely which allows no shear at all resulting in a 
zero compressive strength in uniaxial compression test.      

As for the predicted failure modes, they exhibit the typical slightly inclined 
localization bands. Moreover, the reduced shear contribution results in considerably 
wider localization bands, as can be observed in Figure 7c. The nature of these failure 
modes is mixed mode-I/II failure.     

Discussion and conclusions 

A rate-dependent multiple embedded discontinuity model was developed to simulate 
quasi-brittle fracture within the finite elements context. In the present approach, the 
discontinuities were pre-embedded (before the analysis) into each finite element of the 
mesh resulting in a formulation similar (in certain respects) to the classical interface or 
cohesive zone elements. However, the present approach is simpler and more efficient 
than the cohesive zone approach since neither duplication of mesh nodes nor contact 
interfaces (upon crack closure) are needed.  

The presented method is simple having relatively small number (7 in total) of model 
parameters. The shear parameter controlling the interaction between the tensile and 
shear modes of fracture has a substantial effect on the compressive strength and the 
failure modes predicted with the model. By adjusting the tensile strength and the shear 
control parameter, the model can predict the correct tensile and compressive strengths 
as well as realistic failure modes of a quasi-brittle material such as rock in tension and 
uniaxial compression, as was shown in the numerical simulations.  

As for the mesh dependency of the results predicted with the present method, it 
should be noted that there are two localization limiters of different nature in the present 
model. The first is provided by the embedded discontinuity method which is known to 
be mesh independent. The second is provided by the inclusion of viscosity in the model. 
Therefore, the results should be, in principle, mesh independent. However, further 
investigations on this issue are postponed to the future studies of the present method.  
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