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the time-dependent diffusion-advection-reaction 
equation  
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Summary. A new solution approach to the one-dimensional time-dependent diffusion-advection-
reaction equation using the time-discontinuous Galerkin method is presented. The standard weak form is 
sensitized by least squares type extra terms consisting of the field equation residual and of the 
differentiated field equation residual. In addition, the initial condition residual and its differentiated form 
are included with three sensitizing parameters. The logic for the determination of the optimal values for 
these parameters is the main theme of the article. The approximation in each space-time slab is simplest 
possible: constant in time and with two node linear elements in space. Reference solution according to the 
von Neumann type analysis is used in a patch test. The parameters are determined by demanding the 
algorithmic and the exact amplification factors to coincide as well as possible. High accuracy 
formulations are found to emerge. The Mathematica program is used extensively in the analytical 
manipulations needed. The pure diffusion, the pure advection, and the pure reaction cases are dealt with 
in some detail to see the resulting expressions in a simple setting.  

Key words: diffusion-advection-reaction equation, sensitized formulation, time-discontinuous Galerkin, 
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Introduction 

There exists a vast literature on numerical solution of diffusion-advection-reaction 
problems in general. In particular, textbooks [1] and [2] and the references in them may 
be mentioned. Further, e.g. the finite element articles [3] to [8] are close to the theme of 
the present article but represent alternative approaches. 

Diffusion-advection-reaction problems cover a large number of physical 
phenomena. Roughly, diffusion, advection and reaction are associated with second 
order, first order and zero order derivatives with respect to space coordinates, 
respectively. For instance, structural problems are mainly concerned with diffusive 
terms and in fluid mechanics advection is of main importance. To treat equations and 
equation system containing all the three ingredients — diffusion, advection, reaction — 
simultaneously produces a unifying point of view. 

We will consider here just as an introductory limited case the one-dimensional linear 
time-dependent diffusion-advection-reaction equation 

 ( ) ( ) ( ) ( ) 0t x x xR u L u s u du au ru s≡ − ≡ − + + − =  (1) 
valid in the space domain ( )0, LΩ =  and in the time domain 0t >  with some boundary 
and initial conditions. The unknown is ( ),u u x t= . The data is 0d ≥  (diffusivity), a 
(advection velocity), 0r ≥ (reaction factor), and s (source term). The notation above 
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follows mainly that in Reference [1]. The terminology is not quite fixed in the literature. 
For example, in [1] d and a are called diffusion and advection coefficients, respectively. 
The reaction term is denoted there generally by the symbol f and ru s−  above is then 
just a linear reaction term. We will call ru  as the reaction term. Further, quite 
commonly, instead of advection the term convection is employed as e.g. in Reference 
[2]. 

We will apply the time-discontinuous Galerkin method to solve the problem. In the 
time-discontinuous Galerkin method the approximation is taken on purpose to be 
discontinuous in the time direction between the time steps. At first sight this may seem 
unnatural when the actual solution is known to be continuous. However, this kind of 
approach has been found to have some useful properties. For example, the formulation 
contains the important flexible possibility to alter the mesh in space from slab to slab. 

The finite element approximation used is the simplest possible: constant in time and 
with two node linear elements in space in a space-time slab. The — to our knowledge 
— main new feature in our approach consists of the use of totally three sensitizing 
parameters associated with the initial condition for a slab. The optimal parameter values 
are determined by a von Neumann type analysis followed by setting the algorithmic 
amplification factor in certain sense close to the exact amplification factor. 

To proceed concisely, we could start by writing down directly the final discrete 
weak form to be used, see (34). However, we will continue here rather gently in an 
effort to convince the reader or the student (or ourselves) of the logic used to arrive at 
final expressions. 

Steady case 

Standard weak form 

Two of the five optimal sensitizing parameter values associated with the unsteady field 
equation (1) are in fact found to be those obtained in the steady case. We therefore 
consider first the steady case. 

In the steady case equation (1) simplifies to (superscript s from steady) 

 ( ) ( ) ( ) ( )s s 0x x xR u L u s du au ru s≡ − ≡ − + + − = . (2) 
The well-known standard weak form corresponding to this is 

 ( ) sd bt 0x x xw du w au wru ws
Ω

Ω + + − + = ∫ . (3) 

The notation sbt  refers to possible boundary terms from the boundary conditions. With 
Dirichlet boundary conditions sbt  will be zero. At a Dirichlet boundary the weighting 
function ( ) ( )δw w x u x= =  is set to vanish.  

Sensitized weak form 

It is known that the Galerkin finite element method will not perform well with the 
standard weak form when the problem is advection dominated. The reaction term can 
also lead to unwanted oscillations. For a remedy, the standard formulation is stabilized, 
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or using the terminology of Reference [9], sensitized. We now present one way to 
explain the sensitizing similarly as was done in that reference. 

We write down the following least squares functional 

 ( ) ( )( ) ( )( )2 2a s r s1 1d d
2 2 xu R u R u

Ω Ω
Π τ Ω τ Ω= +∫ ∫ , (4) 

where aτ  and rτ  are sensitizing parameters having correct dimensions so that the whole 
expression becomes dimensionally homogeneous. The first integral on the right-hand 
side comes from the field equation residual and the second from the differentiated field 
equation residual. The variation of (4) due to the variation δu  becomes 

 ( ) ( ) ( ) ( )a s s r s sδ δ d δ dx xR u L u R u L u= +∫ ∫Ω Ω
Π τ Ω τ Ω . (5) 

Demanding the variation (5) to vanish and making the interpretation δu w=  gives what 
might be called “a least squares weak form”:  

 ( ) ( ) ( ) ( )s a s s r sd d 0x xL w R u L w R u
Ω Ω

τ Ω τ Ω+ =∫ ∫ . (6) 

The sensitized weak form is obtained as a linear combination of the two weak forms (3) 
and (6): 

 ( ) sd btx x xw du w au wru ws
Ω

Ω + + − + ∫  

 ( ) ( ) ( ) ( )s a s s r sd d 0x xL w R u L w R u
Ω Ω

τ Ω τ Ω+ + =∫ ∫ . (7) 

Discrete sensitized weak form 

The finite element approximation is taken to be the simplest possible: 

 ( ) ( )j j
j

u x N x u= ∑ , (8) 

where ju  are the nodal values of u and jN  are the (global) shape functions 
corresponding to two node linear elements. The Galerkin method is used and the 
corresponding finite dimensional weighting function, denoted w , is thus of the same 
type as (8). 

In the discrete weak form we obtain (see Remark 1) 

 ( )s
xx x xR u du au ru s au ru s≈ − + + − ≈ + −      , (9) 

 ( )s
xx x x xL w dw aw rw aw rw aw≈ − + + ≈ + ≈       , (10) 

 ( )s
xxx xx x x x xxR u du au ru s ru s≈ − + + − ≈ −     , (11) 

 ( )s
xxx xx x xxL w dw aw rw rw≈ − + + ≈     . (12) 

Remark 1. Several comments are in place. First, although not indicated directly in (7), 
the integrals are to be evaluated, as usual in the finite element method, just over the 
element interiors. Second, in the differentiations, we assume the data d, a, and r to have 
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some local constant values in an element. (Strictly, some new notations for the data in 
(9) to (12) would be needed. However, for simplicity, this is not indicated here.) Thus, 
no derivatives of d, a, and r appear. Third, with two node linear elements, the second or 
higher order derivatives of u  and w  vanish. Fourth, in (10) an additional simplification 
step has been taken by neglecting the term rw . The justification for all the 
simplifications performed above with respect to the terms in the sensitizing integrals is 
similar to that discussed in [9]. We assume that the standard part in (7) alone produces a 
correct formulation giving a converging solution when the mesh is refined infinitely. 
The sensitizing terms are used with finite meshes just in an effort to obtain good balance 
in stability and accuracy. If the sensitizing parameter values vanish with vanishing mesh 
sizes, the sensitizing terms vanish similarly and they cannot prevent convergence to the 
correct solution in the infinite limit.   
     The discrete analog of (7) is now 

 [ ] sd btx x xw du wau wru ws
Ω

Ω+ + − +∫          

 ( ) ( )a rd d 0x x x x xaw au ru s rw ru s
Ω Ω

τ Ω τ Ω+ + − + − =∫ ∫      (13) 

It is seen that the standard part has been further simplified by taking a to have some 
constant value in an element. If wanted, a perhaps more accurate procedure could be to 
apply first the formula 

 ( ) x xxau au a u= +  (14) 
and to include the last term as a reaction term. 

We define, what we call the advective damping diffusivity 

 a 2 ad a τ=  (15) 
and the reactive damping diffusivity 

 r 2 rd r τ= . (16) 
These have the same physical dimension as d and are thus more illuminating than aτ  
and rτ  as such. Using ad  and rd , (13) obtains the form 

 ( )
a

a r d d d dx x x x
d rw d d d u wau wru w u
aΩ Ω Ω Ω

Ω Ω Ω Ω+ + + + +∫ ∫ ∫ ∫         

 
a r

sd d d bt 0x x x
d dws w s w s
a rΩ Ω Ω

Ω Ω Ω− − − + =∫ ∫ ∫    . (17) 

This is the final discrete sensitized weak form in the steady case. 

Sensitizing patch test 

As in Reference [9], the goal in sensitizing is also here to achieve as far as possible the 
nodally exact finite element solution. We define first suitable reference solutions to be 
used in a sensitizing patch test. 

The governing field equation (2), with some constant representative data and with no 
source term is considered: 

 0xx xdu au ru− + + = . (18) 
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The analytical solution of this is 

 ( ) 1 2e es x s xu x A B= + , (19) 
where 

 
2

1,2
4

2
a a drs

d
± +

=  (20) 

and where A and B are integration constants. Two reference solutions 1expA s x  and 
2expB s x  are used. 

An element patch is considered (Figure 1) 

 

 
Figure 1. Uniform three-node, two-element patch. 

The system equation for the middle node i is formed using the weak form (17). The 
nodal values are taken from the first reference solution. A linear equation in the two 
unknowns aτ  and rτ  is obtained. By proceeding similarly with the second reference 
solution a second equation is obtained. The unknowns are solved from these two 
equations (using the Mathematica program [10]). The expressions 

 a
2

pesinhpe 2pe
da pe pecosh cosh da

2 4

d d

 
 
 = + 
 − + 
 

 (21) 

and 

 ( )( ) ( )( )
2

r 2 2pe pe6pe 2da 3+da cosh 6pe da 6 da cosh da
2 4

d

= − + + + − +


 

 
2pe pe pe6pe da sinh / da cosh cosh da

2 2 4
d

     − ⋅ − +      
 (22) 

are obtained. The notations pe /ah d=  and 2da /rh d=  have been used. Quantity pe is 
(elementwise) Péclet number and da (elementwise) Damköhler number. 

In the pure diffusion-advection case ad  simplifies to the more familiar form 

 a pe pecoth 1
2 2

d d = − 
 

 (23) 

and in the pure diffusion-reaction case rd  simplifies to 
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 r da cosh da 2 1
6 cosh da 1

d d
 +

= −  − 
. (24) 

In practice the above expressions are often simplified further by suitable approximations 
depending on the ranges of pe and da. 

The formulas for ad  and rd  were obtained in the sensitizing patch test using a 
regular mesh and constant data, but of course, in an analysis with an irregular mesh and 
varying data, local data values and element length for an element are applied in the 
relevant formulas. 

Unsteady case 

Time-discontinuous standard weak form 

We repeat for convenience the governing field equation (1) in the time-dependent case: 

 ( ) ( ) ( ) ( ) 0t x x xR u L u s u du au ru s≡ − ≡ − + + − = . (25) 
The most straightforward approach to extend the steady case into the unsteady case is 
the so-called method of lines or the semi-discretization. It would mean here that (8) 
would be written as ( ) ( ) ( ), j ju x t N x u t= ∑ . An ordinary differential system in time 
would be obtained. However, as remarked in Reference [1, p. 95]:”, if we apply a 
standard ODE method to a semi-discrete system (6.1), information about the underlying 
PDE problem might be neglected”. Numerical experience shows also that the optimal 
sensitizing parameters found in the steady case do not work any more well in the 
unsteady case with the semi-discrete approach. 

In the finite element method literature the time-discontinuous Galerkin method is 
often advocated. We take this approach also here as the starting point. 

Figure 2 shows the relevant solution domain and its division into space-time slabs 
and some additional notations. 

We will describe the procedure in a typical slab n nS IΩ= ×  where ( )1,n n nI t t += . 
However, for simplicity of presentation we drop in the following the index n referring to 
the slab; we consider a generic slab. 

In the time-discontinuous Galerkin method the initial (or the continuity or the jump) 
condition for the present slab is 

 ( ) ( ) 0u x u x+ −− =  (26) 
in Ω  and it is satisfied only in a weak sense. The +  and −  superscript notations refer 
to the limiting values at the lower time level of the slab as indicated in Figure 2. We 
notice that u−  is a given function from the point of view of the present slab. Using 
similar notations as for the field equation residual, we could write (26) also more 
pedantically as (superscript i from initial) 

 ( ) ( )i i 0R u L u u u u+ + − + −≡ − ≡ − =  (27) 
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Figure 2.  Solution domain and space-time slabs. 

The standard time-discontinuous weak form for a generic slab is 

 ( )( )d dt x x xI
wu w du w au wru ws t

Ω
Ω+ + + −∫ ∫  

 ( )d bt 0w u u
Ω

Ω+ + −+ − + =∫ , (28) 

where ( ),w w x t=  is the weighting function. 

Sensitized time-discontinuous weak form 

The sensitized time-discontinuous weak form for a generic slab is now taken to be 

 ( )( ) ( )d d d btt x x xI
wu w du w au wru ws t w u u

Ω Ω
Ω Ω+ + −+ + + − + − +∫ ∫ ∫  

 ( ) ( ) ( ) ( )a rd d d dx xI I
L w R u t L w R u t

Ω Ω
τ Ω τ Ω+ +∫ ∫ ∫ ∫  

 ( ) ( ) ( )i i id d d 0x x x x xw u u w u u w u u+ + − + + − + + −+ − + − + − =∫ ∫ ∫Ω Ω Ω
τ Ω ε Ω σ Ω . (29) 

The two last lines on the left-hand side represent the sensitizing terms. The logic for 
arriving at the sensitizing integrals with parameters aτ  and rτ  can be explained 
similarly as in section “Sensitized weak form” starting from a least squares functional. 
Now however, the integrals are over the slab area. In a same way, the sensitizing terms 
with parameters iτ  and iσ  can be arrived at by starting from the least squares 
functional 

 ( ) ( )( ) ( )( )22i i i i1 1d d
2 2 x

u R u R u
Ω Ω

Π τ Ω σ Ω+ + += +∫ ∫ . (30) 

It is formed from the initial condition residual and of its differentiated form. The 
sensitizing term with parameter iε  is not obtained via the least squares formulation. 
However, the least squares route is just one very useful way to approach sensitizing and 
nothing demands us to restrict just to it. The main thing is that the formulation is 
consistent in the sense that the exact solution satisfies the weak form (29). 
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The three parameters iτ , iε  and iσ  are associated with the initial condition (27). 
They have the roles of some kind of artificial reaction, advection, and diffusivity, 
respectively. It will be seen that these additional parameters give possibilities to tune the 
discrete solution behavior to advantage. 

 
Discrete sensitized time-discontinuous weak form 

The constant in time approximation in the slab is an essential feature for obtaining a 
formulation simple enough for our purposes. So instead of an approximation of the type 

( ),u u x t=   we have just ( )u u x=  , or in more detail, still the form (8) now valid in the 
full slab and not only on a line. We are thus applying rectangular space-time elements. 
As we are going to use the Galerkin method, the finite dimensional weighting function 
w  is also constant in time, so ( )w w x=   and we see that 

 ,u u w w+ += =     (31) 
and we obtain also 

 0 , 0t tu w= =  . (32) 
Further, it is seen that the simplifications applied to sR  and sL  in formulas (9) to (12) 
can be used equally well for R and L (see Remark 1) and the discrete analog of the weak 
form (29) becomes 

 ( ) ( )d d d btx x xI
w du w au wru ws t w u u

Ω Ω
Ω Ω−+ + − + − +∫ ∫ ∫           

 ( ) ( )a rd d d dx x x x xI I
a w a u ru s t r w r u s t

Ω Ω
τ Ω τ Ω+ + − + −∫ ∫ ∫ ∫      

 ( ) ( ) ( )i i id d d 0x x x x xw u u w u u w u u− − −+ − + − + − =∫ ∫ ∫     

Ω Ω Ω
τ Ω ε Ω σ Ω . (33) 

As the dependence on t is missing (or assumed to be missing) in the space integrals, 
performing the integrations with respect to t produces values equal the integrands 
multiplied by 1n nt t t+∆ = −  (see Remarks 2 and 3). Thus dividing the resulting equation 
by t∆  and introducing the notations (15) and (16) gives 

 ( )
a

a r d d d dx x x x
d rw d d d u w a u w r u w u
aΩ Ω Ω Ω

Ω Ω Ω Ω+ + + + +∫ ∫ ∫ ∫         

 
a r

d d dx x x
d dw s w s w s
a rΩ Ω Ω

Ω Ω Ω− − −∫ ∫ ∫    

 ( )( ) ( )i i1 11 d dx xw u u w u u
t tΩ Ω

τ Ω ε Ω− −+ + − + −
∆ ∆∫ ∫     

 ( )i1 1d bt 0x x xw u u
t tΩ

σ Ω−+ − + =
∆ ∆∫    . (34) 

This equation is useful due to its simple structure for further interpretations. We have a 
weak form only in space. The only difference with respect to the corresponding steady 
formulation (17) consists of the last three integrals on the left-hand side. Let us now 
consider such forcing terms in time that the steady solution is approached. Then u  
approaches u−  (u−  is given also by the finite element approximation) and the last three 
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integrals approach zero. Obviously then, the appropriate values for ad  and for rd  are 
those obtained in the steady case. Thus these values are to be used also in the time-
dependent case when the present formulation is applied and the task now remains “just” 
to determine the optimal values for the parameters iτ , iε , and iσ . 

Remark 2. If the data d, a, r, s depends on t, the integrand in the standard part on the 
first line in (33) is not constant in t. However, we can replace the possibly varying data 
with some local mean values in the time direction so that the integrand becomes 
constant in time. This produces no error in the limit as t∆  approaches zero. Again, for 
notational convenience we do not care to use new symbols for these mean values. 
Remark 3. Concerning the boundary conditions, let us consider an example case, say a 
setting with ( ) ( )0,u t u t=  and ( ) ( ),xdu L t q t− = . The overbar notation refers here to 
a given quantity. Then in the slab, ( )0u  is set equal to ( )nu t t+ ∆ . The term 

( ) ( )bt , d
I

w L t q t t= ∫  and thus ( ) ( )bt d
I

w L q t t= ∫   ( ) ( )d
I

w L q t t= ∫  ( ) mw L q t≈ ∆ , 
where mq  is some mean value of q  on I. Thus finally, the last term on the left-hand 
side of (34) becomes ( ) mw L q , which corresponds to a similar term sbt  with a given 
flux in the steady case. 
 
Element contributions 

As mentioned in the “Introduction” section, the time-discontinuous formulation contains 
the possibility to alter the mesh in space from slab to slab. In the applications to follow, 
we do not consider for simplicity of presentation this alternative. Thus here 

 ( ) ( )j j
j

u x N x u− −= ∑ , (35) 

where the nodal values are those obtained in the previous slab (or at the beginning those 
obtained by approximation of the initial data). 

For a generic element with length h and local nodes 1 and 2 with the first node 
having a lower x-coordinate value the element contributions to the system equations are 
expressed here as 

 [ ] 1 1

2 2

u b
K

u b
   

−   
   

. (36) 

Performing the integrations, the element coefficient matrix becomes 

 [ ]
a r a1 1 1 1 2 1 1 1

1 1 1 1 1 2 1 12 6 2
d d d a rh d rK

h a
− − − −       + +

= + + +       − −       
 

 
( )i i i1 2 1 1 1 1 1

1 2 1 1 1 16 2

h

t t h t

+ − −     
+ + +     − −∆ ∆ ∆     

τ ε σ  (37) 

and the column vector members become 

 
a r

1 1 d d dx
d db N s x s x s x
ah rh

= − −∫ ∫ ∫  
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( ) ( ) ( ) ( )

i i i

1 2 1 2 1 2

1
2

6 2

h
u u u u u u

t t h t
− − − − − −

+
+ + + − + + −

∆ ∆ ∆

τ ε σ , (38) 

 
a r

2 2 d d dx
d db N s x s x s x
ah rh

= + +∫ ∫ ∫  

 
( ) ( ) ( ) ( )

i i i

1 2 1 2 1 2

1
2

6 2

h
u u u u u u

t t h t
− − − − − −

+
+ + + − + + − +

∆ ∆ ∆

τ ε σ . (39) 

The meaning of the notations should be obvious. The data has been assumed generally 
as constant in the element. An exception is the source term for which the possibility for 
a more accurate presentation has been preserved. 

System equations for a patch 

We consider a uniform three-node, two-element patch (Figure 1). More correctly, the 
points 1i − , i, 1i +  in the figure represent now nodal lines in the slab. In the parameter 
values determination we take a case with 0s = . The system equation for node i is found 
to become (the equation has been further multiplied by /t h∆  so that the coefficients of 
the nodal values become dimensionless) 

 
( )a r a i i i

1 12 2
1

2 6 2 6 2i i
d d d t a t r t d r t u u

h ah hh h
τ ε σ

− −

 + + ∆  ∆ ∆ ∆ + − − + + + − −       

 

 
( ) ( )a r i i

2 2

4 14 22
6 6i i

d d d t r t u u
h h

τ σ   + + ∆ +∆   + + + +
      
   

 

 
( )a r a i i i

1 12 2
1

2 6 2 6 2i i
d d d t a t r t d r t u u

h ah hh h
τ ε σ

+ +

 + + ∆  ∆ ∆ ∆ + + − + + − + + − =       

 

 
i i i

12
1

6 2 iu
h h

τ ε σ −
−

 +
− −  

 
 

 
( )i i

2

4 1 2
6 iu

h

τ σ −
 +
 + +
  
 

 

 
i i i

12
1

6 2 iu
h h

τ ε σ −
+

 +
+ + −  
 

. (40) 

Parameters iτ , iε , and iσ are determined by making use of equation (40) in connection 
with a reference solution of the kind used in the conventional von Neumann or Fourier 
analysis, e.g. [11]. (We will follow somewhat the notation of that reference.) This will 
be explained in detail below. 
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Reference solution 

The governing differential equation with constant data and with no source term is 

 0t xx xu du au ru− + + = . (41) 
An analytical solution of the following separation of variables type 
( ) ( ), expu x t A t ikx=  is introduced. Here i is the imaginary unit and k a real quantity 

(wave number). Substituting this in (41) gives the solution 

 ( ) ( )2

0,
d k ia k r t i k xu x t A e e

− + +
= , (42) 

where 0A  is an integration constant. 
The exact so-called complex amplification factor is defined as 

 ( )
( )

( )( )

( )
( )

2
2

2
0

e

0

,
,

d k i a k r t t t i k x d k i a k r t

d k i a k r t i k x

u x t t A e eG e
u x t

A e e

− + + +∆
− + + ∆

− + +

+ ∆
≡ = = . (43) 

The expressions to follow in the discrete case and especially in the full diffusion-
advection-reaction case become complicated and long. To simplify the formulas, certain 
non-dimensional short-hand notations are introduced in addition to pe and da used 
already in the steady case. These are defined in the Appendix. The double letter 
dimensionless quantities are written in antique. The meanings of these notations are 
difficult to remember but in fact there is no great need for that. The main thing is that 
dimensionless quantities are preferable when numerical manipulations in the end are 
used. When employing these new notations, (43) can be put in the form 

 
2fo rs co

e
iG e eβ β− ⋅ − − ⋅= . (44) 

The most important quantity to appear here and later is khβ = , which is a kind of 
dimensionless wave number. With a fixed h, the larger β , the more “wavy” the solution 
in space. 

Further, for later purposes, we may represent the exact complex amplification factor 
alternatively as 

 e
e e

iG G e φ=  (45) 
with the magnitude 

 
2fo rs

eG e β− ⋅ −=  (46) 
and the phase angle 

 e coφ β= − ⋅ . (47) 
In the discrete case using the von Neumann or Fourier approach, a form 

 ( ) i
0

ˆˆ , e et kxu x t A α=  (48) 
similar to (42) is taken. It is to be noticed that the term in space, exp ikx  is the same as 
in (42) but the term in time, exp tα  is not yet fixed. Expression (48) is evaluated at the 
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nodes of the patch and these values are used in the system equation (40). In this we 
associate the nodal values with superscript minus with the generic time level t and the 
nodal values without the superscript with the time level t t+ ∆ . Similarly, node i is 
associated with the generic space coordinate value x. Performing the substitutions it is 
found that the term exp tα∆  can be solved from the resulting equation. In the literature, 
the ratio 

 
( )
( )

( )
0

0

ˆˆ ,
ˆˆ ,

t t ikx
t

t ikx
u x t t A e e

G e
u x t A e e

α
α

α

+∆
∆+ ∆

≡ = =  (49) 

is called algorithmic amplification factor. We obtain here 

 
( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

t a

i i 2 i

1

6 pe 1 cos fo pe rs 2 cos 3 pe co / rs sin
1

2 cos 1 6 1 cos / 3 pe / sin

G
i d d

h i h

β β β

β τ β σ ε β

=
− + ⋅ + + ⋅ −

+
+ + + − + ⋅

, (50) 

where t a rfo fo fo fo= + + . 
The above type of procedure to determine the algorithmic amplification factor is 

well documented in the literature; e.g. [11]. However, it is interesting to note that we 
have proceeded here quite in the same way as in the sensitizing patch test in the steady 
case and from this point of view expression (48) can well be called also as a reference 
solution. 

G can be represented similarly to eG  as 

 iG G e= φ . (51) 
However, since the detailed expressions will be complicated, we do not present them 
here. It will be enough to evaluate them with numerical values. 

The procedure proposed for the parameter values determination is finally now as 
follows. We would obviously like the algorithmic G to be close to the exact eG . To this 
end we expand G and eG  to truncated Taylor series with respect to β  at 0β = . We 
then demand the expansions to coincide as far as possible. It should be noted that the 
idea to set G in certain sense close to eG  in an effort to determine some parameter 
values is not new; see e.g. [12]. 

We do not continue here in the full diffusion-advection-reaction case as the 
expressions would become so long. (There is no problem to obtain the necessary 
formulas. In general, all the three parameters iτ , iε , and iσ  are then non-zero.) It is 
perhaps more kind towards the reader to see how the idea of parameter values 
determination works in the simpler diffusion-advection and diffusion-reaction cases so 
we will deal only with them from this onwards. 

Unsteady diffusion-advection 

Parameter values determination 

In the diffusion-advection case ( 0r = ) the exact amplification factor is 
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2fo co

e
iG e eβ β− ⋅ − ⋅=  (52) 

and the algorithmic amplification factor is found to become 

 
( ) ( )

( ) ( ) ( ) ( ) ( )
a

i i 2 i

1
6 1 cos fo fo 3 co sin

1
2 cos 1 6 1 cos / 3 / sin

G
i

h i h

β β

β τ β σ ε β

=
− + + ⋅

+
+ + + − +

. (53) 

The corresponding Taylor series are 

 
2 3

2 3 4
e

co co1 co fo +co fo O
2 6

G i i
   

 = − ⋅ + − − + ⋅ +        
   

β β β β  (54) 

and 

 ( ) ( )( )i a 21 co co co + / fo + foG i hβ ε β= − ⋅ + − −  

 ( ) ( )( ) ( )( )2i a i 2 i a 3 4co co + / +co 2 fo +fo + / / fo +fo Oi h h h   + + +    
ε σ ε β β .(55) 

In fact, the full series expression with iτ  included showed immediately that we have to 
put here i 0τ =  for the first powers of β  to become the same in the two series. 
Therefore expression (55) is shown here for simplicity already without iτ . The terms 
for zeroth and first powers of β  in (54) and (55) are identical. Demanding the second 
and third powers (separately) to be equal gives two equations from which iε  and iσ  
can determined. Taking further the notations in the Appendix into account, there is 
obtained 

 
a

i co /+
2 pe

d d hε
 

= −  
 

, (56) 

 
a 2 a

i 2
2
/ co 1 / co

12 2 pepe
d d d d hσ

 +
= − −  
 

. (57) 

Unsteady pure diffusion 

It is of some interest to see what is obtained in the simplified cases of pure diffusion and 
pure advection where it is easier to make comparison with traditional formulas in the 
literature. 

The case of pure diffusion ( 0a = ) is considered first. In the small advection case the 
parameter ad  (see (23)) obtains first the simplified form 

 
2 2

a
12
a hd

d
≈ . (58) 

When this is used in (56) and (57) and when we let 0a → , we obtain i 0ε =  and 

 i 21 fo
12 2

hσ  = − 
 

. (59) 
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We form system equation (40). The result is 

 1 1
fo 1 10 fo 1fo +
2 12 12 2 12i i iu u u− +

     − + + + − + =     
     

 

 1 1
fo 1 10 fo 1fo +
2 12 12 2 12i i iu u u− − −

− +
     + + − + +     
     

. (60) 

This becomes more transparent if we introduce the obvious notation used in the finite 
difference method, divide by t∆ , make use of the relation 2fo /d t h= ∆  and arrange: 

 
( ) ( )1 1 1

1 1 1 1
1 110 10

12 12
n n n n n n
i i i i i iu u u u u u

t

+ + +
− + − ++ + − + +

∆
 

 

1 1 1
1 1 1 1

2 2
2 2

0
2

n n n n n n
i i i i i iu u u u u u

h hd

+ + +
− + − +− + − +

+
− = . (61) 

This is almost the well-known Crank-Nicolson scheme applied to the diffusion equation 
(with 0s = ), the only difference being that in the Crank-Nicolson scheme the upper line 
in (61) is replaced by the simpler expression 

 
1n n

i iu u
t

+ −
∆

 (62) 

In (61) we clearly have a weighted time derivative expression. 
The amplification factors in pure diffusion are real. The exact factor is 

 
2fo

eG e β− ⋅=  (63) 
The algorithmic factor value of the present formulation is found to be 

 ( )
( )

5 cos 6 fo 1 cos
5 cos 6 fo 1 cos

G
β β
β β

+ − −
=

+ + −
 (64) 

and the algorithmic value of the Crank-Nicolson scheme is (Reference [11, p. 112]) 

 ( )
( )

1 fo 1 cos
1 fo 1 cos

G
β
β

− −
=

+ −
. (65) 

These are shown as functions of β  in Figure 3. 
It is obvious that due to the way G is demanded to coincide with eG , the accuracy of 

the present scheme is very good for small values of β . 
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Figure 3. Amplification factors in pure diffusion as functions of β . On the left, Fourier number 

fo 1/ 6= . On the right, Fourier number fo 1= . Solid line, exact factor. Dense dashing, the 
present scheme. Coarse dashing, the Crank-Nicolson scheme. 

 
Unsteady pure advection 

In the case of very large advection or pure advection ( 0d → ), the parameter ad  
obtains the form 

 a
2

a h
d ≈ . (66) 

We find correspondingly from (56) and (57) 

 i co sgn co
2 2

hε  = − + 
 

, (67) 

 
2

i 2coco
12 4

hσ
 

= − +  
 

. (68) 

System equation (40) becomes (we use the same notation as in (61)) 

 
2

1
1

co1 sgn co co co
6 4 4 4 12

n
iu +
−

 
+ − − +  

 
 

 
2 2

1 1
1

co co4 co 1 sgn co co co
6 2 6 6 4 4 4 12

n n
i iu u+ +

+
   

+ + − + − + − + =      
   

 

 
2

1
co1 sgn co co co

6 4 4 4 12
n
iu −

 
+ + + +  

 
 

  

 
2 2

1
co co4 co 1 sgn co co co

6 2 6 6 4 4 4 12
n n
i iu u +

   
+ − − + − − + +      
   

 (69) 

and the amplification factor is found to become 
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( ) ( ) ( )

( ) ( )

2 2

2 2

4 co 2 co cos 3 1 cos co 3 co sgn co sin

4 co 3 co + 2 co 3 co cos 3 co sgn co sin

i
G

i

β β β

β β

− + + − − − +
=

− + + − + −
. (70) 

It is difficult to see a direct resemblance with some familiar finite difference 
formulations. We take here as a comparison case the Lax-Wendroff scheme, which has 
the amplification factor (Reference [11, p. 101]) 

 ( )21 co 1 cos co sinG iβ β= − − − ⋅ . (71) 
The quantities / eG G  (here 1eG = ) and / eφ φ  are represented similarly as in 
Reference [4] in Figure 4 as radii in polar coordinates as functions of the polar angle β . 

 

Figure 4.  On the left, / eG G  as function of the polar angle β . On the right, / eφ φ  as function of the 
polar angle β . The Courant number co 0.75= . Dense dashing, the present scheme. Coarse dashing, the 

Lax-Wendroff scheme. 

The accuracy of the present scheme appears again to be very good for small values of 
β . When co 1= , both schemes are found to be without errors. However, when co 1>  
also the present scheme gives a G  larger than one. As the proposed approach leads to 
an implicit scheme, the appearance of a stability limit is not welcome. This obviously is 
here the price paid due to the high accuracy. Ways to increase the stability limit at the 
expense of accuracy are under study. 

Unsteady diffusion-reaction 

Parameter values determination 

In the diffusion-reaction case ( 0a = ) the exact amplification factor 

 
2fo -rs

eG e β− ⋅=  (72) 
and the algorithmic amplification factor 

 
( ) ( ) ( )

( ) ( ) ( ) ( )
r

i i 2

1
6 1 cos fo + fo 2 cos rs

1
2 cos 1 6 1 cos /

G

h

β β

β τ β σ

=
− + +

+
+ + + −

. (73) 
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eG is here real and to have G also real we have to put i 0ε = . This has already taken 
into account in expression (73). 

The Taylor expansions are found to be 

 rs rs 2 3
e fo OG e e− −  = − ⋅ +  β β  (74) 

and 

 
( ) ( )( )( )

( )

i 2 r ii
2 3

i 2i

rs / fo +fo 11 O
1 rs + 1 rs +

h
G

− ++  = + +  + +

σ ττ β β
τ τ

. (75) 

Demanding the zeroth and second powers to be equal gives two equations from which 
iτ  and iσ  can be determined. The solutions are 

 
rs

i
rs

1 rs
1

e
e

τ + −
=

− +
, (76) 

 
( ) ( )

( )

rs rs r
i

2rs

1+ 1 rs 1 /

1

e e d d
d t

e
σ

− − + − +
= ∆

− +
. (77) 

Pure reaction 

In the case of large reaction or pure reaction ( 0d → ) we obtain from (24) by a limiting 
process the value 

 
2

r
6

rhd ≈ . (78) 

A careful study shows that now 

 
i

i
2

61 1
1 r t

r t
e h

στ ∆
∆

= − + = − +
− +

 (79) 

and the system equation (40) simplifies finally just to 

 1n r t n
i iu e u+ − ∆= . (80) 

This result has an obvious interpretation when the solution of the field equation 
0tu ru+ =  is considered. 

Conclusions 

A to our knowledge new approach to solve one-dimensional time-dependent diffusion-
advection-reaction problems has been presented. The main new feature consists of the 
use of three different sensitizing parameters associated with the initial condition from 
slab to slab. Optimizing the parameter values make it possible to tune the discrete 
solution behavior to advantage. The rather nice feature in the effort to determine all the 
sensitizing parameter values is that it can be split into two parts: First certain parameters 
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are determined in the steady case. These need no updating when the additional 
parameters taking care of the time dimension are found. 

The approach demands involved analytical manipulations, which would be by hand 
calculations in practice nearly impossible. However, modern tools, such as the 
Mathematica program, make the task rather easy. 

In certain simple special cases (pure diffusion, pure advection, pure reaction) 
equations have been specialized far enough to see that very accurate formulations 
emerge. 

The approach leads normally to implicit schemes. It seems that the great accuracy 
achieved has the price that there are stability limits. The use Taylor series in setting G 
close to eG  is obviously not the only possibility. We are presently working on ways to 
extend the stability limits and on ways to extend the approach to two and three space 
dimensions. 

The concepts used in the approach are not mathematically complicated. If one has 
assimilated the ideas in sensitizing (stabilization) first in the steady case, in the step into 
the unsteady case quite similar tools are applied. 

Appendix 

The following notations are defined: 

co /a t h= ∆        Courant number, 
2da /rh d=        Damköhler number, 

2fo /d t h= ∆       Fourier number, 
a a 2fo /d t h= ∆   advective damping diffusivity associated Fourier number, 
r r 2fo /d t h= ∆    reactive damping diffusivity associated Fourier number, 

pe /ah d=          Péclet number, 

rs r t= ∆              time step associated reaction number, 

khβ =               dimensionless wave number. 

All of these dimensionless quantities are not independent. For example, fo co/pe=  and 
rs da co/pe= ⋅ . 
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