
Rakenteiden Mekaniikka (Journal of Structural Mechanics)
Vol. 47, No 1, 2014, pp. 1 – 16

Periodic spectral instability analysis of axially moving beam
with elastic supports

Nikolay Banichuk, Svetlana Ivanova, Juha Jeronen and Tero Tuovinen1

Summary. Problems of dynamics and stability of a moving web, modelled as an elastic beam
of unlimited length and axially travelling between an infinite system of rollers (elastic supports)
at a constant velocity, are studied using analytical approaches. Transverse elastic displacements
of the web are described by a fourth order differential equation that includes the centrifugal
force, in-plane tension, bending term and elastic support reaction. The stability of the beam
is investigated with the help of studies of small periodic transverse displacements. In this
connection the multipoint spectral stability problem of the unlimited length beam with elastic
supports is formulated for the periodic interval. In the frame of spectral analysis, it is shown
that the onset of instability takes place in the form of divergence (buckling). It is shown that
the instability behaviour of the moving beam with elastic supports coincides with that of the
same beam with absolutely rigid supports, when the stiffness of the supports exceeds a critical
value.
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Introduction

The fundamental aim of our research has been to create mathematical models related to
the paper making process, simplifying the problems of moving materials sufficiently, while
still providing an understanding of the phenomena both qualitatively and quantitatively.
A key point is that the productivity of the paper mill is strongly dependent on the
efficiency and reliability of the running paper web. If it is possible to increase the axial
velocity of the web, production increases, and the paper mill will have more paper to sell.
In this paper, we will demonstrate the fundamental idea of combining process and product
to the machinery and its properties. This approach will provide new insight for controlling
and analyzing paper machines and similar systems and their processes using mathematical
modelling efficiently. This combination process may reveal unexpected properties which
would not be seen by considering just one part of the system. For example, in the
present study it will be seen that the stability reaches its maximum after the stiffness
of the supports exceeds a critical value. Observations such as this, made possible by the
combined approach, open the possibility to improve the quality of manufacturing by using
less resources than before.

In our previous studies (see e.g., Banichuk et al. (2013b), Banichuk et al. (2013a),
Banichuk et al. (2011), Banichuk et al. (2010b)), we have considered many aspects of
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mathematical modelling of the paper making process. The studies themselves however
are general, and the results can be used in many different practical applications. Examples
include the processing of paper or steel, fabric, rubber or some other continous material,
and looping systems such as band saws and timing belts.

The most often used models for systems of axially travelling material have been travel-
ling flexible strings, membranes, beams, and plates. The dynamic and stability considera-
tions discussed here were first reviewed in the article by Mote (1972). Natural frequencies
are commonly analyzed together with the stability. It was realized early on that the vi-
bration problem for an axially moving continuum is not the conventional one. Because
of the longitudinal continuity of the material, the equation of motion for transverse vi-
bration will contain additional terms, representing a Coriolis force and a centripetal force
acting on the material. As a consequence, the resonant frequencies will be dependent on
the longitudinal velocity of the axially moving continuum, as was noted by Archibald and
Emslie (1958), as well as Swope and Ames (1963), Simpson (1973), and Mujumdar and
Douglas (1976).

The effects of axial motion of the web on its frequency spectrum and eigenfunctions
were investigated in the papers by Archibald and Emslie (1958) and by Simpson (1973).
It was shown that the natural frequency of each mode decreases when the transport speed
increases, and that the travelling string and beam both experience divergence instability
at a sufficiently high speed. However, in the case of the string, this result was recently
contrasted by Wang et al. (2005), who showed using Hamiltonian mechanics that the ideal
string remains stable at any speed. Travelling beams have been further analyzed by Parker
(1998) in his study on gyroscopic continua, and by Kong and Parker (2004), where an
approximate analytical expression was derived for the eigenfrequencies of a moving beam
with small flexural stiffness. Response predictions have been made for particular cases
where the excitation assumes special forms, such as harmonic support motion (Miranker
(1960)) or a constant transverse point force (Chonan (1986)). Arbitrary excitations and
initial conditions were analyzed with the help of modal analysis and a Green’s function
method in the article by Wickert and Mote (1990). As a result, the critical speeds for
travelling strings and beams were explicitly determined. Travelling strings and beams on
an elastic foundation have been investigated by, e.g., Bhat et al. (1982), Perkins (1990),
Wickert (1994) and Parker (1999).

The loss of stability was studied with an application of dynamic and static approaches
in the article by Wickert (1992). It was shown by means of numerical analysis that in
all cases instability occurs when the frequency is zero and the critical velocity coincides
with the corresponding velocity obtained from static analysis. The dynamical properties
of moving plates have been studied by Shen et al. (1995) and by Shin et al. (2005),
and the properties of a moving paper web have been studied in the two-part article by
Kulachenko et al. (2007a,b). Critical regimes and other problems of stability analysis
have been studied e.g. by Wang (2003) and Sygulski (2007).

In Yurddas et al. (2013) the nonlinear vibrations of an axially moving multi-supported
string have been investigated. They have studied very similar case as us, with non-ideal
supports allowing minimal deflections between ideal supports at both ends of the string,
but used Hamiltonian approach and concentrate on nonlinear dynamics. Moreover, in
Chen (2005) there are extensive literature review for nondynamical studies related to
moving strings.

Results that axially moving beams experience divergence instability at a sufficiently
high beam velocity have been obtained also for beams interacting with external media;
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see, e.g., Chang and Moretti (1991), Banichuk and Neittaanmäki (2008b),
Banichuk and Neittaanmäki (2008c) and Banichuk and Neittaanmäki (2008a). The study
has been extended in Banichuk et al. (2010a), for a two-dimensional model of the web,
considered as a moving plate under homogeneous tension but without external media.
The most straightforward and efficient way to study stability is to use linear stability
analysis.

In a recent article by Hatami et al. (2009), the free vibration of a moving orthotropic
rectangular plate was studied at sub- and supercritical speeds, and its flutter and di-
vergence instabilities at supercritical speeds. The study is limited to simply supported
boundary conditions at all edges. For the solution of equations of orthotropic moving
material, many necessary fundamentals can be found in the book by Marynowski (2008).

In the present study, we will limit our focus to moving beams. The loss of stability
of an elastic infinite beam travelling between a system of elastic supports at a constant
velocity, will be studied. We will describe transverse elastic displacements of the beam
by a fourth order differential equation. The centrifugal force, axial tension, bending
rigidity term and elastic support reaction will be taken into account. The stability of
the beam will be investigated using analysis of small periodic transverse displacements.
We will perform the studies mainly using analytical approaches. We will formulate a
multipoint spectral stability problem with elastic supports, and use the periodic interval
and Floquet’s representation of solution. As a result, the basic relations characterizing
the behaviour of the web at the onset of instability are found in an analytical form. The
critical velocity, which corresponds to the onset of instability in the form of divergence
(buckling), will be estimated in the frame of spectral analysis. We also analyse the
dependence of the critical velocity on the support rigidity parameter.

Governing equations of elastic instability of axially moving web interacting with

elastic supports

The equation of unforced small transverse vibrations of a web travelling with a constant
velocity V0 along the axis x and interacting with elastic supports at xn = nℓ (n =
0,±1,±2, ...) has the form

m
∂2w

∂t2
+ 2mV0

∂2w

∂x∂t
+mV 2

0

∂2w

∂x2
− T0

∂2w

∂x2
+D

∂4w

∂x4
= 0 , (1)

where m is the mass per unit length of the beam, D = EI is the bending rigidity of the
beam (E is Young’s modulus, I is moment of inertia), T0 is tension along the x−axis,
w is the small displacement in the z−direction (see Figure 1). The equation (1) of the
travelling web, modelled as a beam of unlimited length with elastic supports (elastic
roller-supports), is written with respect to the fixed reference frame xz.

Let us consider static form of instability (divergence or buckling). In this case time
derivatives in the equation (1) vanishes. We will have

(
mV 2

0 − T0
) d2w

dx2
+D

d4w

dx4
= 0 . (2)

Introducing the following notations

λ = γ2 =
1

D

(
mV 2

0 − T0
)
, κ =

k

EI
, (3)
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Figure 1. Beam of unlimited length, axially travelling at velocity V0, supported by an infinite system of
elastic supports with spacing ℓ, and subjected to constant axial tension T0. The straight lines represent
the beam in the trivial equilibrium configuration, while the dashed line shows one possible deformed
shape.

we formulate the following multipoint spectral problem of elastic instability for the ordi-
nary differential equation

λ
d2w

dx2
+

d4w

dx4
= 0 , xj−1 < x < xj , (4)

where xj = jℓ, j = 0,±1,±2, ... with conjuction conditions

(w)+xj
= (w)−xj

,

(
dw

dx

)+

xj

=

(
dw

dx

)−

xj

,

(
d2w

dx2

)+

xj

=

(
d2w

dx2

)−

xj

, j = 0,±1,±2... (5)

(
d3w

dx3

)+

xj

−
(
d3w

dx3

)−

xj

= −κ (w)xj
.

where the upper symbols + and − denote right and left limiting values, respectively,
and k is a constant usually called the modulus of the support (elastic foundation). This
constant denotes the reaction per unit length when the deflection w is equal to unity.
The parameter λ in the equation (4) plays the role of the eigenvalue of the considered
spectral problem. This problem is described by the ordinary differential equation (4) with
constant coefficients and periodic boundary conditions (5), and consequently its solution
can be represent with the help of Floquet’s theorem as Floquet (1883); Jkubovich and
Starjinsky (1972)

w (x, α) = w0 (x) e
iαx , −∞ < x <∞ , α ∈ [ 0, 2π/ℓ ] . (6)
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Here i ≡
√
−1 is the imaginary unit, α is some real parameter and w0 is a periodic

function with period ℓ, i.e.

w0 (x+ sℓ) ≡ w0 (x) , s = ±1,±2, . . . (7)

Using the representation (6) and (7) it is required to find w0 (x) at the interval [0, ℓ] .
Considering w(x, α) at x = 0 and x = ℓ, and using the equality w (0, α) = w0 (0) we will
have

w (ℓ, α) = w0 (ℓ) e
iαℓ = w0 (0) e

iαℓ = w (0, α) eiαℓ . (8)

In a similar way we obtain

(
dsw

dxs
(ℓ, α)

)±

=

(
dsw

dxs
(0, α)

)±

eiαℓ , s = 0, 1, 2, . . . , α ∈ [ 0, 2π/ℓ ] . (9)

Thus the multipoint periodic spectral problem (4),(5) is reduces to the eigenvalue
problem formulated on the interval [0, ℓ] :

d4w

dx4
+ λ

d2w

dx2
= 0, 0 < x < ℓ , (10)

w (ℓ, α) = w (0, α) eiαℓ ,
dw

dx
(ℓ, α) =

dw

dx
(0, α) eiαℓ , (11)

d2w

dx2
(ℓ, α) =

d2w

dx2
(0, α) eiαℓ , 0 ≤ αℓ ≤ 2π , (12)

d3w

dx3
(ℓ, α) = eiαℓ

[
d3w

dx3
(0, α)− κw (0, α)

]
. (13)

In the case of absolutely rigid supports we have κ = ∞, and the condition (13) is excluded
from the consideration. It is seen from the presented formulation (10) – (13) that the
values of λ and w depend continously on α in the interval α ∈ [ 0, 2π/ℓ ], i.e.

λ = λ (α) , w = w (x, α) . (14)

Note also the following variational formulation corresponding to the spectral problem
(10) – (13). It is required to find a minimal value

λ (α) = min
w,w∗

´ ℓ

0

d2w

dx2
(x, α)

d2w∗

dx2
(x, α) dx+ κw (0, α)w∗ (0, α)

´ ℓ

0

dw

dx
(x, α)

dw∗

dx
(x, α) dx

(15)

under the constraints

w = w (x, α) ∈ Λ , w∗ = w∗ (x, α) ∈ Λ∗ , (16)

where Λ and Λ∗ are sets of admissible functions satisfying, respectively boundary condi-
tions (11) – (13) for w and complex conjugate boundary conditions for w∗.

In the limiting case of absolutely rigid supports, when κ = ∞, the corresponding
boundary conditions take the form

w (0, α) = w (ℓ, α) = 0 ,
dw

dx
(ℓ, α) =

dw

dx
(0, α) eiαℓ , (17)

5



d2w

dx2
(ℓ, α) =

d2w

dx2
(0, α) eiαℓ , 0 ≤ αℓ ≤ 2π .

In this case the variational formulation (15), (16) is reduced to the minimization

λ (α) = min
w,w∗

´ ℓ

0

d2w

dx2
(x, α)

d2w∗

dx2
(x, α) dx

´ ℓ

0

dw

dx
(x, α)

dw

dx

∗

(x, α) dx

(18)

under constraints that w (x, α) and w∗ (x, α) satisfy, respectively, boundary conditions
(17) for w and complex conjugate boundary conditions for w∗.

It follows from the considered formulation (10) – (13) that for each real eigenvalue
λ = λ (α), beside the eigenfunction w (x, α) also the complex conjugate function w∗

satisfies the differential equation. The boundary condition for w∗ are derived by passing
on to complex conjugate values in (11) – (13). Taking into account that

e−iαℓ = ei2πe−iαℓ = ei(
2π/ℓ−α)ℓ , (19)

we obtain
w∗ (x, α) = w (x, 2π/ℓ − α) . (20)

Thus, for α = π/ℓ we have
w∗ (x, π/ℓ) = w (x, π/ℓ) , (21)

and in this case w (x, π/ℓ) is a real solution.
Let us use the property (20) and the variational representation (15) for λ (2π/ℓ − α),

and pass from the functions w (x, 2π/ℓ − α) to the functions w (x, α) in the integrands. As
a result we will have the equality

λ (α) = λ (2π/ℓ − α) , (22)

and that the following two functions

w (x, α) , w∗ (x, α) = w (x, 2π/ℓ − α) (23)

correspond to one and the same eigenvalue λ = λ (α).
Thus, in the case when α 6= π/ℓ, the eigenvalues are double. Taking into account that

the differential equation (10) is invariant with respect to the operation x → ℓ − x, and
introducing the notation

w̃ (x, α) = w (ℓ− x, α) , (24)

we obtain that the functions w̃ (x, α) and w (x, α) satisfy the differential equation for one
and the same eigenvalue λ (α) . In addition the boundary conditions for the functions
w̃ (x, α) correspond to α̃ = 2π/ℓ − α, and according to (22), (23) we will have w̃ (x, α) ≡
w∗ (x, α). As a result we obtain

w (ℓ− x, α) ≡ w∗ (x, α) , 0 ≤ x ≤ ℓ, 0 ≤ αℓ < 2π . (25)

Consequently the complete analysis can be restricted to the interval 0 ≤ α ≤ π/ℓ.
Taking into account the condition (25) and performing double integration we represent

the equation (4) in the form

λw +
d2w

dx2
= 2iD1

(
x− ℓ

2

)
+D2 , 0 < x < ℓ . (26)

Here D1, D2 are unknown real constants of integration.
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Instability analysis

Let us use the following dimensionless variables

x̃ =
x

ℓ
, λ̃ = ℓ2λ, κ̃ = κℓ3 =

kℓ3

EI
. (27)

In these dimensionless variables we will have

λ (2π − α) = λ (α) , w (x, 2π − α) = w∗ (x, α) , (28)

and the boundary value problem (10) – (13) is written as

d4w

dx4
+ λ

d2w

dx2
= 0 , 0 < x < 1 , (29)

(w)x=1 = eiα (w)x=0 ,

(
dw

dx

)

x=1

= eiα
(
dw

dx

)

x=0

,

(
d2w

dx2

)

x=1

= eiα
(
d2w

dx2

)

x=0

, (30)

(
d3w

dx3

)

x=1

= eiα
((

d3w

dx3

)

x=0

+ κ (w)x=0

)
, 0 ≤ α ≤ π . (31)

Here and in what follows the tilde is omitted. General solutions of (29) have the form

w = C1 cos
(√

λx
)
+ C2 sin

(√
λx
)
+ C3x+ C4 , (32)

where the eigenvalue λ and the arbitrary constants C1, C2, C3, C4 are determined with
the help of the boundary conditions (30), (31).

Let us analyse separately the solutions of the considered problem in the cases of elastic
supports and absolute rigid supports. In the case of rigid supports, κ = ∞, and the
boundary conditions are written as

(w)x=0 = (w)x=1 = 0 , 0 ≤ α ≤ π , (33)

(
dw

dx

)

x=1

= eiα
(
dw

dx

)

x=0

,

(
d2w

dx2

)

x=1

= eiα
(
d2w

dx2

)

x=0

.

Using the general solution (32) and the boundary conditions (33) we will obtain the
following transcendental equation:

cosλ = ϕ (λ) , ϕ (λ) ≡
√
λ cos

√
λ− sin

√
λ√

λ− sin
√
λ

, 0 ≤ α ≤ π , (34)

for finding the eigenvalues in the case of rigid supports. The eigenvalues are determined
taking into account the condition −1 ≤ cosα ≤ 1, and consequently, the eigenvalues fill
the continuous interval with the boundaries corresponding to the conditions cosα = ±1.

The function ϕ (λ) tends to −2 (i.e. ϕ (λ) → −2) when λ tends to zero (λ → 0),
and consequently, the lower bound of the spectrum is determined with the help of the
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equation cosα = −1, which corresponds to α = π. Then the equation (34) is reduced to
the following equations:

cos

(√
λ

2

)
= 0, tan

(√
λ

2

)
=

√
λ

2
. (35)

The solution of the first equation in (35),

λk = π2 (1 + 2k)2 , k = 0, 1, 2, ... (36)

determines the lower bound of the continuous spectrum, when α = π. The values λk =
π2 (1 + 2k)2 are simple eigenvalues, and the corresponding eigenfunctions

wk (x, π) = C sin [(1 + 2k) πx] , 0 ≤ x ≤ 1 , (37)

are even with respect to the midpoint of the interval [0, 1] . Note here that the presented
eigenvalues and eigenfunctions correspond to the solution of the stability problem for the
simply supported beam.

Consider the case of elastic supports, in which case κ 6= ∞. In this case we will
use general solution (32) and boundary conditions (30),(31) to find unknown constants
C1,C2,C3,C4. Substituting (32) into (30), (31) we derive a homogeneous system of equations
with respect to the arbitrary constants C1,C2,C3,C4. To obtain a nontrivial solution of this
system, we require that its determinant ψ (λ, κ, α) become zero. Thus we arrive at the
following equation to determine λ = λ (κ, α):

ψ (λ,κ, α) = 0 , (38)

where

ψ (λ,κ, α) ≡ (39)

κ√
λ3

(
cos

√
λ− cosα

)
+

(1− cosα)√
λ

[
2
(
cosα− cos

√
λ
)
− κ sin

√
λ√

λ3

]
.

For a fixed value of κ (the stiffness of the supports) the loss of elastic stability of the
beam occurs when the eigenvalue λ(κ, α) achieves a minimum value, i.e.

λ∗ = min
α
λ (κ, α) , 0 ≤ α ≤ π . (40)

Thus the critical values λ = λ∗ are found with the help of the equations

ψ (λ,κ, α) = 0 ,
∂ψ (λ,κ, α)

∂α
= 0 , (41)

and the supposition
∂ψ (λ,κ, α)

∂λ
6= 0 . (42)

Using the expression (39) for ψ (λ,κ, α) we write the second equation in (41) as

∂ψ (λ,κ, α)

∂α
=

sinα√
λ

[
4 cosα− 2

(
1 + cos

√
λ
)
+

κ

λ

(
1− sin

√
λ√

λ

)]
= 0 . (43)
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This equation satisfied either when α = 0 or α = π (i.e. sinα = 0), or when the expression
in square brackets vanishes, i.e.

cosα =
1

2

(
1 + cos

√
λ
)
− κ

4λ

(
1− sin

√
λ√

λ

)
. (44)

Let us investigate all three cases. First, if α = 0, then the system of equations is
reduced to a single equation

ψ (λ,κ, 0) =
κ√
λ3

(
cos

√
λ− 1

)
= 0 . (45)

This equation has double roots λj = 4j2π2, (j = 1, 2, ...), and corresponding two-
parametric eigenmodes

wj = C1j cos 2jπx+ C2j sin 2jπx .

The minimal eigenvalue λ1 = 4π2 determines the upper bound of the first band of the
continuous distribution of eigenvalues in the problem of elastic instability of the beam
with rigid supports (κ = ∞).

Next, consider the case α = π. The system of equations (41) is reduced to the equation

ψ (λ,κ, π) =
κ

(
1 + cos

√
λ
)

√
λ3

− 2√
λ

[
2
(
1 + cos

√
λ
)
+

κ sin
√
λ√

λ3

]
= 0 , (46)

which can be written as
[

κ

λ
√
λ

(
cos

√
λ

2
− 2√

λ
sin

√
λ

2

)
− 4√

λ
cos

√
λ

2

]
cos

√
λ

2
= 0 . (47)

The first set of solutions of the equation (47) is given by cos(
√
λ/2 ) = 0, and is written

as λj = (2j + 1)2 π2, j = 0, 1, 2, .... This set of solutions does not depend on the rigidities
of the elastic supports. The second set of solutions of the equation (47) is obtained if we
assume that cos(

√
λ/2 ) 6= 0, and the expression in square brackets in (47) is equal to

zero. For these solutions we have

κ =
4λ

1− 2√
λ
tan

(√
λ

2

) . (48)

Since λ ≥ 0 and κ ≥ 0, then (as follows from the equation (48)) the admissible values
of λ satisfy the inequality tan(

√
λ/2 ) ≤ 0. From here we derive the following estimates

for the minimal admissible λ: it must hold that π/2 ≤
√
λ/2 ≤ 3π/2. Consequently we

will have λ ≥ π2 for the minimal values of λ. Since these values exceed the value which
corresponds to the beam of unlimited length with rigid supports, we exclude this case
from the consequent analysis.

Finally, consider now the system (41) assuming that α 6= 0 and α 6= π. In this case,
as it was noted before, the equation (43) will be fulfilled if (44) is satisfied. Substituting
(44) into (38), we derive a nonlinear equation for finding λ as a function of κ :

p21 −
p1
λ
(1 + p3)κ +

1

4λ2
(1− p3)κ

2 = 0 . (49)
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Here and in what follows we will use, for brevity, the notations

p1 = 1− cos
√
λ, p2 = 1 + cos

√
λ, p3 =

sin
√
λ√

λ
, z =

κ

2λ
(1− p3) ≥ 0 . (50)

This equation is solved under the constraint
∣∣∣∣
1

2
p2 −

κ

4λ
(1− p3)

∣∣∣∣ ≤ 1 , (51)

which is a consequence of the inequality −1 ≤ cosα ≤ 1 and the representation (44) for
cosα.

The equation (49) and the constraint (51) can be transformed to the following form:

z2 − 2p1 (1 + p3)

1− p3
z + p21 = 0 , (52)

0 ≤ z ≤ χ (λ) ≡ 2 + p2 . (53)

Consider the two solutions z1 and z2 of the equation (52),

z1 =
p1
(
1 +

√
p3
)

1−√
p3

, z2 =
p1
(
1−√

p3
)

1 +
√
p3

, (54)

on the interval λ ∈ [0, π2]. Only the solution z2 satisfies the inequality (53).
For the solution z1, we observe z1 (λ = 0) = 12, z1 (λ = π2) = 2, and that z1 (λ) is

a monotonically decreasing function in the interval λ ∈ [0, π2]. Hence the inequality
(53) cannot be satisfied in this interval for the solution z1 (λ). The functions z1 (λ) and
χ (λ) = 2 + p2 = 3 + cos

√
λ (where p2 is defined in (50)) are shown in Figure 2.

Taking into account the definition (50) for z, and the expression (54) for the admissible
solution z2, we obtain

p1
(
1−√

p3
)

(
1 +

√
p3
) =

κ (1− p3)

2λ
.

Performing simplifications we can rewrite this the following form, solved with respect to
κ:

κ =
2λp1(

1 +
√
p3
)2 = 2λ

(
1− cos

√
λ
)

1 +

√
sin

√
λ√

λ




−2

. (55)

Because the support stiffness parameter κ is a real number, we see from (55) that p3 must
be positive. The requirement of positiveness of p3 is reduced to the condition sin

√
λ ≥ 0,

and consequently we obtain the following intervals of admissible eigenvalues:

4j2π2 ≤ λj ≤ (2j + 1)2 π2 , j = 0, 1, 2, ... (56)

The loss of stability of moving continuous beam of unlimited length is realised for the
minimal values of critical velocity, and thus the corresponding eigenvalues belong to the
interval

0 < λ ≤ π2 . (57)

It is important to note that in accordance with the relation (55), we have κ = κ∗ = 4π2

for λ = λ∗ = π2. As it is seen from (57), the value λ∗ = π2 is a maximal possible value.

10



Figure 2. The solution z1 (λ), defined in equation (54), and the auxiliary function χ (λ) = 3 + cos
√
λ,

from equation (53), are represented.
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Figure 3. The dependence of the critical eigenvalue λ on the elastic support rigidity parameter κ, obtained
in accordance with the exact relation (55) and the asymptotic formula (58).

Taking into account the variational formulation of the considered spectral problem, we
note that λ (κ) is a monotonically increasing function (i.e. dλ(κ)/dκ ≥ 0). Consequently,
the critical eigenvalue λ must remain the same when κ ≥ κ∗. On the other hand, for
absolutely rigid supports, κ = ∞. Thus the infinite moving beam with elastic supports
loses stability in the same manner as the moving beam with rigid supports, when it holds
that κ ≥ κ∗. This means, in particular, that the instability of the moving beam with
elastic supports is characterised by zero transverse (vertical) displacements at the points
of elastic supports when κ ≥ κ∗ = 4π2, as also takes place in the case of absolutely rigid
supports with κ = ∞.

The basic relation (55) between κ and λ can be simplified and written in an asymptotic
manner. For small elastic support rigidities (κ ≪ 1) we have λ ≪ 1, and the following
asymptotic formula holds:

λ(κ) =
√
4κ , κ ≪ 1 . (58)

The dependence of the critical eigenvalue λ on the rigidity parameter κ, obtained in
accordance with the exact relation (55) and the asymptotic formula (58), are shown in
Figure 3. The figure illustrates good precision of the asymptotic formula (58) in the
interval 0 < κ ≤ 10.

The dependence of the minimal eigenvalue λ on the parameter α ∈ [0, π] is shown
in Figure 4 for some fixed values of the rigidity parameter κ. The critical values of the
parameter α = α∗ correspond to the minimal values of λ = λ∗. Comparing the locations

12



Figure 4. The dependence of the minimal eigenvalue λ on the parameter α ∈ [0, π] for some fixed values
of the elastic support rigidity parameter κ.

of the minima in Figure 4, it is observed that α∗ is a monotonically increasing function
of κ.

Conclusions

The loss of stability of the moving web, modelled as an elastic beam (panel) of unlimited
length, and travelling between an infinite system of rollers (elastic supports) at a constant
velocity, was investigated. Transverse elastic displacements of the web were described by
a fourth order differential equation that included the centrifugal force, in-plane tension
(axial tension), bending term and elastic support reaction.

The stability of the beam was investigated with the help of analysis of small peri-
odic transverse displacements. The studies performed were mainly based on analytical
approaches. In this connection the multipoint spectral stability problem for the beam
of unlimited length, with an infinite system of elastic supports, was formulated for the
periodic interval, and Floquet’s representation of solution was used. As a result, the basic
relations characterizing the behaviour of the web at the onset of instability were found in
an analytical form.

The critical velocity, that corresponds to the onset of instability in the form of di-
vergence (buckling), was estimated in the frame of the performed spectral analysis. The
obtained dependence of critical velocity on the support rigidity parameter κ was anal-
ysed, and in particular, it was shown that the instability of the moving beam with elas-

13



tic supports coincides with the instability of the same beam with absolutely rigid sup-
ports (having κ = ∞), when the rigidity of the elastic supports exceeds a critical value,
κ ≥ κ∗ = 4π2.
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Banichuk, N., Jeronen, J., Neittaanmäki, P., and Tuovinen, T. (2010a). On the instability of
an axially moving elastic plate. International Journal of Solids and Structures, 47(1):91–99.
http://dx.doi.org/10.1016/j.ijsolstr.2009.09.020
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