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Variational approach for analysis of harmonic vibration and
stability of moving panels

Nikolay Banichuk, Alexander Barsuk, Tero Tuovinen1 and Juha Jeronen

Summary. In this paper, the stability of a simply supported axially moving elastic panel (plate
undergoing cylindrical deformation) is considered. A complex variable technique and bifurcation
theory are applied. As a result, variational equations and a variational principle are derived.
Analysis of the variational principle allows the study of qualitative properties of the bifurcation
points. Asymptotic behaviour in a small neighbourhood around an arbitrary bifurcation point
is analyzed and presented.

It is shown analytically that the eigenvalue curves in the (ω, V0) plane cross both the ω and
V0 axes perpendicularly. It is also shown that near each bifurcation point, the dependence ω(V0)
for each mode approximately follows the shape of a square root near the origin.

The obtained results complement existing numerical studies on the stability of axially moving
materials, especially those with finite bending rigidity. From a rigorous mathematical viewpoint,
the presence of bending rigidity is essential, because the presence of the fourth-order term in the
model changes the qualitative behaviour of the bifurcation points. The results are applicable to
both axially moving panels and axially moving beams.

Key words: axially moving panel, axially moving beam, bifurcation theory, complex variable

techniques, variational principle

Received 11 December 2014. Accepted 30 December 2014. Published online 30 December 2014

Introduction

The aim of our studies has been to develop mathematical models representing the be-
haviour of the paper making process. Previously (see e.g., Banichuk et al., 2013b,a,
2011a,b), we have considered many approaches for modelling moving materials and their
stability. Conclusions that have been drawn can be applied for example, the processing
of paper or steel, fabric, rubber or some other continuous material, and looping systems
such as band saws and timing belts.

Typically systems of axially moving web have been modelled as travelling flexible
strings, membranes, beams, and plates. Classical articles in this field are, for exam-
ple, Mote (1972), Archibald and Emslie (1958), Simpson (1973), Wang et al. (2005),
Parker (1998) Kong and Parker (2004), Miranker (1960) Chonan (1986), Wickert and
Mote (1990), Bhat et al. (1982), Perkins (1990), Wickert (1994) and Parker (1999).

In the case of beams interacting with external media, one can read e.g. the article by
Chang and Moretti (1991), and the articles by Banichuk and Neittaanmäki (2008a,b,c).
The study has been extended in Banichuk et al. (2010) for a two-dimensional model of
the web, considered as a moving plate under homogeneous tension but without external
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media. The most straightforward and efficient way to study stability is to use linear
stability analysis. In a recent article by Hatami et al. (2009), the free vibration of a
moving orthotropic rectangular plate was studied at sub- and supercritical speeds, and its
flutter and divergence instabilities at supercritical speeds. The study is limited to simply
supported boundary conditions at all edges. For the solution of equations of orthotropic
moving material, many necessary fundamentals can be found in the book by Marynowski
(2008b). An extensive literature review about dynamics of axially moving continua can
be found in Marynowski and Kapitaniak (2014) or in the book by Banichuk et al. (2014).
However, in this article the effect of surrounding media have been excluded.

The dynamical properties of moving plates have been studied by Shen et al. (1995) and
by Shin et al. (2005), and the properties of a moving paper web have been studied in the
two-part article by Kulachenko et al. (2007a,b). Critical regimes and other problems of
stability analysis have been studied e.g. by Wang (2003) and Sygulski (2007). Moreover,
in the articles Marynowski (2002, 2004, 2008a) the dynamical aspects of the axially moving
web are discussed extensively. In Yang and Chen (2005), the authors considered transverse
vibrations of the axially accelerating viscoelastic beam, and in Pellicano and Vestroni
(2000), dynamic behavior of a simply supported beam subjected to an axial transport
of mass was studied. An extensive literature review related to areas presented in this
paper, can be found for example in Ghayesh et al. (2013). Note also some approaches
to bifurcation problems and estimation of critical parameters presented by Nečas et al.
(1987) and Neittaanmäki and Ruotsalainen (1985).

The focus of this article is the stability of a simply supported axially moving elastic
panel. We have used a complex variable technique and bifurcation theory. Our main task
has been the derivation of variational equations and a variational principle. Moreover, we
have performed an analysis of the variational principle, which allows the study of qualita-
tive properties of the bifurcation points. Furthermore, asymptotic behaviour around an
arbitrary bifurcation point is analyzed and presented. As a result, we show analytically
that the eigenvalue curves in the (ω, V0) plane cross both the ω and V0 axes perpendic-
ularly. It is also shown that near each bifurcation point, the dependence ω(V0) for each
mode approximately follows the shape of a square root near the origin. Gained results
complement existing numerical studies on the stability of axially moving materials, and
especially materials with finite bending rigidity. From a rigorous mathematical viewpoint,
the presence of bending rigidity is essential, because the presence of the fourth-order term
in the model changes the qualitative behaviour of the bifurcation points.

Basic relations and complex functions

Consider the problem of free harmonic vibrations of an elastic panel, moving axially at
a constant velocity V0. In a stationary orthogonal coordinate system, the transverse
vibrations are characterized by the function w = w(x, t), which is determined by the
following partial differential equation:

w,tt + 2V0w,xt + (V 2
0 − C2)w,xx +

D

ρS
w,xxxx = 0 , 0 < x < ` , C =

√
T0
ρS

. (1)

At the ends of the considered interval x ∈ [0, `], we take the simply supported boundary
conditions

w(0, t) = w(`, t) = Dw,xx(0, t) = Dw,xx(`, t) = 0 . (2)
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Note that in a realistic paper making scenario, it is expected that supporting rollers
will lead to behaviour that is somewhere between the classical simply supported and
clamped extremes. The simply supported boundary conditions are here used for the
sake of simplicity, and because they are often chosen in fundamental studies on moving
materials.

Here x is the axial space coordinate, t time, T0 tension, ρ material density, S the area
of the panel cross section, ` the length of the free span, and D the bending rigidity of the
panel.

For harmonic vibrations at frequency ω, the transverse displacement can be repre-
sented in the form

w(x, t) = eiωtu(x) , i =
√
−1 , (3)

where u(x) is an amplitude function that satisfies the following boundary value problem:

u,xxxx + (V 2
0 − C2)u,xx + 2iωV0u,x − ω2u = 0 , (4)

u(0) = u(1) = u,xx(0) = u,xx(1) = 0 , (5)

which is written in dimensionless variables

x = `x̃ ,
ρSω2`4

D
= ω̃2 ,

ρS`2

D
V 2
0 = Ṽ 2

0 ,
ρS`2

D
C2 = C̃2 . (6)

In what follows, the tilde will be omitted.
The amplitude function u(x) determined from the boundary value problem (4)–(5) is

a complex-valued function, i.e.

u(x) = u1(x) + iu2(x) , û(x) = u1(x)− iu2(x) , (7)

where u1(x) and u2(x) are real-valued functions and û(x) is the complex conjugate of
u(x).

In the following we present a variational formulation of the spectral problem (4)–(5).
This formulation allows us to make important conclusions about the frequencies of free
vibrations of moving elastic systems without knowing the rigorous solution of the spectral
boundary value problem. To derive the variational formulation of (4)–(5), we multiply
the differential equation by the complex conjugate (adjoint) amplitude function û(x) and
integrate the result on the interval (0, 1). We will also take into account the boundary
conditions

u1(0) = u2(0) = u1(1) = u2(1) = 0 ,

u1,xx(0) = u2,xx(0) = u1,xx(1) = u2,xx(1) = 0 ,
(8)

which follow from the boundary conditions (5). We obtain the functional equation

aω2 + 2bV0ω + (V 2
0 − C2)c− d = 0 , (9)

where a, b, c and d are integral functional depending on the problem (4)–(5). The func-
tional a is given by

a =

ˆ 1

0

uû dx =

ˆ 1

0

(
(u1)2 + (u2)2

)
dx > 0 . (10)

Using the boundary conditions (8), we can write the functional b as

ˆ 1

0

u,xû dx = i

ˆ 1

0

(
(u2),xu

1 − (u1),xu
2
)

dx = ib , (11)
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where b is real-valued. The functionals c and d are obtained by integrating by parts (once
in the case of c and twice for d), and taking into account the corresponding boundary
conditions in (8). We have

c = −
ˆ 1

0

u,xxû dx =

ˆ 1

0

(
[(u1),x]2 + [(u2),x]2

)
dx > 0 , (12)

d =

ˆ 1

0

u,xxxxû dx =

ˆ 1

0

(
[(u1),xx]2 + [(u2),xx]2

)
dx > 0 . (13)

Variational analysis and variational principle in complex variables

Let us write the variation of the functional equation (9). To do this, we take into account
the variations of the considered functionals,

δa =

ˆ 1

0

(ûδu+ uδû) dx ,

iδb =

ˆ 1

0

(ûδu,x + u,xδû) dx ,

δc =

ˆ 1

0

(u,xδû,x + û,xδu,x) dx ,

δd =

ˆ 1

0

(u,xxδû,xx + ûδu,xx) dx ,

(14)

and perform standard transformations in (9), replacing u, û and ω with u + δu, û + δû
and ω + δω, respectively. We will have the variation

2(aω + bV0)δω +

ˆ 1

0

[
−ω2u+ 2iωV0u,x + (V 2

0 − C2)u,xx + u,xxxx
]
δû dx

+

ˆ 1

0

[
−ω2û− 2iωV0û,x + (V 2

0 − C2)û,xx + û,xxxx
]
δu dx = 0 .

(15)

For u(x) and û(x), which are solutions of the spectral boundary value problem (4)–(5)
and its complex conjugate, the integral expressions in (15) are identically zero. Taking
this into account, we are left with

2(aω + bV0) δω = 0 . (16)

Thus, if aω + bV0 6= 0 for the spectral problem (4)–(5), then the frequency variation for
free vibrations δω is zero. That is,

aω + bV0 6= 0 , δω = 0 . (17)

Solving (9) for ω, we arrive at the variational representation for harmonic vibrations,
corresponding to each of the two solution branches of equation (9):

ω±(V0) =
1

a

(
−bV0 ±

√
(b2 − ac)V 2

0 + acC2 + ad

)
→ extr

u(x),û(x)
. (18)
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Analysis of extremum conditions and bifurcation analysis

From (16), the other possibility is

aω + bV0 = 0 (19)

and δω free. To perform analysis for this case, we consider equation (9) as an implicit
function F (ω, V0):

F (ω, V0) = 0 , F (ω, V0) = aω2 + 2bV0ω + (V 2
0 − C2)c− d . (20)

Again, we can solve (9) for ω, obtaining the following two solution branches:

ω±(V0) =
1

a

(
−bV0 ±

√
(b2 − ac)V 2

0 + acC2 + ad

)
(21)

Let (ω∗, V ∗0 ) denote the bifurcation point, i.e. the values of ω and V0 at which the solution
of (20) branches. At the bifurcation point, the conditions of the implicit function theorem
must be violated, i.e. we will have

F (ω, V0) = 0 ,
∂F (ω, V0)

∂ω
= 0 . (22)

Using (20), these conditions become

aω2 + 2bV0ω + (V 2
0 − C2)c− d = 0 , aω + bV0 = 0 . (23)

As a result, we find the following representation for bifurcation values of the frequency
and panel velocity:

ω∗ = − b
a
V ∗0 , (ac− b2)(V ∗0 )2 = acC2 + ad . (24)

Alternatively, these values can be obtained from the condition ω+(V0) = ω−(V0) and
the representation (21) for ω±(V0). Note also that if some solutions have b = 0, the
corresponding bifurcation points are distributed along the V0 axis in the (V0, ω) plane, i.e.

ω∗ = 0 , (V ∗0 )2 = C2 +
d

c
(for solutions with b = 0) . (25)

Let us differentiate ω(V0) with respect to the parameter V0. To do this, in (20) we
replace V0, u and ω with V0 + δV0, u + δu and ω + δω, respectively. Using the standard
transformations (as was done in (16)) we obtain

2(aω + bV0) δω + 2(bω + cV0) δV0 = 0 . (26)

Consequently,
dω

dV0
= − bω + cV0

aω + bV0
. (27)

In particular, it follows from (27) that for all bifurcation points (ω∗, V ∗0 ) we have the limit

lim
V0→V ∗

0

dω±(V0)

dV0
= ±∞ . (28)

In the case V0 = 0, we have b = 0, and find that

dω±(V0 =0)

dV0
= 0 . (29)

It follows from (28)–(29) that the curves ω±(V0) cross the ω and V0 axes at right angles;
see Figure 1.
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Figure 1. Behaviour of the natural frequencies ω as a function of the panel axial velocity V0. Numerical
solution using finite elements.
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Nonlinear analysis of asymptotic behaviour of the frequencies in the vicinity of
bifurcation points

Let (ω∗1, V
∗
01) , (ω

∗
2, V

∗
02) , . . . be solutions of the system of nonlinear equations (20). Con-

sider the behaviour of the functions ωi(V0) (i = 1, 2, . . . ), determined in a small neighbour-
hood of the bifurcation point (ω∗k, V

∗
0k), in implicit form, by the equation F (ω, V0) = 0.

For brevity, we will omit the indices of the functions ωi(V0) and the bifurcation points
(ω∗k, V

∗
0k).

To study the behaviour of the function F (ω, V0), we expand it in series around the
bifurcation point (ω∗, V ∗0 ). We have

F (ω, V0) = F (ω∗, V ∗0 ) +
∂F (ω∗, V ∗0 )

∂ω
(ω − ω∗) +

∂F (ω∗, V ∗0 )

∂V0
(V0 − V ∗0 )+

1

2

∂2F (ω∗, V ∗0 )

∂ω2
(ω − ω∗)2 + . . . (30)

Taking into account that at each bifurcation point (ω∗, V ∗0 ), relation (22) holds, we
have that the first two terms in (30) vanish, obtaining

F (ω, V0) =
∂F (ω∗, V ∗0 )

∂V0
(V0 − V ∗0 ) +

1

2

∂2F (ω∗, V ∗0 )

∂ω2
(ω − ω∗)2 + . . . (31)

Observe that all terms that have been omitted in (30) have a higher order of smallness.
The expression (31) thus contains all leading-order terms, and describes completely gen-
eral behaviour of F (ω, V0) in a small neighbourhood of a given bifurcation point (ω∗, V ∗0 ).
This is the general case; the special cases where one or both of ∂F (ω∗, V ∗0 )/∂V0 and
∂2F (ω∗, V ∗0 )/∂ω2 are zero must be studied separately.

Without loss of generality, we may represent the function ω = ω(V0) in the small
neighbourhood of the bifurcation point (ω∗, V ∗0 ) as a power series:

ω(V0) = ω∗ + α1(V0 − V ∗0 )ε1 + α2(V0 − V ∗0 )ε2 + . . . , where 0 < ε1 < ε2 < . . . (32)

The values of the constants α1, α2, . . . and ε1, ε2, . . . are determined with the help of the
condition F (ω, V0) = 0. After substitution of (32) into (31), the equation F (ω, V0) = 0
reduces to the corresponding equation

Ψ(V − V ∗0 ) = 0 , (33)

where Ψ is a function of one variable.
In order for (33) to hold, the coefficient of each power of (V −V ∗0 ) in the expression of

Ψ must be equal to zero. This requirement allows us to determine the values of α1, α2, . . .
and ε1, ε2, . . . in the power series (32). In the following, for simplicity we consider only
the determination of α1 and ε1, i.e. we approximate ω(V0) as

ω(V0) ≈ ω∗ + α1(V0 − V ∗0 )ε1 . (34)

After substitution of (34) into (31), we obtain

Ψ(V0 − V ∗0 ) =
∂F (ω∗, V ∗0 )

∂V0
(V0 − V ∗0 ) +

α2
1

2

∂F (ω∗, V ∗0 )

∂ω2
(V0 − V ∗0 )2ε1 + · · · ≡ 0 . (35)
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The expression (35) contains the leading-order terms; all omitted terms are of a higher
order of smallness.

We will analyze the case where

∂F (ω∗, V ∗0 )

∂V0
6= 0 ,

∂2F (ω∗, V ∗0 )

∂ω2
6= 0 . (36)

A separate analysis is needed if one or both values in (36) are zero.
Consider now the cases 2ε1 < 1, 2ε1 = 1 and 2ε1 > 1, which together cover all possi-

bilities for ε1. If 2ε1 < 1, then the first term in (35) is of a higher order of smallness with
respect to the second term, and consequently in order for (35) to hold, ∂2F (ω∗, V ∗0 )/∂ω2

must be zero, which contradicts the second condition in (36). Similarly, if 2ε1 > 1, then in
order for (35) to hold, ∂F (ω∗, V ∗0 )/∂V 2

0 must be zero, which contradicts the first condition
in (36). As a result, the only possible value is 2ε1 = 1, which transforms (35) into

Ψ(V0 − V ∗0 ) =

[
∂F (ω∗, V ∗0 )

∂V0
+
α2
1

2

∂F (ω∗, V ∗0 )

∂ω2

]
(V0 − V ∗0 ) + · · · ≡ 0 . (37)

The value of α1 is found from the condition that the coefficient of (V − V ∗0 ) is zero. We
have

α2
1 = −2

∂F (ω∗, V ∗0 )/∂V0
∂2F (ω∗, V ∗0 )/∂ω2

. (38)

Because the functionals (10)–(13) are all real-valued, and thus F (ω, V0) is real-valued,
it follows from (38) that α2

1 is real-valued, and thus α1 is either purely real or purely
imaginary.

Thus we find the asymptotic dependence ω(V0) in the small neighbourhood of the
bifurcation point as

ω(V0) ≈ ω∗ ± α1

√
V0 − V ∗0 , |V0 − V ∗0 | � 1 . (39)

From (39) it follows that in the small neighbourhood around each bifurcation point
(ω∗, V ∗0 ), the frequency of harmonic vibrations ω obtains complex values. If the coefficient
α1 is real, then the frequency becomes complex for V0 < V ∗0 ; otherwise (α1 imaginary)
the frequency becomes complex for V0 > V ∗0 .

The appearance of complex frequencies and their complex conjugates means that ac-
cording to the model considered, the displacement will grow exponentially, which corre-
sponds to instability in the Lyapunov sense. Thus, the considered elastic system exhibits
elastic instability at the bifurcation points, and from a mathematical point of view, the
bifurcation points correspond to static (divergence, buckling, ω∗ = 0) and dynamic (flut-
ter, ω∗ 6= 0) kinds of instability in the Bolotin classification. Both kinds of instabilities
are caught by the present analysis, because in both cases (ω∗ = 0 and ω∗ 6= 0) we have
instability in the Lyapunov sense.

Example

As an example, consider the harmonic vibrations of an elastic panel (plate undergoing
cylindrical deformation) moving in the axial direction at a constant velocity V0, and with
zero axial tension (C = 0). In this case, some of the bifurcation points lie on the V0
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Figure 2. Behaviour of the complex natural frequencies s = ζ + iω as a function of the panel axial
velocity V0, drawn as overlaid projections onto the (V0, ζ) and (V0, ω) planes. Numerical solution using
finite elements. Parts of the solution corresponding to Figure 1 have been bolded.

axis (ω = 0), corresponding to static instabilities (divergence). For this set of points, the
bifurcation values of the velocities are

V ∗0k = kπ , k = 1, 2, 3, . . . (static instabilities)

and the dependences ωk(V0) in the small neighbourhood of the points (0, V ∗0k) are given
by

ωk(V0) ≈ ±α1k

√
V0 − kπ + . . . , |V0 − kπ| � 1 , k = 1, 2, . . . (40)

where we have used ε1 = 1/2. Taking into account that α2
11 < 0, the first branch ω1(V0)

is complex for V0 > π, and consequently we will have instability for V0 = V ∗01 = π. It can
be shown that the values α2

1k are positive for all k ≥ 2, and consequently each branch
ωk(V0) takes complex values at V0 < kπ.

The results of asymptotic analysis of ωk(V0) agree with the numerical solution pre-
sented in Figure 1, which was obtained by solving the spectral boundary value problem
(4)–(5) as an eigenvalue problem for (ω, u(x)) using finite elements of the Hermite type.
Note that at least C1 continuity is required at the element boundaries due to the term
with the fourth derivative in the strong form.

For this picture, we present the bifurcation values for critical points outside the axis
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Figure 3. Behaviour of the complex natural frequencies s = ζ + iω as a function of the panel axial
velocity V0, drawn as overlaid projections onto the (V0, ζ) and (V0, ω) planes. Numerical solution using
finite elements. Same data as in Figure 2, distinct modes labelled. If no real part ζ is labelled for a given
mode, its real part is zero. For the mode ”b”, zero imaginary and real parts have been indicated where
appropriate, to emphasize that at first it is a divergence mode, later becoming a stable vibration mode.

V0(ω=0), denoted by two lower indices:

(V ∗021 = 6.45 , ω∗21 = ±10.58)

(V ∗031 = 10.23 , ω∗31 = ±32.01)

In the numerical results shown here, 40 elements were used, with C2 continuity across
element boundaries. Each element had six local degrees of freedom, leading to three
global degrees of freedom (u, u′, u′′) per node. With Ne elements, the total number of
global nodes is Ne + 1. Boundary conditions eliminate four degrees of freedom. The total
number of degrees of freedom in the discretization was thus (Ne + 1) ∗ 3− 4 = 119.

Finally, Figures 2 and 3 show the full complex-valued numerical solution, of which
Figure 1 shows only those solutions for which the real part is zero. We replace (3) with

w(x, t) = es t u(x) , s = ζ + iω , (41)

i.e. we now allow complex-valued frequencies to appear. Here the real part ζ represents
the stability in the Bolotin sense. If, at any fixed value of V0, one or more of the natural
frequencies has ζ > 0, the system is unstable for that value of V0. The imaginary part ω
is the same as above.
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From Figure 2, we see that the model predicts a small supercritical stable range of V0
(marked by the vertical lines near V0 = 2π), beginning after the divergence gap spanning
(π, 2π). In this numerical example, no further stable ranges are seen; at any value of V0
after this second stable range, there is always at least one solution with a positive real
part.

It is an inherent usability drawback in the overlaid projection plot that it may become
difficult to identify which real and imaginary parts belong to the same solution. Figure
3 shows the same data as Figure 2, but with distinct modes given labels in order to aid
identification.

We see that after the short supercritical stable range above the divergence gap, the
system again loses stability, this time by coupled-mode flutter. This is marked by the
vertical line just after V0 = 2π.

Shortly before V0 = 3π, the imaginary part of this coupled mode (labelled as ”1 + 2”
in the Figure) vanishes, and the mode splits into two new modes (labelled ”a” and ”b”).
This bifurcation point is marked by the vertical line just before V0 = 3π.

Both ”a” and ”b” are initially divergence modes (nonzero real part, zero imaginary
part). The real part of mode ”a” reaches zero at V0 = 3π, and at this critical point, mode
”a” stabilizes. However, mode ”b” remains a divergence mode until V0 = 4π, where it
stabilizes.

Slightly above V0 = 10, mode ”a” combines with mode ”3”, producing a new flutter
mode of the coupled-mode type (labelled ”a+3”). Later, slightly above V0 = 14, the mode
”b” combines with mode ”4”, producing another coupled-mode flutter mode (labelled
”b+ 4”). Near the right edge of the Figure, the imaginary part of mode ”a+ 3” becomes
zero, and it splits into two new divergence modes (not labelled), similar to the earlier split
of the coupled mode ”1 + 2”.

In conclusion, while useful information about this system can be derived even ignoring
the real parts of the complex-valued natural frequencies, when making stability conclu-
sions, one must look at general complex-valued solutions.

Conclusion

In this paper, the stability of an axially moving elastic panel was considered. The panel
was travelling at constant velocity between a system of rollers. Small transverse elastic
displacements of the panel were described by a fourth-order differential equation that
included the centrifugal and Coriolis effects (induced by the axial motion), axial tension,
and bending resistance. The same formulation directly applies also to the small out-of-
plane elastic displacements of an axially travelling beam.

To study the stability of the system, a complex variable technique and bifurcation
theory were applied. As a result, variational equations and a variational principle were
derived. Analysis of the variational principle allowed the study of qualitative properties
of the bifurcation points. Asymptotic behaviour in a small neighbourhood around an
arbitrary bifurcation point was analyzed and presented. The bifurcation points were
found by determining conditions where the conditions of the implicit function theorem
(which concerns the uniqueness of a local explicit representation of an implicit function)
are violated.

It was shown analytically that the eigenvalue curves in the (ω, V0) plane cross both
the ω and V0 axes perpendicularly. It was also shown that near each bifurcation point,
the dependence ωk(V0), for each mode k, approximately follows the shape of a square
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root function (considered near the origin). From this analysis it was also seen that, as
expected for this class of systems, the eigenvalues appear in conjugate pairs.

The obtained results complement existing numerical studies on the stability of axially
moving materials, especially those with finite bending rigidity. From a rigorous mathe-
matical viewpoint, the presence of bending rigidity is essential, because the presence of
the fourth-order term in the model changes the qualitative behaviour of the bifurcation
points.

Acknowledgements

This research was supported by RFBR (grant 14-08-00016-a), RAS Program 12, Program
of Support of Leading Scientific Schools (grant 2954.2014.1), and the Finnish Cultural
Foundation.

References

F. R. Archibald and A. G. Emslie. The vibration of a string having a uniform motion
along its length. ASME Journal of Applied Mechanics, 25:347–348, 1958.
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N. Banichuk, J. Jeronen, P. Neittaanmäki, and T. Tuovinen. Dynamic behaviour of an
axially moving plate undergoing small cylindrical deformation submerged in axially
flowing ideal fluid. Journal of Fluids and Structures, 27(7):986–1005, 2011b. ISSN
0889-9746. URL http://dx.doi.org/10.1016/j.jfluidstructs.2011.07.004.

N. Banichuk, J. Jeronen, P. Neittaanmäki, T. Saksa, and T. Tuovinen. Theoreti-
cal study on travelling web dynamics and instability under non-homogeneous ten-
sion. International Journal of Mechanical Sciences, 66C:132–140, 2013a. URL http:

//dx.doi.org/10.1016/j.ijmecsci.2012.10.014.

159

http://dx.doi.org/10.1016/j.ijsolstr.2009.09.020
http://dx.doi.org/10.1016/j.ijsolstr.2011.03.010
http://dx.doi.org/10.1016/j.jfluidstructs.2011.07.004
http://dx.doi.org/10.1016/j.ijmecsci.2012.10.014
http://dx.doi.org/10.1016/j.ijmecsci.2012.10.014
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