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Summary. The article concerns the treatment of junctions when teaching duct system flows. In 
standard fluid mechanics textbook presentations only one static pressure value is usually 
associated with a junction. In engineering practice, however, pressure jumps over the junctions 
should be taken into account. The differences in the results by these two formulations are 
discussed in connection with three demonstration cases. The first case is treated initially with 
assumed constant friction factors so that closed form classroom hand calculations can be 
performed. More accurate numerical results are then obtained by a MATLAB program. The 
concept of a spurious dissipation is introduced to explain the apparently odd differences 
obtained by the two formulations. 
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Introduction 

The article concerns the treatment of junctions when teaching duct system flows. In 
standard fluid mechanics textbook presentations only one static pressure value is usually 
associated with a junction, for example [1]. We will call this as continuous pressure 
formulation (CPF). In more specialized texts pressure jumps taking place at the 
junctions are taken into account, for example [2]. We will call this as discontinuous 
pressure formulation (DPF). The differences in the results obtained by these two 
formulations are discussed in connection with certain demonstration cases. 

The governing equations in duct system flows are nonlinear and demand usually 
iterative solution approaches. Suitable simple enough hand calculation example cases 
are, however, needed for the students to assimilate the way the governing equations are 
generated. The example cases are taken this background in mind. For simplicity of 
presentation we do not take here into account gravity effects so the formulations apply 
more directly to air flows. 

Three example cases are dealt with using in each both the DPF and CPF. Only in the 
first example case the hand calculation is performed in full detail in connection with the 
DPF. A constant friction factor value is used to simplify the treatment. All example 
cases are dealt with in addition by a MATLAB program taking into account in detail the 
effect of the friction factor. The results of the example cases reveal the unrealistic nature 
of the CPF — often employed in textbooks — for the treatment of duct system flows. 
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First demonstration case 

Duct data 

Let us consider the duct system depicted in Figure 1. A symmetric simple demonstration 
example has been selected so that the governing equations can be generated and solved 
with relative ease using classroom hand calculations. In these we make a slight 
simplification. Additionally, some “exact” results without this simplification are given 
by two versions of a MATLAB program developed by the second writer [3]. We refer to 
these calculations and results by the attribute Matlab in the following. Hand calculations 
could be employed quite straightforwardly also in the second and third demonstration 
cases to follow. However, we will show in these cases only Matlab results as the 
purpose is just to detect some trends in the solutions when the relative duct section 
cross-sectional areas change. 

 

Figure 1. A duct system. 

The channel sections have each the same length L, the same constant (circular) 
cross-sectional area A and the same roughness factor ε . The channel sections and the 
nodes (junctions) are numbered as shown in Figure 1. Node 1 is an inlet with an 
overpressure in the surroundings and nodes 4, 5, 7, 8 are outlets with zero pressure in 
the surroundings. From symmetry, we can restrict our hand calculations to the flow 
along channel sections 1, 2, 3 having nodes 1, 2, 3, 4. 

We refer to the channel sections with superscripts in parentheses and to nodes by 
subscripts. To ease hand calculations we use the volumetric flow rate (1)Q  in channel 
section 1 as a reference value and we denote it alternatively simply by Q. Similarly, 
assuming constant density fluid with density ρ , we employ the dynamic pressure in 
channel section 1 as a reference value and denote it by P: 
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The continuity equations at the junctions and symmetry give the flow rates 

 (1)Q Q= , 

 (2) (5) / 2Q Q Q= = , (2) 

 (3) (4) (6) (7) / 4Q Q Q Q Q= = = = . 

We assume in the standard way that the pressure drop or loss p∆  in a channel 
section with a generic flow rate q can be expressed as 

 2p kq∆ = , (3) 

where the coefficient is given as 

 2
1 1
2

Lk f
D A

ρ= . (4) 

Here f is the friction factor and D the hydraulic diameter of the duct. We assume in the 
hand calculations that f is a constant and thus also k. In the Matlab calculations the 
formula 

 2

0.9

0.25

5.74log
3.7 Re

f

D
ε

=
  +    

 (5) 

is applied [4]. The Reynolds number 

 Re DVρ
µ

= , (6) 

where /V q A=  is the average velocity and µ  is the viscosity of the fluid. 

Discontinuous pressure formulation 

As said, we will generate the equations needed to solve the flow rates and static 
pressures along the flow in channels 1, 2, 3 (and from symmetry then for the whole duct 
system) and include here the pressure jumps at the two junction nodes 2 and 3. The 
static pressures around nodes are denoted by symbols like (e)

ip , where e refers to the 
channel section number and i to the node number. 

The present discontinuous pressure approach introduces the student towards the 
actual real world treatment of junctions in engineering practice. However, we simplify 
here and assume that no losses (or more correctly said no dissipation) is taking place at 
the junctions. 

First equation.  Pressure loss equation at inlet node 1: 
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Q Qp p
A A

ρ ρ
 

− + = 
  

. (7) 

The loss coefficient has been taken as 0.5 . Quantity sp  means the given static pressure 
in the surroundings. It is here driving the flow in the duct system. Using the reference 
pressure, the equation becomes 

 (1)
s1

3
2

p p P= − . (8) 

Second equation.  Pressure loss equation for channel section 1: 

 (1) (1) 2
1 2p p k Q− = . (9) 

Third equation.  Pressure loss equation for channel section 2: 

 ( )2(2) (2)
2 3 / 2p p k Q− = . (10) 

Fourth equation.  Pressure loss equation for channel section 3: 

 ( )2(3) (3)
3 4 / 4p p k Q− = . (11) 

Fifth equation.  Pressure loss equation at outlet node 4: 

 ( ) ( )2 2
(3)
4 2 2

/ 4 / 41 10 1.0
2 2

Q Q
p

A A
ρ ρ

 
 + − =
  

. (12) 

The loss coefficient has been taken to be 1.0 and the pressure in surroundings at zero. 
The equation gives simply the result 

 (3)
4 0p = . (13) 

Sixth equation.  Pressure jump equation at junction 2: 

 ( )22 2
(1) (2) (1,2)
2 2 22 2 2

/ 21 1 1
2 2 2

QQ Qp p C
A A A

ρ ρ ρ
  
 + − + = 
     

. (14) 

This is the way the total pressure jump is normally represented. (1,2)
2C  is the junction 

coefficient for the total pressure jump from cross-section (1)2 to cross-section (2)2 . The 
reference cross-section is (1)2 . As said, we work here assuming no losses at the 
junctions and we put thus (1,2)

2 0C = . Using the reference pressure P, the equation 
becomes 

 (1) (2)
2 2

3
4

p p P− = − . (15) 
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Seventh equation.  Pressure jump equation at junction 3: 

 ( ) ( ) ( )2 2 2
(2) (3) (2,3)
3 3 32 2 2

/ 2 / 4 / 21 1 1
2 2 2

Q Q Q
p p C

A A A
ρ ρ ρ

   
   + − + =
      

. (16) 

The meaning of the notations is obvious from the previous equation case. Putting 
(2,3)

3 0C =  gives 

 (2) (3)
3 3

3
16

p p P− = − . (17) 

We have obtained seven equations corresponding to the seven unknowns Q, (1)
1p , (1)

2p , 
(2)
2p , (2)

3p , (3)
3p , (3)

4p . It is recalled that P is given by the definition (1). 

Solution.  Working backwards from node 4, we find 

 (3)
4 0p = , (18) 

 (3) (3)2 2 2
3 4

1 1 10
16 16 16

p k Q p k Q k Q= + = + = , (19) 

 (2) (3) 2
3 3

3 1 3
16 16 16

p p P k Q P= − = − , (20) 

 (2) (2) 2 2 2 2
2 3

1 1 3 1 5 3
4 16 16 4 16 16

p p k Q k Q P k Q k Q P= + = − + = − , (21) 

 (1) (2) 2 2
2 2

3 5 3 3 5 15
4 16 16 4 16 16

p p P k Q P P k Q P= − = − − = − , (22) 

 (1) (1) 2 2 2 2
1 2

5 15 21 15
16 16 16 16

p p k Q k Q P k Q k Q P= + = − + = − . (23) 

Equating (8) and (23) gives 

 2
s

3 21 15
2 16 16

p P k Q P− = −  (24) 

or 

 
2

2 2 2
s 2 2

21 9 21 9 1 21 9
16 16 16 16 2 32 32

Q Lp k Q P k Q f Q
DA A

ρρ  = + = + = + 
 

. (25) 

Given the values of sp , f, L, D, ρ , we can solve for Q. After that the pressures are 
obtained from (18) to (23). 

As a detailed example case, we take the data 

 3
s5 m, 0.2 m , 1.204 kg / m 100 PaL D pρ= = = = . (26) 

The friction factor has been set to a fixed average value 0.02f =  corresponding 
roughly to the velocities found. The solution is for the flow rate 
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 30.367 m /sQ =  (27) 

and for the static pressures 

 
(1) (1) (2)
1 2 2
(2) (3) (3)
3 3 4

23.1Pa , 64.1Pa , 2.56 Pa ,

12.8 Pa , 2.56 Pa , 0.

p p p

p p p

= − = − = −

= − = =
 (28) 

The Matlab calculations give with the values 

 4 4 20.9 10 m, 0.185 10 N s/mε µ− −= ⋅ = ⋅ , (29) 

the flow rate 

 30.368 m /sQ =  (30) 

and the static pressures 

 
(1) (1) (2)
1 2 2
(2) (3) (3)
3 3 4

23.9 Pa , 63.6 Pa , 1.61Pa ,

12.4 Pa , 3.04 Pa , 0.

p p p

p p p

= − = − = −

= − = =
 (31) 

The corresponding friction factor values are 

 (1) (2) (3)0.0192, 0.0210, 0.0236f f f= = = . (32) 

It is seen that the hand calculation and Matlab results are quite close to each other. The 
nearness of the guessed value 0.02f =  with those appearing in (32) explains this 
behavior. 

Continuous pressure formulation 

We repeat the calculations of the previous section now considering the static pressures 
on both sides of junctions 2 and 3 to be the same; that is, the static pressure distribution 
is assumed to be continuous. This is the way the pipe and channel systems are dealt with 
usually in elementary fluid mechanics textbooks. The sixth and seventh equations of the 
DPF are thus not needed here. We denote the static pressures at the nodes now only by 
the subscript referring to the node. Also (1)

1 1p p=  and (3)
4 4p p= . We write down the 

equations needed. 

First equation.  Pressure loss equation at inlet node 1: 

 1 s
3
2

p p P= − . (33) 

Second equation.  Pressure loss equation for channel section 1: 

 2
1 2p p k Q− = . (34) 
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Third equation.  Pressure loss equation for channel section 2: 

 ( )22 3 / 2p p k Q− = . (35) 

Fourth equation.  Pressure loss equation for channel section 3: 

 ( )23 4 / 4p p k Q− = . (36) 

Fifth equation.  Pressure loss equation at outlet node 4: 

 4 0p = . (37) 

Working similarly as in the DPF case and using the same data, the hand calculation 
gives the flow rate 

 30.276 m /sQ =  (38) 

and the static pressures 

 1 2 3 430.4 Pa , 7.25 Pa , 1.45 Pa , 0.p p p p= = = =  (39) 

 The Matlab results are 

 30.275 m /sQ =  (40) 

and 

 1 2 3 431.0Pa , 8.12Pa , 1.80Pa , 0p p p p= = = = . (41) 

The corresponding friction factor values are 

 (1) (2) (3)0.0199 , 0.0220 , 0.0250f f f= = = . (42) 

Again, the hand calculation and Matlab results are close to each other. 
There is a considerable difference between the flow rate obtained by the DPF and 

CPF; the latter gives here a smaller rate. In addition, the static pressure distributions are 
of totally different nature as can be detected from Figure 2. As no dissipation is taking 
place at the junctions, the DPF now gives correctly a continuous total pressure 
distribution. Of course, the junctions have in reality finite sizes and the relevant cross-
sections situate at some distances from the nodes as is also obvious from Figure 1. This 
is ignored in Figure 2 so the pressure jumps seem to take place discontinuously. 
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Figure 2. (a) Static pressure p [Pa] and (b) total pressure 21
t 2p p Vρ= + ⋅  [Pa] distributions 

along channel sections 1, 2, 3 by the DPF and the CPF in the first demonstration case. 

Second demonstration case 

The duct system is taken to be otherwise the same as in the first case; only the diameters 
of the duct sections are changed to 

 (1) 0.2828 mD = , 

 (2) (5) 0.2 mD D= = , (43) 

 (3) (4) (6) (7) 0.1414 mD D D D= = = = . 

In fact, the ratios between the diameters of the consecutive channel sections have been 
selected to be 1 / 2  so that the ratios between the corresponding cross-sectional areas 
become 1 / 2 . The values used are taken on purpose so that the results by the DPF and 
CPF become identical. The reason for this behavior is explained later in the Explanation 
section. 

The Matlab calculations give both in the DPF and CPF the same flow rate 

 30.458 m /sQ = . (44) 

The corresponding friction factor values are 

 (1) (2) (3)0.0188, 0.0203, 0.0221f f f= = = . (45) 

Further, the pressure jumps vanish in the DPF and the pressure distributions become 
identical. Without giving detailed numbers, the type of pressure distributions obtained 
are shown in Figure 3. 
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Figure 3. (a) Static pressure p [Pa] and (b) total pressure 21
t 2p p Vρ= + ⋅  [Pa] distributions 

along channel sections 1, 2, 3 by the DPF and the CPF in the second demonstration case. 

Third demonstration case 

Now the diameters of the duct sections are changed to 

 (1) 0.4 mD = , 

 (2) (5) 0.2 mD D= = , (46) 

 (3) (4) (6) (7) 0.1mD D D D= = = = . 

The ratios between the corresponding cross-sectional areas become 1 / 4 . The flow rate 
by Matlab is with the DPF 

 30.263m /sQ =  (47) 

and with the CPF 

 30.345 m /sQ = . (48) 

Contrary to the results in the first demonstration case, the CPF gives now the larger flow 
rate. The corresponding friction factor values are, respectively 

 (1) (2) (3)0.0213, 0.0221, 0.0236f f f= = =  (49) 

and 

 (1) (2) (3)0.0203, 0.0212, 0.0228f f f= = = . (50) 
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The type of pressure distributions obtained are presented in Figure 4. Now the total 
pressure obtains positive jumps at junctions 2 and 3 with the CPF. This is unphysical 
and the behavior is explained in the next section. 

 

Figure 4. (a) Static pressure p [Pa] and (b) total pressure 21
t 2p p Vρ= + ⋅  [Pa] distributions 

along channel sections 1, 2, 3 by the DPF and the CPF in the third demonstration case. 

Explanation 

The three example cases give results that may look at first sight somewhat confusing. 
The fluid mechanics course in which duct system flows are discussed has included 
probably also applications of the principle of the balance of mechanical energy in 
macroscopic form. This gives possibilities for clarifications. 

 

Figure 5. Generic notations for a diverging flow junction. 
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Let us consider a so-called diverging flow junction shown in Figure 5 and the 
control volume formed by the junction walls and by the three cross-sections ei  fi , gi . 
Making rather standard assumptions about the flow gives for the control volume the 
energy balance equation 

 ( )
( )( )
( )( )

( ) ( )
( )( )
( )( )

( )

2 2

2 2
1 1
2 2

e f
e fe f

i i
e f

i i

Q Q
p Q p Q

A A
ρ ρ

   
   

+ − +   
   
      

 

 ( )
( )( )
( )( )

( )

2

2
1
2

g
g g

ii
g

i

Q
p Q D

A
ρ

 
 

− + = 
 
  

, (51) 

where iD  is the fluid dissipation rate in the control volume. We assume here that the 
three flows acting in the directions shown in Figure 5 are considered as positive. 

It is not difficult to show that if the junction coefficients ( , )e f
iC  and ( , )e g

iC  are put to 
zero, the dissipation rate (51) vanishes. On the other hand, in the CPF we demand that 

 ( ) ( ) ( )e f g
ii i ip p p p= = ≡ . (52) 

Using this and the junction continuity equation 

 ( ) ( ) ( ) 0e f gQ Q Q− − = , (53) 

we find that the pressure cancels in (51) and we are left with 

 ( )
( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

3 3 3

s 2 2 2
1
2

e f g

i e f g
i i

Q Q Q
D

AA A
ρ

 
 

= − − 
 
  

. (54) 

We have denoted the dissipation rate now using the extra subscript s and we will call it 
as spurious dissipation. The explanation for this terminology is as follows. In real flows 
the fluid dissipation rate taking place at the junctions is for physical reasons always 
positive. However, with certain combinations of flow rates and cross-sectional areas 
(54) can become also negative. This means that energy is somehow supplied to the fluid 
from the junction! 

The explanation here is that the continuous pressure assumption is simply 
unrealistic (inside the calculation model theory used in duct flows). In fact, we can 
imagine the continuous pressure setting to be achieved by introducing some devices 
such as small fans and valves inside the junction monitoring the flow in such a manner 
that the pressures at the inlet and at the two outlets become finally equal. 

Let us consider now the demonstration cases and for example junction 2. Here we 
may put (see Figure 1) 1e = , 2f = , 5g =  in the generic formula (54): 
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 ( )
( )( )

( )

( )
( )

( )( ) ( )( )
( )

( )
3 3 33 3

s 2 2 2 2 2 2(2) (2)1 5 1

/ 2 / 2 / 21 1 2
2 2

Q Q QQ QD
A AA A A

ρ ρ

   
   

= − − = −   
   
      

. (55) 

Symmetry in the flow rates and cross-sectional areas has been made use of. 
Let us denote the cross-sectional area (2)A  here simply as A. It is the same in all the 

demonstration cases. In the first demonstration example ( )1A A=  and the spurious 
dissipation 

 ( ) ( )33 3

s 2 2 2 2
/ 21 1 32

2 2 4
QQ QD

A A A
ρ ρ
 
 = − =
  

 (56) 

is positive. 
In the second demonstration case ( )1 2A A=  and the spurious dissipation 

 ( )
( )

( )33

s 2 2 2
/ 21 2 0

2 2

QQD
AA

ρ
 
 = − =
  

. (57) 

 In the third demonstration case ( )1 4A A=  and the spurious dissipation 

 ( )
( )

( )33 3

s 2 2 2 2
/ 21 1 32

2 2 164

QQ QD
A AA

ρ ρ
 
 = − = −
  

 (58) 

is negative. 
Similar expressions can be found at junction 3 and 6. Now the nature of the results 

produced by the CPF can be understood. In the first case positive spurious dissipation is 
generated slowing the flow. In the second case no spurious dissipation appears and the 
two formulations give identical results. In the third case negative dissipation (or positive 
energy input) is generated speeding the flow. 

Concluding remarks 

The spurious dissipation concept can be introduced equally well for a converging flow 
junction to explain seemingly odd results by the two formulations. The concept can be 
extended also for water flow, where the gravity effects must be accounted for. Finally, 
as is well known, and should be stressed to the students, the calculation models for duct 
and pipe flows contain certain assumptions not in accordance with reality. One of these 
is to assume that the losses to take place in a pointwise way at valves and at junctions. 
In reality, the losses occur along the ducts and mainly in the downwind parts. However, 
when applying these calculation models, we can also assume the spurious dissipation to 
act in a pointwise way. Additional comments concerning junction modeling can be 
found in [5]. 
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