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Damage-viscoplastic model based on the Hoek-Brown
criterion for numerical modeling of rock fracture

Timo Saksala

Summary. This article presents a phenomenological damage-viscoplastic model based on the
empirical Hoek-Brown criterion for numerical modeling of rock fracture. The viscoplastic part of
the model is formulated in the spirit of the consistency model by Wang (1997). Isotropic damage
model with separate damage variables in tension and compression is employed to describe the
stiffness and strength degradation. The model is implemented with the FE method using the
constant strain triangle elements. The equations of motion are solved with the explicit time
marching scheme. In the numerical examples, after demonstrating the model response at the
material point level, confined compression and uniaxial tension tests on rock are simulated as
quasi-static problems. Moreover, the dynamic three-point bending of a notched semicircular
disc test is simulated in order to demonstrate the model predictions under dynamic loading
conditions.
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Introduction

Numerical modeling of rock fracture is an active area of research in the field of compu-
tational mechanics due to its importance in failure analyses of underground rock struc-
tures and rock breakage industry. The major challenges therein are related to numerical
modeling of crack propagation and numerical description of rock micro-structure. Many
numerical models, based on the finite element method and the discrete element method,
have been developed during the last decades for the simulation of rock fracture. For a
review article on numerical methods in rock mechanics, see [1].

In the present paper the continuum approach based on the finite element method is
chosen due to its computational efficiency and maturity as a numerical method. It will be
seen that despite its underlying principle of treating materials as a continuous medium,
it can be successfully, in the engineering sense, employed in modeling crack propagation
under dynamic and quasi-static loading conditions even in brittle materials such as rock.
For this end, a constitutive model based on a combination of the isotropic damage concept
[3] and viscoplastic consistency model by Wang et al. [2] is developed.

The damage part of the model with separate damage variables in tension and com-
pression describes the stiffness and strength degradation of the material under loading.
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The viscoplastic part of the model, which governs the inelastic strain development and
the strain-rate dependency, is based on the Hoek-Brown failure criterion for rocks [4]. The
choice of this criteria is justified based on the test data and implementation economy and
simplicity grounds. The damage and viscoplastic parts are combined with the effective
stress space formulation [5]. The model is implemented in explicit dynamics FE setting.

The model predictions are demonstrated first at the material point level simulation
using a single constant strain triangle element. Then the model is tested at the laboratory
sample level in 2D simulations. First, the confined compression and uniaxial tension tests
on rock are simulated. Second, dynamic three-point bending test of a notched semicircular
rock sample is simulated as a transient problem involving contact.

Theory of the material model for rock

The theory of the model is presented here. First, the viscoplastic part of the model
based on the viscoplastic consistency approach is formulated. Then, the isotropic damage
model is developed for present purposes. The model components are combined with the
effective stress space approach. The details of stress integration are also presented for
the convenience of the reader. Third, the explicit time integration method for solving the
equations of motion is presented. Finally, the statistical modeling of rock strengths based
on the Weibull distribution is briefly sketched.

Viscoplasticity part of the model

Classical viscoplasticity formulations, such as the Perzyna model, do not utilize the con-
sistency condition. Consequently, a trial stress state violating the yield criterion is not
returned to the yield surface. However, Wang et al. [2] presented a so-called viscoplastic
consistency model which utilizes the consisteny condition and thus recasts the viscoplas-
ticity theory into the classical computational plasticity format. The major difference of
this formulation to the classical plasticity models is the dependence of the yield function
on the rate of the internal variables. The main ingredients of such a model are

fvp = f(σ, κ, κ̇), (1)

ε̇vp = λ̇
∂gvp

∂σ
, κ̇ = λ̇k(σ, κ), (2)

fvp ≤ 0, λ̇ ≥ 0, λ̇fvp = 0, (3)

where σ is the stress tensor, gvp is the viscoplastic potential, fvp is the dynamic yield
function, κ, κ̇ are the internal variable and its rate, respectively, λ̇ is the viscoplastic
increment and k(σ, κ) is a function relating the rates of κ and λ. Equation (2) expresses
the non-associated flow rule (the associated case is obtained by gvp = fvp) while Equation
(3) states the Kuhn-Tucker loading-unloading conditions. Finally, as rocks are brittle ma-
terials, the present model can be formulated under the assumption of small deformations
(and rigid body rotations). Therefore, the decomposition of the total strain rate into
elastic and viscoplastic parts

ε̇ = ε̇e + ε̇vp (4)

is performed here as in the rate independent plasticity.
The consistency condition becomes

ḟvp(σ, κ, κ̇) =
∂fvp

∂σ
: σ̇ +

∂fvp

∂κ
κ̇+

∂fvp

∂κ̇
κ̈. (5)
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This can be rewritten, using Equation (2), as

∂fvp

∂σ
: σ̇ − hλ̇− sλ̈ = 0, (6)

where

h = −∂fvp

∂κ
k(σ, κ)− ∂fvp

∂κ̇
k̇(σ, κ), (7)

s = −∂fvp

∂κ̇
k(σ, κ) (8)

are the generalized plastic and viscoplastic moduli, respectively. The consistency condi-
tion is now a first order differential equation for λ̇. However, in the algorithmic treatment
of the model, the rate of the internal variable is eliminated by approximation κ̇ ≈ k∆λ/∆t.
Thereby, the standard methods of computational rate-independent plasticity can be ap-
plied in the numerical implementation of the model. This issue will be treated in detail
later in this paper.

As for the selection of the yield function (or criterion), the work by Colmenares and
Zoback [7] is taken as a starting point. They evaluate statistically seven intact rock failure
criteria against polyaxial data of five different rocks. The criteria they study are the Mohr-
Coulomb, Hoek-Brown, Drucker-Prager, Modified Lade, Modified Wiebols and Cook, and
empirical Mogi 1961 and 1971 criteria. According to their findings, the polyaxial Modified
Wielbols and Cook and Modified Lade criteria fit well most of the test data, especially
for the rocks with a high intermediate stress (σ2) dependency (Dunham Dolomite and
Solnhofen limestone). However, the Mohr-Coulomb and Hoek-Brown criteria, which ne-
glect the influence of the intermediate stress, fit the data equally well (or even better)
than the more complex criteria with rocks that do not show strong σ2-dependency (Shi-
rahama sandstone and Yuubari shale). Therefore, the polyaxial criteria may be dropped
from the list of candidates due to their complexity and questionable benefit with respect
to accuracy for some rocks. The final selection is to be done between the Mohr-Coulomb
and te Hoek-Brown criteria.

The Hoek-Brown (HB) criterion, developed originally by Hoek and Brown [4], is a non-
linear, allegedly empirical strength criterion developed primarily from the test data for
application to excavation design. This criterion better matches the experimental data of
some rocks under quasi-static compression, especially in the highly confined region, than
the widely used Mohr-Coulomb criterion (this follows from the fact that MC criterion is
linear but the experimental strength envelopes of many rocks are nonlinear). The HB
criterion is superior to MC criterion under dynamic loading conditions as well [6]. For
these reasons, it is chosen as a yield function in this paper. In its generalized form for
different rock types and masses the criterion reads [8]

σ1 = σ3 + σc

(
m
σ3

σc

+ s

)a
, (9)

where σ1, σ3 are the major and minor principal stresses, σc is the compressive strength
while m, s and a are empirical parameters depending on the rock type, for details see [4]
and [8]. For intact rock, which is considered here, s = 1, a = 1/2 and m = −σc/σa with
σa being the tri-axial (bi-axial in 2D) tensile strength. The HB criterion is illustrated in
figure 1 in 2D case along with the MMC criterion (i.e. the MC with the Rankine criterion
as a tension cut-off). As can observed in figure 1, the HB criterion predicts the bi-axial
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Figure 1. Hoek-Brown and modified Mohr-Coulomb criterions projected on the σ1 − σ3 plane.

tensile strength slightly higher than the uni-axial one. This feature may be questioned on
physical grounds but such a discussion is beyond the scope of the present paper.

For present purposes, the viscoplastic yield function based on the HB criterion and
the linear rate-dependent hardening softening rules for tensile and compressive strengths
are written as

fHB(σ, λ, λ̇) = (σ1 − σ3)2 + σc(λ, λ̇)2

(
σ1

σt(λ, λ̇)
− 1

)
, (10)

σt = σt0 + htλ+ stλ̇, (11)

σc = σc0 + hcλ+ scλ̇. (12)

In writing the yield function in (10), function k relating the internal variable and vis-
coplastic increment is taken unity for simplicity, i.e. k(σ, κ) ≡ 1, giving κ = λ. Moreover,
the model behavior is assumed to be perfectly viscoplastic, i.e. hence forward ht = 0 and
hc = 0. This setting means that the strength (and stiffness) degradation or softening is
governed by the damage part of model while the viscoplastic part incorporates the rate-
dependency and indicates the stress states leading to damage. As for the viscosity moduli,
st, sc, they are assumed to be constants for simplicity and due to the lack of experimental
data. Finally, associated plasticity is assumed here for simplicity, i.e. gHB = fHB.

A note on implementation economy related to the HB and MMC models is in order
here. Namely, a model based on the HB criterion represents - more or less successfully -
the asymmetric behavior of rock in tension and compression with a single surface whereas
the MC criterion needs a tensile cut-off to mend its poor tensile strength prediction.
This is a computational advantage as no corner plasticity situations appear in the nu-
merical implementation of the model. The MMC criterion, in contrast to HB criterion,
requires corner plasticity treatment at the non-smooth transition from the MC flow to
the Rankine flow and vice versa, see figure 1. On the other hand, the MMC criterion
is (piecewise) linear while the HB criterion is nonlinear needing thus an iterative return
mapping method. Moreover, the computational efficiency of MMC criterion is consider-
ably improved by Clausen et al. [9] (perfectly plastic case) and Saksala [10] (extension
to linear softening/hardening). Still, from the simplicity’s point of view (Occam’s Ra-
zor could be invoked here), a criterion that matches the uniaxial tensile and compressive
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strengths of rock with a single mathematical expression is preferable to those requiring
two expressions.

Before proceeding to the damage part of the model, is also reminded that the viscosity
is incorporated in the present approach in order to regulate the ill-posed problem of
classical strain softening continua (plasticity), i.e. viscosity provides a localization limiter.
Moreover, the loading rate sensitivity can be nicely accommodated through viscosity.
Hence, the viscosity moduli above do not represent any material property of rock - they
are numerical parameters of the mathematical model.

Damage part of the model

The damage part of the model is formulated within the well established isotropic damage
theory (see e.g. [3]) with separate scalar damage variables in tension and compression.
In the present formulation, damage evolution is driven by the viscoplastic strain. Conse-
quently, no damage loading function is needed. Thus, specification is needed only for the
damage evolution laws and the equivalent viscoplastic strains that drive the damaging.
Typical exponential damage evolution laws along with the equivalent viscoplastic strains
in tension and compression, ε̇vp

eqvtand ε̇vp
eqvc, are employed here as

ωt = At(1− exp(βtε
vp
eqvt)), (13)

ωc = Ac(σconf)(1− exp(βc(σconf)ε
vp
eqvc)), (14)

ε̇vp
eqvt =

√√√√ 3∑
i=1

〈ε̇vp
i 〉2+, (15)

ε̇vp
eqvc =

√
2
3
ε̇vp

dev : ε̇vp
dev. (16)

The positive part operator 〈x〉+ = max(x, 0) has been used on the rates of the viscoplastic
principal strain components εvp

i in (15). Moreover, εvp
dev is the deviatoric viscoplastic strain

and parameters At, βt in (13) and (14) control the maximum value of damage and the
initial slope of damage evolution, respectively. In compression, parameters Ac, βc are
functions of confining pressure σconf which is the lateral pressure in the triaxial compression
test. In numerical simulations, it can be calculated as σconf = 1

2
(σ1 + σ2) if σ1 < 0

(otherwise it is zero). The effect of confining pressure in the triaxial compression test
depends on the rock type. This dependence is specified here for the Carrara marble
following Fang and Harrison [11] and Saksala and Ibrahimbegovic [12]. Accordingly,
these parameters depend on the confining pressure and the fracture energies as follows

Ac(σconf) = Ac0 exp(−ndσconf), (17)

βc(σconf) = βc0 exp(−ndσconf), (18)

βc0 =
σc0he

GIIc

, βt =
σt0he

GIc

, (19)

where nd is an experimental parameter depending on the rock type and he is a character-
istic length. In the FE context it is the element side length. This choice of making the
amount of dissipation dependent on the mesh is justified by the fact that even though
viscoplasticity provides a localization limiter for the ill-posed problem of classical soften-
ing continuum, the amount of dissipation needs to be tied to a material parameter which
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in the present case are the fracture energies GIc and GIIc. The model thus defined pre-
dict the correct amount of dissipation in uniaxial tension and compression irrespective of
the mesh refinement. Moreover, as a result of equation (18), the maximum value of the
compressive damage of the rock sample in confined compression decreases (exponentially)
as confinement increases. This in turn means that the residual strength of of the sample
increases as a function of confining pressure. Therefore, the model is able to predict the
confining pressure dependent brittle-to-ductile transition exhibited by compact carbonate
rocks such as marble and limestone.

Finally, the nominal-effective stress relation addressing the unilateral conditions re-
lated to microcrack closure and opening as

σ = (1− ωt)σ̄+ + (1− ωc)σ̄−, (20)

where the positive-negative part split of the principal effective stress σ̄ has been used
with σ̄+ = max(σ̄, 0) and σ̄− = min(σ̄, 0).

Solving the stress for a finite element

The solution method for the stress at an integration point of a finite element is presented
in this subsection for the convenience of the reader. The combination of the viscoplastic
and damage parts of the model is based on the effective stress space formulation since it
allows for a separation of the (visco)plasticity and damage computations and facilitates
thus the implementation.

The stress return mapping is based on the cutting plane algorithm described e.g. in
Simo and Hughes [13]. At the end of a time step, condition fHB(σt+∆t, λt+∆t, λ̇t+∆t) = 0
must be satisfied. Now, following assumptions are used to eliminate the internal variable
and its rate at the end of the time step

λt+∆t = λt + ∆λt+∆t, λ̇t+∆t = ∆λt+∆t/∆t. (21)

With these relations, the condition to be fulfilled becomes fHB(σt+∆t,∆λt+∆t) = 0. This
can be expanded with the first term of Taylor series to obtain the algorithmic increment
δλ (dropping the subscript t+ ∆t and the dependency on the stress for brevity) as

fHB(∆λ) + ∂∆λfHB(∆λ)δλ = 0⇔ δλ = G−1fHB(∆λ) (22)

with G = −∂∆λfHB(∆λ) =
∂fHB

∂σ
: E :

∂fHB

∂σ
− q · s, (23)

q = [−σ
2
c

σt

σ1, 2σc

(
σ1

σt

− 1

)
]T, (24)

s =
1

∆t
[st, sc]

T. (25)

As the HB criterion is expressed in terms of principal stresses, the stress return mapping
is performed in the principal stress space. Next, the main steps of the return mapping uti-
lizing the standard elastic predictor-(visco)plastic corrector split are presented assuming
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the plastic case is realized, i.e. f trial
HB = fHB(σtrial, λt, λ̇t) > 0 with σtrial = E : (εt+∆t−εvp

t ):

δλn =
fnHB

∂fnHB

∂σn
: E :

∂fnHB

∂σn
− qn · s

, (26)

∆λn+1 = ∆λn + δλn, (27)

εvp
n+1 = εvp

n + δλn
∂fnHB

∂σn

, (28)

σn+1 = σn + δλnE :
∂fnHB

∂σn

, (29)

σt,n+1 = σt0,n + st
∆λn+1

∆t
, (30)

σc,n+1 = σc0,n + sc
∆λn+1

∆t
. (31)

These steps are repeated until fnHB < TOL where TOL is the convergence tolerance.
After the stress update is performed, the equivalent viscoplastic strains and the damage
variables are updated based on Equations (13) - (16). Finally, the nominal stress is
calculated by Equation (20). The nominal stress is then used for calculation of the internal
force vector at the integration point of a finite element as f eint =

∫
dV

BTσedV with B being
the kinematic matrix.

Solving the equations of motion

The material model for rock presented above is implemented with the FE method (spatial
discretization). As the aim is to simulate transient dynamic problems involving impact
and stress wave propagation, in addition to quasi-static tests, the equations of motion
are discretized explicitly in time. The mofidied Euler method is chosen for this end.
Accordingly, the response (velocity and displacement) of the system is predicted as follows

üt = M−1(f text − f tint), (32)

u̇t+∆t = u̇t + ∆tüt, (33)

ut+∆t = ut + ∆tu̇t+∆t, (34)

where M is the lumped mass matrix, and u, u̇, ü are the displacement, velocity and
acceleration vector respectively.

Statistical description of rock strength

Rock is a heterogeneous material consisting of different minerals with different material
properties, orientation and size. This heterogeneity leads to the statistical nature of
rock and is the major feature influencing rock fracture processes through the formation,
extension and coalescence of microcracks. Therefore, heterogeneity should be taken into
account in numerical modeling aiming at realistic prediction, see e.g. [14]. Generally,
the numerical description of rock microstructure depends, at least to some extent, on the
chosen modeling approach.

In the present continuum approach based on finite elements, the simplest method
to account for rock strength heterogeneity is to assume the strength properties to be
statistically distributed element-wise. Here the method originally presented by Tang [15]
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is followed. Accordingly, the uniaxial compressive strengh of rock is assumed to be Weibull
distributed. The three-parameter Weibull propability distribution function reads

Pr(x) = 1− exp

(
−x− xu

x0

)mw

, (35)

where, in the mechanics context, the shape parameter mw is interpreted as the homogene-
ity index, the scale parameter x0 is taken as the average (measured) value of the material
property, and the location parameter xu specifies the lower value of the material property.

Spatial distribution of the strength of rock represented by a finite element mesh is
obtained after assigning a single number (Pr(x)) from uniformly distributed random data
between 0 and 1 to each element in the mesh and then solving x from equation (35).

Numerical examples

The performance of the model developed above is demonstrated with various numerical
simulation in both finite element and laboratory sample level. The material and model
parameters used in all simulations are given in table 1. They are valid for Carrara marble
with the exception that the mode I and II fracture energies are for Ekeberg marble.

Table 1. Material properties and model parameters for material point level simulations.

Quantity E σt0 σc0 ν ρ nd GIc GIIc At Ac0

Unit GPa MPa MPa kg/m3 N/m N/m

Value 60 14 140 0.274 2600 0.03 0.04 1.5 0.98 0.9

Material point level simulations

The material point level simulations are carried out here in order to demonstrate the
model behavior. The mesh consisting of two constant strain triangle (CST) elements and
boundary conditions illustrated in figure 2 are used. In the first simulation, the model
response in cyclic loading is tested. In the second simulation, the confined compression
test is simulated while the third and fourth simulation demonstrate the rate effect in
uniaxial tension and compression. The viscosity parameters are set as sc = st = 10 MPas
and the element characteristic length is calculated as he =

√
2Ae, Ae being the area of an

element. The results are shown in figure 3.
From the results in figure 3a, it is observed that the peak stress increases nonlinearly

as a function of confining pressure. Predictions with the MC criterion exhibiting a linear
increase of the peak stress are indicated by arrows. Figure 3b shows the model response
in cyclic loading starting with tension cycle after which compression takes place and,
finally, the load returns to tension. It should be noticed that both damage variables grow
(see figure 3c) during tension and compression phases of the loading due to the chosen
equivalent viscoplastic strains (Equations (15), (16)). In tension the damage growth is
faster and reaches the maximum value 0.98 already during the compression cycle. This
is justified by the fact that a fully developed shear band in geomaterials cannot sustain
any tensile loading in its normal direction. Therefore, tensile damage should always grow
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Figure 2. Computational model for material point level simulations.

Figure 3. Simulation results for material point level simulations: confined compression test (a), cyclic
loading response (b), damage evolution in cyclic loading (c), influence of loading rate in compression (d),
and in tension (e).

in conjunction with the compressive (shear) damage. The reciprocal process, i.e. the
compressive damage development in tensile loading, seems unphysical. However, this
process is much slower as can be observed in figure 3c.

As for the strain rate effects, the model does not perform very well neither in compres-
sion nor in tension. In compression, higher loading rates than those in figure 3d resulted
in a non-stable response. This is, at least partly, due to the inconvenient feature of the
HB criterion that the compressive strength appears squared in it. In tension, the model
response is typical for viscoplastic models, see figure 3e, but extremely high strain rates
were required to produce the strain rate hardening effects. While this is partly due to
relatively low values of viscosity moduli used here, the more important reason seems to be
the unfavorable appearance (in denominator) of the rate-dependent tensile strength in the
Hoek-Brown criterion (10). The classical criteria such as Rankine, Drucker-Prager and
Mohr-Coulomb, have form f(σ, κ, κ̇) = f̂(σ) + σY (κ, κ̇) where f̂(σ) is some expression
of stress. As the yield stress, σY , usually depends linearly on κ, κ̇, these models perform
much better, see e.g. [14].
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Laboratory sample level: confined compression and uniaxial tension tests on rock

The confined compression and uniaxial tension tests on rock are simulated in order to
test the model predictions at the structural level. The mesh made of CST elements along
with the boundary conditions are shown in figure 4a. An example of UCS distribution
produced with the Weibull approach described above when mw = 3, x0 = 140 MPa, and
xu = 50 MPa is shown in figure 4b. This value 3 for Weibull shape modulus mw, called
homogeneity index by Zhu and Tang [16], is the middle one tested by them. The other
values they tested were 1.5 and 6 where the first makes the rock too soft as the strength
(or any other material property) is too widely distributed while the second one makes
the rock more homogeneous and overly brittle- actually too brittle in the case of marble
modeled here.

As seen in figure 4b, the UCS of the numerical sample varies dramatically from ele-
ment to element the lower limit being 50 MPa and the upper about 300 MPa. However,
this is the case in reality as well since the rock microstructure is a complex network of mi-
crodefects and grains of different minerals with highly varying material properties. Thus,
the pointwise variation of UCS from a hard mineral grain, such as quartzite, in a rock
to a neighboring softer mineral grain or microflaw may easily reach the magnitude of 250
MPa. The UCS of a rock then, which for the present case is 140 MPa, is a macroscopic
laboratory level property emerging from the microstructural properties. More detailed
elaboration on this topic is, however, beyond the scope of the present paper and is left to
be investigated in future studies. In the numerical simulations, the effect of mw is that
lower values (than 3 here) make the rock response more nonlinear and ductile and lead to
considerably lower strengths while higher values (than 3 here) make the rock more brittle
and linear with increased strengths [16].

Figure 4. Computational model (dimensions 25× 50 mm for confined compression test simulation (2702
CST elements in the mesh) (a), and an example of UCS distribution in the mesh (b).

The simulations are carried out in the unconfined case and at pressure levels 20 and 40
MPa. A new distribution of UCS is generated for each simulation. Moreover, the uniaxial
tensile strength distribution is obtained from the UCS distribution after multiplying it
by m−1 = 0.1 (inverse of the HB parameter). The constant boundary velocity applied is
v = −0.1m/s. The results along with some experimental failure modes are shown in figure
5. The predicted failure modes at different levels of confinement exhibit typical features
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Figure 5. Simulation results for confined compression and uniaxial tension tests: Damage patterns when
pconf = 0 MPa (a), pconf = 20 MPa (b), pconf = 40 MPa (c), corresponding stress-stress curves (d), tensile
damage pattern in uniaxial tension (e), and the stress-stress curve (f), experimental failure mode in
uniaxial test (Adapted from [18]) (g), and experimental failure modes of Wombeyan marble in confined
compression with 0, 3.5, and 35 MPa of confining pressure (Adapted from [17]) (h).

observed in the experiments, as can be seen in figure 5h. More specifically, the unconfined
failure mode has a major slanted macrocrack spanning the specimen but there are other
minor vertical cracks deviating from the major crack. This simulated failure mode is, by
chance of course, very close to the experimental one shown in figure 5g. Under confinement
of 20 MPa this secondary tensile crack formation is mostly suppressed resulting in a single
shear band (see figure 5b) which is thicker than the major crack in the unconfined case.
Upon still increasing confinement to 40 MPa, the manifested failure mode is the typical
conjugate crack system (compare figure 5c to 5h) attested many times in the experiments
with marble rocks. As for the corresponding stress-strain responses, the new features
appeared at the structural level are pre-peak nonlinearity and rounded peak part of the
response. These are due to the statistical UCS distributions as the weak rock elements
start to fail beyond stress level 50 MPa (the value of Weibull location parameter). This
is a numerical representation of microcracking in the experiments. Therefore, using the
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statistical distribution of UCS, or some other method, is necessary for realistic modeling
of rock failure phenomena in confined compression. The transverse splitting failure mode
in uniaxial tension (simulation carried out with v = 0.01 m/s) is also correctly predicted
(see figure 5e). Finally, the predicted statistical tensile strength is 11.8 MPa.

Laboratory sample level: dynamic three-point bending of a notched semi-circular disc

Dynamic bending test of a Notched Semi-Circular disc (NSC) using the Split Hopkinson
Pressure Bar (SHPB) device is used for measuring rock dynamic fracture toughness. The
principle of the computational model illustrated in figure 6 is as follows. The compressive
stress wave induced by impacting striker bar is simulated as an external stress pulse, σi(t).
The incident and transmitted bars are modeled with two-node standard bar elements, and
the NSC disc is meshed with the CST elements. Finally, the contacts between the bars and
the half disc are modeled by imposing kinematic contact constraints between the bar end
nodes and the half disc nodes at the support support pins (P2/2). These constraints are
of form ubar,z − un,z = bn where ubar,z and un,z are the axial degrees of freedom of the bar
node and a rock contact node n, respectively, and bn is the distance between the bar end
and rock boundary node. The contact constraints are imposed with the forward increment
Lagrange multiplier method (for details see [14]). The dimensions of the half disc are 16

Figure 6. Computational model for dynamic three-point bending of notched semi-circular disc test
simulation.

mm (thickness) and 40 mm (diameter) while the depth and the width of the notch are
4 mm and 1 mm, respectively. The distance between the supporting pins is 21 mm in
present simulations. The incident and transmitted bar lengths and diameters are 1200 mm
and 25 mm, respectively. In each simulation, a sine-pulse is applied as σi(t) = Ap sin(ωt)
where Ap = 100 MPa, t is time, ω = 2π/T with T = 160 µs. The Weibull parameters are
as above. Finally, the viscosity moduli are set to sc = st = 0.01 MPas. The simulation
results are shown in figure 7.

According to the results in figure 7, the predicted failure mode is the axial splitting of
the disc into two halves which rotate about the contact point between the specimen and
the incident bar reported, e.g. in [19], and shown also in figure 7e on Flamboro limestone.
The damage patterns attest a single macrocrack propagating from the notch and reach-
ing the contact area where some secondary crack formation occurs due to high contact
pressure. Moreover, some tensile damaging at the contact pin areas can be observed. The
corresponding contact force curves are roughly similar but the curve for P1 clearly display
failure events at the contact area realized as a sudden drop in the curve. Finally, the pre-
vious simulation is repeated with higher amplitude Ap = 150 MPa. The results are shown
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Figure 7. Simulation results for dynamic 3-point bending of NSC (pulse amplitude 100 MPa): Deformed
mesh (1773 elements, magnification = 10) (a), compressive damage pattern (b), tensile damage pattern
(c), the contact forces as function of real time (d), and the experimental failure modes of Flamboro
limestone (Courtesy of Prof. K. Xia) (e).

Figure 8. Simulation results for dynamic 3-point bending of NSC (pulse amplitude 150 MPa): Deformed
mesh (a), compressive damage pattern (b), tensile damage pattern (c), and the contact forces as function
of real time (d).

in figure 8. With the higher amplitude stress pulse, the predicted failure mode exhibits
secondary cracks initiating at the contact areas of the support pins of transmitted bar
and propagating to the contact area of the incident bar, see figure 8. These cracks may be
observed in the experiments but the measurements are not valid anymore since they are
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based on the assumption that a macrocrack leading to the failure of the sample initiate
at the tip of the notch. In the present simulation this is not the case as the contact forces
are not equal, i.e. there is no ”dynamic equilibrium” as can be observed in figure 8d.

Conclusions

A damage-viscoplastic model for numerical modeling of rock fracture was presented in this
paper. As the viscoplastic part was formulated with the empirical Hoek-Brown criterion,
the model predicts the failure strengths of some rocks under confined compression test
more accurately than the classical linear (in confinement) criteria, such as Drucker-Prager
or Mohr-Coulomb criteria. Moreover, these classical criteria usually need a tension cut-
off whereas the Hoek-Brown criterion matches both the uniaxial tensile and compressive
strengths with a single surface - a computational advantage - due to its nonlinearity. How-
ever, the same nonlinearity requires iterative stress integration which is a computational
loss in comparison to the linear criteria. Moreover, the present formulation of the Hoek-
Brown criterion where both the compressive and tensile strengths appear explicitly as
functions of hardening/softening variables and their rates, resulted in a model which does
not predict strain rate effects as well as the mentioned linear models. This was observed
in numerical simulations at different loading rates.

The model, nevertheless, predicts the experimental failure modes of rock under quasi-
static confined compression and uniaxial tension with a reasonable accuracy. The crucial
feature in this respect is the statistical description, using the Weibull distribution, of rock
strength heterogeneity. In the simulation of dynamic three-point bending of a notched
semi-circular disc, the model predicted the correct failure mode initiated at the notch tip.
However, due to the problems in predicting strain-rate effects, some other technique to
accommodate the strain rate-effects (where they cannot be neglected) should be searched.
Alternatively, the damage-plasticity model based on the Hoek-Brown criterion can be
applied to rate-independent problems.

Finally, it is noted that the strategy to extend the underlying plasticity model to
account for damaging and rate-effects does not depend specifically on the chosen Hoek-
Brown criterion but can be applied to any yield criterion. Development of the formal
framework of this extension applied to general yield criterion could be a subject of further
research.
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