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Some aspects on efficient solution of creep problems

Reijo Kouhia1, Pekka Marjamäki, and Jorma Kivilahti

Summary. Integration of inelastic constitutive models by implicit schemes, require local New-
ton’s iteration to solve the discretized non-linear evolution equations at the integration point
level. Choise of the starting values in the Newton’s iteration affects on the success of the it-
eration at the local integration point level. This note describes a simple modification on the
approach proposed by Schreyer giving increased robustness on the local iteration process. Also
the effect of line search and quasi-Newton methods in the solution of the global equilibrium
iterations is investigated.
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Introduction

Implicit schemes are often used in the temporal integration of constitutive equations
[3, 7, 8, 10, 11, 18, 19]. Success in such methods depends primarily on two factors: firstly
how the small local non-linear system at the integration point level is solved and secondly,
is the Jacobian matrix of the discretized constitutive model (i.e. the algorithmic tangent
stiffness) properly formulated and evaluated. If the material Jacobian matrix is properly
evaluated, asymptotically quadratic convergence of the global equilibrium iterations can
be achieved. Convergence of the global equilibrium equations is a primary factor affecting
to the cost of the computation. Since the Newton’s method is only locally convergent, the
global equilibrium iterations might diverge or it can take quite a many iterations before
the domain of attraction is reached and the process starts to converge quadratically. As
it will be shown, a line search procedure can save a considerable amount of computing
time when large time steps are used.

Inelastic material model and its numerical integration

In this study the assumption of small strains is adopted, and therefore the rate of strain
can be additively decomposed in elastic ǫ̇

e, thermal ǫ̇th and inelastic ǫ̇
in components

ǫ̇ = ǫ̇
e + ǫ̇

th + ǫ̇
in. (1)
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Assuming the inelastic strain to be strictly deviatoric, the evolution equation for the
inelastic strain rate suitable for modeling secondary creep can be written as

ǫ̇
in = 3

2
f exp

(

−Q

Rθ

)

sinhm
( τ̄

Y

)

τ

τ̄
= 3

2
γ
τ

τ̄
= γn , (2)

where Q is the process activation energy, R the gas constant, θ the absolute temperature,
f the viscosity parameter and Y is the flow stress. In general, the viscososity parameter f
and the exponent m are functions of temperature [6, 15], however, in this study they are
assumed to be constants. The reduced stress τ is defined as a differerence of the stress
deviator s and the back stress B as τ = s − 2

3
B . The scalar τ̄ is the reduced equivalent

stress τ̄ = (3
2
τ :τ )1/2. The following hardening rules are used [1, 5, 13, 18]

Ẏ = H1γ − (H2γ +H3)(Y − Y0)
2,

Ḃ = K1ǫ̇
in − (K2γ +K3)B̄B , (3)

where H1, ...., H3, K1, ..., K3 and Y0 are material parameters and B̄ =
√

2

3
B : B .

Assuming linear isotropic thermoelasticity, the whole set of evolution equations com-
prises hardening evolution equations (3) and the elasticity equations

ṡ = 2G(ė − ǫ̇
in) +

∂G

∂θ

θ̇

G
s , σ̇m = κ trace (ǫ̇− ǫ̇

th) +
∂κ

∂θ

θ̇

κ
σm, (4)

where ė is the deviatoric strain rate, ǫ̇th = Cθ̇I the thermal strain rate, σm = 1

3
trace (σ)

the mean stress and parameters G, κ are the shear and bulk modulus, respectively. The
linear coefficient of thermal expansion is denoted as C. All the material parameters
G, κ, C, Y0, H1, H2, H3, K1, K2, K3, Q, f and m can depend on temperature.

Schreyer [18] used the generalized trapezoidal rule to solve the evolution equations (3).
In the following, the Schreyer’s algorithm, extended with isotropic hardening, is briefly
described. Denoting τ = s − 2

3
B the system (3)-(4) can be written in a form

τ̇ + Ã11τ + Ã12B = ṡtrial,

Ḃ + Ã21τ + Ã22B = 0,

Ẏ −H1γ + (H2γ +H3)(Y − Y0)
2 = 0,

(5)

where

Ã11 = (3G+K1)
γ

τ̄
−

∂G

∂θ

θ̇

G
, Ã12 = −2

3
(K2γ +K3)B̄ +

∂G

∂θ

θ̇

G
,

Ã21 = −K1

3γ

2τ̄
, Ã22 = (K2γ +K3)B̄, (6)

and the elastic trial stress rate is defined as ṡ trial = 2Gėe.
Applying the generalized trapezoidal rule

τ n+1 = τ n +∆t
(

ατ̇ n+1 + (1− α)τ̇ n

)

,

Bn+1 = Bn +∆t
(

αḂn+1 + (1− α)Ḃn

)

,

Yn+1 = Yn +∆t
(

αẎn+1 + (1− α)Ẏn

)

(7)
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to the system (5), the discrete evolution equations are

A11τ n+1 + A12Bn+1 = R1,

A21τ n+1 + A22Bn+1 = R2,

Yn+1 −∆tα
[

H1γn+1 − (H2γn+1 +H3)(Yn+1 − Y0)
2
]

= Yn

+∆t(1− α)
[

H1γn − (H2γn +H3)(Yn − Y0)
2
]

,
(8)

where

R1 = a11τ n + a12Bn + α∆tṡ trial

n+1 + (1− α)∆tṡ trial

n ,

R2 = a21τ n + a22Bn (9)

and

A11 = 1 + α∆tÃ11,n+1, a11 = 1− (1− α)∆tÃ11,n,

A12 = α∆tÃ12,n+1, a12 = −(1− α)∆tÃ12,n,

A21 = α∆tÃ21,n+1, a21 = −(1− α)∆tÃ21,n,

A22 = 1 + α∆tÃ22,n+1, a22 = 1− (1− α)∆tÃ22,n. (10)

Depending on the α-parameter, some well known schemes are obtained: α = 0 corresponds
to the explicit Euler scheme, α = 1/2 the trapezoidal rule and α = 1 the implicit,
backward Euler scheme. Only the trapezoidal rule is asymptotically second order accurate,
however, it produces oscillations when the time-step size exceeds the critical time-step of
the explicit Euler method ∆tcr. As shown numerically in [12, 18, 19], the backward
Euler is the most versatile scheme in this family of methods. However, the equations are
expressed in this general form to facilitate a possibility to switch from implicit Euler to
the trapezoidal rule when the time-step is smaller than ∆tcr.

Following the formulation in [18, 19], solution of this nonlinear system can be per-
formed involving only the scalar “invariants” τ̄ and B̄ and, in the present formulation
also the flow stress Y . The two first equations in (8) can be solved formally as

τ n+1 = (A22R1 − A12R2)/D,

Bn+1 = (A11R2 − A21R1)/D, (11)

whereD = A11A22−A12A21. Squaring both sides of equations (11), the resulting nonlinear
algebraic system for the unknowns τ̄ , B̄ and Y is thus

F1 =τ̄n+1D −
√

3

2
f1 = 0,

F2 =B̄n+1D −
√

2

3
f2 = 0,

F3 =Yn+1 − Yn −∆tα
[

H1γn+1 − (H2γn+1 +H3)(Yn+1 − Y0)
2
]

−∆t(1− α)
[

H1γn − (H2γn +H3)(Yn − Y0)
2
]

= 0,

(12)

where the following abbreviations are used

f1 = A2
22R11 − 2A22A12R12 + A2

12R22,

f2 = A2
21R11 − 2A11A21R12 + A2

11R22,

Rij = Ri : Rj. (13)
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The formulas for Aij , F1 and F2 differ slightly from those presented in [18] due to the
difference in defining the direction of the inelastic deformation n .

For this procedure, the algorithmic tangent stiffness matrix, which is necessary to
obtain quadratic rate of convergence in the global equilibrium iterations, is given in the
Appendix.

Selection of initial values

An important aspect in the Newton’s iteration process of the system (12) is the selection
of the initial values. Common choices utilize either the values from the previous converged
step (i.e. variables at the beginning of the increment) or the stress increment is taken as
elastic, while the internal variables have their values from previous converged step. An
alternative approach is given by Schreyer [18, 19], where the steady state solution for
the creep problem is used for the initial guess for the iteration. As shown numerically in
the above cited references and also by the present authors, the steady state approach for
the initial guess appears to be within the radius of convergence of the Newton-Raphson
iteration. In many cases it is also more efficient than the conventional approaches.

The steady-state solution is obtained under the assumptions that τ̇ , Ḃ and Ẏ are zero
and the elastic deviatoric trial stress ṡtrial is constant. This is obtained if

ǫ̇
in = ė ,

γss =
√

2

3
ė : ė ,

Yss =
√

H1γss/(H2γss +H3) + Y0 (14)

and τss can be solved from equation (3). The steady-state solution for the invariant of the
initial backstress is

B̄2
ss =

K1γss
K2γss +K3

. (15)

In some cases, where the parameters K2 and K3 are small, the steady state solution
for the initial backstress will be inaccurate, resulting inefficient iteration. To prevent
such situations, the initial value for the steady state backstress can be safeguarded by
comparing it to the elastic effective stress σ̄el. A modification strategy could thus be: if
B̄ss > σ̄el, then the initial value for B̄ is taken from the previous converged step.

Numerical studies

Selection of the initial values for the iterates is of primary importance when large steps
are used in the analysis. Behaviour of different choices is tested in a realistic problem. A
single solder bump of a ball grid array (BGA) is analyzed under a combined thermal and
mechanical loading. For simplicity, the movement between the board and the component
is approximated by prescribing the displacements in x and z directions on the upper
surface of the bump, see Fig. 1. The FE mesh consists of 540 standard trilinear 8-
noded hexahedral elements, integrated with 2 × 2 × 2 Gaussian quadrature. Loading
consists of spatially uniformly distributed and temporally sinusoidal temperature variation
θ(t) = θ0 + 1

2
∆θ sin(2πt/tmax), where θ0 = 293 K and ∆θ = 100 K, and prescribed

displacements on the upper surface of the bump (u, v, w) = (δ, 0, δ) sin(2πt/tmax) and δ =
0.1 µm.
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Figure 1. Solder bump; geometry and FE mesh [12, Fig. 12].

Table 1. Material parameters of the binary near eutectic Sn40Pb solder [1]. Parameters K2 and K3 are
varied in the numerical tests and defined in (16).

E = 33 GPa Q = 12 kcal/mol
ν = 0.3 R = 2·10−3 kcal/mol·K
Y0 = 20 MPa H1 = E/165
m = 3.5 K1 = E/100
f = 105 s−1 C = 1.7 ·10−5 K−1

Material parameters are given in Table 1. Since the values of the non-linear kinematic
hardening parameters K2 and K3 strongly affects on the initial value of the effective
backstress, they are varied in a vide range. As defined in [18, 19] the nondimensional
parameters ξ2, ξ3 are

K2 = ξ2
2G

Y 2
0

K3 = ξ3
2Gγ0
Y 2
0

(16)

where γ0 = f exp(−Q/Rθ). Using the data in Table 1, it gives the values 2G/Y 2
0 =

63.46 mm/N and 2Gγ0/Y
2
0 = 8.1110−3 mm/Ns, evaluated at temperature θ = 293 K.

Since the non-linear isotropic hardening does not have much effect on the performance on
solution algorithm, the parameters H2 and H3 are assumed to be zero. In addition, all
material parameters in this test are assumed to be temperature independent.

Time interval [0, tmax] is divided into 12 equal timesteps. Four different choices for the
initial values are tested: (i) initial state as the last converged state, marked as “init.” in
Table 2, (ii) state where the elastic predictor is added to the previous converged state,
marked as “elast.”, (iii) saturated values according to equations (14) and (15), and (iv)
the modified strategy marked as “mod. satur.”. The modified strategy is the safeguarded
version of the steady state estimate, described in the previous section. Average numbers
of Newton’s iterations needed at the integration point level are recorded in Table 2.

Failure, as recorded in Table 2, is claimed when either the local Newton iteration at
any integration point or the global Newton iteration does not converge within 20 corrector
iterations. In a production code, failure at the integration point level might be avoided by
using substepping. Continuation after a failure at the global equilibrium iteration level
might be possible with a smaller time-step. The convergence for both iterations is tested
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Table 2. Comparison of different choices for the initial iterate. The critical time step for the explicit
Euler method is denoted as ∆tcr, and it is determined from the predictor state, see [12].

average max average number of iterations
∆t ∆t/∆tcr ∆t/∆tcr ξ2 ξ3 init. elast. satur. mod. satur.

50 s 1.8 13.0 0 0 5.5 6.1 4.3 4.3
10−4 10−4 5.8 fail 4.7 4.3
10−2 10−2 fail fail 4.5 4.5
1 1 fail fail 4.7 4.7
10 10 fail fail 4.7 4.7
102 102 fail fail fail fail

500 s 4.0 23.6 0 0 5.5 7.5 4.0 4.0
10−6 10−6 6.1 fail 4.5 4.0
10−4 10−4 fail fail 4.3 4.1
10−2 10−2 fail fail 4.3 4.3
1 1 fail fail 4.4 4.4
10 10 fail fail 4.5 4.5
102 102 fail fail fail fail
102 0 fail fail 4.5 4.5
0 102 fail fail fail fail

BFGS+LS
BFGS

Newton+LS
Newton

iteration

‖δ
q
‖/
‖∆

q
‖

1614121086420

10−10

10−8

10−6

10−4

10−2

1

Figure 2. Equilibrium iteration history at the first step ∆t = 500 s.
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as ‖x k+1 − x k‖ < εrel‖x
k+1 − x 0‖ + εabs, where the values εrel = 10−6 and εabs = 10−9

have been used and x is the displacement vector q in the global equilibrium iterations
and x = (τ̄ , B̄, Y )T in the local iteration at the integration point level.

In Fig. 2 the global equilibrium iteration history is shown from the first step. It
is clearly seen that only one line-seach will reduce the number of Newton’s iterations
from 11 to 5. For the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-newton iteration,
application of the line-search does not give any improvement.

Concluding remarks

For standard elasto-plastic models the backward Euler method seems to be the best
integration scheme [2, 9, 10, 11, 14, 17, 20, 21]. However, if there are other ingredients in
the model, e.g. damage, other integration schemes could be more appropriate [22].

It is shown in many papers [12, 18, 19], that the backward Euler scheme seems to
be unbeatable in creep computations − simple to code, accurate and relatively fast −
especially when large time-steps are used. The key point in the success of the implicit Euler
scheme is that the error in the computations using large, practically relevant timesteps
is smaller than in other (even higher order) schemes. Many schemes having higher order
asymptotic accuracy are inferior to the first order accurate implicit Euler scheme when
the size of the time-step exceeds the critical time-step of the explicit Euler method, see
[12, Fig. 2].

For analyses where large timesteps have to be used, the steady state solution for the
initial guess, proposed by Schreyer, results in much larger convergence domain than the
conventional approaches.

Appendix: Consistent algorithmic tangent

To obtain asymptotically quadratic convergence for the Newton iteration of the global
equilibrium equations, the Jacobian of the discretized non-linear evolution equations of
material model has to be evaluated. In the literature this Jacobian is often called the
consistent algorithmic tangent, see e.g. [2, 16, 21]. It is defined as

C =
∂σ

∂ǫ
=

∂

∂ǫ
(s + σmI ) = Cdev + Ciso (17)

and it is evaluated from quantities at the end of the current step at time tn+1. In sequel,
the subscript n+ 1 is omitted in places where there is no danger for confusion. Since the
behaviour of the isotropic part of the stess is linear, thus Ciso = Cel

iso. In the algorithm,
the deviatoric stress is computed as

s = τ + 2

3
B = D−1

[(

A22 −
2

3
A21

)

R1 +
(

2

3
A11 − A12

)

R2

]

(18)

and using the following notations: ∂R1/∂ǫ = αCel
dev and ∂R2/∂ǫ ≡ 0 and D = A11A22 −

A12A21, the deviatoric part of the stiffness tensor can be expressed as

∂s

∂ǫ
=

1

D

[

(

2

3
R2 − A22s

) ∂A11

∂ǫ
+ (A21s −R2)

∂A12

∂ǫ
+
(

A12s − 2

3
R1

) ∂A12

∂ǫ

+ (R1 − A11s)
∂A22

∂ǫ
+ α

(

A22 −
2

3
A21

)

C
el
dev

]

(19)
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Derivatives for the scalars Aij are:

∂A11

∂ǫ
= α∆t

(3G+K1)

τ̄ 2

(

τ̄
∂γ

∂ǫ
− γ

∂τ̄

∂ǫ

)

∂A12

∂ǫ
= −

2

3
α∆t

[

(K2γ +K3)
∂B̄

∂ǫ
+K2B̄

∂γ

∂ǫ

]

∂A21

∂ǫ
= −

3

2
α∆t

K1

τ̄ 2

(

τ̄
∂γ

∂ǫ
− γ

∂τ̄

∂ǫ

)

∂A22

∂ǫ
= α∆t

[

(K2γ +K3)
∂B̄

∂ǫ
+K2B̄

∂γ

∂ǫ

]

(20)

Derivative of the creep strain rate γ can be expressed as

∂γ

∂ǫ
=

∂γ

∂τ̄

(

∂τ̄

∂ǫ
−

τ̄

Y

∂Y

∂ǫ

)

(21)

where
∂γ

∂τ̄
= CF =

mf

Y
exp

(

−Q

Rθ

)

sinhm−1

( τ̄

Y

)

cosh
( τ̄

Y

)

(22)

It can be seen that the derivative with respect to the flow stress can be written as ∂Y/∂ǫ =
CH∂τ̄/∂ǫ, where the coefficient CH depend on the chosen isotropic hardening model. For
the model (3) it has the form

CH =
h1

1 + h2

(23)

where

h1 = CF
α∆t[H1 −H2(Y − Y0)

2]

1 + 2α∆t(H2γ +H3)(Y − Y0)
, h2 = h1(τ̄ /Y ) (24)

Derivatives (20) can be written as

∂A11

∂ǫ
= t11

∂τ̄

∂ǫ

∂A12

∂ǫ
= t12

∂τ̄

∂ǫ
+ b12

∂B̄

∂ǫ
∂A21

∂ǫ
= t21

∂τ̄

∂ǫ

∂A22

∂ǫ
= t22

∂τ̄

∂ǫ
+ b22

∂B̄

∂ǫ
(25)

where

t11 = α∆t(3G+K1)(CF/τ̄ − CFCH/Y − γ/τ̄ 2) t12 = −2

3
α∆tK2B̄CF (1− CH τ̄ /Y )

t21 = −3

2
α∆tK1(CF/τ̄ − CFCH/Y − γ/τ̄ 2) t22 = α∆tK2B̄CF (1− CH τ̄ /Y )

b12 = −2

3
α∆t(K2γ +K3) b22 = α∆t(K2γ +K3) (26)

Derivatives of the equivalent stresses τ̄ and B̄ has to be evaluated from their algorith-

mic expressions in equations (12): τ̄ =
√

3

2
f1/D and B̄ =

√

2

3
f2/D. After some simple

algebra

∂τ̄

∂ǫ
= t0 + t1

∂A11

∂ǫ
+ t2

∂A12

∂ǫ
+ t3

∂A21

∂ǫ
+ t4

∂A22

∂ǫ
∂B̄

∂ǫ
= b0 + b1

∂A11

∂ǫ
+ b2

∂A12

∂ǫ
+ b3

∂A21

∂ǫ
+ b4

∂A22

∂ǫ
(27)
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where

t0 =
3α

2D2τ̄

(

A2
22C

el
dev: R1 −A12A22C

el
dev: R2

)

b0 =
2α

3D2B̄

(

A2
21C

el
dev: R1 −A21A11C

el
dev: R2

)

t1 = −τ̄D−1A22 b1 =
2

3D2B̄
(A11R22 −A21R12)− B̄D−1A22

t2 =
3

2D2τ̄
(A12R22 −A22R12) + τ̄D−1A21 b2 = B̄D−1A21

t3 = τ̄D−1A12 b3 =
2

3D2B̄
(A21R11 −A11R12) + B̄D−1A12

t4 =
3

2D2τ̄
(A22R11 −A12R12)− τ̄D−1A11 b4 = −B̄D−1A11 (28)

Substituting expressions (20) into the equations (27), derivatives t ǫ = ∂τ̄/∂ǫ and bǫ =
∂B̄/∂ǫ can be solved from the equation

T11t ǫ − T12bǫ = t0

−T21t ǫ + T22bǫ = b0 (29)

where

T11 = 1− t1t11 − t2t12 − t3t21 − t4t22

T12 = t2b12 + t4b22

T21 = b1t11 + b2t12 + b3t21 + b4t22

T22 = 1− b2b12 − b4b22 (30)

Finally, the deviatoric part of the consistent algorithmic tangent tensor can be written
in the form

Cdev =
1

D

[

α
(

A22 −
2

3
A21

)

C
el
dev + e1t ǫ + e2bǫ

]

(31)

where the second order tensors e1 and e2 are

e1 =
[

−
(

A22 −
2

3
A21

)

t11 +
(

A12 −
2

3
A11

)

t21
]

τ −
[(

A22 −
2

3
A21

)

t12 −
(

A12 −
2

3
A11

)

t22
]

B

e2 =
[(

A12 −
2

3
A11

)

b22 −
(

A22 −
2

3
A21

)

b12
]

B (32)

The algorithmic tangent is symmetric, although it is rather hard to see this directly in
(31). It should be noticed, that tensors t ǫ and bǫ are functions of R1 and R2 which are
defined in (9) by quantities evaluated at time tn, but which can also be expressed as in
equations (8) with quantities evaluated at time tn+1.

The derivations above are valid when the generalized trapezoidal rule is used to in-
tegrate the constitutive model in question. If the discontinuos Galerkin method with
piecewise constant trial functions is used [4], terms Aij in equations (10) should be re-
placed with those defined in equations (52) in [12] and expressions (26) and (24) are
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changed to:

t11 =

∫ tn+1

tn

(3G+K1)(CF/τ̄ − CFCH/Y − γ/τ̄ 2) dt

t12 = −2

3

∫ tn+1

tn

K2B̄CF (1− CH τ̄ /Y ) dt

t21 = −3

2

∫ tn+1

tn

K1(CF/τ̄ − CFCH/Y − γ/τ̄ 2) dt

t22 =

∫ tn+1

tn

K2B̄CF (1− CH τ̄ /Y ) dt

b12 = −2

3

∫ tn+1

tn

(K2γ +K3) dt

b22 =

∫ tn+1

tn

(K2γ +K3) dt (33)

h1 =

∫ tn+1

tn

CF

[

H1 −H2(Yn+1 − Y0)
2
]

dt

h2 = 2A33(Yn+1 − Y0) +

∫ tn+1

tn

CF

[

H1 −H2(Yn+1 − Y0)
2
]

(τ̄ /Y ) dt (34)
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