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Waves propagation in an arbitrary direction in heat 
conducting orthotropic elastic composites   

K. L. Verma  

Summary. Dispersion of thermoelastic harmonic waves propagating in an arbitrary direction 
in a layered heat conducting orthotropic elastic composite in the context of generalized 
thermoelasticity is studied. Considering three dimensional field equations of thermoelasticity 
and to obtain characteristic equation, continuity of displacements, temperature, stresses and 
thermal gradient at the layers’ interfaces is employed, and the corresponding sixteenth order 
characteristic determinant is examined. Particular results for the coupled and uncoupled 
thermoelasticity are obtained as special cases of the obtained results by taking thermal 
relaxation time and coupling constant equal to zero.  Results of previous investigations are 
derived as particular cases. Finally numerical results are also obtained and represented 
graphically.      
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Introduction  

Advanced high strength, high modulus composite materials must undergo careful 
inspection to sort out manufacturing errors, in-service degradation, and defect formation 
due to the influence of elevated temperatures, moisture, cosmic radiation, etc. The 
growing practical importance of such materials, especially in thermal environment has 
stimulated many analytical studies. The exact dispersion relations for composite 
structures can be found in many good books [1] and [2], with many unidirectionally 
reinforced layers are at least of orthotropic characters and sometimes transversely 
isotropic. 

Wave types occurring in bounded layered anisotropic media are very complicated, 
and in thermoelasticity, the problem becomes even more complicated, because in 
thermoelasticity solutions to both the heat conduction and thermoelasticity problems for 
all the layers are required. These solutions are also to satisfy the thermal and mechanical 
boundary and interface conditions. As a result, conventional procedure for thermoelastic 
analysis of a multilayered medium results in having to solve system of two 
simultaneous equations for a large number of unknown constants as in Refs. [3-7]. 

By introducing thermal relaxation time constants into the heat conduction equation, 
new generalized theories of thermoelasticity have been developed in an attempt to 
eliminate this paradox of infinite velocity of thermal propagation. Of all the non-
classical theories, at present, Lord and Shulman [8], Green and Lindsay [9] theories of 
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the generalized thermoelasticity are mainly considered for engineering applications. 
Various methods to study the isothermal elasticity problems in heat conducting  
medium are studied in Ref.[10].  Propagation of plane harmonic thermoelastic waves in 
an infinitely extended anisotropic solid is considered and investigated in [11]. In Ref. 
[12] the governing equations of generalized thermoelasticity for anisotropic media were 
derived. 

This paper attempts to study the dispersion of harmonic waves propagating in an 
arbitrary direction in layered orthotropic elastic composite in the context of generalized 
thermoelasticity in Ref. [13]. Three dimensional field equations of thermoelasticity are 
considered, and the corresponding sixteenth order characteristic determinant is 
examined. The purpose of this paper is to examine the dispersive effects in layered 
thermoelastic composites, where the direction of the corresponding harmonic waves 
makes an arbitrary angle with respect to the layers. The results for the coupled and 
uncoupled thermoelasticity are obtained as particular cases of the obtained results by 
setting thermal relaxation time and the coupling constant equal to zero. Relevant results 
of previous investigations are deduced as special cases. A similar type of the approach 
has also been used in Ref. [14] for the corresponding elastic material. 

Problem Formulation  

Consider a set of Cartesian coordinate system ( )1 2 3, ,ix x x x= in such a manner that 3x -
axis is normal to the layering. The basic field equations of generalized thermo- elasticity 
for an infinite generally anisotropic thermoelastic medium with one thermal relaxation 
time 0τ  at uniform temperature T0 in the absence of body forces and heat sources are   

 ,ij j iuσ ρ=  ,  , 1, 2,3,i j =   (1) 

 , 0 0 , 0 ,ij ij e ij i j i jK T C T T T u uρ τ β τ− ( + ) = [ + ] 

  ,    (2) 
where  
       ij ijkl kl ijC e Tσ β= −  ,                                          (3) 

    ,ij ijkl klCβ θ=                     (4a) 
 

and ρ  is the density, t  is the time, ui is the displacement in the ix direction, Kij are the 
thermal conductivities, Ce and τ0 are respectively the specific heat at constant strain, and 
thermal relaxation time, σij and eij are the stress and strain tensor respectively; βij are 
thermal moduli; θij is the thermal expansion tensor; T is temperature; and the fourth 
order tensor of the elasticity Cijkl satisfies the (Green) symmetry conditions:   

 ijklc  = klijc  = ijlkc  = jiklc , ij jiβ β= , ij jiθ θ= .  (4b) 
 

Here comma notations are used for spatial derivatives and superposed dot represents 
differentiation with respect to time. Strain-displacement relation is   

 , ,

2
i j j i

ij

u u
e

+
= .    (5) 
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Specializing the equations (1-5) for orthotropic media, the governing equations (1) and 
(2) via (3) to (5) are  

 11 1,11 66 1,22 55 1,33 12 66 2,12 13 55 3,13 1 ,1 1( ) ( )c u c u c u c c u c c u T uβ ρ+ + + + + + − =       (6a) 

 12 66 1,12 66 2,11 22 2,22 44 2,33 23 44 3,23 2 ,2 2( ) ( )c c u c u c u c u c c u T uβ ρ+ + + + ++ − =      (6b) 

    13 55 1,13 23 44 2,23 55 3,11 44 3,22 33 3,33 ,3 ,3 3( ) ( )c c u c c u c u c u c u T uβ ρ+ + + + + + − =      (6c) 

                   11 ,11 22 ,22 33 ,33 0

0 1 1,1 0 1,1 2 2,2 0 2,2 3 3,3 0 3,3

( )
 [ ( ) ( ) ( )]

eK T K T K T C T T
T u u u u u u

ρ τ

β τ β τ β τ

+ + − +

= + + + +

 

     

    (6d) 

where 

 
1 11 1 12 2 13 3

2 12 1 22 2 23 3

3 13 1 32 2 33 3

,
,
.

c c c
c c c
c c c

β α α α
β α α α
β α α α

= + +
= + +
= + +

                            (7) 

 
On considering equations (6) and (7) for each layer, and at the interface between two 
layers, the displacements, temperature, thermal stresses and temperature gradient must 
be continuous.  

Analysis 

For harmonic waves propagating in an arbitrary direction, the displacement components 
and temperature 1 2, ,u u 3u and T are written as  

 ( )1 1 2 2 3 3
1 2 3 1 3 2 3 3 3 4 3( , , , ) ( ( ), ( ), ( ), ( )) i l x l x l x ctu u u T U x U x U x U x e x + + −=            (8) 

where x is the wave number, c is the phase velocity (= ω /x), ω  is the circular 
frequency, 1 2,l l  and 3l  are the  direction cosine defining the propagation direction. 
Floquet’s theory requires functions jU  ( 1, 2,3, 4.j = ) to have the same periodicity as 
that of the layering. Hence the problem is reduced to that of one pair of layers, where   

 ( )3 3
3( , )( ) i l x

j jU T x U e x α− +=  ,  1, 2,3, 4 ,j =         (9) 
α  is  an  unknown  ratio  of  the  wave number  components and jU are constants.Upon 
substitution from (9) into (8) and (6), we have     

    ( ) 0mn nM Uα = , m, n = 1,2,3,4.    (10a) 
Here 

 2 2 2 2
11 1 2 66 55( )M l l c cα ζ= + + −  

 12 12 66 1 2( )M c c l l= + , 
 13 13 55 1( )M c c lα= − +  
 14 1M l= , 
 2 2 2 2

22 1 66 2 22 44( )M l c l c cα ζ= + + −  
 23 23 44 2( )M c c l α= − + , 
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 24 2 2M lβ=  
 2 2 2 2

33 1 55 2 44 33( )M l c l c cα ζ= + + − , 
 34 3M β α= −  
 2

41 1M l iεω ζ ω∗= , 
 2

42 2 2M l iεω ζ β ω∗=  
 2

43 3M iεω ζ αβ ω∗= − , 
   2 2 2 2

44 1 2 2 3(M l K l K α ω ζ τ∗= + + − ),                        (10b) 
where   

   
22

2 11 1 0

11 1 11

, ,e

e

c C Tc
c K C c

βρζ ω ε
ρ

∗= = = ,   and   0 iτ τ ω= + . 

 
The existence of nontrivial solutions for jU  (j = 1, 2, 3, 4) demands the vanishing of the 
determinant in equations (10a), and yields the eighth degree polynomial equation  

 8 6 4 2
1 2 3 4 0A A A Aα α α α+ + + + = ,       (11) 

 
where the coefficients 1 2 3, ,A A A  and 4A are given in Appendix-I.  

Equations (9) is rewritten as 

 ( )8
3 3

1 2 3 1 2 3 4
1

( , , , ) ( , , , ) q
q q q q

q

i l x
U U U T U U U U e

x α− +

=

=∑ .         (12) 

For each qα ,  q = 1, 2,...8, using the relations (10) and expressing the displacements 
ratios as  

 2  1

1

( )
( )

q q
q

q q

U D
U D

α
γ

α
= = , 3  2

1

( )
( )

q q
q

q q

U D
U D

α
δ

α
= = , 4  3

1

( )
( )

q q
q

q q

U D
U D

α
α

= = Θ ,   1, 2, ,8,q =   (13) 

 
 ( ),   ( ),    1,  2,  3q i qD D iα α = ,  (14)  
are given in Appendix-II. Therefore, the solution is  

 ( )8
3 3

1 2 3 1
1

( , , , ) (1, , , ) q
q q q q

q

i l x
U U U T U e

x α
γ δ θ

− +

=

=∑   (15) 

In view of the continuity of the displacement components, temperature, tractions and 
temperature gradient across the interface of the two layers, the following conditions 
must be satisfied: 

 ( ) ( )(1) (2)
3 30 ,0j ju x u x

+
= = =  

 ( ) ( )(1) (2)
3 30 ,0T x T x

+
= = =  

 ( )(1) (2)
3 3 3 30 ,0j jx xσ σ

− + = = = 
 

 

 (1) (2)
3 30 0 ,T x T x

− +   ′ ′= = =   
   

 (16) 
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where    subscripts (1) and (2) refer  to layers I and II, respectively, 0
+

 and 
0  are values of 3x  near zero. Because of periodicity of the deformation and 
thermoelastic stress fields, additional conditions obtained are:  

 (1) (2)
3 1 3 2( ) ( ),j ju x h u x h− += = = −  

 (1) (2)
3 1 3 2( ) ( ),T x h T x h− += = = −  

 (1) (2)
3 3 1 3 3 2( ) ( ),j jx h x hσ σ− += = = −    j = 1, 2, 3; 

 (1) (2)
3 1 3 2( ) ( )T x h T x h− +′ ′= = = − . (17) 

Upon substitution of the displacement, temperature, stress and temperature gradient 
components into (16) and (17), sixteen linear homogeneous equations for sixteen 
constants (1) (1) (2)

11 12 17, ,...,U U U  and (2)
18U are obtained. For nontrivial solutions, the 

determinant of the coefficients must vanish. This yields the following characteristic 
equation: 

 det 0, , 1, 2, ,8
jk jk

jk jk

A A
j k

B B

    −     = =
    −    

 . (18) 

The 8×8 matrices , ,jk jk jkA A B  and jkB  are given in Appendix-III. 
On simplifying equation (18), we have  

 ( )1
det det 0jk jk jk jk jkA B B A A

−
         − − − =           (19a) 

which implies that either  

 det 0,jkA  =    (19b) 
or 

 ( )1
det 0jk jk jk jkB B A A

−
       − − − =        .  (19c) 

 
If equation (19a) holds true, then the problem reduces to a free wave propagation in a 
single thermoelastic plate of thickness 1,h and in this case 1[ ] [ ][ ] [ ]jk jk jk jkB B A A−− − −  
will not exist  if jkA  is singular.  On the hand  if jkA is nonsingular then 1

jkA −  exists and 
accordingly  (19c) exists. 

In order to solve the problem numerically one has to solve (18), and to solve it is 
sufficient to consider either equation (19c) for heat conducting composite plates and 
equation (19b) to solve for free thermoelastic plate.  
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Particular cases  

Uncoupled thermoelasticity  

If the coupling constant, 0ε = , then thermal and elastic fields decoupled from each 
other and from equation (10b) we have 41 42 43 0M M M= = =  . In this case equation 
(10a) reduces to 

 ( )( )2 2 2 2 6 4 2
1 2 2 3 1 2 3 0l K l K F F Fα ω ζ τ α α α∗+ + − ∆ + + + =  . (20) 

From the above equation (20), considering the factor 

 
6 4 2

1 2 3 0,F F Fα α α∆ + + + =   (21) 

equation (21) corresponds to the characteristic equation in the uncoupled 
thermoelasticity where  
 33 44 55c c c∆ = , 
 

 
2 2 2 2

1 22 33 23 44 23 55 33 44 66 2 33 13 55 13 44 33 55 66 1
2

33 44 33 55 44 55

[( 2 ) ] [( 2 ) ]

       -( ) ,

F c c c c c c c c c l c c c c c c c c l
c c c c c c ζ

= − − + + − − +

+ +
 

 

 

2 4 2 4
2 33 13 55 13 66 44 55 1 22 33 23 44 23 66 22 55 44 2

2
12 33 33 44 66 23 55 12 44 55 13 22 55 44 55 66 13 44 66

12 33 66 12 13 44 13 23 66 12 23 55 12

[( 2 ) ] [( 2 ) ]

    [( 2( 2

    

F c c c c c c c l c c c c c c c c c l
c c c c c c c c c c c c c c c c c c c

c c c c c c c c c c c c c c

= − − + + − − +

+ − − − − + − −

+ − − − − 2 2 2 2
13 23 13 22 22 33 23 1 2
2 2 2

13 55 66 33 55 44 44 33 66 55 13 1
2 2 6

23 44 23 22 33 22 55 66 44 55 44 33 66 2 33 44 55

) ]

    (2c c c c c c )

    (2 c c ) ( ) ,

c c c c c c l l
c c c c c l

c c c c c c c c c c c l c c c

ζ

ζ

− + −

+ − − − − − +

+ + − − − − − + + +

 

 

 
( ) ( )2 22 2 2 2 4

3 55 1 44 2 66 1 22 66 2

2 2 2 4 4
22 66 12 22 55 1 2 22 66 2 66 1

(1 ) ( )

    [(2 ) ]

{
}. 

F c l c l c l c c l

c c c c c l l c c l c l

ζ ζ ζ= + − + + + −

+ + − − −
  (22) 

 
Equation (14) reduces to 

 1 13 23 12 33( ) ( ) ( ) ( ) ( ),q q q q qD M M M Mα α α α α= −  

 2 12 23 13 22( ) ( ) ( ) ( ) ( ),q q q q qD M M M Mα α α α α= −  

 3 ( ) 0,qD α =  

 
2

22 33 23( ) ( ) ( ) ( ).q q q qD M M Mα α α α= −   (23) 

Equations (23) correspond to the orthotropic materials purely elastic composites, which 
are obtained and discussed by Yamada and Nasser [17], and on the hand, second factor 
of equation (20) is    
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2 2 2 2

1 2 2 3 0.l K l K α ω ζ τ∗+ + − =   (24) 

Equation (24) corresponds to the purely thermal wave, which is clearly influenced by 
the thermal relaxation timeτ . 

 
Coupled Thermoelasticity 

In this is case when there is no thermal relaxation time, i.e. 0 0τ =  and hence τ=i/ω. 
Following above procedure, we arrived at frequency equation in the coupled 
thermoelasticity.  

Numerical Results and Discussion  

Using characteristic equation (18), numerical results for phase velocity versus wave 
number are presented for the first few lower modes to indicate the dependence of 
dispersion upon the angle of propagation and thermal relaxation times. The material 
chosen for this purpose is Aluminum epoxy composite / Carbon steel as layer I (h1=0.7) 
and Layer II (h2= 0.3) respectively.  

Figure 1 depicts the dispersion curves when the direction cosines of propagation are 
l1=0.259, l2=0.542, l3=0.799 whereas Figure 2 and Figure 3 depict the dispersion curves 
when the direction cosines l=0.195, l2=0.515, l3=0.834 and l1=0.125, l2=0.707, l3=0.696, 
in all these figures thermal relaxation time τ0=2.10-7. 

It is observed that lowers modes are more influenced with changes in direction 
cosines whereas little variation is noticed in the upper modes. Further, as 1l  increases, 
the phase velocity of lower modes decreases with wave number. 

Each of figure display wave speeds (coupled) corresponding to quasi-longitudinal, 
quasi-transverse and quasi-thermal, at zero wave number limits, lower modes are found 
to highly influenced and phase velocity of higher modes have higher values and 
decreases as wave number increases. One of the thermoelastic modes seems to be 
associated with quick change in the slope of the mode.  

In anisotropic plates the distinction between mode types is somewhat artificial, since 
the equation for thermal and elastic wave modes i.e. quasi-longitudinal and quasi-
transverse and shear horizontal modes will be generally be coupled with quasi-thermal 
wave modes. For wave propagation in the direction of symmetry some wave types 
revert to pure modes, leading simple characteristic equation of lower order. 
Consequence of elastic anisotropy in media is the loss of pure wave modes for general 
propagation direction. At zero wave number limits, each figure displays wave speeds 
corresponding to one quasilongitudinal, two quasitransverse and a quasithermal in 
generalized thermoelasticity and higher mode.   It is apparent that the largest value 
corresponds to the quasi-longitudinal and the additional mode appears is a quasi-thermal 
mode. At low wave number limits, modes are found to highly influence and it vary with 
the direction cosine. At relatively low values of the wave number, little change is seen 
in these values. As wave number increases others high modes appear, one of the modes 
seems to be associated with quick change in the slope of the mode. It is also observed 
that with change in direction cosines, lower modes highly influenced whereas small 
variation is noticed in the high modes. Thus in generalized thermoelasticity, at low 
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values of the wave number, only the lower modes get affected at low values of wave 
number and the little change is seen at relatively high values of wave number. The low 
value region of the wave number is found to be of more physical interest in generalized 
thermoelasticity. Further as at high wave number limits, small variation is observed, and 
so the second sound effects are short lived.  Quasi-longitudinal, quasi-transverse (two) 
and quasi-thermal waves are found coupled with each other due to the thermal and 
anisotropic effects, also wave-like behavior in the additional quasi-thermal modes. For 
uncoupled and coupled theory of thermoelasticity the results can be obtained from the 
present analysis by setting coupling terms and thermal relaxation times equal to zero. 
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Figure 1. Phase velocity versus wave number for the direction cosine 1 0.259,l =  

2 0.542l = and 3 0.799l =   in generalized thermoelasticity 
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Figure 2. Phase velocity versus wave number for the direction cosine 1 0.195,l = 2 0.515l =  

and 3 0.834l =  in generalized thermoelasticity 
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Figure 3. Phase velocity verses wave number for the direction cosine 1 0.125,l =  2 0.707l =  
and 3 0.696l =  in generalized thermoelasticity. 
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Appendix-I. 

2 2 2 2
1 1 1 3 33 44 55 1 2 2( )A B i PK c c c l l Kω εζ ω ω τζ∗ ∗= + + + − ∆  

2 2 2 2
2 2 2 3 1 1 2 2( )A B i P K P l K lω ζ ω ω τζ• •= + + + − ∆  

2 2 2 2
3 3 3 3 2 1 2 2( )A B i P K P l l Kω εζ ω ω τζ∗ ∗= + + + − ∆  

2 2 2 2
4 4 3 1 2 2( )A B i P l l Kω εζ ω ω τζ∗ ∗= + + − ∆  

33 44 55 3   c c c K∆ =  

2 2 2 2 2
1 22 33 23 44 23 55 33 44 66 1 33 13 55 13 55 33 55 66 2 33 44 33 55 44 55[( 2 ) ] [( 2 ) ] -( )P c c c c c c c c c l c c c c c c c c l c c c c c c ζ= − − + + − − + + +

55

2 4 2 4 2
2 33 13 55 13 66 44 55 1 22 33 23 44 23 66 22 55 44 2 12 33 33 44 66 23 55

2 44 13 22 55 44 55 66 13 44 66 12 33 66 12 13 44 13 23 66 12 23 55 12 13 2

[( 2 ) ] [( 2 ) ] [( 2(

    1 2

P c c c c c c c l c c c c c c c c c l c c c c c c c
c c c c c c c c c c c c c c c c c c c c c c c c c c c

= − − + + − − + + − − +

+ − + + − + + + + 2
3 13 22

2 2 2 2 2 2
22 33 23 1 2 13 55 66 33 55 44 44 33 66 55 13 1 23 44 23 22 33 22 55

2 2 4
66 44 55 44 33 66 2 33 44 55

)

    ]  [(2c c c c c c )  (2

     c c ) ]  ( )

c c
c c c l l c c c c c l c c c c c c c
c c c c c c cζ ζ

−

+ − + − − − − − − + + − −

− − − + + +

 
2 2 2 4 2 2 2

3 55 1 44 2 66 1 22 66 2

2 2 2 4 4
22 66 12 22 55 1 2 2266 2 66 1

( ) [ (1 ) ( ) ]

         [2 ) ]  

{
}

P c l c l c l c c l

c c c c c l l c l c l

ζ ζ ζ= + − − + + + +

+ + − − −
 

2
1 44 55 3B c c β= −  

2 2 2 2
2 55 44 3 13 44 44 55 3 33 44 44 66 55 3 1

2 2
23 55 44 55 2 3 33 55 2 22 55 44 66 2

( ) 2( ) -( )

     2( ) ) ( )

[ ]
[ ]

B c c c c c c c c c c c l

c c c c c c c c c c l

β ζ φ β

β β β

= + + + − +

+ + − − +
 

2 4 2 2
3 3 55 13 3 33 66 44 55 1 23 44 13 33 13 55 2 33 22

2 2
12 22 12 66 3 23 13 66 44 12 55 66 55 12 13 3

12 13 33 66 44 55 13 23 23 55 23 5

[ 2( ) ) ] 2 ( 2 )

       ( 2 ) [2( )
       2(

{[B c c c c c c l c c c c c c c c

c c c c c c c c c c c c c c
c c c c c c c c c c c c

β β β

β β

= − + + − − + + − + −

+ − + + − + − − −

+ + − − − − 5 2

2 2
22 55 13 22 12 44 44 66 12 23 23 66 3 23 2

2 2 2 2 2 2 2 2
66 3 44 33 55 13 3 1 22 66 3 33 66 44 55 2

4 2
44 66 66 23 2 3 2 22 66 3

]

       2( )

      (1 ) ( ) 2( ) ( )

      2( ) ( ) 2(

]
} [

] [

c c c c c c c c c c c c c l

c c c c c l c c c c c c

c c c c l c c c

β

β

β ζ ζ β ζ ζ β β

β β β

+ + − − − − +

+ + + + − + − − +

+ + + + +

+
2 2 2 4

33 55 2 23 44 2 3 2 3) 2( ) ]c c c lβ β β ζ β ζ+ − + −

 
2 2 2 4 2 2 2

4 55 1 44 2 66 1 22 66 2

2 2 2 4 4
22 66 12 22 55 1 2 22 2 66 1

( ) [ (1 ) ( ) ]

       [2 ) ]

{
}

B c l c l c l c c l

c c c c c l l c l c l

ζ ζ ζ= + − − + + + +

+ + − − −
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Appendix-II 

1 23 34 41 24 33 41 13 24 43

12 34 43 13 23 44 12 33 44

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

            + ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
q q q q q q q q q q

q q q q q q q q q

D M M M M M M M M M
M M M M M M M M M

α α α α α α α α α α

α α α α α α α α α

= + −

+ −

2 23 24 41 12 23 44 13 24 42

22 34 41 13 22 44 12 34 42

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

            + ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
q q q q q q q q q q

q q q q q q q q q

D M M M M M M M M M
M M M M M M M M M

α α α α α α α α α α

α α α α α α α α α

= + +

− −
2

3 23 41 22 33 41 12 23 43

13 22 43 12 33 42 13 23 42

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

            + ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
q q q q q q q q q

q q q q q q q q q

D M M M M M M M M
M M M M M M M M M

α α α α α α α α α

α α α α α α α α α

= − −

+ −

23 34 42 24 33 42 22 34 43

2
22 33 44 23 44 23 24 43

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

            + ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
q j j j j j j j j j

j j j j j j q j

D M q M q M q M q M q M q M q M q M q

M q M q M q M q M q M q M M q

α

α

= − −

− +
 

Appendix-III 

1 1jA =  1 1jA = , 

(1)
2 j jA γ=  (2)

2 j jA γ= , 

(1)
3 j jA δ=  (2)

3 j jA δ= , 

(1)
4 j jA θ=  (2)

4 j jA θ=  

(1) (1)
5 1 55j jA b c=  (2) (2)

5 1 55j jA b cη=   ,   

(1) (1)
6 2 44j jA b c=  (2) (2)

6 2 44j jA b cη= , 

(1)
7 3j jA b=  (2)

7 3j jA bη= , 

(1) (1)
8 3( )j j jA l α θ= − +  (2) (2)

8 3( )j j jA lη α θ= + , 

jk jk kB A E−=  jk jk kB A E+= , 

( )(1)
3 1jiQ l h h

jE e α− +− =  1 2( ),Q h hx= +  
( 2)

3 2( )jiQ l h h
jE e α− ++ =  (2) (1)

11 11c cη = , 

( ) ( ) ( )
1 1

m m m
j j jb l δ α= −  ( ) ( ) ( ) ( )

2 2
m m m m
j j j jb l δ α γ= − , 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 13 1 23 2 33 3

m m m m m m m m
j j j j jb c l c l cγ α δ β θ= + − −    , 

( ) ( ) ( )
11

m m m
jk jkc c c= ,   m = 1,2 
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