
Rakenteiden Mekaniikka (Journal of Structural Mechanics)
Vol. 45, No 4, 2012, pp. 188 – 200

Finite element analysis of the Reynolds lubrication
equation with cavitation

Arto Sorsimo, Mika Juntunen, Rolf Stenberg and Juha Videman

Summary. This paper considers modeling the flow with cavitation in a fluid film bearing.
In typical bearings, the film thickness is small in comparison with the length, which reduces
the Navier-Stokes equations into the Reynolds equation. To keep the minimum pressure at the
cavitation limit, the problem is represented as a variational inequality. For numerical solutions,
the variational problem is transformed into a penalty problem and discretized with the finite
element method. Comparison of the numerical results with the experimental data shows that
the pressure profiles are similar. However, the numerical results overestimate the cavitation
region found in the experimental data.
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Introduction

Fluid film bearing

The main purpose of a lubricant is to reduce friction and wear between solid surfaces.
Lubricants are used everywhere around us where we see moving parts; internal combustion
engines, turbines, industrial machines, hard disk drives, artificial joints etc.

In a fluid film bearing the load is supported by a thin fluid film. They can be roughly
divided into hydrostatic and hydrodynamic bearings. In hydrostatic bearings the fluid
film is pressurized by an external system and there is no need for motion. Hydrostatic
bearings are used in applications with extreme loads moving at low speed, for example in
telescopes and water plants. In hydrodynamic bearings there is no external pressurization
and the pressure in the fluid film is generated due to relative motion of the bearing
surfaces. There is a wide range of different types of hydrodynamic bearings depending
on the requirements set by the application. Hydrodynamic thrust bearings support a
load acting in the direction of the shaft’s axis of rotation, while in journal bearings a
load is acting perpendicular to the shaft’s axis. The fluid film thickness in hydrodynamic
bearings is usually between 1 and 10 µm [1].

Cavitation

There are two types of cavitation that can occur within the fluid film. Gaseous cavi-
tation exhibits if the fluid pressure declines to the saturation pressure of the dissolved
gases within the fluid. As a result a cavitation sheet is formed within the liquid which
dissolves without causing any pressure spikes and thus no damage to the bearing surface
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[2]. Vaporous cavitation can occur if the pressure declines to the fluids vapour pressure
and as a consequence cavitation bubbles emerge.

Cavitation bubbles containing gas and vapour are formed from small microscopic bub-
bles, nuclei, within the liquid continuum. As the fluid pressure drops, less energy is
required to increase the radius of the nucleus and the cavitation area begins to emerge.
Since the Gibbs free energy is much lower on the fluid-solid interface compared to the
fluid-gas interface, the radius of the nucleus on the bearing surface increases at lower
pressures than within the fluid [3]. Consequently the cavitation area is usually formed on
the bearing surface.

Due to the high pressure of the surrounding fluid, the cavitation bubble collapses
rapidly which in hand causes rapid changes in the fluid pressure. A bubble collapsing
against the solid causes damage to the bearing surface since in some cases the stress on
the surface reaches 1.5 GPa [4].

In typical bearings the lubricant is exposed to the ambient atmosphere pressure and
therefore cavitation occurs when the lubricants pressure declines below atmospheric pres-
sure which has been confirmed by experimental studies [5].

Theory

Reynolds equation

The fluid flow between two solid surfaces is modeled with the Reynolds equation for a
incompressible fluid, which is derived from the Navier-Stokes equations using the order-
of-magnitude analysis with the following assumptions:

1. The fluid is homogeneous, incompressible and Newtonian.
2. The effect of the curvature of the geometry is negligible.
3. The gravitational forces are negligible compared to the viscous forces.
4. The fluid film thickness is small in comparison with the length of the film.
5. The fluid flow is laminar, that is the Reynolds number is small and thus the inertia

forces are negligible in comparison to the viscous forces.
6. Steady-state conditions for the fluid and the no-slip condition on the boundaries.
7. The fluid viscosity is constant.
For further details of the derivation, cf. [1]. The first six assumptions are justified

for most hydrodynamic bearings [6]. The seventh assumption was introduced merely
to simplify the analysis. It is known that the temperature and pressure and thus the
viscosity varies along the fluid film and hence the last assumption is not as well justified
for hydrodynamic bearings as the other assumptions. Nevertheless, we can regard the
viscosity as an average viscosity since in the derivation the viscosity is integrated over the
fluid film thickness.

In this paper we constrain our attention to hydrodynamic plain journal bearings, which
we map into a rectangle. Bearings of this type can be found for example in railway journal
boxes.

We assume that the journal bearing is in a fixed position in the y-direction, the fluid
does not flow in the z-direction and that the bearing surfaces slide in the x-direction with
constant velocities. Then the Reynolds equation is

∇ · (D3∇P ) = 6µU
∂D

∂X
, (1)
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Figure 1. Idealized geometry of a plain bearing.

where P is the pressure, D is the channel height, µ is the viscosity and U is the relative
velocity of the bearing surfaces. We notice that the channel height D is cubed, which raises
difficulties in the numerical accuracy since it is small in comparison to other parameters.
Therefore we normalize and simplify the Reynolds equation. Let D∗ be a characteristic
thickness of the film and let Lx be a characteristic length of the bearing. We substitute

d =
D

D∗
, x =

X

Lx

, p =
LxD

2
∗

6µU
P, ν = d3 and f =

∂d

∂x

into equation (1) to obtain
∇ · (ν∇p) = f. (2)

We identify this equation as a non-homogeneous, elliptic partial differential equation of
second order for the unknown function p = p(x, z).

Since there is no constraint for the pressure, equation (2) produces erroneous solutions
as the pressure declines to the fluids cavitation pressure. In order to incorporate the
cavitation in to the Reynolds equation, we require that the pressure is greater or equal
to the cavitation pressure. Therefore we constrain the solution of the equation (2) with
p ≥ ψ, where ψ is the cavitation pressure of the fluid. Problems of this type are called
obstacle problems.

The obstacle problem

Let us begin with a simple example. Suppose we want to minimize a continuous function
g(x) : R → R over the interval I = [a, b] and let x∗ ∈ R be the minimizing point. Then
one of the following three cases illustrated in Figure 2 must occur.
We can summarize the three statements in one notation by writing

g′(x∗)(x− x∗) ≥ 0 ∀x ∈ I.

This is called a variational inequality. Generalizing these ideas we can introduce the
concept of a variational inequality for functions in Hilbert spaces [7].

Let Hk denote a Hilbert space equipped with the associated norm ‖ · ‖k and let (·, ·)
be the L2 inner product. Let Ω be a domain with boundary ∂Ω divided into two parts,
ΓD and ΓN . Now let Q be a subspace of H1(Ω) defined as

Q ,
{
q ∈ H1(Ω)

∣∣ q|ΓD
= 0
}
.
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(a) g′(x∗) = 0 (b) g′(x∗) ≥ 0 (c) g′(x∗) ≤ 0

Figure 2. Minimizing the function g(x) over the interval I.

Then the closed convex subset K ⊂ Q is defined as

K ,
{
q ∈ Q

∣∣ q ≥ ψ a.e. in Ω
}
,

where the obstacle ψ ∈ C(Ω̄). To guarantee compatibility with the boundary conditions,
we require ψ|ΓD

≤ 0. Let f : L2(Ω) → R be a linear functional and let the symmetric,
elliptic and continuous bilinear form a(·, ·) : Q×Q→ R be defined as

a(p, q) ,
∫

Ω

ν∇p · ∇q dx,

where ν is a smooth, positive and bounded function in Ω, that is, there exists constants
ν0 > 0 and ν1 = max{1, ‖ν‖W 1,∞(Ω)} such that 0 < ν0 ≤ ν(x) ≤ ν1 for all x ∈ Ω̄. Then
the variational inequality problem is formulated as

VI-Problem: Find p ∈ K such that

a(p, q − p) ≥ (f, q − p) ∀q ∈ K.

The solution of the VI-problem exists and is unique, cf. [7].
In order to solve the problem numerically, we introduce a regularized version of the

VI-problem. Suppose w ∈ Q is the unique solution of the variational problem

a(w, q) = (f, q) ∀q ∈ Q. (3)

In view of the VI-problem, for any q ∈ K we have

a(p, q − p) ≥ (f, q − p) = a(w, q − p)

and therefore

a(p− w, q − p) ≥ 0 ∀q ∈ K. (4)

Recalling that the bilinear form a is positive definite, we can define the norm ‖ · ‖Q ,√
a(·, ·). Then, according to the projection theorem onto a convex set [7], the result (4)

can be stated as
‖w − p‖Q = min

q∈K
‖w − q‖Q, (5)
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Figure 3. Minimizing the distance between w and K.

which shows that p ∈ K is the unique best approximation of w ∈ Q ⊂ H in K. The
geometric interpretation of result (5) is that p minimizes the distance between K and w
as illustrated in Figure 3.

This suggests a method for calculating the solution of the VI-problem. The idea is to
obtain the solution w ∈ Q of the variational problem (3) and then find the projection of
w onto K, that is PK(w) ∈ K. For this purpose, we introduce a penalty operator

β(w) , w − PK(w), w ∈ Q. (6)

Clearly if the initial solution w ∈ K, then β(w) = 0 and if w ∈ Q\K, then β(w) 6= 0. Now
let ε ∈ R+ be a penalty parameter and let b(·, ·) : L2(Ω) × L2(Ω) → R be a symmetric,
elliptic and continuous bilinear form defined as

b(p, q) ,
∫

Ω

νpq dx.

Then the penalty problem is formulated as

P-Problem: Find pε ∈ Q such that

a(pε, q) +
1

ε
b(β(pε), q) = (f, q) ∀q ∈ Q.

Solution method

In order to solve the P-problem numerically, we discretize the domain and solve the prob-
lem using the finite element method. We make a regular partitioning Th = {T1, T2, . . . , Tm}
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of Ω into uniform three-node triangular elements of mesh size h. Let us denote by P1 the
set of all polynomials of degree one and introduce finite element space

Qh ,
{
q ∈ Q

∣∣ q|T ∈ P1(T ) for all T ∈ Th
}
⊂ Q.

The finite element formulation of the P-problem is to find pε,h ∈ Qh such that

a(pε,h, qh) +
1

ε
b(β(pε,h), qh) = (f, qh) ∀qh ∈ Qh. (7)

Since the penalty function is not differentiable, we solve the equation with a method
similar to a fixed-point iteration.

First we solve the initial pressure p
(0)
ε,h without penalty from the equation

a(p
(0)
ε,h, qh) = (f, qh) ∀qh ∈ Qh. (8)

The iterate p
(k+1)
ε,h is constructed in two steps. First, let Ω

(k)
c,h denote the contact area

corresponding to p
(k)
ε,h, that is,

Ω
(k)
c,h ,

{
x ∈ Ω

∣∣ β(p
(k)
ε,h) > 0

}
.

The intermediate solution p̂
(k+1)
ε,h is solved from

a(p̂
(k+1)
ε,h , qh) +

1

ε

∫
Ω

(k)
c,h

ν(ψ − p̂(k+1)
ε,h )qh dx = (f, qh) ∀qh ∈ Qh (9)

using this contact area. The second step is to use relaxation, with the parameter η ∈ (0, 1],

p
(k+1)
ε,h = (1− η)p

(k)
ε,h + ηp̂

(k+1)
ε,h . (10)

Let φi, i = 1, . . . , n, be the basis functions spanning Qh and denote by A ∈ Rn×n and
B(k) ∈ Rn×n the matrices

Aij = a(φi, φj) and B
(k)
ij =

1

ε

∫
Ω

(k)
c,h

νφiφj dx.

Let p̂
(k)
ε , f and ψ denote the n × 1 vectors corresponding to p̂

(k)
ε,h, and the projections of

f and ψ to Qh, respectively. The linear equations corresponding to (9) read

Ap̂(k+1)
ε − 1

ε
B(k)p̂(k+1)

ε = f − 1

ε
B(k)ψ

and the last step (10) is

p
(k+1)
ε,h = (1− η)p

(k)
ε,h + ηp̂

(k+1)
ε,h .

We compute the residual

r , Ap(k+1)
ε − 1

ε
B(k+1)p(k+1)

ε − f +
1

ε
B(k+1)ψ, (11)

and stop the iteration if |r| ≤ εfeas, in which εfeas is the given tolerance.
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Error estimates

Next we examine a priori error estimates for the VI-problem, P-problem and the dis-
cretized version of the P-problem. In addition, we give a posteriori error estimate for the
P-problem. Similar estimates has been derived in [10] and [9] for the problem with ν = 1.

Lemma 1. Let pε ∈ Q, pε,h ∈ Qh and p ∈ K ⊂ Q be the solutions of the the P-problem,
discretized P-problem and the VI-problem, respectively. Then, given a penalty parameter
ε > 0 and a smooth, positive and bounded function ν the estimates

‖p− pε‖1 ≤ Cε1/2ν−2
0 (ν0 + ν1)‖f‖0, (12)

‖pε − pε,h‖1 + ε−
1
2‖β(pε)− β(pε,h)‖0 ≤ Cν2

1ν
−2
0 (h+ h2ε−

1
2 )‖f‖0 (13)

hold with some constant C > 0.

Proofs of the theorems lie heavily on the fact that the penalty operator is a monotone
operator. For detailed derivation of the estimates, cf. [11].

The result (12) estimates the error between the VI-problem and the P-problem. We
notice that when we maximize the penalty by letting ε → 0, we obtain p = pε. The
obtained result implies that the solution of the P-problem converges to the solution of the
VI-problem.

The second estimate (13) indicates the error between the continuous and discrete form
of the P-problem. We notice that when we tie the penalty parameter to the mesh size by
setting ε = O(h2), the estimate (13) reduces to

‖pε − pε,h‖1 ≤ C
ν2

1

ν2
0

h‖f‖0. (14)

The result (14) shows that the penalty problems optimal convergence rate for linear
elements is achieved when the penalty parameter is tied to the mesh size as described
above. Using estimate (12) to result (14), we obtain the error estimate between the
VI-problem and the discrete formulation of the P-problem.

Theorem 1. Let pε ∈ Q and pε,h ∈ Qh be the solutions of the VI-problem and discretized
P-problem, respectively. Then, given a penalty parameter ε = O(h2) and a smooth, positive
and bounded function ν the estimate

‖p− pε,h‖1 ≤ Ch
ν0 + ν1 + ν2

1

ν2
0

‖f‖0

holds with some constant C > 0.

Let Ei denote the edges in Th. Furthermore, let EN = {Ei} be the edges on the
Neumann boundary and EI = {Ei} be the edges in the interior of Ω. On an edge E ∈ EI
between the elements T1 and T2, we define the jump in the normal derivative of q as

q
∇q · n

y
E
, ∇q1|E · n1 +∇q2|E · n2.

The derivation of the a posteriori estimate is straight-forward, cf. [11].

Theorem 2. Let pε,h ∈ Qh and pε ∈ Q be the solutions of the discretized penalty problem
and the penalty problem, respectively. Then there exists a constants C1, C2, C3 > 0 for
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which

‖ν 1
2∇(pε − pε,h)‖L2(Ω) + ε−

1
2‖ν 1

2 (β(pε)− β(pε,h))‖L2(Ω)

≤ C1

(∑
T∈T

h2
T‖ν−

1
2 (f +∇ · (ν∇pε,h)− ν

ε
β(pε,h))‖2

L2(T )

) 1
2

+ C2

( ∑
E∈EN

hE‖ν−
1
2 (ν∇pε,h · n)‖2

L2(E)

) 1
2

+ C3

( ∑
E∈EI

hE‖ν−
1
2 (Jν∇pε,h · nKE)‖2

L2(E)

) 1
2
.

We use the a posteriori estimate in numerical computation, where we refine the mesh
adaptively to obtain more accurate results.

Numerical results

We compare the numerical solution of the Reynolds equation to experimental data ob-
tained from [8]. We notice from equation (1) that variations in the channel height are
necessary in order to create pressure differences in the bearing fluid. Therefore we use the
function

D(x) = C(1 + λ cosx), x ∈ [0, 2π], C > 0

to model the eccentricity between the journal and the bearing, which is adequate for
typical plain journal bearings [1]. Here λ ∈ [0, 1] is the eccentricity ratio which depends
on the load applied to the bearing. We choose similar parameters as in the experimental
measurement:

λ = 0.4, C = 12 · 10−6, Lx = 0.128 m, U = 10 m/s, D∗ = 17 µm.

Since the value of the viscosity is not mentioned in the article, we choose a typical
value for motor oils, that is µ = 0.1 Pa · s. It is worth mentioning, since the pressure is
normalized, that only the value of the eccentricity affects the final solution.

As noted previously, the cavitation pressure of the fluid is considered to be the atmo-
spheric pressure. Therefore we set the obstacle function as our reference pressure, that is
ψ = 0.

Due to the normalization of the variables, we solve the problem in unit square domain
Ω shown in Figure 4. The domain is divided into contact-free and contact domains;

Ωf ,
{
x ∈ Ω

∣∣ p(x) > 0
}
,

Ωc ,
{
x ∈ Ω

∣∣ p(x) = 0
}
,

which are separated by the boundary of contact, that is M = ∂Ωf ∩ ∂Ωc.
We set the following boundary conditions:

p = 0 on ΓD and p|Γ1 = p|Γ2 on Γ1,Γ2.

The physical interpretation of the boundary conditions is that the pressure on the outlet
boundary ΓD is equal to the atmospheric pressure and since the bearing is mapped from
a cylinder into a rectangle, we require periodic boundary conditions on Γ1 and Γ2.
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Figure 4. Domain of the bearing problem.

Assuming that the solution has sufficient regularity, that is p ∈ C2(Ω), we may write
the VI-problem in strong form. Let pi denote the pressure and let ni be the normal on
Γi. Then the boundary value problem is defined as

−∇ · (d3∇p)− ∂d

∂x
≥ 0 in Ω,

p ≥ 0 in Ω,

p(−∇ · (d3∇p)− ∂d

∂x
) = 0 in Ω,

p = 0 on ΓD,M,

p1 − p2 = 0 on Γ1,Γ2,

d3 ∂p1

∂n1

+ d3 ∂p2

∂n2

= 0 on Γ1,Γ2,
s
d3 ∂p

∂n

{
= 0 on M.

For further details of the derivation, cf. [12], [11]. The theoretical results of the P-
method show that the optimal penalty parameter is proportional to the square of the local
mesh size, that is, ε = O(h2

T ). We set the relaxation parameter η = 0.95 and stopping
criteria r < 10−8. First we investigate the effect of size of the problem to the number of
iterations. To this end, we solve the problem using uniformly refined meshes. Table 1
shows the number of iterations as a function of number of nodes. The table also shows
the energy of the problem, that is

E ,
1

2
a(pε,h, pε,h) +

1

2ε
b(β(pε,h), pε,h)− (f, pε,h),

cf. (7) for further details. The result shows that the number of iterations grow only
moderately as the number of nodes increase.

The solution obtained with 1217 nodes is shown in Figure 5. The shape of the pressure
profile of the numerical solution is similar to the one obtained in the experimental investi-
gation. We notice that the maximum pressure occurs at x = 0.35, which is approximately
20 degrees before the minimum clearance.
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Table 1. Iterations with various number of nodes.

Nodes 27 89 321 1217 4737

Iterations 7 8 9 11 14
E -0.0247 -0.0302 -0.0295 -0.0288 -0.0285

Next we examine the region of cavitation. In order to improve the accuracy of the
solution, we use a posteriori estimate to refine the mesh in elements with most error. We
choose to refine all triangles in which the absolute error is bigger than the mean error
of all elements. The first four refinements of the mesh is shown in Figure 6. The region
where the penalty function is active is marked with yellow color in Figure 7. However,
the cavitational region observed in experimental investigations is a narrow strip in the x-
direction. It appears that the numerical solution only indicates the area where cavitation
can occur.

Conclusions

The main purpose of this article was to solve the inequality constrained Reynolds equation
using the finite element method. The pressure profiles were similar to those obtained from
the experiments and the contact area was found accurately, but it was an overestimate
compared to the cavitational region found in the experimental tests. Hence the region of
cavitation was interpreted as the area where cavitation can occur.

Cavitation inception is a complex phenomena to model and an exact determination
of the cavitation region is even experimentally a hard task. In order to determine the
cavitational area numerically, we propose to use the time dependent Reynolds equation
incorporated with a cavitation model.
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Figure 5. Normalized pressure distribution with 1217 nodes.
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Figure 6. A posteriori error analysis with four mesh refinements.
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Figure 7. Region of contact with 123930 nodes.
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