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Stochastic fracture analysis of systems with moving
material

Maria Tirronen

Summary. This paper considers the probability of fracture in a system in which a material
travels supported by rollers. The moving material is subjected to longitudinal tension for which
deterministic and stochastic models are studied. In the stochastic model, the tension is described
by a multi-dimensional Ornstein-Uhlenbeck process. The material is assumed to have initial
cracks perpendicular to the travelling direction, and a stochastic counting process describes the
occurrence of cracks in the longitudinal direction of the material. The material is modelled as
isotropic and elastic, and LEFM is applied. For a general counting process, when there is no
fluctuation in tension, the reliability of the system can be simulated by applying conditional
sampling. With the stochastic tension model, considering fracture of the material leads to a
first passage time problem, the solution of which is estimated by simulation. As an example,
the probability of fracture is computed for periodically occurring cracks with parameters typical
to printing presses and paper material. The numerical results suggest that small cracks are not
likely to affect the pressroom runnability. The results also show that tension variations may
significantly increase the probability of fracture.
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Introduction

In many industrial processes there are stages at which a material travels in a system
of rollers. Examples of such processes can be found in the print industry and in the
manufacturing of different kinds of materials, such as textiles, plastic films, aluminium
foils and paper. In this kind of a system, the material moves between rollers unsupportedly
under longitudinal tension. The tension is essential for the transport of the material, and
in paper machines and printing presses, it is created by velocity differences of the rollers.

The mechanical behaviour of the moving unsupported material has gained interest in
research. For example, vibration charateristics and the mechanical stability of the moving
material is widely investigated (see literature reviews in [18, 41, 20]). From the studies
of instability it is known that increasing tension has a stabilizing effect. However, when
tension is increased, the probability of fracture increases and thus, it is of interest to study
the behaviour of the moving material from the view point of fracture.

In pressrooms, web breaks are an important runnability issue [4], and the effect of
cracks on web breaks has gained interest among researchers. Recently, researchers have
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approached the question of possible causes of web breaks by conducting data analysis on
press room data. Deng et al. [4] gathered data from several press rooms and found that
cracks were actually a minor cause of web breaks. Also, Ferahi and Uesaka [5] found,
by using special optics and a web inspection system, that most of the web breaks in
pressrooms are not uniquely related to the presence of obvious defects. According to
Uesaka [38], the concept that has begun to be accepted in the industry is that a web
break is a combined probabilistic event of high tension and low strength. However, earlier
studies found through pilot-scale experiments defects to be the major causes for web
breaks in pressrooms [38]. Recently, it has also been suggested that the lowest values of
tensile strength may be caused by defects [27].

As web breaks are statistically rare events, a large number of rolls is required to
determine the causes of web breaks with a reasonably high confidence level [4]. Thus,
mathematical modelling may provide an efficient tool to study the causes of web breaks.
Previously, Swinehart and Broek [32] studied the effect of cracks on web breaks by a
model, based on fracture mechanics, which included the number and the size distribution
of flaws, web strength and web tension. In [32], the tension was regarded as constant.
Uesaka and Ferahi [39] proposed a break rate model based on the weakest link theory of
fracture. The number of breaks per one roll during a run was derived by considering the
strength of characteristic elements of the web. In [39] it was assumed that there is a single
crack in every roll and the tension in the system was regarded as constant. Moreover,
Hristopulos and Uesaka [9] presented a dynamic model of web transport derived from
fundamental physical laws, and in conjunction with the weakest link fracture model, the
model allows investigating the impact of tension variations on web break rates.

The break rate model used in [39, 9] predicts the upper estimate of the break fre-
quency. However, considering an upper bound of fracture probability may lead to an
over-conservative upper bound for a safe range of tension. The studies of mechanical
stability suggest that, when tension is increased, the material can be transported with
a higher velocity [2]. From the viewpoint of maximal production, an over-conservative
tension is undesirable as it underestimates the maximal safe velocity.

Motivated by paper industry, Banichuk et al. [3] studied the optimal value of set
tension for a cracked band travelling in a system of rollers. The band was assumed to
have initial cracks of bounded length and to be subjected to constant or cyclic tension.
The optimal average tension was sought for the maximum crack length by considering a
productivity function which takes into account both instability and fracture. Moreover,
cracked moving plates with random parameters were studied by Tirronen et. al [35]. In
[35], critical regimes for the tension and velocity of the material in the presence of a crack
were obtained by considering fracture and instability. In [35], the tension was assumed to
be constant while a crack travels from one roller to another although the constant value
was assumed to be random.

Tension in a printing press is known to exhibit random fluctuations [38] and such fluc-
tuations may have a significant impact on web breaks [37]. Tension variations are partly
caused by draw (the relative speed difference between two succeeding rollers) variations
which contain specific high/low frequency components and white noise [38]. In a printing
press, out-of-round unwind rolls or vibrating machine elements such as unwind stands
may cause cyclical tension variations (see [25] and the references therein). In addition to
cyclical variations, tension may vary aperiodically due to poorly tuned tension controllers,
drives, or unwind brakes ([25] and the references therein). The net effect of such factors
cause the tension to fluctuate around the mean value [25].
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A continuous-time stochastic model for tension fluctuations was proposed by Tir-
ronen [33], for a system with two rollers. In [33], the tension fluctuations were mod-
elled by a stationary one-dimensional Ornstein-Uhlenbeck process. With such a model,
tension has a constant mean value around which it fluctuates temporally. The one-
dimensional Ornstein-Uhlenbeck process can be regarded as the continuous-time analogue
of the discrete-time AR(n) process. It is a mathematically well-defined continuous-time
model for fluctuations of systems whose measurements contain white noise [7, Chapter
4]. The stationary Ornstein-Uhlenbeck process can be regarded as a simplified model of
tension variations in a printing press. Moreover, in [33], the fracture probability of the
moving material was studied in the case in which there continually exists a crack in the
material that occurs between the rollers. Furthermore, Tirronen [34] studied the fracture
probability of a moving band when cracks occur in the material according to a stochastic
counting process. The models proposed in [33, 34] differ from the ones presented in [35]
by allowing investigation of the system longevity, which is of practical interest.

This paper extends [33, 34] by considering a system with several spans. For the ten-
sion, we study deterministic and stochastic models. In the deterministic models, the
tension is described by a vector with constant values. The stochastic model describes
the tension as a multi-dimensional Ornstein-Uhlenbeck process. With the latter model,
the tension in each span has a constant mean value around which it fluctuates. Sim-
ilar to the one-dimensional Ornstein-Uhlenbeck process, the multidimensinal Ornstein-
Uhlenbeck process can be considered as the continuous-time analogue of the discrete-time
vector autoregressive (VAR(n)) process. Moreover, in this study, the material is assumed
to have straight line initial cracks perpendicular to the travelling direction, and the crack
occurence is modelled by a stochastic counting process as in [34]. The crack geometries
are described by i.i.d. random vectors.

In this study, the travelling material is modelled as elastic and isotropic, and linear
elastic fracture mechanics (LEFM) is applied. According to the literature review in [13],
Balodis [1] was the first to apply LEFM to paper material. Other fracture mechanics
theories have also been suggested for paper material. For example, Uesaka et al. [40] pro-
posed the use of the J-integral to paper. However, Swineheart and Broek [31] advocated
the use of LEFM to paper due to its simplicity [13]. They argued that in most cases
the paper is sufficiently elastic in the machine direction to justify the use of LEFM [13].
Other proposed methods for predicting the fracture of paper include the essential work
of fracture [30] and the cohesive zone model [36]. Fracture mechanics literature for paper
is reviewed more extensively in [13, 17].

When the tension in the system is constant, the nonfracture probability can be simu-
lated by applying conditional Monte Carlo sampling. For conditional sampling, see [26,
Section 5]. When the tension exhibits random fluctuations, considering the probability of
fracture leads to a first passage time problem. When there is only one span in the sys-
tem, a series representation for the first passage time distribution of the one-dimensional
Ornstein-Uhlenbeck process to a fixed boundary (see, e.g., [15]) can be exploited in esti-
mating the fracture probability [33, 34]. In this study, we focus on a system with more
than one span and approximate the reliability of the system with tension fluctuations by
simulating sample paths of the tension process and the crack model.

Examples are computed for a system with three spans and a material that has central
through thickness cracks of varying length that occur in the material (almost) periodically.
For example, in paper making, a condensation drip in pressing or drying section or a
lump on press rolls or press felt can cause holes in the paper web which occur in a fixed
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pattern. The material parameters used in computing the examples are typical of dry
paper (newsprint).

The paper is outlined as follows. In the following section, we present a mathematical
model for a band moving in a series of rollers. In the subsections, models for tension
and cracks are proposed, and an example of a system with three spans and periodically
occuring cracks is presented. In the next section, we first formulate the nonfracture
criterion for the material, after which the nonfracture probability is formulated. In the
last subsection, techniques for simulating the nonfracture probability are proposed. In the
following section, examples are computed for a system with three spans and periodically
occuring cracks by using parameters typical to paper. In addition, limitations of the model
are discussed. In the last section, the model presented in this study and the numerical
results obtained by the model are summarized.

Problem setup

This study considers an elastic and isotropic band that travels in a system in which
there are stages at which the material moves unsupportedly from one support (roller)
to another. The material has initial defects, and the band travels between the rollers
under a longitudinal tension. Below, a mathematical model for the moving cracked band
travelling in a system of rollers is presented. The model is similar to the one presented in
[35, 33, 34]. As an example, we consider a system with three spans and cracks occurring
(almost) periodically in the material.

Moving band

Consider a system of k+ 1, k ≥ 2, rollers located at x = `0, `1, . . . , `k in x, y coordinates,
see figure 1. For simplicity, we set `0 = 0. Let us study the behaviour of a band that
travels supported by the rollers in the x direction. For this, we consider a rectangular
part of the band that occurs momentarily between and on the supports at x = `i−1, `i:

Di = {(x, y) : `i−1 ≤ x ≤ `i, −b ≤ y ≤ b}. (1)

The part Di is modelled as a plate which has simply supported sides at

{x = `i−1, −b ≤ y ≤ b} and {x = `i, −b ≤ y ≤ b} (2)

and sides free of tractions at

{y = −b, `i−1 ≤ x ≤ `i} and {y = b, `i−1 ≤ x ≤ `i}. (3)

Moreover, we assume that the band has constant thickness h and Young modulus E. The
width of the band is 2b.

Tension

The plate element in (1) is subjected to tension acting in the x direction. It is assumed
that the tension profile is homogeneous, that is, the tension is constant in the y direction.
For the time behaviour of tension, we consider different models. The simplest model
describes the values of tension in the considered k spans as constants:

T = T 0 =
(
T01 , . . . , T0k

)>
. (4)
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Figure 1. A band travelling in a system of rollers.

Moreover, we consider the case in which the value of tension changes randomly with
respect to time. Random fluctuations of tension are described by a multi-dimensional
continuous-time stochastic process

T =
{(
T1(s), . . . , Tk(s)

)>
, s ≥ 0

}
(5)

in a probability space (Ω,F ,P). In (5), s denotes the length of the band that has travelled
past the first support at x = `0, see figure 2. Futhermore, we describe the tension in
the system by a multi-dimensional Gaussian Markov process. That is, T satisfies the
stochastic differential equation (Langevin equation)

dT (s) = C(T 0 − T (s))ds+DdW (s) (6)

with T (0) Gaussian or constant. Above, the factors C and D are deterministic k×k and
k×p matrices, respectively, and W is a standard p-dimensional Brownian motion. In the
following, we assume that p = k so that there are as many sources of random fluctuations
as there are spans in the system.

Figure 2. A cracked band travelling through the first open draw, in which it is subjected to tension T1.
The drawing is adapted from figure 1 in [35].

The analytical solution of (6), the multi-dimensional Ornstein-Uhlenbeck process,
reads as

T (t) = e−C(t−s)T (s) + (I − e−C(t−s))T 0 +

∫ t

s

e−C(t−u)DdW (u) (7)

for t > s ≥ 0. The matrix exponential eCt in (7) is the k × k matrix given by the power
series

eCt =
∞∑
i=0

ti

i!
(C)i. (8)

120



The solution (7) can be obtained by introducing the integrator (similarly as in [7, Section
4.4.4])

X(t) = eCt
(
T (t)− T 0

)
(9)

and by applying the multi-dimensional Itô formula [21, Thm 4.2.1] to X. For this, note
that

d

dt
eCt = CeCt. (10)

When T 0 depends on s, the solution of (6) is obtained similarly and reads as [8, Section
3.3.3]

T (t) = e−C(t−s)T (s) +

∫ t

s

Ce−C(t−u)T 0du+

∫ t

s

e−C(t−u)DdW (u). (11)

In this study, we consider a system that exhibits only random variations. However, the
stochastic differential equation (6) can also describe, e.g., deterministic cyclic variations of
tension when T 0 is made time-dependent. The process remains Gaussian and Markovian
if the vector T 0 and the matrices C and D are made time-varying but deterministic [8,
Section 3.3.3].

From (7) we see that the expected value of T (t) reads as

µ(t) = e−CtE
[
T (0)

]
+ (I − e−Ct)T 0. (12)

For the covariance matrix of T (t), denoted by Σ(t), it holds that [7, Section 4.4.]

Σ(t) = e−CtΣ(0)e−C
>t +

∫ t

0

e−C(t−u)DD>e−C
>(t−u)du. (13)

Especially, we notice that for the distribution of T (t) conditional to T (s), it holds

T (t)
∣∣
T (s)=x

∼ N (µ̃(t, s), Σ̃(t, s)) (14)

with the deterministic drift

µ̃(t, s) = e−C(t−s)x+ (I − e−C(t−s))T 0 (15)

and the covariance matrix

Σ̃(t, s) =

∫ t

s

e−C(t−u)DD>e−C
>(t−u)du. (16)

When C ⊕C is invertible, the matrix (16) can be expressed as [19]

vec
(
Σ̃(t, s) = (C ⊕C)−1(I − e−(C⊕C)(t−s))vec(DD>). (17)

Above, vec and ⊕ denote the stack operator and the Kronecker sum, respectively.
Although the stochastic differential equation (6) has a solution for a general matrix

C, the process is not stationary in all cases. According to [28, Thm 4.1], the stochastic
process defined by (6) is stationary if the eigenvalues of C have positive real parts. In
this case, the tension process has the long-term mean

lim
s→∞

µ(s) = T 0. (18)
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Moreover, when the eigenvalues of C have positive real parts, it holds [19]

lim
s→∞

Σ(s) = Σ∞ (19)

with
vec
(
Σ∞
)

=
(
C ⊕C

)−1
vec
(
DD>

)
. (20)

For (18) and (19), first notice that the matrix C and its transpose C> share the same
eigenvalues. Moreover, if all the eigenvalues of C have positive real parts, also the eigen-
values of the Kronecker sum C ⊕C have positive real parts [this follows, e.g., from Thm
13.16 in 14]. Now, (18)–(20) are obtained by applying Thm 2.49 in [11]. When all the
eigenvalues of C ⊕C are nonzero, C ⊕C is invertible.

In this study, we assume that the initial value satisfies

T (0) ∼ N (T 0,Σ∞). (21)

Consequently, since the limiting matrix satisfies [7, Section 4.4.6]

CΣ∞ + Σ∞C
> = DD>, (22)

we see from (13) that the covariance matrix of the tension process do not change with
respect to s. Thus, with (21), the tension process is strictly stationary.

Cracks

We consider a band that contains straight line cracks perpendicular to the travelling di-
rection. The positions of the cracks in the longitudinal direction of the band are described
by a counting process

Nξ = {Nξ(s), s ≥ 0}. (23)

Let sj denote the distance between the first end of the band and the jth crack that arrives
to the system of rollers (see figure 2). We assume that

sj − sj−1 > max
i=1,...,k

`i − `i−1, (24)

so that no more than one crack occurs in a single span simultaneously. Moreover, the
crack geometry of the jth crack is described by the random vector ξj. We assume that ξj,
j = 1, 2, . . . are i.i.d and independent of Nξ and T , and that the process Nξ is independent
of T .

The performance of the system is considered during the transition of a band of length
S through the system of supports. In this, the initial and last states of the system are
regarded as the states at which the first and last ends of the band are located at the
supports at x = `0 and x = `k, respectively (see figure 3). It is assumed that before and
after the band the material continues and remains similar. For simplicity, cracks that
may occur in the open draws in the initial and last states are not considered in terms of
fracture.
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Figure 3. The initial and last states of the system.

Periodically occurring cracks in a system of three spans

As an example we study a system with three spans for which we assume that random
fluctuations of tension in one of the spans occur as fluctuations of opposite value in the
span(s) next to it. Moreover, we assume that fluctuations in tension in other spans than
the ones next to the considered span do not affect directly the tension fluctuations in it.
That is, the reliability of the system is studied with

D = d

 1 −1 0
−1 1 −1
0 −1 1

 , (25)

where d > 0 determines the size of random variations in tension. Furthermore, the drifts
in the spans towards T 0 are assumed to be independent. That is, we set

C = cI, (26)

where c > 0 and I is the identity matrix. With (26), the matrix exponential (8) simplifies
to

eCt = ectI. (27)

Moreover, we study the reliability of the system in the case in which a failure in
the production process causes defects to occur (almost) periodically in some part of the
band. Let S be the length of the damage zone, and let the possible crack locations in the
longitudinal direction of the band be

iL, i = 1, . . . , bS/L, c, L > max
i=1,...,k

`i − `i−1. (28)

We assume that a crack occurs in the location iL with probability ps independently of
other cracks. In this case, the random variable Nξ(S) follows the binomial distribution
with number of trials bS/Lc and a succes probability ps in each trial. The crack distance
satisfies

si − si−1 = LX, (29)

where X follows the geometric distribution with the success probability ps and the support
{1, 2, . . . }. The presented crack occurrence model is a renewal process.

Furthermore, we consider through thickness cracks, located at the center of the band
in the cross direction. Let the random variable ξj describe the length of the jth crack.
See figure 4 for the crack geometry.

Reliability

We study the reliability of the system during the time period in which a band of given
length travels through the system of rollers. To study fracture of the material, linear
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Figure 4. A central crack on a tensioned plate.

elastic fracture mechanics (LEFM) is applied. For constant tension and a general crack
occurrence process, the reliability of the system can be simulated by applying conditional
sampling. For special crack occurrence models, explicit representations for the nonfracture
probability can be derived. When the tension exhibits random fluctuations, the reliability
of the system is approximated by simulating sample paths of the tension process and the
crack model.

Fracture criterion

The crack occurrence model assumes that more than one crack do not occur in a single
span at the same time. Moreover, when studying fracture of the material, we assume
that cracks in different spans do not interact. Thus, the nonfracture criterion can be
formulated separately for the cracks.

To study the fracture of the band, we apply linear elastic fracture mechanics (LEFM),
which assumes that the inelastic deformation at the crack tip is small compared to the
size of the crack. In the following, the fracture criterion is formulated for central through
thickness cracks which lengths are described by the random variables ξj, j = 1, . . .

Since the moving band is assumed to be subjected only to in-plane tension acting in the
travelling direction and the cracks are prependicular to the direction of applied tension,
crack loadings in the system are of mode I (opening). When the jth crack travels between
the supports at x = `i−1, `i, the stress intensity factor related to the crack is a function
of the form (see [6])

Ki(x, sj, ξj) =
α(x, ξj) Ti(`i−1 + sj + x)

√
πξj/2

h
, x ∈ [0, `i − `i−1], (30)

where α is a weight function related to the geometry of the crack. In this study, we assume
that the function α is constant with respect to the location of the crack in x direction
and approximate (see [24])

α(ξj) =

(
sec

πξj
4b

)1/2

. (31)

In order for the jth crack to travel from the support at x = `i−1 to the one at x = `i in
such a way that the material does not fracture, the stress intensity factor should satisfy

Ki(x, sj, ξj) < KC ∀ x ∈ [0, `i − `i−1], (32)

where KC is the fracture toughness of the material. This is equivalent with

Ti(`i−1 + sj + x) < B(ξj) ∀ x ∈ [0, `i − `i−1], (33)

124



where

B(ξj) =
hKC

α(ξj)
√
πξj/2

. (34)

Nonfracture probability

Consequently, by (33), the probability that a band of length S travels through the system
of rollers in such a way that fracture does not propagate from any of its cracks reads as

r =P
[
Nξ(S) = 0

]
(35)

+ P
[
Nξ(S) ≥ 1,

Ti(`i−1 + sj + x) < B(ξj) ∀ x ∈ [0, `i − `i−1]

∀ i = 1, . . . , k ∀ j = 1, . . . , Nξ(S)
]
. (36)

The reliability can also be written as

r = P
[
τ > S

]
(37)

with the first passage time

τ = inf
{
`i−1 + sj + x : Ti(`i−1 + sj + x) = B(ξj)

for some x ∈ [0, `i − `i−1]

for some (i, j) ∈ {1, . . . , k} × N
}
. (38)

When the tension is constant in each span, the reliability of the system simplifies to

r1 =P
[
Nξ(S) = 0

]
(39)

+ P
[
Nξ(S) ≥ 1, Tmax

0 < B(ξj) ∀ j = 1, . . . , Nξ(S)
]

(40)

with
Tmax

0 = max
i=1,...,k

T0i . (41)

Since Nξ is independent of the crack lengths and the lengths are i.i.d., it holds that

r1 = P
[
Nξ(S) = 0

]
+
∞∑
j=1

P
[
Nξ(S) = j

]
qj (42)

with
q = P

[
Tmax

0 < B(ξ1)
]
. (43)

In the example case of periodically occurring cracks, the reliability of the system with
constant tension simplifies to

r = (1− ps)bS/Lc +

bS/Lc∑
j=1

(
bS/Lc
j

)
(ps)

j(1− ps)bS/Lc−j(q)j (44)

= (1 + ps(q − 1))bS/Lc. (45)
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Simulation

The reliability of the system with constant tension can be estimated by conditional Monte
Carlo simulation (for conditional sampling, see [26, Section 5.4]). That is, we may estimate

r1 ≈
1

M

M∑
j=1

χ{kj=0} (46)

+
1

M

M∑
j=1

χ{kj 6=0}P
[
Tmax

0 < B(ξ1), . . . , Tmax
0 < B(ξNξ(S))

| Nξ(S) = kj
]
, (47)

where k1, . . . , kM is a sample of size M from the distribution of Nξ(S). The conditional
probability in (47) simplifies to

P
[
Tmax

0 < B(ξ1), . . . , Tmax
0 < B(ξkj)

]
= qkj . (48)

When the tension exhibits random fluctuations, we estimate the nonfracture proba-
bility r by

r∆s = P
[
τ∆s > S

]
, (49)

where τ∆s is a first passage time as in (38) but with a discretized tension process T∆s =
(T∆s

1 , . . . , T∆s
k ).That is, we approximate the process T at points 0 =< x1 < x2 < . . . by

(see [8, Section 3.1.2])

T∆s(0) = T 0 + y0, (50)

T∆s(xl) = e−C(xl−xl−1)T∆s(xl−1) + (I − e−C(xl−xl−1))T 0 + yl, l = 1, 2, . . . (51)

where y0 is a random variate from N (0,Σ∞) and y1,y2, . . . are independent draws from
the distributionsN

(
0, Σ̃(x1, x0)

)
,N
(
0, Σ̃(x2, x1)

)
, . . . , respectively. The initial value (50)

follows from (21), and the following values (51) are obtained by exploiting the property
(14)–(16). The random variates y1,y2, . . . can be obtained by drawing z1, z2, . . . inde-
pendently from N (0, I) and then setting

yl = σlzl, (52)

where the matrix σl satisfies
σlσ

>
l = Σ̃(xl, xl−1). (53)

Methods for finding such a matrix is discussed in [8, Section 2.3.3.].
The counting process Nξ can be simulated by generating crack distances. When Nξ

is a renewal process, the crack distances are drawn from their common distribution.
Similarly, the crack lengths are simulated by generating random variates from the common
distribution of the crack lengths.

When simulating a sample path of the system, the discretization points are chosen in
the following way: When there is at least one crack in the band, we choose x1 to be the
location of the first crack. The following discretization points x2, x3, . . . are chosen such
that while there is at least one crack travelling between rollers, the value of tension is
computed at equidistant points with a distance ∆s > 0. When the distance between two
succeeding cracks is more than `k, we simulate the tension at equidistant points until the
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first crack exits the system and then compute the value of tension directly at the location
of the second crack.

The probability (49) is estimated by

r̂∆s =
1

M

M∑
n=1

χ{τ∆s
n >S}, (54)

where M denotes the number of simulated paths of the system and τ∆s
n denotes the first

passage time in the nth such path. This approximation contains both statistical and
discretization errors. As usual, the statistical error is estimated by the standard error

σ̂∆s
M√
M
, (55)

where σ̂∆s
M is the sample standard deviation

σ̂∆s
M =

√√√√ 1

M − 1

M∑
n=1

(
χ{τ∆s

n >S} − r̂∆s

)2

. (56)

The discretization error is approximated by comparing the estimates obtained by a step
size ∆s and its double. That is, we consider∣∣r̂∆s − r̂2∆s

∣∣. (57)

In (57), the estimates should be obtained with sufficiently small standard errors. If the
absolute difference above is sufficiently small, r̂∆s is regarded as being close enough to the
real value.

As depicted by (55), the convergence rate of Monte Carlo simulation is O(
√
M). How-

ever, the computational cost of the reliability estimate (54) depends remarkably on the
time taken to compute the random variates χ{τ∆s

n >S}, n = 1, . . . ,M . The time required
to compute χ{τ∆s

n >S} depends on the number and the lengths of the spans, the length of
the damage zone and the distribution of crack occurrence.

Numerical results for a printing press and discussion

As an example, we consider the reliability of a system with three spans and (almost)
periodically occurring cracks. The values of the material parameters are typical of paper.

Periodic cracks in a printing press

As an example we consider a system with three spans, each of them of length `. The values
of the material parameters used in the examples are typical of dry paper (newsprint), for
which the strain energy release rate GC was obtained from the results in [29]. The fracture
toughness of the material was set to

KC =
√
GCE. (58)

The values of the deterministic parameters used in computing the examples of this section
are listed in Table 1.
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Table 1. Parameters.

` 1 (m)
b 0.6 (m)
h 8 · 10−5 (m)
E 4 (GPa)
GC 6500 (J/m2)

In the examples we set L = 2 and ps = 0.9. The crack lengths were assumed to be
lognormally distributed with the coefficient of variation 0.1.

Moreover, in the computations, we let the (average) tension to be the same in all of
the spans. The reliability of the system was studied with different values of the average
tension, denoted by T0. The coefficients in (26) and (25) were set to c = 1 and d = T0/10,
T0/5. With these parameters, the correlation matrix of T (s) was

ρT =

 1 −0.82 0.5
−0.82 1.0 −0.82

0.5 −0.82 1.0

 , (59)

independent of T0. Figure 5 shows a sample path of the tension process with T0 = 1500
(N/m) with different coefficients of variation of T (s), denoted by cT .

The reliability of the system was simulated with ∆s = 0.001 and ∆s = 0.002. First,
the sample size M = 300 was used. If the obtained reliability estimate was not 0 or 1,
the sample size was increased to M = 10000. With this sample size, the standard error of
the reliability estimate was less than 0.005 for all the considered parameter values. The
difference between the estimates obtained by different discretizations was less than 0.01
for all the computed estimates.

Figure 6 shows the reliability of the system with respect to the average tension with
different values of mean crack length and damage zone length. According to [16, 37],
tension values usually applied in printing presses are in the range [0.2, 0.5] (kN/m). From
figure 6 we see that, when tension is constant or cT = (0.1, 0.12, 0.1)> and T0 ≤ 1000
(N/m), the nonfracture probability is one. Thus, the results suggest that, with the con-
sidered crack geometries and crack occurences, cracks do not affect the runnability of
system, unless the variation in tension is very large. Moreover, the results suggest that,
in this case, the upper bound of safe set tension is higher than what is usually applied in
printing presses.

Furthermore, figure 6 shows that tension variations may significantly affect the runnabil-
ity of the system. This effect becomes stronger when the average crack length, the damage
zone length or the average tension increases. For example, with S = 1 (km) and T0 = 1250
(N/m), the reliability of the system with constant tension is 1 for E[ξj] = 0.01 (m) and
E[ξj] = 0.03 (m). When cT = (0.1, 0.12, 0.1)>, the reliability of the system stays at 1
with E[ξj] = 0.01 (m) but decreases to 0.35 with E[ξj] = 0.03 (m). See table 2. When
S = 0.1 (km), the reliability only decreases to 0.9 with E[ξj] = 0.03 (m). When S = 1
(km), cT = (0.1, 0.12, 0.1)> and the average crack length is 0.03 (m), the reliability of the
system decreases to 0 when the average tension is increased to T0 = 1500 (N/m). On the
other hand, with the average crack length 0.01 (m), the reliability of the system stays at
1 even with T0 = 1750 (N/m). The computed estimates for the reliability with S = 1
(km) are gathered in table 2.

The results obtained in this study agree to some extent with the previous results,
in which tension variations were found to be a possible cause of web breaks [39]. The
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Figure 5. A sample path of tension with different coefficients of variation cT with T0 = 1500 (N/m) and
∆s = 0.01 (m).

computed examples also suggest that small cracks are not likely to affect the pressroom
runnability. Similar results have also been obtained in previous studies of web breaks
[39].

Discussion

In this paper, we studied the nonfracture probability of a moving material that travels
in a series of open draws and computed numerical examples for material parameters
typical of newsprint. However, it should be kept in mind that the numerical results
obtained in this study are mainly qualitative. For more rigorous results, data of defects
and tension are needed. For printing processes, such data can be obtained by automated
inspection systems developed for quality control [10] and devices designed for tension
profile measurement [23].

Although the fracture analysis of this paper is carried out for the Ornstein-Uhlenbeck
process, a similar analysis can be conducted also for other stochastic processes by applying
an appropriate simulation scheme. For simulation of stochastic processes, see [12]. Notice,
too, that although the tension in the system was assumed to have a constant mean-
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Figure 6. Reliability of the system in terms of fracture.

value, the stochastic differential equation (6) can be adapted to describe also deterministic
tension variations by making the average tension T 0 time-dependent. In a printing press,
deterministic cyclic variations may occur, e.g., as a consequence of an out-of-round (OoR)
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Table 2. Reliability of the system with S = 1 (km). Upper values are computed with the mean crack
length 0.01 (m) while the lower values correspond to the mean crack length 0.03 (m).

T0 (N/m) \ cT 0 (0.1, 0.12, 0.1)> (0.2, 0.24, 0.2)>

1000 1 1 1
1 1 0.12

1250 1 1 1
1 0.35 0

1500 1 1 0.95
1 0 0

1750 1 1 0.07
0 0 0

2000 1 0.96 0
0 0 0

roll.
It should be kept in mind that the mechanical model presented in this paper is simpli-

fied. When studying fracture, it is assumed that cracks in different spans do not interact
and the nonfracture criterion is formulated separately for the cracks. Numerical examples
are computed for paper modelling the material as isotropic and elastic, although paper
is orthotropic and have plastic characteristics. Furthemore, the model represented in this
paper describes the tension as constant in the cross-direction of the web, although tension
usually varies in the cross-direction of a printing press. Typically, the profile of tension is
convex [16]. The model also assumes that the band is subjected to pure tension although,
when a material element passes through the pressure area between the rollers (nips), its
stress state varies [22]. In addition, the model for fracture does not take into account
out-of-plane deformation of the band (see, e.g. [2]) or the air surrounding the material.
With the simplified model, crack loadings are of mode I. Including, e.g., the effect of
nips in the model may cause crack loadings of mode III (tearing). However, according
to [38], tear strength has not been found to predict web breaks in pressrooms. In-plane
fracture toughness is relevant for studying the effect of pre-existing macroscopic defects
on web breaks [38].

Motivated by the paper and print industry, the aim of this study was to develop a
mathematical model for the system that consists of a moving material and a series of
open draws, and estimate the reliability of the system in terms of fracture. Compared
to computing the break frequency by the formulae proposed in [32, 39], the simulation
that was applied in this study to estimate the nonfracture probability may appear time-
consuming. However, the model in [32] does not consider tension fluctuations which may
significantly decrease the reliability of the system. The break frequency formula in [39]
applies the maximal tension and the maximal crack length in a roll of paper, and thus, an
upper estimate of the break frequency is obtained. The model and analysis presented in
this study aim to take tension variations into account and to directly estimate the fracture
probability predicted by the model which is important in optimizing productivity.

Conclusions

In this paper, we studied the reliability of a system in which a cracked material travels un-
der longitudinal tension. Deterministic and stochastic models were considered for tension.
The deterministic model described the tension as a constant-valued vector while random
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fluctuations of tension were modelled by a multi-dimensional Ornstein-Uhlenbeck process.
The material was assumed to have initial cracks of random length perpendicular to the
travelling direction. The crack occurrence in the longitudinal direction of the material
was modelled by a stochastic counting process. The material was assumed to be isotropic
and elastic, and LEFM was applied to study fracture of the material.

For constant tension and a general counting process, the reliability of the system can be
simulated by applying conditional sampling. For some special crack occurrence models,
an explicit representation for the system reliability can be derived. When the tension
exhibits random fluctuations, considering fracture of the material leads to a first passage
time problem. In this study, we considered a system with more than one span, and the
solution of the first passage time problem was estimated by simulating sample paths of
the tension process and the crack model.

As an example, the probability of fracture was computed for periodically occurring
central through thickness cracks with parameters typical to printing presses and dry paper.
With this crack occurrence model, an explicit expression for the reliability of the system
with constant tension can be derived. The numerical results suggest that small cracks
are not likely to affect the pressroom runnability. The results also showed that tension
variations may significantly increase the probability of fracture.
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