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Steel building optimization applying metamodel techniques

Teemu Tiainen, Markku Heinisuo, Timo Jokinen, and Mikko Salminen

Summary. The paper demonstrates the use of metamodels in a cost optimization of single
story industrial or commercial steel building including one span symmetric tubular steel roof
trusses. A cost optimal solution for truss and wall combination is presented by varying the unit
cost of the wall. One span truss metamodel is used. The main conclusions are: Optimize larger
compositions, not only one product; cost optimal span/height ratio for one span Warren-type
truss is 10; for low cost walls, say 50 - 70 e/m2, the optimal span/height ratio is 12; for more
expensive walls the span/height ratio should be more than 12; careful building of metamodels
enables their use in many kinds of optimization problems to quickly get results for preliminary
design; the metamodels are essential tools in optimization still a long time, although software
and hardware are getting more and more efficient.
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Introduction

In building projects the fabricators of single products want to optimize the costs of their
products to get a contract. The sum of optimized products is not necessary the cost
optimum for the client. This is shown to be true using a simple example. The paper
demonstrates the use of metamodels in a cost optimization of single story industrial or
commercial steel building including one span symmetric tubular steel roof trusses. The
section of the building is shown in Fig. 1.

Metamodels are used to build an approximation of a problem which has a high com-
putational cost (Diaz et al., 2012). Metamodels are used in optimization and similar
problems to avoid evaluations using computational heavy tasks, such as non-linear finite
element analyses. The process of developing a metamodel consists of three steps (Diaz
et al., 2012): design of experiments (DoE), metamodel building and validation. In this
paper the focus is in demonstration of the use of a metamodel in an optimization problem.

Building the metamodel

There are plenty of metamodeling techniques and optimization approaches using meta-
models (Wang and Shan, 2007). The one used in this paper is as follows. Tubular steel
trusses have been optimized with different spans, heights and loading widths before fi-
nal optimization of the building in the roof of which the trusses are placed. Optimal
truss solutions are stored in a table. Using interpolation functions, these solutions are
used to approximate the mass and cost of trusses with arbitrary span, height and loading
width. The sample points are gotten with a rather heavy topological, sizing and geome-
try optimization of tubular steel trusses (DoE). Theoretical background for sample point
calculations is given by Bzdawka and Heinisuo (2012).
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Figure 1. Section of the building.

The trusses are optimized using the cost as criterion and then the respective structural
masses were calculated for cost optimal trusses. The truss costs are calculated based on
used materials and features of fabrication with following actions (Jármai and Farkas, 1999;
Jalkanen, 2007): preparation, assembly and tack welding; joint welding and additional
tasks such as electrode changing, deslagging, chipping; surface preparation; painting;
cutting and edge grinding. The feasibilities of trusses are checked based on relevant
Eurocode standards (EN 1993-1-1, 2005; EN 1993-1-8, 2005) meaning resistance checks
of members and joints. The linear beam FE structural analysis model includes semi-rigid
joints (Snijder et al., 2011) with corresponding eccentricities between chords and braces.
Particle swarm optimization (PSO) algorithm (Kennedy and Eberhart, 1995) was used
with variations of parameters. The design variables were member sizes of chords and
braces, and locations of nodes along the chords of the truss.

Cost of a truss structure is specific to manufacturing methods used as well as labour
and material costs at given time and place. Figure 2 illustrates typical cost breakdown
of Warren-type one span tubular truss (Bzdawka and Heinisuo, 2012) made in Western
Europe (material cost of 1.5 e/kg (Haapio, 2012) and labour cost, manufacturing methods
and parameters as in (Bzdawka and Heinisuo, 2012)). It shows that, even though being
the most important factor, material only represents a little over one third of the total
cost.

Fig.3 shows example of the layouts of optimal trusses at different spans. Contrary
to widely used practises it seems that in optimal geometry of a truss the distances of
connections are unequal and that regardless of the span the layouts look very similar.

The sample points have been calculated with 15 PSO runs with the population 50 and
with 125 iterations and 10 PSO runs with the population 70 and with 175 iterations were
done keeping other parameters of PSO as in (Bzdawka and Heinisuo, 2012). PSO is a
stochastic method so many runs are required to ensure convergence. CPU time to perform
one truss (fixed span L and height H) calculation was about 36 hours. The characteristic
dead load of the roof is 1 kN/m2 and the characteristic snow load on the roof is 2 kN/m2.
Finnish NAs are used for Eurocode design. The steel material grade is S420. Roof slope
is 1:20.

153



Figure 2. Cost breakdown of a typical warren-type truss (Bzdawka and Heinisuo, 2012).

Figure 3. Layouts of optimal trusses.

Data from metamodel and validation

The optimal tubular steel trusses with different heights H, spans L and loading widths
C/C 1 are shown in Appendix A. The values often needed in optimization of a building
are the weight or cost of a (nearly) optimal truss with arbitrary span, height and loading
width. Therefore, following interpolation approach was adopted.

Consider four points xi = (Li, Hi, C/Ci), i = 1, 2, 3, 4. The costs ci and masses mi of
optimum trusses (metamodel sample points) are known. By using the four values, the
mass and cost related to given point x∗ = (L∗, H∗, C/C∗) must be acquired. One way is
to weigh the four points with weights wi and take weighted sum of points xi to get the
mass and cost of point x∗.

This leads to following equations:

w1L1 + w2L2 + w3L3 + w4L4 = L∗ (1)

w1H1 + w2H2 + w3H3 + w4H4 = H∗ (2)

w1C/C1 + w2C/C2 + w3C/C3 + w4C/C4 = C/C∗ (3)

The sum of weights is required to be one:

w1 + w2 + w3 + w4 = 1 (4)

By solving the equations the coefficients wi can be acquired and they can be used to
calculate cost c∗:

c∗ = w1c1 + w2c2 + w3c3 + w4c4 (5)

1The notation C/C refers to center to center distance of two trusses, a typical loading width for a
single truss
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For mass, respectively:

m∗ = w1m1 + w2m2 + w3m3 + w4m4 (6)

The four points are chosen by first normalizing the sample point values and then taking
the closest four by Euclidian distance. Then if the four points are in the same plane in
the three dimensional variable space, the Equations 1–4, cannot be solved. Then in this
procedure, the second closest point is replaced with fifth closest.

When this approach is used, the design variables (member sizes, geometry, topology
et cetera) of the actual truss remain unknown. In preliminary design the cost informa-
tion is often enough. If in the later phases the design variable values are needed truss
optimization with suitable parameters has to be run.

To validate the interpolation procedure the values were calculated at span length
L = 33.3 m and optimized with respective values. The results can be seen in Table 1.
Based on this, the interpolated results seem to be on the safe side compared to optimized
results, meaning larger costs and weights in this case. The difference compared to values
acquired with PSO varies from 5.6 % to - 3.2 % the mean of absolute value of relative
differences being 4.475 % at mass and 2.75 % at cost.

Table 1. Masses and costs of optimal trusses and the values predicted by metamodel at span L = 33.3 m.

Interpolated Optimized Relative difference

Span [m] L/H C/C [m] Mass [kg] Cost [e] Mass [kg] Cost [e] Mass [%] Cost [%]

33.3 8 6 2919.2 10944 2763.8 10404.6 5.6 5.2
33.3 10 6 2718.3 9944.5 2591.6 9562 4.9 4.0
33.3 12 6 2845.5 10159 2940 10174.2 -3.2 -0.1
33.3 14 6 3260 11020 3129 10832.4 4.2 1.7

Optimal truss and wall combination

In a building there are usually also other parts than just trusses. It is clear that in building
seen in Fig. 1 the amount of wall area and thus the cost related to walls is dependent
of the truss height. The height H of the symmetric one span roof truss has effect to the
one storey building’s wall cost, if free height A, span L and distances of frames C/C are
fixed. Note that height H is distance between topmost point of the top chord and bottom
surface of the bottom chord. The truss has its optimal height with respect to the cost of
the truss.

The cost optimum L/H = 10 is old ”rule of thumb” which has been used by designers
for a long time. Looking at Tables 1 and 2 it could be said that in most cases it is valid.
But there are exceptions. Consider a truss of span L = 30 m and c/c = 14.4 m. At L/H
= 8 the cost is 15425.2 e and at L/H =10 the cost is 15851.8 e. The higher truss costs
only 2.8 % more so L/H = 10 is a pretty good guess in this case, too. But is this optimal
height also optimal for truss and wall combination?

To find out this, cost optimal solution for truss and wall combination is sought after
with cases varying the unit cost (e/m2) of the wall. One span secondary truss metamodel
is used. The size of the building is 600 m2 and two cases are considered: truss span 20
m and 33.3 m keeping the frame distance as 6 m. The wall costs are varying between
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Figure 4. The weights and costs of optimal trusses for the span 20 m and loading width 6 m.

Figure 5. Weight of the trusses of different spans per floor area.

50 – 150 e/m2 meaning realistic minimum and maximum costs of the day in Finland.
Steel sandwich panel cost is about 50–70 e/m2 and concrete wall is about 100–120 e/m2

(Mittaviiva Oy, 2010).
The capital costs of the structures are calculated only for trusses and walls at truss

height H. It is supposed that the trusses cover the entire floor area so the costs of the
trusses are 600 · Et where Et is the truss cost per m2 got from the metamodel. The wall
cost for 20 m span building is 100 ·H ·Ew and for 33.3 m span 102.7 ·H ·Ew where Ew is
the unit cost of the wall. The weights and costs of optimal trusses for the span 20 m are
shown in Fig. 4. It can be seen that the weight optimum is at H = 2.5 m but the cost
optimum is at H = 2 m.

In Fig. 5 it can be seen that the weight optima are in all cases L = 30, 33.3 and 40 m
at L/H = 10. The costs for the same spans are shown in Fig. 6.

Fig. 7 shows unit costs of steel at different spans. The unit cost ranges from 3.2 to 4.6

Figure 6. Optimal costs of trusses at different spans.
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Figure 7. Unit costs of steel in trusses at different spans.

Figure 8. Truss and wall costs for 20 m span and loading width of 6 m.

e/kg so traditional structural optimization approaches where the weight of the structure
is used as criterion can be considered more or less inaccurate.

Fig. 8 presents the truss and wall cost for 20 m span. It can be seen that when the
wall unit cost is 50 e/m2 then the optimal truss height is about 1.67 m (L/H = 12), not
at 2 m which is the truss optimum. If the wall cost is larger then the best truss height
is 1.43 m and smaller. Fig. 9 shows truss and wall costs for the building with truss span
33.3 m.

The optimum can be found for the lowest wall cost 50 e/m2 and the optimal truss
height is 2.78 m (L/H = 12), again not the same as for the trusses only (H = 3.33 m).
When using optimal truss (3.33 m) for truss and wall combination for span 33.3 m, then
the total costs are 5, 10 and 14 % more than smallest in Fig. 9 for wall cost 50, 100 and

Figure 9. Truss and wall costs for 33.3 m span and loading width of 6 m.
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Figure 10. Building layout and dimensions.

150 e/m2, respectively.

Preliminary design of a hall

The metamodel was created for optimization purposes. The example showed in the earlier
section was fairly simple manual optimization without optimization algorithms. In this
section a more realistic but still simple optimization problem example using metamodels
is presented. Consider 1200 m2 hall using Warren type roof trusses shown in Figures 1
and 10. The building is rectangular and is constructed of columns, roof trusses and walls.
Other structures such as roof or floor are omitted. Only vertical loads are taken into
account.

By using design variables distance C/C, span L and the height ratio L/H of the truss,
a simple optimization problem for cost optimal building could be written as:

min f(x) =nccc + ntct + Awcw (7)

s.t. 6 m ≤ C/C ≤ 14.4 m

8 ≤ L/H ≤ 14.4

10 m ≤ L ≤ 40 m

where nc is the number columns (twice the number of trusses), cc cost of column, nt the
number of trusses, ct cost of a truss, Aw is the area of the wall, and cw is the unit cost of
the wall. Given a free height of Hf , area of the wall can be calculated by

Aw = 2(L + Af/L)(Hf + H) (8)

where Af is the floor area. Cost cc is acquired from another metamodel for steel column
cost. Fig. 11 shows the relation between cost and resistance for axial resistance for steel
column at length 6 m and buckling lengths at both directions 12 m (cantilever columns
supposed).

This optimization problem was solved with different wall unit costs with genetic algo-
rithm in Global optimization toolbox of Matlab (Mathworks, 2010). A single optimization
took about 30 seconds with several runs of genetic algorithm. As opposed to an approach
where truss optimization would be included in the problem as whole, the saving in com-
putational time is quite significant. The results presented in Figures 12 and 13 shows the
same phenomenon that was found in the first example. The optimal layout of building is
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Figure 11. Cost of steel column as function of axial resistance.

Figure 12. The ratio of length and width of
optimal steel frame building.

Figure 13. The ratio of span and height of truss
used in optimal steel frame building.

dependent of the wall cost and therefore the optimization should consider the all relevant
parts of a composition, not only a single product. In this example many simplifications
were made. Foundations, wind loads, floor structures, bracing et cetera were omitted.
Also, some design variables presented here as continuous might actually be discrete due
to product sizes available. To make further conclusions or design guidelines, more realist
ic optimization problems have to be formulated.

Conclusions

In this paper a truss metamodel to be used in building preliminary design optimization
is presented. The technique seems promising and it cuts down the calculation times
remarkably. This comes with a cost that the members sizes, optimal truss topology
and geometry are not known. But at the later design phase they are needed, regular
optimization techniques can be used to find them.

Optimization of truss only leads to unsatisfactory results when the whole building is
considered. Therefore, optimizing larger compositions is recommended. For a Warren-
type truss only, cost optimal truss span-height ratio is normally around 10. If wall cost
is low, say 50 - 70 e/m2, optimal truss span-height ratio is about 12 but with more
expensive walls the ratio should be higher.
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Appendix A

Table 2. Calculated optimal trusses.

Span [m] L/H [-] C/C [m] Mass [kg] Cost [e] Span [m] L/H [-] C/C [m] Mass [kg] Cost [e]

10 8 6 216.26 1570.22 30 8 12 3918.8 13518.4
10 8 8.4 284.56 1851.8 30 8 14.4 4687.4 15425.2
10 8 12 385.6 2343.4 30 10 6 2139 8156.8
10 8 14.4 555 2888.4 30 10 8.4 2737.6 9851.4
10 10 6 218.62 1515.52 30 10 12 3766.6 13308.6
10 10 8.4 299.96 1944.72 30 10 14.4 4967.6 15851.8
10 10 12 494.38 2612.8 30 12 6 2196.6 8394
10 10 14.4 520.6 2846.6 30 12 8.4 3082 10706.2
10 12 6 247.44 1667.04 30 12 12 4326.6 14074
10 12 8.4 327.56 2008.8 30 12 14.4 5437.8 17194.8
10 12 12 498.08 2713 30 14 6 2544.4 9022.8
10 12 14.4 601.98 3182 30 14 8.4 3511.8 11948
20 8 6 996.14 4629.6 30 14 12 5290 16461.6
20 8 8.4 1176.98 5288.8 30 14 14.4 6335.2 20992
20 8 12 1823.16 7092.6 40 8 6 4155.8 14918.6
20 8 14.4 1837.68 7451.6 40 8 8.4 5276.2 17465
20 10 6 1020.62 4431 40 8 12 7255.4 22288
20 10 8.4 1184.06 5142.8 40 8 14.4 8899.8 26496
20 10 12 1720.48 6741.2 40 10 6 3877 13520.4
20 10 14.4 1846.54 7329 40 10 8.4 4998.2 16373
20 12 6 1017.6 4577.2 40 10 12 7227.4 22480
20 12 8.4 1369.38 5595 40 10 14.4 8843 26636
20 12 12 1913.84 7302.4 40 12 6 4143.6 13690
20 12 14.4 2277.8 8409.6 40 12 8.4 5632.2 17392
20 14 6 1193.74 4964.4 40 12 12 8397.4 25032
20 14 8.4 1503.98 6052.4 40 12 14.4 9991.8 29026
20 14 12 2249.4 8271.6 40 14 6 4691.4 15013.6
20 14 14.4 2846.6 10381.6 40 14 8.4 6657 20804
30 8 6 2301 8956.6 40 14 12 9762.6 28330
30 8 8.4 2778.2 10419
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