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Differential cubature method for gradient-elastic Kirchhoff
plates
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Summary. In this article, the differential cubature method is applied for the problem describ-
ing the static deformations of gradient-elastic Kirchhoff plates. The theory of gradient elasticity
applied for the Kirchhoff plate model results in a sixth order partial differential equation with
a set of corresponding boundary conditions. The differential cubature method is shown to be
able to solve the problem with a relatively small number of grid points and with a small com-
putational effort. In particular, the correct qualitative dependence of the solution on the size
effect parameter is encountered. However, it is demonstrated that the differential cubature
method possesses certain deficiencies related to the resulting system matrices and enforcement
of boundary conditions, which is an issue that, surprisingly, has not been studied thoroughly
before.
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Introduction

Plates are very common structures in many applications in different fields of science and
technology, especially in civil and mechanical engineering. For the sake of simplicity
and efficiency, plate structures are usually modelled by dimension reduction, i.e., the 3D
structure is approximately modelled by a 2D model with the thickness appearing as a
parameter in the model.

Within this approach, the most commonly used models for plate structures in engi-
neering applications are the Reissner–Mindlin and Kirchhoff–Love plate models [13, 17],
the former being capable of modelling a wide range of applications of moderately thick
plate structures, various options for loadings and different types of boundary conditions
as well [15, 4, 41]. In particular, the Reissner–Mindlin model can be regarded as the
lowest-order member of a more general class, the hierarchical plate models of dimension
reduction [32, 31].

Within the classical elasticity theory, the Kirchhoff plate model leads to a fourth order
partial differential equation – the biharmonic equation in the simplest cases. During
the past decades, different computational methods have been successfully applied for the

1Corresponding author. mahmoud.mousavi@aalto.fi

164



classical Kirchhoff plate problems with various boundary conditions – the main focus
being placed on finite element methods (FEM), cf. [5, 25, 16, 6, 18, 8, 9, 7]. The primary
challenge in designing appropriate finite element methods for the Kirchhoff plate problem
has been related to the fundamental fact that the differential equation of the problem is
of fourth order, which implies an H2 setting for the weak formulation requiring either C1

continuity from the approximation functions for conforming methods or, alternatively, a
nonconforming approach.

The classical elasticity theory has been shown to be incapable of describing size de-
pendent, but still elastic, phenomena of structures which have been, however, observed
experimentally for metals and polymers, see for instance [20, 24]. Generalized continuum
theories, instead, include length scale parameters for taking into account the size effects
possibly present in structures. For instance, in the strain gradient elasticity theory, the
strain energy is generalized such that it is not simply a function of the strain but also
depends on the gradient of the strain (multiplied by a length scale parameter). The gen-
eralized continuum elasticity theories were introduced at the beginning of the nineteenth
century first by the Cosserat brothers. About half a century later, these theories were re-
vised by the founders of modern continuum mechanics (Toupin, Rivlin, Mindlin, Eringen
and others) as reviewed by Altenbach et al. [3].

Regarding gradient-elastic Kirchhoff plates, in [10] a sixth order governing equation
has been derived by using the strong form of the equilibrium equations. As expected,
this approach provides no information about the corresponding new boundary conditions.
However, in [11] a variational approach for the same problem has been presented implying
the governing equation as well as a set of boundary conditions. In [21] the governing plate
equation and the corresponding boundary conditions have been derived via a variational
method as well. Another type of Kirchhoff plate model based on a modified couple
stress theory has been presented in [35, 38]. However, the resulting boundary value
problem is of the fourth order as the classical plate equation. All of these formulations
for gradient-elastic Kirchhoff plates consider only one material length scale parameter. In
[37], instead, a Kirchhoff micro-plate model based on the strain gradient elasticity theory
have been developed providing three material length scale parameters to capture the size
effects. The problem has been solved for simply supported boundary conditions in [11].
Furthermore, another Kirchhoff micro-plate model based on the modified strain gradient
elasticity theory have been presented in [30]. The formulation is quite general and can
be reduced to the modified couple stress plate model or to the classical plate model once
two or all material length scale parameters are set zero, respectively.

Regarding numerical methods, some non-standard methods have been extended to the
problems of gradient elasticity in recent years. This can be regarded natural – and even
desirable – since a conforming finite element methods which, at the first glance, could be
considered as a practical mainstream approach, would lead to nonstandard approaches.
In the territory of Kirchhoff micro-plates, especially, for the sixth order partial differ-
ential equation an H3 regular weak formulation implies the requirement of nonstandard
C2 continuous higher order piecewise polynomial basis functions. This type of a higher
continuity finite element method has been used in [1] for the static deflection analysis of
a rectangular micro-plate, while in [2] the static deflection analysis of a simply supported
sectorial micro-plate using a p-version finite element method have been presented. The
boundary element method (BEM) has also been shown to be applicable for the static and
dynamic analysis of strain gradient-elastic solids and structures [36, 34].

For the dynamic analysis of structures, one might need to take into account velocity
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gradient as well as strain gradient. Higher-order shear deformable beam and plate within
strain and velocity gradients theory is studied in [29] and [40], respectively. In these
papers, a variational approach is followed and the motion equations and the consistent
boundary conditions of gradient theory are derived for shear deformable beam and plate.

The differential cubature method (DCM) applied in the present contribution has been
introduced in [14] as an efficient procedure to obtain solutions for partial differential
equations with a relatively small number of grid points and small computational effort.
In the literature, DCM has been applied for plate problems of classical elasticity, i.e., for
the fourth order problems, including bending [22, 23, 33] and vibration [39]. Furthermore,
it has been applied to the bending analysis of laminated cylindrical panels [27], and to
the statics of laminated shells of revolution with mixed boundary conditions [26].

In the present article, in the following section, DCM is applied for solving the problem
of Kirchhoff micro-plates governed by a sixth order partial differential equation with the
corresponding boundary conditions which have been derived by a variational approach of
gradient elasticity in [11]. Next, the differential cubature method and its main features
are explained briefly. Then a set of numerical results is presented. Finally, the main
conclusions are outlined.

Governing equations and boundary conditions for gradient-elastic Kirchhoff plates

Adopting Kirchhoff’s theory of plates, a flat thin plate can be described by its mid-surface
Ω in the (x, y) plane and the thickness t << diam(Ω). A lateral static load q = q(x, y) is
idealized to be distributed on the mid-surface of the plate resulting in a lateral deflection
w = w(x, y) in the z direction.

For simplicity, the plate is assumed to be isotropic with constant thickness t and mod-
ulus of elasticity, E, and Poisson’s ratio, ν. The micro-structural effects of the material
are expressed by the characteristic length g. Furthermore, the classical flexural plate
rigidity, or bending stiffness, is defined as

D =
Et3

12(1− ν2)
. (1)

Similar to the classical Kirchhoff plate elasticity, the variational approach applied to
the Kirchhoff micro-plate elasticity results in a formulation consisting of governing partial
differential equation and boundary conditions. In [11, 10], the governing equation of the
problem has been derived in the form

D∇4w − g2D∇6w = q in Ω, (2)

with the partial differential operators defined in a standard way as

∇4 =
∂4

∂x4
+

∂4

∂y4
+ 2

∂4

∂x2∂y2
(3)

∇6 =
∂6

∂x6
+

∂6

∂y6
+ 3

∂6

∂x4∂y2
+ 3

∂6

∂y4∂x2
. (4)

There are slightly different forms of the governing equation for first-order gradient-
elastic Kirchhoff plates due to different constitutive equations such as those in [11] and
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[28]. In the current model, the bending moments and the twisting moments are defined
as

Mx = −D
(∂2w
∂x2

+ ν
∂2w

∂y2
)

+ g2D
(∂4w
∂x4

+ ν
∂4w

∂y4
+ (1 + ν)

∂4w

∂x2∂y2
)
, (5)

My = −D
(∂2w
∂y2

+ ν
∂2w

∂x2
)

+ g2D
(∂4w
∂y4

+ ν
∂4w

∂x4
+ (1 + ν)

∂4w

∂x2∂y2
)
, (6)

Mxy = −D(1− ν)
∂2w

∂x∂y
+ g2D(1− ν)

( ∂4w

∂x3∂y
+

∂4w

∂y3∂x

)
, (7)

while the shear forces are defined through the moment balance as usual:

Qx =
∂Mx

∂x
+
∂Mxy

∂y
, Qy =

∂My

∂y
+
∂Mxy

∂x
. (8)

Boundary conditions of the problem will be discussed in context of the numerical results
in the following sections.

Differential cubature method in brief

In this section, we recall the basics of the differential cubature method and point out the
main advantages and disadvantages of the method from the theoretical point of view.

According to differential cubature method, any linear operation such as a continuous
function or various orders of partial derivatives of a multivariate function can be expressed
as a weighted linear sum of discrete functions chosen within the overall domain of the
problem [14]. For instance, in a two-dimensional problem, the cubature approximation
of a linear differential operator L (representing of an operator of any order of partial
derivatives or combinations of these partial derivatives) of function f(x, y) at the node i
is given by (

L{f(x, y)}
)
i

=
n∑

j=1

cijf(xj, yj), i = 1, ..., n (9)

where i is the index of arbitrarily sequenced grid points for the two-dimensional solution
domain, n is the total number of discrete points within the domain and cij are the unknown
cubature weighting coefficients which for n grid points constitute n2 unknowns to be
determined.

In order to determine these coefficients, a set of monomial basis functions

F (x, y) = xm−nyn, m = 0, 1, 2, ..., k − 1, n = 0, 1, 2, ...,m (10)

are often used. Other type of basis functions like harmonic functions or Bessel functions
have been proposed in [12], for instance. The basis functions in Eqs. (10) are taken from
the “Pascal triangle of monomials” in x and y with m referring to the row index of the
“Pascal triangle”. For instance, monomials up to level m = 2 are simply 1 (m = 0), x, y
(m = 1), x2, xy, y2 (m = 2).

The number of monomials should be equal to the number of total grid points n.
Therefore, the appropriate value of k in Eqs. (10) has to be be determined in order to
satisfy this condition. For instance, for the case with n = 41, all of the monomials up
to m = 8 should be used giving only m(m + 1)/2 = 36 monomials. Therefore, five more
monomials from the level m = 9 should be selected to provide 41 monomials. It has been
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found out that the method of the selection of these five additional monomials from the
next line (m = 9) has insignificant effect on the solution.

Once the set of monomials is constructed, the monomials are substituted into Eqs. (9)
in order to construct n equations. Moreover, introducing the obtained n equations to all
n grid points leads to the following set of n2 equations composed of n × n real matrices
for determining the n2 unknowns cij:

(
L{f1}

)
1

(
L{f2}

)
1
· · ·

(
L{fn}

)
1(

L{f1}
)
2

(
L{f2}

)
2
· · ·

(
L{fn}

)
2

...
...

. . .
...(

L{f1}
)
n

(
L{f2}

)
n
· · ·

(
L{fn}

)
n



=


c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cn1 cn2 · · · cnn



f1(x1, y1) f2(x1, y1) · · · fn(x1, y1)
f1(x2, y2) f2(x2, y2) · · · fn(x2, y2)

...
...

. . .
...

f1(xn, yn) f2(xn, yn) · · · fn(xn, yn)

 (11)

This process should be accomplished for all of the operators in the governing equations
and possible boundary conditions.

Having determined all the coefficients for each differential operator appearing in the
governing equations, one substitutes them according to Eqs. (9) into the governing equa-
tion (2) to reach a set of n linear algebraic equations. Finally, the same procedure is
applied to all boundary conditions. It should be noted that this procedure yields an over-
determined system of equations with system matrix B. The number of equations can be
reduced by not imposing the governing equation at the grid points lying on the boundary.
Indeed, since the governing equations are valid only in the interior part of the domain and
the boundary conditions are valid on the boundaries of the domain, the grid points for
enforcing the governing equations should not include any boundary points. In any case,
for higher-order problems as Kirchhoff plates, the system remains over-determined. In
order to overcome this problem, the least squares method is used to solve the final system
in the current approach as is common in context of DCM. Regarding solution procedures
of the resulting linear system, it should be noted that the matrices above are full matrices,
which can be seen as a drawback of the method.

The differential cubature method involves a penalty parameter which controls the
relative weight of the boundary conditions in the final system of algebraic equations. The
penalization is done by multiplying the relevant line of the boundary equations to the
parameter. This coefficient ensures the satisfaction of the relevant boundary conditions.
The theoretical study of the DCM and its error analysis incorporating the penalization
parameter is excluded from the current analysis. Instead, we study the sensitivity of the
method with respect to this parameter in the next section by numerical means.

In DCM, the plate domain is to be covered by several grid points, and a particular
procedure should be used for node generation and their numbering [27]. The relevance of
this issue has been pointed out also in [14] although no rigorous theoretical analysis for this
issue seems to exist and even no numerical demonstrations illustrating the sensibility of the
method on the grid point positioning. According to [19], “the conventional rectangular
grid systems with equally spaced grid points used frequently with the quadrature and
finite difference methods lead to a singularity problem in the solution”. The reason for
this seems to be an ill-conditioned Vandermonde type system matrix, cf. [14]. In addition,
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[12] propose using roots of Chebyshev, Gauss, or Legendre polynomials as the grid spacing
approaches that has been applied for quadrature methods, for instance.

As a part of numerical results in the following sections, we have demonstrated how
the condition number of the system matrix and the convergence of the solution depend
on the positioning of the grid points. In order to analyze the DCM for plates with
different geometries, we have used circular and rectangular plates as examples. For more
general geometries, however, it is sufficient to distribute the nodal points randomly in
the plate mid-plane and on its boundary, as explained here and also reported in other
related articles as in [22]. For a rectangular plate, the grid points are chosen first as a
set of uniform rectangular grid with small random deviations, second as a set of uniform
diamond shaped grid, cf. [27, 23] (see an example distribution of 41 nodal points in Fig.
1). An example of a 25 nodal points distribution of a circular plate is demonstrated in
Fig. 2.

Figure 1. A distribution of 41 grid points for a
rectangular plate.

Figure 2. A distribution of 25 grid points for a
circular plate.

Numerical results

This section is dedicated for applying the differential cubature method for two types
of benchmark problems of gradient-elastic Kirchhoff plates – a rectangular plate with
simply supported and clamped boundaries; a circular plate with clamped boundaries – for
addressing the applicability and generality of the method with respect to plate geometries
and boundary conditions, in particular. Furthermore, the convergence properties of the
method as well as the sensitivity of the method with respect to the grid positioning and
penalty coefficient for boundary conditions is studied thoroughly.

A rectangular plate with clamped and simply supported boundaries

Let us here consider a rectangular plate with side lengths a and b. An analytic reference
solution for a rectangular gradient-elastic plate, simply supported at all boundaries (SSSS)
can be derived as follows. Under a sinusoidal loading

q(x, y) = q0 sin
πx

a
sin

πy

b
(12)

the plate deflection takes the form (cf. the classical Navier solution and [10])

w(x, y) =
q0

π4D
(

1 +
(
1 + (a/b)2

)
π2(g/a)2

)
(1/a2 + 1/b2)2

sin
πx

a
sin

πy

b
(13)
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giving the central deflection

w0 =
q0

π4D
(

1 +
(
1 + (a/b)2

)
π2(g/a)2

)
(1/a2 + 1/b2)2

(14)

which can be compared to the central deflection of the corresponding classical Navier
solution at g = 0 of the form

w0,cl =
q0

π4D(1/a2 + 1/b2)2
. (15)

The procedure explained in the previous section for the DCM is applied for this prob-
lem and the numerical results of DCM are compared with the reference solution (13) and
also with those obtained by C2 continuous finite element methods, see [1]. The specific
form of boundary conditions used in these references is

w =
∂2w

∂x2
=
∂2w

∂y2
=
∂4w

∂x4
=
∂4w

∂y4
=

∂4w

∂x2∂y2
= 0 at x = 0, a

w =
∂2w

∂y2
=
∂2w

∂x2
=
∂4w

∂y4
=
∂4w

∂x4
=

∂4w

∂y2∂x2
= 0 at y = 0, b.

(16)

One should notice that these boundary conditions lead to satisfaction of the conditions

w = Mx = 0 at x = 0, a

w = My = 0 at y = 0, b
(17)

representing the classical simply supported boundary conditions in terms of the moments
(Eqs. 5 and 6). Regarding the additional non-classical boundary conditions, there are two
options, namely either

∂2w

∂x2
= 0 at x = 0, a

∂2w

∂y2
= 0 at y = 0, b

(18)

or

−g2D
(
∂3w

∂x3
+ ν

∂3w

∂x∂y2

)
= 0 at x = 0, a

−g2D
(
∂3w

∂y3
+ ν

∂3w

∂y∂x2

)
= 0 at y = 0, b.

(19)

These boundary conditions have been derived using the variational approach in [11].
Notice that, the form (16) corresponds to Eq. (18) and is satisfied by the reference solution
(13) while that solution does not satisfy Eq. (19). However, both forms of additional
boundary conditions can be enforced in the cubature method.

First, we compare DCM with the reference solution (13) and the corresponding finite
element solution of [1] using the boundary conditions (17) and (18) or (19). Fig. 3 depicts
the normalized central deflection versus the square of the dimensionless length scale pa-
rameter (g/a)2 for the different methods. The other problem parameters are taken to be
ν = 0.3, b/a = 1 and t/a = 0.1. E is used for normalizing the loading by setting q0 = E.
The DCM solution is obtained using n = 85 grid points in the diamond formation. Other
type of spacing of the grid points is studied in Table 1.
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Table 1. Condition number and convergence for different grid point positionings at g/a = 0.1, λ = 1e4
(rectangular plate).

Diamond shaped grid

Grid points Condition number Midpoint deflection Midpoint moment
w = 2.9255 Mx = 2.9354e+ 04

N κ(B) w(a/2, b/2) Mx(a/2, b/2)

41 2.7689e+ 18 3.4132 3.6669e+ 04
61 3.7004e+ 19 2.8956 3.3010e+ 04
85 6.5243e+ 20 2.9265 3.2932e+ 04
113 4.0816e+ 20 2.9258 3.2929e+ 04
145 3.2387e+ 20 2.9232 3.2924e+ 04
181 3.3506e+ 22 diverge diverge

Random nodes

25 4.7410e+ 18 5.3319 5.9192e+ 04
49 1.9902e+ 18 3.3367 3.4633e+ 04
81 5.1226e+ 18 2.9200 3.2905e+ 04
121 1.2477e+ 19 2.9245 3.2931e+ 04
169 6.1750e+ 18 diverge diverge

A penalty coefficient is employed to impose the boundary conditions. It is observed
that, with penalty coefficient λ = 1e4 (or higher, not reported here), the DCM solution is
almost identical to the analytical reference solution and close to the FE solution. For the
latter, there is no detailed information about the discretization such as the mesh spacing
in [1]. With λ = 1e2 (or lower, not reported here), there is a slight deviation from the
exact solution.

Second, we study the effect of the non-classical boundary conditions to the micro-plate
deflection. Fig. 4 depicts again the normalized central deflection versus the square of the
dimensionless length scale parameter (g/a)2 for the two different boundary conditions
(18) (Type 1) and (19) (Type 2). The DCM solution has been obtained by using the
same problem and discretization parameters as before. According to these results, for the
boundary condition (19), DCM results converge by increasing λ for gradient parameter
higher than g = 0.1a, while for smaller values of g the results become highly dependent
on the value of the penalty parameter λ.

In what follows, we will study the sensitivity of DCM to the discretization parameters,
namely the number of grid points n and the penalty parameter λ. For this purpose we
use the boundary conditions of Type 1 corresponding to the analytical solution (13). The
convergence results of DCM with respect to the number of grid points n are shown in
Fig. 5 for the normalized central deflection along the line x = a/2 for g/a = 0.1. Other
problem and discretization parameters are the same as before. It can be concluded that
for the value n = 41 the deflection is higher than the exact solution. For parameter values
n = 61, 85, 113, the numerical solution is very close to the exact solution. However, further
increasing of n breaks the method down. This can be seen in Table 1 demonstrating
the convergence of the midpoint deflection w(a/2, b/2) and the moment Mx(a/2, b/2)
as well as the condition number of the system matrix for two different positioning of
the grid points. Here we take g/a = 0.1 while the other discretization parameters are
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Figure 3. The normalized central deflection versus dimensionless length scale parameter for a simply
supported micro-plate using the boundary conditions (16), n = 85.

Figure 4. The normalized central deflection versus dimensionless length scale parameter for a simply
supported micro-plate using the boundary conditions (17) and (19), n = 85.

once again the same as before. Considering the exact solution (w(a/2, a/2) = 2.9255,
Mx(a/2, a/2) = 2.9354e+ 04), it is observed that the diamond shaped grid point provides
results with less errors than random nodes for both the deflection and the moment of the
plate. The random nodes are created by applying random deviations to a uniform grid.

Table 2 represents similar results for g/a = 0. In this case, the same observations and
conclusions regarding the grid points and their positioning remain valid.
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Figure 5. Convergence of DCM in the case of a simply supported plate (SSSS). BC Type 1. λ = 1e4 and
g = 0.1a

Figure 6. Effect of the penalty coefficient (λ) on plate deflection in the case of a simply supported plate
(SSSS). g = 0.1a and n = 85.

For a simply supported plate, the effect of the penalty parameter λ on plate deflection
is demonstrated in Fig. 6 and Fig. 7 for g = 0.1a and g = 0.15a, respectively. In these
figures, the number of the grid points is n = 85. In this case the method seems not very
sensitive to the magnitude of the penalty parameter over the range λ ∈ [104, 108].

Substitution of the Eq. (13) in Eqs. (5), (6), (7) and (8) results in the analytical
solutions for the moments and shear forces. Moments and shear forces corresponding
to the DCM method are obtained by calculating the cubature weights corresponding to
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Table 2. Condition number and convergence for different grid point positionings at g/a = 0, λ = 1e4
(rectangular plate).

Diamond shaped grid

Grid points Condition number Midpoint deflection Midpoint moment
w = 3.5033 Mx = 3.2929e+ 04

N κ(B) w(a/2, b/2) Mx(a/2, b/2)

41 2.3480e+ 19 3.4975 3.2902e+ 04
61 5.8333e+ 18 3.5032 3.2918e+ 04
85 8.6314e+ 19 3.5033 3.2929e+ 04
113 1.4813e+ 19 3.5033 3.2930e+ 04
145 3.3130e+ 18 3.4991 3.2918e+ 04
181 5.0881e+ 18 diverge diverge

Random nodes

25 2.1113e+ 19 5.7725 4.8332e+ 04
49 2.2085e+ 18 3.5022 3.2914e+ 04
81 2.0000e+ 18 3.5044 3.2934e+ 04
121 3.8344e+ 17 diverge diverge

Eqs. (5), (6), (7) and (8). The results for the deflection obtained via DCM are used to
produce grid data by cubic interpolation for visualization. Fig. 8 compares the numerical
and analytical results for the moment component Mx. The number of grid points is n = 85
for the numerical solutions. These results are in good agreement.

Finally, for curiosity, some results for another boundary condition type is presented.
In this case, all the boundaries are assumed to be clamped (CCCC). The nonclassical
boundary condition is considered to be given by Eq. (18). In Fig. 9, the normalized
central deflection versus gradient parameter is drawn for the cases of SSSS, CCCC. It
should be mentioned that the deflections are normalized with the deflection of the simply
supported classical plate. Again, DCM results converge by increasing λ for gradient
parameter higher than g = 0.1a, while for smaller values of g the results become highly
dependent on the value of the penalty parameter λ.

A circular plate with clamped boundaries

Let us consider a circular plate with clamped boundaries. In the case of uniform loading
q0, the analytical solution is given in [11]. This reference solution is derived by considering
the first option of the nonclassical boundary condition,

∂2w

∂n2
= 0 at r = a. (20)

In Fig. 10, for gradient parameter g = 0.1a, with a denoting the radius of the plate, the
results obtained by using DCM (with λ = 1e4) are compared to the analytical solution.
The convergence of the radial deflection regarding to the number of grid points can be
observed. For N = 113, the DCM predication has converged very close to the analytical
solution.
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Figure 7. Effect of the penalty coefficient (λ) on plate deflection in the case of a simply supported plate
(SSSS). g = 0.15a and n = 85.

Conclusions

In the present work, differential cubature method (DCM) has been applied to analyse the
statics of gradient-elastic Kirchhoff plates. In the gradient elasticity theory adopted in the
present work, the characteristic length scale of the micro-plate is taken into account by one
gradient parameter. Increasing the value of the gradient parameter results in decreasing
values for the deflection of the plate when compared to the corresponding classical plate
model.

The results obtained by DCM for approximating the deflection of a simply supported
rectangular Kirchhoff micro-plate benchmark problem depicts very good agreement with
the reference solutions provided that the discretization parameters are carefully chosen.
The same holds true for the clamped circular plate. The differential cubature method is
capable of analysing plates with arbitrary geometries.

The main generic problems of the method found here, which have not been studied
thoroughly before, seems to be the requirement of specific grid positioning and the diver-
gence of the solution for high but still modest number of grid points. Also specification of
the value of the penalty coefficient enforcing the boundary conditions presents difficulties
in some cases, especially for small values of the length scale parameter in the present
problem. In addition, the condition number of the system matrix (B) is very high in
the example cases, which should be considered as an alarming drawback of the method
although standard solvers have been successfully used in the computations of the current
examples.

The results demonstrate the capability of the method for considering Type 1 boundary
conditions of gradient elasticity (18), while numerical accuracy issues are encountered for
the Type 2 boundary conditions (19). It seems that the parameter-dependence of the
current gradient elasticity problem, especially in the context of the higher-order bound-
ary conditions, is the reason for the numerical problems observed. These observations
indicate that the parameter dependence specific to problems in gradient elasticity, in gen-
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Figure 8. Numerical (top) and analytical (bottom) results for Mx in a simply supported plate (SSSS).

eral, affects numerical computations and hence warrants further theoretical and numerical
studies.
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Figure 9. The normalized central deflection versus gradient parameter (SSSS, CCCC), n = 85.

Figure 10. The normalized radial deflection of the circular plate with clamped boundary, g = 0.1a,
λ = 1e4 and β = q0/(64D).
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