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element strain energy test 

Jouni Freund and Eero-Matti Salonen 

Summary. Determination of sensitizing parameter values in connection with the Galerkin 
least-squares finite element method in elastic problems is considered. A procedure based on the 
use of reference solutions and on setting the strain energy expressions in an element evaluated 
in two different ways equal is used. The procedure is called the single-element strain energy 
test. The test is applied for a two-node Timoshenko beam element with good results. The 
sensitized principle of virtual work is shortly described and used to obtain rather directly the 
Galerkin least-squares formulas needed. 
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Introduction 

A basic theme in the application of the Galerkin least-squares finite element methods is 
the selection of suitable values for the so-called weighting or sensitizing parameters in 
the least-squares terms. Here elastic structural problems are considered and a logic 
based on the consideration of the strain energy for a typical element for the parameter 
determination is suggested. The procedure will be called as the single-element strain 
energy test. The use of this test is illustrated in connection with Timoshenko beam 
bending. To achieve generality of formulation, the starting point is taken to be the 
sensitized principle of virtual work. The purpose of the additional least-squares terms is 
to hopefully increase the accuracy of the corresponding finite element solution with 
respect to the pure Galerkin formulation. 

Sensitized principle of virtual work 

The conventional principle of virtual work can be appended by least-squares type terms. 
We call the resulting formulation shortly as sensitized principle of virtual work. This 
terminology — and in fact the formulation — is not in common use. We have advocated 
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this terminology already in [1] and have based the use of the adjective "sensitized" on 
the important reference by Courant [2], where least-squares terms were appended to 
functionals and the term "sensitized" functional was coined. However, the starting point 
here is not a functional but a weak form but we still consider the analogous terminology 
as appropriate. When finite element discretization is applied in connection with the 
sensitized principle of virtual work, the Galerkin least-squares method emerges directly. 
We now shortly explain the formulation (for simplicity of presentation in the two-
dimensional continuum case). A more detailed presentation is given in [3]. 

We define matrices (mostly following reference [4]) 

 { } { } { } { } { }, , , ,
x x

x x
y y

y y
xy xy

b tu
b tv

σ ε
σ ε

τ γ

   
               = = = = =         

            
      

u b t σ ε  (1) 

and further 

 { } [ ]{ }=ε S u , (2) 

where 

 [ ]
/ 0
0 /
/ /

x
y

y x

∂ ∂ 
 = ∂ ∂ 
 ∂ ∂ ∂ ∂ 

S . (3) 

Here,{ }u , { }b , { }t , { }σ  and { }ε  are the displacement, body force, traction, stress and 
strain in matrix forms, respectively. Further, [ ]S  is the displacement-strain operator 
matrix. The standard virtual work equation can be presented now as (with a change of 
sign for convenience of later development) 

 T T Tδ{ } { }d δ{ } { }d δ{ } { }d 0
A A s

A A s− − =∫ ∫ ∫ε σ u b u t . (4) 

The integrals are over the plane domain A of the structure and over its boundary line s. 
To be more precise, the last integral on the left-hand side is to be taken over that 
boundary part where the traction { }t  is given. Additionally, we obtain from (2) by 
variation the result 

 { } [ ] { }δ δ=ε S u  (5) 

and (4) transforms to 

 ( )T T T[ ]δ{ } { }d δ{ } { }d δ{ } { }d 0
A A s

A A s− − =∫ ∫ ∫S u σ u b u t . (6) 

The local equilibrium equations can be written as 
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 { } [ ]{ } { } { }≡ + =R E σ b 0  (7) 

with 

 [ ] [ ]T / 0 /
0 / /

x y
y x

∂ ∂ ∂ ∂ 
= =  ∂ ∂ ∂ ∂ 

E S . (8) 

Here the left-hand notation { }R  in (7) refers to equation residuals. A least-squares 
expression 

 { }( ) { } [ ]{ }T1 d
2 A

AΠ = ∫σ R τ R  (9) 

is formed. Matrix 

 [ ] 11 12

21 22

τ τ
τ τ
 

=  
 

τ  (10) 

can be called here as the sensitizing parameter matrix and be taken symmetric 
( 21 12τ τ= ) without loss of generality. In the pure least-squares method matrix (10) 
should be positive definite. Here, in connection with the Galerkin method this is not 
required and this restriction could be harmful. For instance, in the Timoshenko beam 
example case presented later in the article the least-squares terms are not "stabilizing 
terms", they in fact "de-stabilizing terms". 

Demanding functional (9) to have a stationary value gives an equation 

 { } [ ]{ } [ ] { }( ) [ ] [ ]{ } { }( )TTδ δ d δ d 0
A A

A AΠ ≡ ≡ + =∫ ∫R τ R E σ τ E σ b . (11) 

The sensitized virtual work equation is obtained as a linear combination of (6) and (11): 

 
( )

( ) [ ] { }( )

T T T

T

[ ]δ{ } { }d δ{ } { }d δ{ } { }d

[ ]δ{ } [ ]{ } d 0.
A A s

A

A A s

A

− − +

+ + =

∫ ∫ ∫
∫

S u σ u b u t

E σ τ E σ b
 (12) 

Finally, δ{ }σ  must be interpreted as the infinitesimal change due to the virtual 
displacement δ{ }u  (or more properly due to δ{ }ε ). The constitutive properties of the 
material under study is needed here. 

We consider linear elasticity and thus the stresses are connected to the strains by 

 { } [ ]{ } [ ][ ]{ }= =σ D ε D S u , (13) 

where matrix [ ]D  contains given elastic constants. Also, 

 { } [ ] { } [ ][ ] { }δ δ δ= =σ D ε D S u . (14) 

The sensitized virtual work equation (12) transforms now to 
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( ) [ ][ ]

[ ][ ][ ]( ) [ ] [ ][ ][ ] { }( )

T T T

T

[ ]δ{ } { }d δ{ } { }d δ{ } { }d

δ{ } { } d 0.

A A s

A

A A s

A

− − +

+ + =

∫ ∫ ∫

∫

S u D S u u b u t

E D S u τ E D S u b
 (15) 

Sensitized finite element method 

Let us write the finite element displacement approximation in the standard form 

 { } { } [ ]{ }≈ =u u N a , (16) 

where the column matrix { }a  consists of the nodal displacements of the structure and 
[ ]N  is the global shape function matrix. Thus, also, 

 { } [ ] { }δ δ=u N a . (17) 

Application of (16) and (17) in (15) and by taking into account the arbitrariness of δ{ }a  
gives finally the linear system equation set 

 [ ]{ } { }=K a f , (18) 

where the stiffness matrix 

 [ ] [ ] [ ] [ ] [ ][ ] [ ] [ ][ ]T T
O S d d

A A
A A≡ + ≡ +∫ ∫K K K B D B C τ C  (19) 

and the right-hand side 

 { } { } { } [ ] { } [ ] { } [ ] [ ]{ }T T T
O S d d d

A s A
A s A≡ + ≡ + −∫ ∫ ∫f f f N b N t C τ b . (20) 

To shorten the above expressions, notations 

 [ ] [ ][ ]≡B S N  (21) 

and 

 [ ] [ ][ ][ ]≡C E D B  (22) 

have been introduced. The subscripts O and S above refer in an obvious way to the 
terms emerging from the standard and sensitizing parts of the formulas, respectively. 

The result (18) can be considered now as an application of the Galerkin least-squares 
method arrived at here, however, rather directly through the use of the sensitized 
principle of virtual work. 
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Single-element strain energy test 

The main problem is of course to find a logic for the selection of appropriate values for 
the sensitizing parameters. For instance, in [1] a kind of patch test approach with so-
called reference solutions was used for this purpose. Reference solutions mean some 
local analytical expressions containing hopefully relevant information about the actual 
solution behavior around a point of interest. This is explained in more detail in the 
section "Timoshenko beam element". Here we consider tentatively an alternative 
possibility based still on the use of reference solutions but applied just on a single 
element and not on a patch of elements. 

Let us consider the finite element expressions on a typical element level. Formula 
(16) can still be applied (we do not need necessarily to change the notations here) when 
{ }a  is considered now to be the element nodal displacement column matrix and [ ]N the 
element shape function matrix. However, we cannot speak any more about element 
equations but formula (18) must be interpreted as giving the element contributions 

 { } [ ]{ } { }≡ −F K a f  (23) 

to the global system equations. Of course, the integrations in (19) and (20) must then be 
performed over the element domain and boundary. 

Let us assume that we have available some reference solution ( , )u u x y= , 
( , )v v x y=  in the element. We can then calculate analytically the corresponding strains 

{ }ε  and the corresponding strain energy of the element: 

 { } [ ]{ }T
A

1 d
2 A

U A= ∫ ε D ε . (24) 

Alternatively, we can evaluate the element nodal column matrix { }a  from the reference 
expressions. The corresponding strain energy using these nodal displacement values is 

 { } [ ]{ } { } [ ]{ } { } [ ]{ }T T T
N O S

1 1 1
2 2 2

U = = +a K a a K a a K a . (25) 

It seems rather natural to demand that the two strain energy expressions should have the 
same value: 

 N AU U= . (26) 

Matrix S[ ]K  contains in general the sensitizing parameters and equation (26) gives thus 
one equation for the determination of the parameters. If the number of suitable reference 
solutions is large enough, one can hope to obtain in this way values for the parameters. 
This approach will be called here as the single-element strain energy test. In practice 
constant local material properties are assumed in an element as otherwise the evaluation 
of the [ ]C -matrix (formula (22)) becomes too complicated. Also, the matrix 
manipulations by hand become tedious and use of programs, say such as Mathematica 
[5], are of great help. 



6 
 

0C -continuous approximations are employed in the Timoshenko beam example 
case. This means that standard continuity requirements are violated in the evaluation of 
the S[ ]K -matrix. However, the sensitized stiffness matrix S[ ]K  is of such a form that it 
vanishes compared to the standard stiffness matrix O[ ]K  with vanishing mesh size. This 
fact justifies the apparent mathematical crimes performed. 

Timoshenko beam element 

Some notations 

The Timoshenko beam problem has been considered in some detail in reference [1]. 
There the patch test with two elements was applied for the sensitizing parameter 
determination. As the problem is one-dimensional, reference solutions are rather easy to 
find and we are in position to compare the performance of the suggested single-element 
strain energy test in a reasonably simple situation. 

The beam problem needs some alterations for the contents of the matrices defined 
above in the two-dimensional continuum case. First, certain notations are given in 
Figure 1. For the bending moment M the traditional inconsistent sign rule has been 
used. 

  
Figure 1. (a) Deflection and cross-sectional rotation, (b) Bending moment, shearing force and transverse 

loading. 
 

Further, we define following (1) now the interpretations 

 
{ } { } { } { }

{ } [ ]{ }

, , , ,
0

d / d
d / d

v q V Q
B M

v x
x

θ

γ θ
κ θ

       
= = = =       
       

−   
= = =   −   

u b t σ

ε S u
 (27) 

with 

 [ ] d / d 1
0 d / d

x
x

− 
=  − 

S . (28) 
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V and B refer to the shearing force and bending moment at the beam ends with such sign 
changes that V is positive in the positive y-axis direction and B positive in the clockwise 
direction. For simplicity, we have not included distributed torque loading in the column 
matrix { }b . For an elastic beam 

 [ ] 0
0

kGA
EI

 
=  
 

D , (29) 

where GA  is the shearing stiffness, k the shear correction factor, and EI  the bending 
stiffness. The equilibrium equations are in matrix notation 

 
d / d 0 0

1 d / d 0 0
x Q q

x M
       

+ =      −       
 (30) 

so the equilibrium operator matrix 

 [ ] d / d 0
1 d / d

x
x

 
=  − 

E  (31) 

is not any more the transpose of (28) here. The sensitizing parameter matrix can still be 
written as in (10). 

Beam element 
The element under study (Figure 2) has two nodes and the simple linear approximation 
for both the unknowns: 

  

Figure 2. Timoshenko beam element. 

 { } { } [ ]{ }
v
θ
 

≈ ≡ = 
 

u u N a






 (32) 

with 

 [ ] 1 2

1 2

0 0
0 0
N N

N N
 

=  
 

N  (33) 

and 
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 { } [ ]T1 1 2 2v vθ θ=a . (34) 

The shape functions are 

 1 21 / , /N x h N x h= − = , (35) 

where x is a local elementwise coordinate measured from the left-hand end of the 
element. Without sensitizing this element demands extremely dense meshes for thin 
beams to give reasonable results. 

We can now apply formula (19) but of course, the integrations must be performed 
with respect to x. Thus, for the element, 

 [ ] [ ] [ ][ ]
T

O 0
d

h
x= ∫K B D B  (36) 

and 

 [ ] [ ] [ ][ ]T
S 0

d
h

x= ∫K C τ C . (37) 

We record some of the relevant matrices: 

 [ ] ( )1 / 1 / 1 / /
0 1 / 0 1 /

h x h h x h
h h

− − − − 
=  − 

B  (38) 

and 

 [ ] ( )
0 / 0 /

/ 1 / / /
kGA h kGA h

kGA h kGA x h kGA h kGA x h
− 

=  − − − − 
C . (39) 

It is of some interest to notice that the bending stiffness does not appear at all in the 
latter matrix and thus from (37) it is seen that the bending stiffness can neither be 
present in the S[ ]K -matrix. Performing the manipulations, there are finally obtained the 
element stiffness matrices 

 [ ]

2 2

O 2 2

0 0 0 0 1 / 1 / 2 1 / 1 / 2
0 1 0 1 1 / 2 1 / 3 1 / 2 1 / 6
0 0 0 0 1 / 1 / 2 1 / 1 / 2
0 1 0 1 1 / 2 1 / 6 1 / 2 1 / 3

h h h h
h hEI kGAh

h h h h h
h h

 − 
  − −  = +    − − −  −    − 

K  (40) 

and 
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 [ ] ( )
22 21 22

2 2
12 22 11 12 21 22

S
22 21 22

2
12 22 11 12 21 22

/ 2

/ 2 / 2 / 2 / 3
/ 2

/ 2 / 2 / 2 / 6

h

h h h hkGA
hh

h h h h

τ τ τ

τ τ τ τ τ τ
τ τ τ

τ τ τ τ τ τ

− +

− + − − +=  − −

 + − − + +

K  

 

22 21 22
2

12 22 11 12 21 22

22 21 22
2

12 22 11 12 21 22

/ 2

/ 2 / 2 / 2 / 6
/ 2

/ 2 / 2 / 2 / 3

h

h h h h
h

h h h h

τ τ τ

τ τ τ τ τ τ
τ τ τ

τ τ τ τ τ τ

− + 


− − − + + 
− −

− − + + + 

. (41) 

In (40), the bending and shearing type parts are given separately for increased clarity. 

Reference solutions 

Let us consider a generic axial point of the beam and for simplicity of presentation let a 
local origin 0x =  be taken there. Let the beam data kGA  and EI  be (temporarily) 
constant in the neighborhood of this point. The loading is developed into Taylor series 

 ( )0 0xq q q x= + +   (42) 

Analytical treatment of the governing beam equations gives the following two constant 
coefficient differential equations: 

 
4

4
d d 0

dd
v EI qEI q

k GA xx
− + = , (43) 

 
2

2
d d d 0

d dd
vEI k GA k GA

x xx
θ θ
− + = . (44) 

The solutions can be presented in matrix form as 

 

32

2
1
0 1 2 6 / ( ) 3
0 0 0 0

xv x x
A B C x D EI kGA x

q
θ

                 = + + + +         
         
          

 

 

2 4

3
0

1 / (2 ) 1 / (24 )

1 / (6 )
1

kGA x EI x

q EI x

 − ⋅ + ⋅
  + ⋅ + 
 
  

   (45) 

We call this combination of v, θ  and q as the reference solution. We obtain specific 
reference solutions by taking consecutively only 0A ≠ , only 0B ≠ , only 0C ≠ , only 
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0D ≠ , only 0 0q ≠ ,   These give the consecutive specific reference solutions. It is 
found that the values A etc. cancel in the patch test and we can simply put 1A =  etc. 

Two-element patch test 

We describe for comparison purposes here shortly the two-element patch test. Consider 
Figure 3. A generic element is considered as "cloned" and a patch of these cloned 
elements is formed. Here the patch consist just of two elements. 

  

Figure 3. Notations in the two-element patch test. 

Using the sensitized formulation, two finite element system equations corresponding 
to node i are formed. Again, constant local material data is assumed. The nodal values 
are taken as given from the specific reference solutions. There are finally obtained the 
following five sets of two-equation systems: 

 
12 21

0 0,
0,τ τ

=
− =

 (46) 

 12 21 0,
0 0,

τ τ− + =
=

 (47) 

 
21

0 0,
0,τ

=
=

 (48) 

 
2

12 21

11 22

/ ( ) / ( ) 0,

/ ( ) 0,

EI kGA h EI kGA

EI kGA

τ τ

τ τ

 − ⋅ + − = 
− + ⋅ =

 (49) 

 
2

22
2

12 21 12 21

( 12 / ) 1 0,

2 12 / ( ) ( ) 0.

kGA EI h

EI kGAh

τ

τ τ τ τ

+ + =

− + − ⋅ + =
 (50) 

The equations have been developed without assuming symmetry ( 12 21τ τ= ), however, 
this follows both from (46) and (47). Further, as full solution there is obtained 

 12 21 0τ τ= = , 

 11 2
/ ( )
12 /

EI kGA
kGA EI h

τ = −
+

, (51) 
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 22 2
1

12 /kGA EI h
τ = −

+
. 

Thus the sensitizing parameter matrix is found to be diagonal with negative elements 
and this means physically that sensitizing makes the solution more soft counteracting 
the so-called "locking" associated with the standard approach. As shown in [1], very 
accurate results are obtained by the sensitized formulation also for thin beams. 

Single-element strain energy test 
Figure 4 represents a generic element in the single-element strain energy test. The local 
origin is now taken at the element midpoint. 

  
Figure 4. Notations in the single-element strain energy test. 

It is found that the four first specific reference solutions according to (45) are 
enough for obtaining a solution. Corresponding strains and nodal displacements are 
evaluated and (finally) five equations of type (26) are arrived at. A basic difference is 
that we have now for each reference solution only one equation contrary to the two-
element patch test case which gives two equations. To facilitate the situation, we apply 
the symmetry condition at the outset by defining 21 12τ τ≡ . The equations 
corresponding to the four first reference solutions are: 

 0 0= , (52) 

 0 0= , (53) 

 ( ) ( )23 2
11 22

1 12 12 2
6 6

EI h kGAh kGA h h EI hτ τ+ + + = , (54) 

 
( ) ( )

22
22 2

22

12 1 3 1212
8 8 2

h EI kGAh EIh EI kGAh EI h h
kGA kGA

τ
+  + + = + 

 
. (55) 

The equations are recorded as those given by [5] without possible simplifications by 
hand calculations. As the element interpolants of the first two reference solutions 
coincide with the reference solutions, identities are obtained. The solutions for 11τ  and 

22τ  from (54) and (55) are found to coincide exactly with (51) obtained by the two-
element patch test. However, equations (54) and (55) do not contain the parameter 12τ  
and its value seems thus first to remain undetermined. Some experimentation with the 
fourth reference solution 3v x= , 26 / 3EI kGA xθ = +  produced rather unexpectedly 
additional information when the local origin for the reference solution was taken to 
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differ from the element midpoint. For instance, when the local origin is taken at the left-
hand end of the element, the resulting strain energy test equation becomes 

 
2

2 41 36( )15
2

EIh EI h kGAh
kGA

 
+ + +  

 
 

 [ ( )2
22 12 22

1 36( ) 6 6
2

h EI EI kGAh hτ τ τ+ + + +  

 ( )( )2 2 2
11 12 22

3( ) 9 3 6 EIkGA h h h EI h h
kGA

τ τ τ  + + + = +   
. (56) 

The solution of (54), (55) and (56) is now completely according to (51). It is found that 
the same solution is obtained irrespective of the position of the local origin for the 
additional fourth reference solution if the origin just differs from the midpoint of the 
element. The above behavior seems to mean that in the single-element strain energy test 
the possibility to use reference solutions associated to arbitrary coordinate systems 
should be explored. In all, the results obtained are rather encouraging indicating that the 
logic behind the single-element strain energy test appears sound. 

It should be mentioned that the strain energy test approach is not the only possibility 
to find appropriate modified beam properties for the two-node element. For instance, in 
[6] a way to determine modified bending and shear parameters from the anti-symmetric 
and symmetric bending modes of an element is described. Further, a well-known 
computationally efficient alternative approach to avoid shear locking is to apply 
"reduced integration". This is also described in [6]. 

Numerical example 
Numerical examples for a simply supported beam with constant distributed load and 
point load at the centerpoint are available in [1]. Here, we consider as a sample a 
cantilever of length L with a constant distributed load q . The exact solution is 

 ( ) ( )( )
( )

2 3 2 34

4

4 6 1 2 241 4
8 3 1 4

/v
x Lx x L x LL q

EI L

ε εε
ε

− + + −  ++
=

  +


, (57) 

 
( )2 23

3

3 3

6
/

x L Lx xL q
EI L

θ
 

=  
− +

 
, (58) 

in which the scaling is chosen to get the value one for the deflection and rotation at the 
free end. The dimensionless parameter 2/ ( )EI kGALε =  values 1 and 1/10000 
correspond roughly to the very thick and the very thin cases or cases in which deflection 
due to shear is significant and negligible, respectively. In Figure 5 are shown some 
results obtained for a 10-element irregular mesh. For the thick beam the accuracy is 
rather good also without sensitizing. For the thin beam the sensitizing terms change the 
solution behavior dramatically. Very accurate values are obtained with sensitizing 
although the mesh is irregular.  
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It may be mentioned that by applying the reduced integration approach (reference 
[6]) practically identical results to the ones presented are obtained and in fact with a 
smaller computational effort. However, our main point here has been just to show in a 
simple setting the working of the sensitized principle and the strain energy test. 

 

 
 

Figure 5. Cantilever and uniform load. The exact solution (solid), standard finite element solution 
 (squares) and the sensitized finite element solution (circles). On the left 1ε = . Deflection and rotation. 

On the right 1 /10000ε = . Deflection and rotation. 

Conclusions 

The patch test approach for sensitizing parameter determination becomes very 
complicated in two- or three-dimensional cases with elements having general shapes. 
The single-element strain energy test may offer in these situations obvious advantages. 
Although this test worked well for the Timoshenko beam, additional studies are 
naturally needed to get a more general picture of the applicability of the test. Finally, the 
sensitized principle of virtual work as such is in theory quite general. However, to find 
its practical value needs also further studies. 

References 

[1] J. Freund, E-M. Salonen, Sensitizing according to Courant the Timoshenko beam 
finite element solution, Int. J. Numer. Methods Engrg., 47 (2000) 1621-1631. 

[2] R. Courant, Variational Methods for the Solution of Problems of Equilibrium and 
Vibrations, Bulletin of the American Mathematical Society, Volume 49, 1943. 

[3] E.-M. Salonen, Variational Methods of Mechanics, Lecture Notes, Laboratory of 
Theoretical and Applied Mechanics, Helsinki University of Technology, 1999, 
http://appmech.aalto.fi/en/studies/. 

[4] O. C. Zienkiewicz and R.L. Taylor, The Finite Element Method, Volume I, The 
Basis, Fifth Edition, Butterworth-Heinemann, 2000. 

[5] Mathematica. https://www.wolfram.com/mathematica/. 
[6] S. Krenk, Non-linear Modeling and Analysis of Solids and Structures, Cambridge 

University Press, 2009. 

Jouni Freund, Eero-Matti Salonen 
School of Engineering,  
P.O. Box 12100, FIN-00076 Aalto, Finland  
jouni.freund@aalto.fi, eero-matti.salonen@aalto.fi 


	Sensitized principle of virtual work and the single-element strain energy test

