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On the solution of non-linear diffusion equation

Reijo Kouhia

Summary. Solution of the diffusion equation is usually performed with the finite element
discretization for the spatial elliptic part of the equation and the time dependency is integrated
via some difference scheme, often the trapezoidal rule (Crank-Nicolson) or the unconditionally
stable semi-implicit two-step algorithm of Lees. A common procedure is to use Picard’s iteration
with the trapezoidal rule. However, in highly non-linear problems the convergence of Picard’s
iteration is untolerably slow. A simple remedy is to use consistent linearization and Newton’s
method. For a certain class of non-linear constitutive models the consistent Jacobian matrix
is unsymmetric. This paper discusses the use of the symmetric part of the Jacobian matrix
and a combined Newton-type iteration scheme. Numerical results of highly non-linear diffusion
problems are shown. Also a note concerning temporal discretization is given.

Key words: non-linear diffusion equation, finite elements, Newton’s method

Introduction

Many diffusive phenomena are governed by the balance equation

−∇ · q+ s = cu̇, (1)

where q is the flux vector, which is related to the gradient of the quantity u by the
constitutive law

q = −D(u,g)g, g = ∇u. (2)

Time derivatives are indicated by superimposed dots (∂u/∂t = u̇). Equations (1) and (2)
form a system which can be used to describe many diffusive physical phenomena, e.g. heat
conduction, seepage flow, electric fields and frictionless incompressible irrotational flow.
In the case of heat conduction u stands for temperature and s, c,q are the heat source,
the heat capacity and the heat flux, respectively. In certain applications the source term s
can depend on the solution u and the resulting equation is known as the diffusion-reaction
equation.

In the case of heat transfer the boundary conditions can be either prescribed temper-
ature

u = uS, on the boundary part Su, (3)

specified heat flux
q · n = −qS, on the boundary part Sq, (4)

a convection boundary condition

q · n = h(u− uex), on the boundary part Sc, (5)
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or a radiation boundary condition

q · n = σεu4 − βqr, on the boundary part Sr, (6)

where h is the convection coefficient, uex convective exchange temperature, σ the Stefan-
Bolzmann constant, ε the surface emission coefficient, β the surface absorption coefficient,
and qr the incident radiant heat flow per unit surface are, respectively. For transient
problems also an initial temperature field should be specified.

After finite element semidiscretization, the balance equation (1) takes the form

Cu̇ = f(t,u), (7)

in which C is the Gram matrix − in heat transfer analysis the capacitance matrix − and
f denotes the unbalance between the given source s and the internal nodal ‘fluxes’ r, i.e.

f = s− r. (8)

The Gram matrix, the internal nodal flux and the source vectors are computed from the
element contributions

Ce =

∫

V e

cNTN dV , r(e) =

∫

V (e)

BTq dV , s(e) =

∫

V (e)

NT s dV , (9)

where B is the matrix of discretized gradient operator and N is the row matrix containing
the finite element interpolation functions. In rectangular Cartesian coordinate system the
discrete gradient matrix has the form

B =





N,x

N,y

N,z



 . (10)

Further details in the finite element solution of diffusion equation can be found in the
excellent textbooks [17, 26].

If the temporal discretization is performed by the one-step one-parameter method

un+α = (1− α)un + αun+1, (11)

and the time derivative u̇n+α is approximated as

u̇n+α ≈
un+1 − un

∆t
, (12)

then from (7) the fully discretized equation system is obtained

1

α∆t
C (un+α − un)− f(tn+α,un+α) = 0. (13)

This one-parameter family of methods comprises both the common implicit backward
Euler (α = 1) and Crank-Nicolson (trapezoidal rule) (α = 1

2
) methods. It is well known

that the trapezoidal rule is unconditionally stable only for linear autonomous systems.
However, the midpoint version of the trapezoidal rule is unconditionally stable, as shown
by Gourlay [11] and Hughes [12]. It is also the only one of this family which is second
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order accurate. In linear autonomous cases the midpoint scheme is identical with the
standard trapezoidal rule.

The trapezoidal rule has no algorithmic damping. This produces spurious oscillations
if the data is not smooth. A simple remedy for suppressing these oscillations is to use
for the few first steps the implicit backward Euler scheme and then switch to the second
order accurate midpoint rule [19, 25]. This has no effect on the long term accuracy.

In order to solve the non-linear equation system (13) a Newton-type linearization
step is utilized and the resulting equation, at a certain step n + 1 and iteration i, is the
following:

(

1

α∆t
Ci +Ki

)

δui+1 = f(tn+α,u
i
n+α)−

1

α∆t
Ci∆ui, (14)

where

Ki = −
∂f

∂u

∣

∣

∣

∣

u
i

n+α

(15)

is the Jacobian matrix1, and the iterative and incremental steps are defined by

δui+1 = ui+1
n+α − ui

n+α, ∆ui = ui
n+α − un, thus ui+1

n+α = un +∆ui + δui+1. (16)

The Jacobian matrix consists of several parts:

Ki = Ki
0 +Ki

u +Ki
g +Ki

s +Ki
r, (17)

where K0 is the linear part, Ku and Kg come from the u and g dependencies of the
constitutive equation (2), Kr from the non-linear radiation boundary condition and Ks

from the u dependent source term. They are assembled from the element matrices

K
(e)
0

i
=

∫

V (e)

BTDiB dV , Di = D(ui,gi), (18)

K(e)
u

i
=

∫

V (e)

BTGi dV , Gi =

(

∂D

∂u

∣

∣

∣

∣

ui,gi

)

giN, (19)

K(e)
g

i
=

∫

V (e)

BTDi
gB dV , Di

g =

(

∂D

∂g

∣

∣

∣

∣

ui,gi

)

gi, (20)

K(e)
s

i
=

∫

V (e)

∂s̄

∂u
NTN dV , (21)

K(e)
r

i
=

∫

Sr(e)

C i
rN

TN dS, (22)

where Cr is a temperature dependent term containing the radiation and emission coef-
ficients of the radiating surface. All matrices, except Ku, are symmetric. Dependency
of the constitutive matrix D on u is common in many physical problems. However, the
unsymmetric part is usually neglected in the solution of equation (14), which causes con-
vergence problems in highly non-linear cases.

Consequenses of the loss of symmetry seems to be purely practical. Memory re-
quirements will double and are thus very high for large three dimensional computations,
especially if a direct linear equation solver is used. Also iterative solvers for unsymmet-
ric linear equations are not as robust as symmetric ones, even though a lot of effort to
increase their reliability has been paid during the last decades [28, 21, 29].

1It is also called as a tangent matrix, however, it is a true tangent only at the solution point.
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Since the unsymmetric part of the Jacobian matrix resembles the convective part of
the coefficient matrix in the diffusion-convection equation, one would expect numerical
instabilities if standard finite-element approximation is used. However, numerical oscilla-
tions were not observed in the numerical experiments. Additional discussion can also be
found in the section on numerical examples.

In this paper standard Galerkin finite element technique is used. Good introduction
to the selection of optimal weighting functions can be found in Refs. [6, 7]. An interesting
recent Hybrid-Trefftz finite element method for the thermal analysis of functionaly graded
materials is given in Ref. [8]. Weak Galerkin finite element method is considered in Ref.
[18].

In order to avoid the use of an unsymmetric iteration matrix some modified iteration
schemes are studied. First, quasi-Newton techniques are shortly described. Secondly,
a possible iteration scheme for the solution of the unsymmetric linear equation system
is described. It utilizes the Neumann series and element by element type matrix-vector
multiplication of the unsymmetric part of the Jacobian matrix. Finally, a combined
Newton iteration process is described.

Quasi-Newton techniques

Basic properties

A class of inexact Newton algorithms called quasi-Newton (or variable metric, variance,
secant, update or modification methods) have been developed in order to speed up the
convergence of the modified Newton method2 and which could be more efficient than the
true Newton-Raphson scheme. The basic idea of these methods is to develope an update
formula of the Jacobian matrix, i.e. a good approximation, in such a way which avoids
the reforming and factorization of the global matrix.

In order to simplify the notation some abbreviations are introduced. Equation (14)
can be written concisely in the following form:

Hi
δui+1 = f̃ , (23)

where

Hi =
1

α∆t
Ci +Ki, f̃ = f(tn+α,u

i
n+α)−

1

α∆t
Ci∆ui. (24)

In the following the tilde over the effective unbalanced nodal flux vector is omitted. The
basic requirement for the approximation H̃i+1 is to satisfy the secant relationship or quasi-
Newton equation

f(ui+1) = f(ui)− H̃i+1(ui+1 − ui), (25)

written in a concise form

H̃i+1
δui+1 = δf i+1 or in the inverse form Ãi+1

δf i+1 = δui+1, (26)

where3

δui+1 = ui+1 − ui, δf i+1 = f i − f i+1, Ãi+1 = (H̃i+1)−1. (27)

In one dimensional space the secant equation defines the update - which is a scalar
- uniquely. However, for multidimenisonal problems additional requirements have to be

2In the modified Newton method the Jacobian matrix is kept constant for the whole step.
3Notice the difference in definition of δu and δf .
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imposed. A reasonable requirement is, that the updated matrix H̃i is close to the previous
matrix Hi−1. This nearness is measured by matrix norms, and usually, in connection to
quasi-Newton updates, the Frobenius norm or its weighted form are often used. It is also
desirable that the updated matrix should inherit some properties which are characteristic
to the system. In finite element applications such properties usually are symmetry and
positive definiteness of the Jacobian matrix. So, the update H̃i (or Ã) should also satisfy:

if Hi = (Hi)T then H̃i+1 = (H̃i+1)T (28)

if xTHix > 0 then xT H̃i+1x > 0, ∀x 6= 0. (29)

However, it should be remembered that the new iterative change δui+1 has to be easily
and cost effectively computed, otherwise the benefit of this kind of update is lost since the
price which is paid for omitting the full Newton step is the degradation of the convergence
rate. An excellent review on quasi-Newton techniques is written by Dennis and Moré [5].

The quasi-Newton techniques are closely related to the conjugate-Newton methods,
see Refs. [1, 13, 22]. Applications of quasi-Newton strategies to structural and fluid flow
problems can be found in Refs. [20, 9, 10, 15, 16].

Rank-one update

A single rank update to the Jacobian matrix is a correction of the form

H̃ = H+ αŷẑT or Ã = A+ βq̂v̂T (30)

where the unit vectors ŷ, ẑ (or q̂, v̂) and the scalar α (or β) are to be determined. Substi-
tuting this expression into the quasi-Newton equation (25) and minimizing the difference
between the update and the previous matrix, gives the Broyden update formula [3]:

H̃ = H+
(δf −Hδu)δuT

δuT
δu

or Ã = A+
(δu−Aδf)δfTA

δfTAδf
. (31)

Broyden’s update formula does not have the property of hereditary symmetry and
positive definiteness. However, it is interesting to note, that a symmetric rank one update
is obtained from (30) by choosing z = y = δf −Hδu (or q = v = δu−Aδf). Obviously
in this case the closeness property is not satisfied.

The update (31) is not performing as well as symmetric rank two updates when the
system possesses the symmetry property. However, it can be succesfully used in non-
linear diffusion problems where the coeffcients c and D depend on u, thus producing
unsymmetric Jacobian matrix.

Rank-two corrections

A symmetric correction of rank at most two can be written in a basic form [2]

H̃ = H+ ssT − ttT or Ã = A+ yyT − zzT (32)

and that particular form is also expressible in a symmetric product form

H̃ = (I+ qvT )H(I+ qvT )T or Ã = (I+wpT )A(I+wpT )T (33)

only if the determinant of H̃ or Ã is positive.
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Two most well known rank-two corrections are the Davidon-Fletcher-Powell (DFP) and
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) updates. These complementary formulas
preserve symmetry and positive definiteness of the Jacobian matrix. These formulas are:

ÃBFGS = A+
δu(δu−Aδf)T + (δu−Aδf)δuT

δuT
δf

−
(δu−Aδf)Tδf

(δuT
δf)2

δuδuT , (34)

H̃BFGS = H+
δfδfT

δfTδu
−

HδuδuTH

δuTHδu
. (35)

The DFP and BFGS update formulas are related to each other by the duality transfor-
mations [5]

δq←→ δf , H←→ A = H−1, H̃←→ Ã = H̃−1. (36)

An alternative form of the BFGS update formula is

ÃBFGS = (I−
δuδfT

δuT
δf

)A(I−
δfδuT

δuT
δf

) +
δuδuT

δuT
δf

. (37)

For detailed derivation of these equations, see Ref. [5]. The inverse update form (37) or
its product form (33) are usually used in the finite element applications. There are simple
recursion formulas to compute the iterative change in both cases.

Additive decomposition

The additively decomposed Jacobian matrix (17) can be shortly denoted as

K = S+U = S(I− E), E = −S−1U, (38)

where S is the symmetrix part and U = Ku the unsymmetric part (18b). Solution of the
linear equation system Kx = f can be formally written as

x = K−1f = (I− E)−1S−1f = (I+
∞
∑

k=1

Ek)S−1f

= S−1f +
∞
∑

k=1

(−S−1U)kS−1f

= ∆x0 +
∞
∑

k=1

∆xk, ∆xk = (−S−1U)∆xk−1. (39)

Thus solving the unsymmetrix system is reduced to a sequence of solutions of the sym-
metric equation system. In this iteration process the unsymmetric part of the Jacobian
matrix need not to be assembled, the multiplication U∆x can be performed on the ele-
ment level. It is clear that this approach is only feasible if a direct linear equation solver
is used.

Convergence of the iterative process (39) is assured if

‖E‖ < 1, (40)

where ‖ · ‖ denotes matrix norm. This condition is, however, too restrictive in practical
computations. If, for instance, an unsymmetric equation system emanating from a linear
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diffusion-convection problem, is solved using the scheme (39), the convergence criterion
(40) is met in problems where the Péclet number is of order unity. See also Eqs. (49),(50)
in the section on numerical examples.

Nevertheless, it could be argued that few steps of the iteration (39) could be used in the
non-linear case to speed up the convergence of the Newton process with an inconsistent
symmetric Jacobian.

Composite Newton iteration

High-order iterative processes can be generated by the composition of two low-order pro-
cesses. For instance, each Newton step can be combined with m simplified Newton steps
[24]

ui,k = ui,k−1 + (H)−1
f i,k−1, k = 1, ...,m+ 1, (41)

ui+1 = ui,m+1

giving convergence of order m+2. It is also called the Shamanskii method [14]. Optimal
choices of m are problem dependent and affected from the computational cost ratio be-
tween forming of the Jacobian matrix and of the residual vector. If the cost of updating
the tangent matrix is high, the Shamanskii method is worthwhile. Numerical experiments
show that the number of simplified Newton steps should be variable and usually increasing
along the iteration number, e.g. like m = i where i is the number of a corrector iteration.

However, m should have some upper limit for practical purposes. In this study m is
limited to three.

Numerical examples

Stationary cases

One-dimensional form of a stationary diffusion problem is the following

[−D(u, u′)u′]
′

= s, u(0) = u0, u(L) = uL, (42)

where the prime denotes the differentiation with respect to the spatial coordinate. Two
different non-linear diffusive constitutive models are tested:

D(u′) =
D0

1 + aLu′/ur

, (43)

D(u) = D0 exp(bu/ur), (44)

where D0 and ur are reference diffusivity and reference value for u and a, b are dimen-
sionless constants characterizing the non-linearity of the constitutive model. Boundary
conditions and source terms corresponding to the constitutive models (43) and (44) are

u0 = 0, uL = 0, s = λurD0L
−2, (45)

u0 = 0, uL = λur, s = 0, (46)

where the dimensionless quantity λ acts as the loading parameter.
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Figure 1. Solution profiles of the Rheinboldt’s example.

Analytical solutions can be easily integrated for these problems, and the results are

u(x)

ur

=
1

λa2
ln
[

(exp(λa)− 1)
x

L
+ 1
]

−
1

a

x

L
, (47)

u(x)

ur

=
1

b
ln
[

1 + (exp(λb)− 1)
x

L

]

. (48)

For growing value of the loading parameter λ solutions (47) and (48) exhibit sharp bound-
ary leyers near x = 0.

The first example is due to Rheinboldt [27] and the solution is shown in Fig. 1 for
values λ = 1, 2, . . . , 5. Since the flux in this example depends only on the gradient of u,
the consistent Jacobian matrix is symmetric. Therefore, from the quasi-Newton family
only the symmetric rank-two BFGS update formula is tested.

Convergence plots are shown in Fig. 2. In the computations the value of a = 1
and the increment size ∆λ = 0.5 have been used. It can be seen from the figures,
that omission of the gradient dependent term Kg from the stiffness matrix causes severe
convergence problems, which cannot be overcome by using the BFGS update scheme. It
is also worth noticing that the convergence rate of the Newton’s method with inconsistent
Jacobian downgrades from quadratic to linear, i.e. as in the case of the simplified Newton-
Raphson scheme. Convergence behaviour of the Newton’s iteration is unaffected from the
discretizations used.

The example case with the exponential diffusivity is demanding. Both uniform and ge-
ometrically graded meshes with 10, 30 and 100 linear elements, or 5, 15 and 50 quadratic
elements or 3, 10 and 33 cubic elements have been used in the computations. The maxi-
mum step-size which can be used in this example is ∆u0 = ur which can be used with the
true Newton’s method with consistent Jacobian matrix.4 As in the previous example the
Broyden’s quasi-Newton strategy is not successfull if the inconsistent Jacobian matrix is
used. In figure 4 convergence behaviour is shown for four different strategies: true New-
ton and the Shamanski’s higher order Newton with variable m (limited to m ≤ 3) and

4As usual in the non-linear incremental solution procedure the starting solution for the Newton’s
iteration is chosen to be the last known equilibrium solution.
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(a) Iteration history (b) Convergence at increment 2

Figure 2. Rheinboldt’s example: convergence plots, CT=consistent Jacobian (tangent) matrix,
IT=inconsistent Jacobian matrix (Kg omitted).

started after the first corrector iteration, thus abbreviated as NR-3,1. Methods are tested
with both consistent and inconsistent Jacobian matrix. It is observed that the MR-3,1-
method is converging rapidly and it is more efficient than the full Newton’s method when
consistent Jacobian is used. Surprisingly it is also rather fastly converging if inconsistent
tangent is used i.e. when Ku is missing.

The iteration procedure using the additive decomposition described in equation (39) is
not successful. Similarly to the diffusion-convection equation, based on the unsymmetric
part of the Jacobian matrix (19), a characteristic non-dimensional elementwise Péclet
number has the expression

Peh =

∂D

∂u
|∇u|h(e)

D
, (49)

where h(e) is a characteristic length of an element. For the constitutive model (44), the
result is

Peh = b

(

|∆u(e)|

ur

)

, (50)

where ∆u(e) is the maximum nodal difference in u for an element. Therefore the condition
(40) is not satisfied in the boundary layer of (48).

There is influence of the discretization to the convergence behaviour of the finite
element solution. A boundary layer has a pollution effect which is clearly seen in Figs.
5 and 6. If a geometrically graded mesh is used the discretization error is more uniform
with respect to the loading parameter λ.

The example with the constitutive model (44) is also computed in 2-dimensional do-
main Ω = (0, L) × (0, L). At boundaries x = L and y = L temperature is prescribed by
linear variation from zero to λur at (L,L). Analytical solution can be obtained by using a
transformation u = (ur/b) ln(1+v), giving a linear Poisson problem for v. Boundary con-
ditions for this transformed problem are the following: v(x, L) = exp(λx/L)−1, v(L, y) =
exp(λy/L)− 1, v(x, 0) = v(0, y) = 0. Solution for v is then

v =
∞
∑

i=1

cn

(

sinh
nπx

L
sin

nπy

L
+ sinh

nπy

L
sin

nπx

L

)

, (51)
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Figure 3. Solution profiles for the example with exponential diffusion coefficient.

(a) Iteration history (b) Convergence at increment 3

Figure 4. Iteration history and convergence at increment 3 of the 1-D model problem with exponential
diffusion coefficient.

(a) Linear elements (b) Quadratic elements (c) Cubic elements

Figure 5. Relative L2-norm error of temperature u of the 1-D model problem with exponential diffusion
coefficient, uniform meshes.
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(a) Linear elements (b) Quadratic elements (c) Cubic elements

Figure 6. Relative L2-norm error of temperature u of the 1-D model problem with exponential diffusion
coefficient, geometrically graded meshes.

Figure 7. Randomly distorted 30×30-mesh and contour plot of the temperature field at λ = 10.

where

cn =
2

nπ sinhnπ

[

1− (−1)n expλb

1 + (λb/nπ)2
+ (−1)n − 1

]

. (52)

Behaviour of this 2-D problem is similar to the 1-D counterpart. For growing λ bound-
ary layers emerge for all boundaries. Convergence of the Newton’s iteration with consis-
tent Jacobian is obtained in eight corrector iterations as for every step - stepsize ∆λ = 1
- as in the 1-D case. Mesh distortion do not affect the convergence when consistent Jaco-
bian is used, however, the discretization error is larger with distorted meshes. Distorted
mesh and the contour plot of temperature are shown in Fig. 7.

Transient examples

To demonstrate the effect of using a two-stage algorithm in order to damp the oscillations
in the Crank-Nicolson scheme the following time dependent problems have been solved.
The first one is a simple bar with temperature dependent isotropic material properties
[23]. Both the thermal conductivity and the heat capacity are assumed to vary according
to 1 + 1

2
(u/ur) (u in ◦C). All other surfaces except the surface x = 0 are insulated. The

initial temperature is u = 0◦C. The loading is a unit heat input through the surface
x = 0. The spatial domain is discretized in 15 four node bilinear or eight node reduced
biquadratic (serendipity) elements. Results are shown in Fig. 8, where the time step
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Figure 8. Temperature at the left end of the bar. (a) Numerical solution with bilinear elements and (b)
with reduced biquadratic elements. Solid line indicates the exact analytical solution.

∆t = 0.1 s has been used, reference time is tr = 1 s. Using the one step implicit Euler
method before switching to the midpoint rule inhibits the oscillations completely. It is
also seen that oscillations of the midpoint rule computations are more pronounced for
quadratic than for linear elements.

Cooling of a cube initially at constant unit temperature T0 = 1◦C and subjected to
zero surface temperature when t > 0 is considered next. The analytical solution of this
problem is given in Ref. [4] and finite element solutions e.g. in Ref. [30]. However, in their
FE-analyses different initial conditions are used, in which the initial temperature varies
from zero to one inside the outmost element layer. One octant has been discretized by
64 trilinear 8-node brick elements. Results are shown in Table 1. The time step has been
∆t = 0.0125 s. Clearly, the use of the one step backward Euler method prior the midpoit
rule does not inhibit oscillations completely as in the previous example.

Concluding remarks

Some Newton type iteration procedures have been tested for finite element solution of
non-linear diffusion equation. A common procedure to solve non-linear diffusion prob-
lems is to use Picard’s iteration. However, in highly non-linear problems the convergence
of Picard’s iteration is untolerably slow. A simple remedy is to use consistent lineariza-
tion and Newton’s method. For a certain class of non-linear constitutive models the
consistent Jacobian matrix is unsymmetric. Numerical results of highly non-linear dif-
fusion problems are shown and the convergence of the quasi-Newton updates has been
investigated. Numerical experiments showed that the use of the inconsistent symmetric
Jacobian with the proposed splitting strategy is not competitive. However, the higher-
order Newton method, also known as Shamanski’s method performed surprisingly well.
Also a simple procedure to supress harmfull oscillations due to the temporal discretization
by the midpoint or trapezoidal rules, originally introduced by Rannacher, is tested. It is
recommended to be used if the problem data is irregular.
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Table 1. Temperature at the center of the cube, 64 trilinear elements.

time exact MPR IE mixed (1) MPR (2)

0.0000 1.000000 1.00000 1.00000 1.00000 1.00000
0.0125 1.000000 1.00033 0.99999 0.99999 1.00065
0.0250 0.999954 0.99743 0.99948 0.99931 0.99420
0.0375 0.998436 1.00290 0.99578 1.00306 1.01160
0.0500 0.990637 1.01214 0.98343 1.00339 1.01268
0.0750 0.942211 0.97488 0.92748 0.95188 0.95661
0.1000 0.855496 0.88099 0.84041 0.85258 0.85355
0.2000 0.460657 0.45931 0.46261 0.44011 0.43851
0.3000 0.223432 0.21907 0.23037 0.20971 0.20884
0.4000 0.106825 0.10356 0.11286 0.09912 0.09870
0.5000 0.050973 0.04890 0.05514 0.04681 0.04661
1.0000 0.001259 0.00115 0.00153 0.00110 0.00109

(1) = First step with the implicit Euler method (IE) and the
following steps with the midpoint rule (MPR).
(2) = with different initial conditions, identical to the
results of Ref. [30].

Kiitokset

Jouni Freundille ja Eero-Matti Saloselle kommenteista.
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Mekaniikka. 19 (4) 1986, 15–51.

[16] R. Kouhia and M. Mikkola. Some aspects on efficient path-following. Comp.

Struct., 72, 1999, 509–524.

[17] R.W. Lewis, K. Morgan, H.R. Thomas, K. Seetharamu. The Finite Element

Method in Heat Transfer Analysis. Wiley, 1996.

[18] Q.H. Li and J. Wang. Weak Galerkin finite element methods for parabolic equa-
tions. Numerical Methods for Partial Differential Equations. 29 (2013) 6, 2004–2024.

[19] M. Luskin and R. Rannacher. On the smoothing property of the Crank-Nicolson
scheme. Applicable Analysis. 14 (1982/83) 2, 117-135.

[20] H. Matthies and G. Strang. The solution of nonlinear finite element equations.
Int. J. Numer. Meth. Engng, 14 (1979) 1613-1626

[21] G. Meurant. Computer solution of large linear systems. North-Holland, 1999.

[22] M. Papadrakakis and C.J.Gantes. Preconditioned conjugate- and secant-Newton
methods for non-linear problems. Int. J. Numer. Meth. Engng, 28 (1989) 1299-1316

[23] S. Orivuori. Efficient methods for solution of non-linear heat conduction problems.
Int. J. Numer. Meth. Engng, 14 (1979) 1461-1476

[24] J. Ortega and W.C. Rheinboldt. Iterative Solution of Nonlinear Equations in

Several Variables. Academic Press, 1970

129



[25] R. Rannacher. Finite element solution of diffusion problems with irregular data.
Numerische Mathematik. 43 (1984) 2, 309–327.

[26] J.N. Reddy, D.K. Gartling. The Finite Element Method in Heat Transfer and

Fluid Dynamics. CRC-press, Computational Mechanics and Applied Analysis series,
3th edition, 2010.

[27] W.C. Rheinboldt. Numerical Analysis of Parametrized Nonlinear Equations. John
Wiley, New York, 1986.

[28] Y. Saad. Iterative methods for sparse linear systems. PWS Publishing Company,
1996.

[29] H.A. van der Vorst. Iterative Krylov methods for large linear systems. Cambridge
University Press, 2003.

[30] O.C. Zienkiewicz and C.J. Parekh. Transient field problems: Two-dimensional
and three-dimensional analysis by isoparametric elements. Int. J. Numer. Meth.

Engng, 1 (1970) 61-71

Reijo Kouhia

Tampere University of Technology

Department of Engineering Design

P.O. Box 589, FI-33101 Tampere

Finland

reijo.kouhia@tut.fi

130


