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Geometric approach in numerical eigenproblem analysis

Alexis Fedoroff and Reijo Kouhia

Summary. Non-linear eigenproblems can be encountered in a wide range of physical systems,
stability analysis being an important source of such problems. The current technique used in
commercial finite element codes to solve non-linear eigenproblems consists in linearizing the
criticality equation with respect to the bifurcation parameter evaluated at the origin. Since the
numerical technique is approximative, it is essential to assess the error both on the eigenvalue
and the eigenmode. The latter one is of particular importance, since the eigenmode is typically
used as initial imperfection in imperfection sensitivity analysis.

In this paper the authors propose a new geometric approach, in which the eigenvector is
considered as a locally smooth function defined on the criticality manifold. Given two such
eigenvectors, one for the non-linear eigenproblem and one for the linear one, it is possible to
evaluate the error between the two eigenvectors considering the location of their respective
arguments on the criticality manifold and the intrinsic properties of the criticality manifold
itself. Simple, illustrative examples taken from structural stability will be shown for the sake of
clarity as well as numerical computations on engineering problems.

Key words: non-linear eigenproblems, Riemannian geometry, structural stability

Introduction

If we look at the role of engineers in the assessment of structural integrity for a given
system it is rather clear that in order to avoid catastrophic events, emphasis should be
placed on the study of qualitative changes in system behavior. From a theoretical point of
view such qualitative changes in system behavior have been widely studied in the context
of bifurcation theory [8], [23], [14], but as systems get more and more complex, numerical
issues related to locating bifurcation points have to be taken into consideration. In the
numerical study of non-linear phenomena eigenproblems play a significant role as a means
of locating bifurcation points.

Numerical eigenproblem solution strategies

Actually there are many different numerical strategies that have been developed over
the years related to non-linear eigenproblem solving, and broadly we can conceive three
types of approaches: indirect, direct and polynomial approximation approaches. The
indirect approach consists in following the primary equilibrium path using continuation
while monitoring some test function related to the criticality condition [21], [1], [3], [20],
[12],[13]. Although continuation methods and their implementations in finite element
codes tend to be reliable, these approaches need some experience from the user in order
to properly set step length and other continuation parameters and certainly it is a time
consuming approach. The direct approach consists in solving iteratively an augmented
system consisting of equilibrium, criticality and normalization condition [10], [22], [18],
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[26], [16]. The main issue in this approach is to find a suitable starting point within the
radius of convergence of the iterative solver. Usually the starting point is found using the
indirect strategy, which means that its drawbacks are also inherited. Although the direct
approach has been widely discussed in the scientific literature, it has not yet found its
way into commercial finite element codes. Instead of that the solution strategy proposed
by most finite element codes to solve a non-linear eigenproblem seems to be the linear
approximation of the eigenproblem with respect to the critical parameter evaluated at
the origin.

Maybe because it has been seen as an engineering method, maybe because of its
apparent simplicity, the linear approximation of the eigenproblem, as a numerical method,
has not deserved much attention from the scientific community. The method itself dates
back to the early days of finite element computation due to Gallagher [7], [19], and
nowadays it is considered as standard textbook material [4], [5]. References can also be
found in various finite element software manuals [2], which use either a tangent stiffness
matrix approach or a secant stiffness matrix approach, although both variants can be
considered as linearizations of a non-linear eigenproblem. An interesting study done
by Earls [6] compares, for some benchmark structures, the critical values of linearized
eigenproblem given by various finite element software packages with the analytic one.
Although very recent studies using the linearized eigenproblem as part of a larger scope
have been conducted [24, 17], as far as we know, there have been no publications on a
priori error assessment of the linearized eigenproblem, either for the eigenvalue or the
eigenmode.

The particular importance of eigenmode error assessment

The reasons to study the a priori errors of a linearized eigenproblem are quite obvious.
Linear approximation of an eigenproblem has the advantage of being fast and robust,
and hence it is very popular among finite element software users. Maybe one reason for
such popularity of linearized eigenproblem as a strategy is that it does not need any fine
tuning from the user side, such as step length control or other parameter setting. In a
design environment where the commercial finite element code is used as a “black box” by
a user novice in numerical computation this point could be viewed as an important asset.
However, as we will see in this article, the interpretation of the results given by a linear
approximation of a non-linear eigenproblem is far from being trivial.

Therefore raises the question how accurate the solution of a linearized eigenproblem
could possibly be, in other words what is the error of a given eigenpair with respect to a
reference result obtained, for example, by a direct strategy. If we are solving a problem
which could be qualified as quasi-linear with respect to the critical parameter, intuitively
we would expect a good approximation obtained from the linearized problem both for
the eigenvalue and the eigenmode. On the other hand, if we are considering “highly”
non-linear systems, computational engineering practice assumes -falsely- that although
the eigenvalue approximation could be bad, linearized eigenproblem yields always an
acceptable approximation for the eigenmode. Instructive counterexamples using very
simple structures will be given in section .

What then makes the error on eigenmode so significant over the error on eigenvalue?
To answer to this question one needs to understand the standard stability analysis pro-
cedure used in structural engineering. Stability analysis of a structure starts by the
eigenvalue analysis of a geometrically perfect structure using linearized buckling analysis.
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In the resulting spectrum the most interesting eigenpair is obviously the most critical
one, that is the one corresponding to the lowest positive eigenvalue. Now, the second part
in stability analysis consists in introducing the eigenmode corresponding to the lowest
positive eigenvalue as an initial imperfection and running a full non-linear analysis on the
geometrically imperfect structure using a standard continuation method. Assuming that
the post-critical path of the system under analysis is unstable, then one can find a limit
point in the equilibrium path of the geometrically imperfect structure, which corresponds
to the maximum load carrying capacity of the engineering problem. By experience the
maximum load that the geometrically imperfect structure can bear is usually significantly
lower than the buckling load given by the geometrically perfect system using non-linear
eigenvalue analysis [11].

Now if we go through the standard stability analysis procedure we can see that the
linearized eigenvalue is actually never used in structural integrity assessment. On the
other hand when we carry out imperfection analysis the limit load that the geometrically
imperfect structure can bear depends on the eigenmode obtained from the linearized
eigenproblem, hence the emphasis on the role of the error on eigenmode.

Differential geometry and eigenproblem analysis

In the present article we try to find some elements of an answer to characterize a priori the
error of the linearized eigenmode. The sense of the word a priori here can be interpreted
as “without knowing the result of the non-linear eigenproblem”. To be able to answer
the question we have to find some generic properties which could possibly predict the
change in the eigenmode as the matrix entries of the singular matrix, which defines the
criticality condition, undergo a smooth change. It will be shown that the set of singular
matrices constitutes a manifold embedded in the space of all square matrices and that the
eigenvector is a locally smooth vector field on that singularity manifold. Further, we shall
investigate the intrinsic properties of the singularity manifold, such as curvature, and try
to relate it to a possible drastic change in the corresponding eigenmode. As far as we
know, such an attempt to assess spectral properties of a linear operator using differential
geometry approach is new and it seems very promising. Although in this article we shall
mainly give results that have been constructed in the special case of two by two symmetric
matrices, we are looking forward to generalize the results to arbitrary dimensions.

Overview on computational stability analysis

As it already was mentioned, stability analysis is not just a single task, but rather a
sequence of tasks that may vary depending on the nature of the problem under considera-
tion. The type of stability problems most often encountered in stability analysis would be
what singularity theorists would call fold and cusp bifurcations1 [25, 8] which can be rep-
resented by the physical examples of snap-through and buckling, respectively. Another
important point to consider is whether, in case of a cusp bifurcation, the post critical
path is stable or unstable. That point is particluarly important since it conditions the
imperfection sensitivity of the system, and is a key issue when one has to decide whether
to perform or not an imperfection sensitivity analysis. It should also be noted that a fold
bifurcation is not imperfection sensitive.

1A bifurcation is a point on the equilibrium path where the number of solutions to the equilibrium
equation changes as the critical parameter varies [8]
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In the following few sections we shall describe very briefly the different stages that the
stability analysis of conservative systems could possibly consist of, without, however going
into the details of postbuckling analysis and imperfection sensitivity analysis, as these
topics are out of the scope of this article. We shall also set forth the specific problematics
related to non-linear eigenproblem analysis as opposite to linearized eigenproblem analysis
and try to compare the results in terms of eigenvalues and eigenmodes.

Defining the equilibrium path

Assume that for a conservative system the potential energy functional Π ∈ Ck(X ×R;R)
is available and it is smooth, and where X denotes some Hilbert space called the state
space, which for discrete systems is the euclidean space Rn endowed with the 2-norm. In a
static loading case one can assume that a conservative system is at equilibrium if the first
variation of the potential energy vanishes. One can then compute the defining function
f ∈ Ck(X×R;X) of the equilibrium equation from the relation δΠ|

(p,λ)
(q) = 〈q , f (p, λ)〉,

where p is an element in the state space X, q a vector in the tangent space TpX, and
〈·, ·〉 denotes the inner product in X. Note that since we assume X to be euclidean, the
tangent space TpX can be assimilated to the state space X itself. The critical parameter
λ is a real-valued quantity on which the equilibrium state depends. The zero set of the
defining function E := {(p, λ) ∈ X × R : f (p, λ) = 0} can then be viewed as the
equilibrium path. The equilibrium path is made up of one or more branches Ei , i ∈ N

such as the set union of all branches makes up the whole equilibrium path, and it can be
shown that each branch is a smooth 1-manifold embedded in the ambient state space [9].
The branch which contains the origin of the state space, i.e. the point corresponding to
the reference configuration is called the primary branch or primary equilibrium path and
is noted EI.

Defining the jacobian mapping and finding the critical points

The next step in classical stability analysis consists in the investigation of critical points,
which in turn enables to assess the quality of the equilibrium path. The Lagrange-Dirichlet
stability criterion, which is usually the most appropriate one in a static loading scheme,
tells that the equilibrium of a conservative system is locally stable if and only if the
potential energy functional has a local minimum. As a corollary one can retain that a
point on the equilibrium path is stable if the second variation of the potential energy
functional is positive definite in all possible directions.

Since we are primarily interested in the points where the equilibrium path qual-
ity changes from stable to unstable, we shall use the criticality condition, also called
the Trefftz condition, to find those points. The second variation of the potential en-
ergy functional is related to the jacobian of the defining function in the following way:
δ2Π|

(p,λ)
(q, q) = 〈q , J |

(p,λ)
q〉, where we have used the notation J := ∂pf to denote the

jacobian matrix mapping from the equilibrium set to the set of bounded linear operators:
J ∈ Ck(E ; BL(X;X)). If we consider the restriction of J to a given branch Ei, then the
range of that restricted mapping also constitutes a 1-manifold Ji embedded in the ambi-
ent space of bounded linear operators BL(X;X). Note that in case of discrete systems
the ambient space just the set of square n× n matrices.

At a critical point (p̂, λ̂) belonging to the equilibrium path E we may assume that
there exists at least one direction in the state space noted q̂ such as the quantity J |

(p̂,λ̂)
q̂
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vanishes. It is easy to see then that if we consider a chart2 (ψ, V ) of Ei, then the mapping
J ◦ ψ−1 ∈ Ck(ψ(V );Ji) defines a non-linear eigenvalue problem (J ◦ ψ−1)|t̂ q̂ = 0 such

that t̂ = ψ(p̂, λ̂).

Defining the linear approximation of the eigenproblem

With some experience, one can easily notice that finding analytical solutions is difficult
even in extremely simple cases. For more complex systems it can be assumed that global
analytical solutions are unavailable, hence the only way to proceed with stability analysis
consists in finding numerical solutions to the non-linear eigenproblem. Numerical solutions
can be “exact” in the sense that there is an Newton-like iterative algorithm that converges
to the exact solution, or the numerical solution can be “approximative” in the sense that
an approximative solution is found using Taylor-like local formulas that are easy to solve.

Let us find out what happens if we apply a Taylor series expansion to the equilibrium
and criticality condition. First linearize at the origin the non-linear equilibrium defining
function f with respect to the critical parameter λ

f (p, λ) = f |
(0,0)

+
(

∂pf |(0,0)
(

dp

dλ |0
)

+ ∂λf |(0,0)
)

λ+O(λ2) . (1)

Since the equilibrium relation f (p, λ) = 0 has to hold for any value of λ it may be inferred
that each coefficient of the polynomial in λ given by the right hand side of equation (1)
has to be equal to zero. Hence the derivative of the state variable p with respect to
the critical parameter λ can be evaluated provided that the jacobian ∂pf evaluated at
the origin is not singular: dp

dλ |0 = − ∂pf |(0,0)
−1

f |
(0,0)

. Using that value one can draw

the linear equilibrium path tangent at the origin, which is just the graph of the function
λ 7→ dp

dλ |0 λ. It is quite easy to prove that the linear equilibrium path is just the tangent

space T0EI at the origin to the primary equilibrium path EI. Next, let us compute the
linear approximation of the jacobian matrix:

J |
(p,λ)

= J |
(0,0)

+
(

∂pJ |
(0,0)

(

dp

dλ |0
)

+ ∂λJ |
(0,0)

)

λ+O(λ2) . (2)

Likewise, one can prove that the linearization of the jacobian mapping given by equa-
tion (2) defines a manifold embedded in the ambient space of bounded linear operators
that actually is the tangent space T0JI to the manifold JI. The linearized criticality
condition then yields the following generalized linear eigenvalue problem: J |

(0,0)
q̂ =

−λ̂
(

∂pJ |
(0,0)

( dp

dλ |0) + ∂λJ |
(0,0)

)

q̂ .

For practical consideration we are interested in the eigenpair corresponding to the min-
imum positive eigenvalue (assuming, of course, that there exists one and that it is unique).
In the following sections of this article we shall denote by (λNL, qNL) and (λLIN, qLIN) the
eigenpair solutions of the non-linear and linear eigenproblems respectively.

Examples and motivation

In order to get a more palpable view of the problematics, to illustrate the research ques-
tions and to motivate the theoretical discussion that follows, let us start by investigating
the stability of two very simple, idealized systems. The first system we want to analyze is

2In differential geometry a chart (ψ, V ) is an ordered pair where ψ is a homeomorphism from an open
subset V on the manifold to an open subset of the euclidean space [15].
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a two degree of freedom model that models the snap-through behavior of a dome shaped
structure. The second system tries to predict the out-of-plane buckling behavior of an
initially plane truss. We have thus chosen two representatives of the fold and cusp bi-
furcations respectively. Both models are by no means perfect, however they present the
invaluable asset of being analytically computable and behave in a way that is easy to
understand intuitively. Nevertheless they are complex enough to exhibit the phenomena
we are interested in.

First example: snap-through of a dome

Defining the system

Consider the following two degree of freedom model, depicted in figure 1, that is supposed
to represent a dome-shaped system with polar symmetry or an arch restricted to plane
displacements. The dome or arch is assumed to have a finite and constant membrane
stiffness and a negligible bending stiffness. From figure 1 one can see that the radial
membrane stiffness is represented by the quantity γ k and the radial membrane stiffness
is represented by the quantity 1

2
k. The non-dimensional factor γ relates the two quantities.

The question of how well this simple model is representing a given physical system is of no
importance, since the aim of this exercise is to show the problems related to approximative
solutions that may arise in stability analysis. In the setup of kinematical relationships
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Figure 1. A mathematical model of the snap-through problem.

we shall make some arbitrary choices concerning the measure of strain, mainly guided by
the pursue of simplicity. The choice of the strain measure is inspired from the Green-
Lagrange strain tensor in such a way that it defines the strain for a given segment PQ in
the reference configuration, denoted P ′Q′ in the deformed configuration by

ǫPQ :=
1

2

‖P ′Q′‖2 − ‖PQ‖2
‖PQ‖2 . (3)

Further considering the vector decompositions A′B′ = (l + u1) i 1 − (h − u2) i 2, B
′C ′ =

(l + u1) i 1 + (h − u2) i 2 and A′C ′ = 2(l + u1) i 1 in the orthonormal basis {i 1, i 2}, the
shorthand notation ‖AB‖ = ‖BC‖ =: d, and the non-dimensional state variables p1 and
p2 defined as follows: p1 := u1/d, p2 := u2/d, on ends with the following expressions of
the strains:

ǫAB(p) =
1
2

(

(cos θ + p1)
2 + (sin θ − p2)

2 − 1
)

= ǫBC(p) , (4a)

ǫAC(p) =
1
2

(

(cos θ + p1)
2 / cos2 θ − 1

)

. (4b)
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The potential energy of a linear elastic spring segment PQ can be expressed as half the
product of the spring constant with the elongation of the spring. Hence one can easily find
the potential energy of the example problem by summing the potential energies for each
individual segment. Doing this with the non-dimensional quantities yields the following
expression for the total potential energy functional:

Π(p, λ) = 1
2
γ ǫAB

2 (p) + 1
2
cos2 θ ǫAC

2 (p)− λ p2 . (5)

In the above equation the non-dimensional load parameter λ is defined as the following
quantity λ := F/(2 k d).

For this particular example the equilibrium path E can be calculated analytically quite
easily from the equilibrium equations although we shall not go into details here, as it is
not the purpose of this article. Just note that by making appropriate change of variable
one can find out that the projection of the equilibrium path on the plane {λ = 0} is an
ellipse and that the projection of the equilibrium path on the plane {p1 = 0} is a cubic
polynomial in p2. Then by applying a polar parametrization one can easily draw the
equilibrium path in the state space. As far as the critical points is concerned, they can
be computed very neatly using the constants which corresponds to the major and minor
axis of the ellipse.

Presenting the results in the classical state space

Let us present now the obtained results in the classical state space. In figures 2 and
3 we have shown the equilibrium path, which actually is the primary and only one EI.
Also the tangent space at the origin, which represents the linearized equilibrium path,
have been represented. Stable portions of the equilibrium path appear in black solid
line whereas unstable portions in gray solid line. Further, the critical points and the
eigenmodes computed from both the non-linear eigenproblem and the linearized one have
been pictured in the state space.

One can see that for some parameter values, the relative error on the eigenvalue defined
as (λNL−λLIN)/λNL can be relatively large. On the other hand the error on the eigenmode,
which is here defined to be the quantity 1−|〈qNL, qLIN〉| is very small. If one scans though
all possible physically meaningful values of the parameters γ and θ, it can be observed
that in most situations the error on the eigenmode remains very small, even though
the error on the eigenvalue can be hundreds of percents. However the example given in
figure 3 shows, that for some parameter values the relative error on the eigenmode can
be important.

Looking at figures 2 and 3 one can see that there is clearly a particular point that the
state space representation cannot explain, namely the direction of the linearized eigen-
mode. If we consider the non-linear eigenmode, it looks obvious from the figures that
it is always an element of the tangent space at the critical point. However, one cannot
say the same of the linearized eigenmode, which seems to point to an arbitrary direc-
tion. Therefore let us try another way of presenting the results, which -we hope- is more
adequate.

Presenting the results using the criticality manifold

The crucial thing in understanding the follwing sections comes from the consideration
of the set of all square n × n real matrices as a vector space. Indeed, it can be shown
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Figure 2. Equilibrium path for the example problem with parameter values γ = 2 and θ = 20deg
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Figure 3. Equilibrium path for the snap-through example problem with parameter values γ = 1000 and
θ = 60deg

that such set endowned with the addition and multiplication by an element in the field
R constitutes a vector space. We can also show that if we further endow the space R

n×n

with an appropriate inner product, we can construct an orthonormal basis for that space
{e i ej

⊺ : 1 ≤ i ≤ n , 1 ≤ j ≤ n}. For example the base vectors for the space R2×2 would
be e1 e1

⊺, e1 e2
⊺, e2 e1

⊺ and e2 e2
⊺. In the graphical interpretations that will come ahead

we shall use analogy with the classical euclidean state space and draw the unit vectors
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e i ej
⊺ as arrows.

The criticality manifold is here defined as the set of all square n × n real matrices of
rank n − 1 or less. It can be shown [15] that the set of all matrices of rank n − 1 is a
smooth manifold of dimension n2 − 1 embedded in R

n×n and that matrices of lower rank
constitute submanifolds thereof. If we consider the special case of symmetric matrices,
they form a n (n+1) / 2 dimensional ambient space and the criticality manifold would be
n (n + 1) / 2 − 1 dimensional. In the particular case of our example problem we have a
2-dimensional criticality manifold embedded in the space of symmetric 2× 2 matrices.

As we already stated, the range of the jacobian mapping restricted to a particular
branch of the equilibrium path J : Ei → R

n×n defines a 1-manifold Ji, also embedded
in the ambient space of square n × n real matrices. We shall focus on the branch cor-
responding to the primary equilibrium path and shall call it the primary jacobian path,
JI.

In figure 4 and 5 we have drawn both the criticality manifold and the primary (and
only) jacobian branch of the non-linear problem as well as the jacobian branch of the lin-
earized problem. Positive definite parts have been drawn in black solid line and indefinite
portions in gray. The intersection points between the jacobian paths and the criticality
manifold correspond to the solutions of the criticality condition. Note that if one uses
a parametrization ϕ that consists in “wrapping” the criticality manifold with a sheet of
paper without tearing or crumpling it, then for two given singular matrices A and B the
angle between the corresponding eigenmodes ∠(q

A
, q

B
) depends only on the central angle

∠(ϕ(A), ϕ(B)) between the points ϕ(A) and ϕ(B). Moreover the dependence is linear
with a factor of

√
2. We shall prove this claim in detail in subsequent sections, but this

type of relation starts to look like what we are searching.
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Figure 4. Jacobian path and criticality manifold for the snap-through example problem with parameter
values γ = 2 and θ = 20deg.
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Figure 5. Jacobian path and criticality manifold for the snap-through example problem with parameter
values γ = 1000 and θ = 60deg

Second example: out-of-plane buckling

Defining the system

Consider the following three degree of freedom model as shown in figure 6. Although it
is not evident, this model is representing a truss structure that is initially plane with a
loading constricted to that plane. The plane in question is the one orthogonal to e1 going
through the point A. Note that the point A′ is always restricted to that plane, and that
in the reference placement the point A coincides with the point O. The stucture is able
to buckle in two different modes, or combinations thereof: as a rigid bar, such that the
segments A′B′ and B′C ′ remain in line, or as euler column buckling such as the nodes A′

and C ′ remain in the original plane while the “column” consisting of the rigid segments
A′B′ and B′C ′ “bends” at B′.
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|
|

h

|
|

h

|
|

u

ϕ1

ϕ2

c1

c2k

A,O

A′

B

B′

C

C ′

b
b

Figure 6. A mathematical model of the out-of-plane buckling problem

The point A′ is connected to the rigid frame via a “torsional” linear spring with
coefficient c1 whereas the relative angle of A′B′ with respect to B′C ′ is controlled by a
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“flexural” linear spring with coefficient c2. The nodesO and C ′ are connected to each other
via an axial linear spring of coefficient k. One can assume that the strain measure in the
axial spring is given by a Green-Lagrange type measure as shown in equation (3). Consider
the vector quantity OC ′ = −h (sinϕ1 + sinϕ2) e1 + (u + h (cosϕ1 + cosϕ2)) e2 and the
non-dimensional state variables p1 := u / (2h), p2 := (ϕ2+ϕ1)/2 and p3 := (ϕ2−ϕ1)/2 as
well as the constants η1 := c1 / (k (2h)

2), η2 := 4 c2 / (k (2h)
2) and λ := F / (k 2h). Then,

considering the following expression for the strain measure,

ǫOC(p) =
1
2

(

2 p1 cos p2 cos p3 + cos2 p3 + p1
2 − 1

)

, (6)

one can build the following non-dimensional expression for the total potential energy
functional:

Π(p, λ) = 1
2
ǫOC

2 (p) + 1
2
η1 (p2 − p3)

2 + 1
2
η2 (p3)

2 − λ p1 . (7)

Although we shall not go into the details of computing the equilibrium paths and critical
points of this system, we feel that the reader who might want to compute the analytical
solutions should be informed that the graphical representations given in the following
sections have been computed in exchange for a somewhat arbitrary simplification. Namely
the second order term p1

2 in the strain measure expression (6) has been neglected, and
the reasons to that are quite opportunistic. As a matter of fact, we wanted to show a
case where even assuming a linear primary equilibrium path the events with respect to
eigenproblem linearization could well be pathological.

Presenting the results in the classical state space

Figure 7 shows the equilibrium paths projected on the hyperplanes {p2 = 0 , p3 = 0} and
{λ = 0}. The example has been calculated for a particular case where the ratio of η2 to
η1 is 20, meaning that the torsional rigidity c1 of the upper chord of the truss is only 1/5
of the flexural rigidity c2 of the compressed vertical member.

As we already mentioned, due to the simplification we managed to get a linear primary
path although the real primary path according to the accurate mathematical model up
to the critical points would probably have been very close to linear. Nevertheless this is
not our primary cause of concern. Looking at the secondary equilibrium paths, one can
clearly see that at the lower positive critical point given by the non-linear eigenproblem
the eigenmode is pointing almost in the direction of p2, i.e. ϕ1 ≈ ϕ2, suggesting a rigid
bar buckling mode. On the other hand the higher positive critical point given by the non-
linear eigenproblem suggests, by pointing almost at p3, a euler column buckling mode
(ϕ1 ≈ −ϕ2).

Then, if we look at the result given by the linearized eigenproblem, it seems to point
in the direction such that p2 ≈ p3, which means that ϕ2 ≈ 0. Physically this eigenmode
is rather unexpected considering the values that have been given to the spring constants.

Presenting the results using the criticality manifold

Let’s have a look at the results how they appear on the criticality manifold and then
discuss what possible benefits one could get from this type of representation. Figure 8
shows the primary jacobian path JI embedded in the ambient R3×3 space of symmetric
square matrices. However, since the jacobian matrix evaluated at the primary path of
equilibrium is block diagonal and that the block related to the primary state variable p1 is
assumed to be non-singular (it is actually constant in this case), we shall investigate the
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b
pLIN

b
pNL

b

qLIN

qNL

∠(qLIN, qNL) = 40,9 deg

Figure 7. Equilibrium path for the out-of-plane buckling example problem with parameter values η1 = 0.1
and η2 = 2.0
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J LIN
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J NL

b
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J |
0

Figure 8. Jacobian path and criticality manifold for the out-of-plane buckling example problem with
parameter values η1 = 0.1 and η2 = 2.0

positive definiteness only of the block related to the secondary state variables p2 and p3.
Since we are dealing with symmetric matrices, it is easy to draw the criticality manifold
and the primary jacobian paths projected on the space spanned by {e2 e2

⊺, e3 e3
⊺, e2 e3

⊺}.
From figure 8 it is easy to see that although the primary equilibrium path EI is linear,

the primary jacobian path JI is far from being linear. One can further notice that both
the non-linear jacobian path JI and the tangent space T0JI are fully contained in the
plane {[J ]23 = −η1} and that the tangent space is parallel to the vector e3 e3

⊺ in the
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matrix space. The latter statement implies that there is only one intersection between
the criticality manifold and the tangent space.

Differential geometry approach in two dimensional symmetric eigenproblems

Let’s now try to produce some kind of theory around the questions that have been sketched
in the examples and motivation section. Knowing that a general theory valid in a Hilbert
space or even a theory valid for discrete systems involving eigenproblems in the n × n
ambient matrix space would be too a big leap forward in a first approach, we shall restric
ourselves to the very modest case of symmetric 2×2 matrix space in this article. The first
reason is that the geometrical objects occurring in these spaces are fairly well known for
most of the readers, since we are going to manipulate something very similar to surfaces
embedded in the three dimensional euclidean space. The second reason is that we need at
least two dimensions in order to make a difference between two eigenvectors, so the space
we are considering is the simplest one that could possiby give answers to our questions.

As we have seen from the previous examples, trying to make some general statements
about the jacobian path of a generic physical system can prove to be very difficult. In
both examples that we have considered so far the jacobian path was a plane curve, and
the tangent space to the jacobian path obviously lies then in the same plane. However in
a generic case we have to consider a jacobian path as an arbitrary curve in the ambient
space. Furthermore, one can intuitively see that although the error on the eigenvalue
depends on the distance travelled from the oringin all the way to the critical point along
the non-linear and the linearized jacobian paths respectively, the error on the eigenmode
depends only on the respective positions of the non-linear and linearized critical points
on the criticality manifold.

Therefore in this general approach we shall forget about the jacobian paths alltogether
and focus solely on the properties on the criticality manifolds and how they affect the
corresponding eigenmodes. We shall consider therefore the eigenmode as a locally smooth
mapping from the criticality manifold to the state space. This claim is proved below in
lemma 1. The next step is to compute the error between two eigenmodes and to show
that this is also a smooth mapping on the criticality manifold. The next step constitutes
in finding a proper parametrization as a collection of charts on the criticality manifold
such that one can easily define and recognize geodesics on the manifold. Geodesics can
loosely be understood as shortest ways on a manifold between two points. Finally, the
last step consists in explicitely computing the error between the eigenmode as a function
of some intrinsic properties of the criticality manifold and the distance between the two
points under consideration.

Since our goal is to make some a priori statement on the error on the eigenmode we
do not have any reference point at our disposal. Therefore we have to consider an open
ball of some radius ǫ around a given point on the criticality manifold and try to estimate
the error on the eigenmode as a function of the radius ǫ and the intrinsic properties of
the manifold at the point under consideration.

Properties of the eigenmode and error on eigenmode mappings

Consider the criticality manifold defined as the set of all square n × n matrices of rank
n− 1 with real entries. It can be shown that this set constitutes a smooth manifold [15]
that we shall denote M n

1 .
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Lemma 1 (Local smoothness of the eigenmode mapping). Consider a smooth manifold

M n
1 . Then q : M n

1 → R
n defined by the map A 7→ q

A
such that Aq

A
= 0 and ‖q

A
‖ = 1

is a locally smooth map on M n
1 .

Proof. For any matrix A ∈ M n
1 , there exists a permutation matrix P ∈ R

n×n such as

P ⊺AP =

(

M m

n⊺ n⊺M−1 m

)

(8)

where the matrix M ∈ R
(n−1)×(n−1) is full rank, m ∈ R

(n−1)×1 and n⊺ ∈ R
1×(n−1) The

right hand side matrix is obviously rank n− 1, since it can be decomposed as a product
of a full rank matrix and a matrix with the last row of zeros:

(

M m

n⊺ n⊺M−1 m

)

=

(

I 0
n⊺M−1 1

)(

M m

0 0

)

(9)

Since the permutation matrix is orthogonal, PP ⊺ = I, the equation Aq = 0 is equivalent
to APP ⊺q = 0. By multiplying the equation sidewise from the left by P ⊺ one gets the
equation P ⊺APP ⊺q = 0, which can also be expressed explicitely as follows:

(

M m

n⊺ n⊺M−1 m

)





−M−1m√
1+‖M−1m‖2

1√
1+‖M−1m‖2



 =

(

0
0

)

(10)

Hence we have determined q
A
up to a permutation:

q
A
= P





−M−1m√
1+‖M−1m‖2

1√
1+‖M−1m‖2



 (11)

Since the matrix M is full rank its determinant is non-zero. The determinant is a smooth
function with respect to the matrix entries and since the determinant does not vanish, we
infer that the inverse M−1 is a smooth function with respect to the entries of M . Hence
we can conclude that q

A
is a smooth function with respect to the entries of A.

It should be noticed that in the statement of lemma 1 the word locally means that
the eigenmode mapping is smooth for any path as long as the path stays on the manifold
defined by n × n matrices of rank strictly equal to n − 1. If the path contains points of
rank n − 2 or less, then the eigenmode mapping is no longer continuous at these points.
Those points of higher rank deficiency will be at the center of our interest throughout
this survey. One can easily picture the case of 2× 2 rank 1 matrices in ones mind close to
the origin, which is rank 0. As long as we are in the neighbourhood of the origin but not
at the origin, the eigenmode has some definite direction but at the origin the direction of
the eigenmode is no longer defined.

The inner product between two eigenmodes form defined as (A,B) 7→ 〈q
A
, q

B
〉, the

angle between two eigenmodes form defined as (A,B) 7→ ∠(q
A
, q

B
) and the error between

two eigenmodes form defined as (A,B) 7→ 1−|〈q
A
, q

B
〉| are then all locally smooth forms

on the criticality manifold by virtue of composition of smooth functions.
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Parametrization of the M 2
1 manifold of symmetric matrices

Consider the open submanifolds U+ := {A ∈ M 2
1 : a11 ≥ 0, a22 ≥ 0} and U− := {A ∈

M 2
1 : a11 ≤ 0, a22 ≤ 0}. Consider also the inclusion map ι : M 2

1 → R
2×2. Then define

the charts (ϕ+, U+) and (ϕ−, U−) such that

(ϕ+ ◦ ι−1)
(

a11 ±√
a11 a22

±√
a11 a22 a22

)

=
(

a11 + a22 ,
1√
2
arctan

(

±2
√
a11 a22

a11−a22

)

)

(12a)

(ϕ− ◦ ι−1)
(

a11 ±√
a11 a22

±√
a11 a22 a22

)

=
(

−a11 − a22 ,
1√
2
arctan

(

±2
√
a11 a22

a22−a11

)

)

(12b)

and with the inverse of the maps ϕ+ and ϕ− expressed as follows:

(ι ◦ ϕ−1

+ )(r, θ) =
r

2

(

1 + sin
√
2θ cos

√
2θ

cos
√
2θ 1− sin

√
2θ

)

(13a)

(ι ◦ ϕ−1

− )(r, θ) =
r

2

(

−1− sin
√
2θ cos

√
2θ

cos
√
2θ −1 + sin

√
2θ

)

(13b)

It is not difficult to notice that {(ϕ+, U+), (ϕ−, U−)} defines a smooth atlas of M 2
1 . There

are many other possibilities to parametrize the criticality manifold, but the one proposed
has the particular property that each straight line from the range of ϕ± constitutes a
geodesic on the manifold M 2

1 .

Geodesics on M 2
1

So far we have not defined the metrics on M 2
1 , but a very natural choice would be the

induced metrics from the ambient space given by the Hilbert-Schmidt inner product for lin-
ear operators. Therefore we define the metric tensor g(X, Y ) := 〈(ι∗◦X), (ι∗◦Y )〉HS, where
ι∗ : TM 2

1 → TR2×2 denotes the tangent map of ι for any X and Y elements of the tan-
gent bundle TM 2

1 . The tangent space itself can be defined as TAM 2
1 := sp{ ∂

∂ r

∣

∣

A
, ∂

∂ θ

∣

∣

A
}.

Considering the chart (ϕ+, U+), the push forwards of the vectors ∂
∂ r

∣

∣

A
and ∂

∂ θ

∣

∣

A
by the

inclusion map are the given by the following expressions:

(ι∗ ◦ ∂
∂ r
)
∣

∣

A
=

1

2

(

1 + sin
√
2θ cos

√
2θ

cos
√
2θ 1− sin

√
2θ

)

|A
(14a)

(ι∗ ◦ ∂
∂ θ
)
∣

∣

A
=

r√
2

(

cos
√
2θ − sin

√
2θ

− sin
√
2θ − cos

√
2θ

)

|A
(14b)

Similar expressions can be derived for the chart (ϕ−, U−) as well. The metric tensor has
ten a very neat diagonal form:

gA =

(

1 0
0 r2

)

|A
(15)

Consider a path γ : I → M 2
1 , where I is some open interval of R. That path is said to

be a geodesic if ∇γ̇ γ̇|t = 0 for all t ∈ I. The operator ∇ : TM 2
1 × TM 2

1 → TM 2
1 is the

affine riemannian connection that can be evaluated locally using the Riemann-Christoffel
symbols Γk

ij := gkl Γl ij and Γl ij := g(∇∂j∂i, ∂l) =
1
2
(∂igjl + ∂jgli − ∂lgij). If one considers

the parametrization given by the expressions (13a) and (13b), one can check that the only
non-zero Riemann-Christoffel symbols are Γθ

rθ = 1/r and Γr
θθ = −r.
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Lemma 2 (Geodesics on M 2
1 ). Considering the parametrization (13a) and (13b) any

straight line between two points ϕ±(A) and ϕ±(B) belonging to ϕ±(U±) defines a geodesic

on U±.

Proof. The proof is given for the chart (ϕ+, U+). The proof for the chart (ϕ−, U−) is
similar. Consider two points ϕ+(A) = (r|A, θ|A) and ϕ+(B) = (r|B, θ|B). Take a path
γ : I → M 2

1 defined by (ϕ+ ◦ γ)(t) := (1− t)ϕ+(A) + t ϕ+(B) = (ζr(t), ζθ(t)). The local
functions ζr and ζθ can be computed and have the following expressions:

ζr(t) =
√

(1− t)2 r|A2 + t2 r|B2 + 2 (1− t) t r|A r|B cos(θ|A − θ|B) (16a)

ζθ(t) = arctan

(

(1− t) r|A sin θ|A + t r|B sin θ|B
(1− t) r|A cos θ|A + t r|B cos θ|B

)

(16b)

Then one has to show that ∇γ̇ γ̇|t = 0 holds locally, i.e. that we have ζ̈ i + Γi
jk ζ̇

j ζ̇k = 0
for all t ∈ I. Considering only the non-vanishing expressions for the Riemann-Christoffel
symbols, one can simplify these equations to the following form:

{

ζ̈r − ζr (ζ̇θ)2 = 0

ζ̈θ + 2 1
ζr
(ζ̇r ζ̇θ) = 0

(17)

By carrying out the derivations with respect to t on the expressions in (16a) and (16b) one
can notice that these expression fullfill the equations in (17) and hence that the proposed
path is a geodesic on U+.

It should be noticed that lemma 2 is just an application in the linear operator space
of a well known result from geometry of surfaces, which is that if a cone or cylinder (both
objects with zero gaussian curvature) are “wrapped” with a paper and a “shortest path”
is drawn between two points on the cone or cylinder, then the path drawn on the wrapping
paper constitutes a straight line if the paper is “unwrapped” and put on a plane surface.

Expressions for the angle between two eigenmodes

Let us compute the local expression of an eigenmode q |ϕ+(r,θ) such that the local expression
of the eigenproblem is (ι ◦ ϕ−1

+ ) (q ◦ ϕ+)|(r,θ) = 0. One can easily check that the candidate
given by

q |ϕ+(r,θ) =
1√
2

(

−
√

1− sin
√
2θ

√

1 + sin
√
2θ

)

(18)

will do and that additionally that candidate is normalized to 1. Computation of the
inner product 〈q|

A
, q|

B
〉 = 〈(q ◦ ϕ+)(r|A , θ|A), (q ◦ ϕ+)(r|B , θ|B)〉 results in a very neat

expression:

〈q|
A
, q|

B
〉2 = cos2

θ|B− θ|A√
2

. (19)

Hence one can infer that the relation modulo π between the angle between the eigenmodes
q|

A
and q|

B
on one hand and the central angle between the points ϕ+(A) and ϕ+(B) on

the other √
2∠
(

q|
A
, q|

B

)

= ∠
(

ϕ+(A), ϕ+(B)
)

. (20)

Equation (20) is a nice relation, but has an important drawback of being dependant on a
particular parametrization. Let’s now try to make a relation between the eigenmodes and
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some intrinsic properties of the corresponding points on the manifold. Considering the
domain ϕ+(U+) ∈ R

2 on which one can define a point ϕ+(P) =: P , one can decompose
the vector AB in a sum of two position vectors AB = −OA+OB and by taking the norm
on both sides of this equation one gets:

‖AB‖2 = ‖OA‖2 + ‖OB‖2 − 2 ‖OA‖ ‖OB‖ cos∠
(

A,B
)

. (21)

Since the affine function t 7→ (1 − t)ϕ+(P) + t ϕ+(Q) in ϕ+(U+) ∈ R
2 is a geodesic on

U+ ∈ M 2
1 , one can rewrite equation (21) using distances on the manifold by considering

the relation ‖PQ‖ = dM(P ,Q). Thus we have

dM(A,B)2 = dM(O,A)2 + dM(O,B)2 − 2 dM(O,A) dM(O,B) cos
√
2∠
(

q|
A
, q|

B

)

. (22)

Equation (22) relates the angle between the two eigenmodes q|
A

and q|
B

to intrinsic
properties of the points A and B represented by distances on the manifold. Hence if we
have two points, one from the non-linear eigenproblem ANL and one from the linearized
eigenproblem ALIN we can compute the the exact value of the a posteriori error 1 −
|〈qNL, qLIN〉|. However this is not of much use since usually we do not have the reference
point ANL available. Instead we have to think of another strategy in order to compute
the a priori error.

A priori error on the eigenmode

In this context the meaning of the word a priori should be understood “without the
knowledge of the reference solution”. Therefore we assume that we have at our disposal
all possible information for the point A on the manifold but not for the point B . Instead
we have to make some assumptions on the distance and relative angle relative to the point
B . Note ǫ := dM(A,B) and r|

A
:= dM(O,A). Consider the closed ball of radius ǫ centered

at A that we shall note Bǫ(A) := {A ∈ M 2
1 : dM(A,B) ≤ ǫ}. The notation ∂Bǫ(A) is

for the border of the ball Bǫ(A). The idea is to consider an equiprobable distribution of
B on the border ∂Bǫ(A) for some given radius ǫ and center point A.

Depending on the ratio of the radius ǫ to the distance of the centerpoint from the
origin, denoted r|

A
, there are two distinct configurations possible, as shown in figure

9. One can then compute the minimum, average and maximum of the error function
1− |〈q |

A
, q |

B
〉|. Formally we shall denote:

Esup(ǫ,A) := sup
B∈Bǫ(A)

( 1− |〈q |
A
, q |

B
〉| ) , (23a)

Eav(ǫ,A) :=
1

∫

B∈∂Bǫ(A)

d(θB − θA)

∫

B∈∂Bǫ(A)

(

1− |〈q |
A
, q |

B
〉|
)

d(θB − θA) , (23b)

Einf(ǫ,A) := inf
B∈Bǫ(A)

( 1− |〈q |
A
, q |

B
〉| ) . (23c)

The the expressions for Esup, Eav and Einf have been drawn in the plot (figure 10) Note
that Einf ≡ 0 always, which means, that for any position of the point A and no matter
how far or near the point B lies, there always exists one direction such that the error on
the eigenmode is null. Note also that there is a significant increase both in the supremum
of the error function Esup and the average Eav if ǫ ≥ r|A. The geometrical interpretation
of this increase can be stated in the following way: if the origin O is included in the ball
Bǫ(A) then the point B has a possible opportunity to hide “on the opposite side” of the
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manifold, which maximizes the error. On the other hand, if the origin is not included in
the ball Bǫ(A), i.e. if ǫ < r|

A
then the chances of getting a large error are significantly

lower considering the fact that they can be at most of 0.5

Summary and unsolved questions

It is fairly possible that a reader who has just read this article has some serious doubts
about the utility of the methods exposed here, especially regarding the generalization of
the claims. Indeed as far we have only shown that for a 2× 2 symmetric system the error
on the eigenmode can possibly be important if the distance on the manifold from the
linearized eigenproblem solution point to the reference point is greater than the distance
from the linearized solution point to the origin. This notion of an error possibly being large
obviously brings a probabilistic flavour to the problem, since we can not determine exactly
the location of the reference point for a generic problem. However, if we assume some
probability distribution for the reference point and consider some statistically important
values of the error such that the upper and lower bound and also the average along
with standard deviation. Then we have to choose which variables are probabilistically
distributed and using what type of distribution. In this article we showed that the error
1 − |〈q |

A
, q |

B
〉| depends upon two variables: the relative angle θ|B − θ|A and the ratio

ǫ / r|
A
. It might be argued that an equiprobable distribution for the relative angle is the
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relevant one, since if we consider the set of all possible eigenproblems there is no clear
preference for a particular change of direction between the linearized solution and the
reference solution. On the other hand the ratio ǫ / r|

A
depends on the distances between

the linearized solution point and the reference point and the distance of the linearized
solution point from the origin. Those values could depend on many things, in particular
on the degree of non-linearity of the eigenproblem and the position of the jacobian path
with respect to the criticality manifold, so for a generic eigenproblem we have not been
able, so far, to determine any probability distribution. Therefore have made the choice
to leave the ratio ǫ / r|

A
as an free variable.

What about generalization of the results obtained here to the space of n × n eigen-
problems? Although we might have some clues about how things are working in higher
dimensions, the generalization is really not a straightforward thing to prove. The guess we
are making, and which is corroborated by numerous numerical results run on engineering
systems, is that submanifolds of higher degree of rank deficiency act as problem areas. If
the linearized eigenproblem solution lies close to a point of higher rank deficiency such
that for a given ǫ the ratio ǫ / r|

A
becomes large, then we have significanlty higher maxi-

mum and average values for the error on the eigenmode than if the linearized eigenproble
solution point lied further away.

To summarize, as H. Mang perceptively states in his recent article [17], there is still
work to be done in computational stability. Furthermore, as we hope we have been able to
show, there are many fields in mathematics, such as differential and algebraic geometry,
that so far have not been explored very extensively by engineers. The new tools that we
discover today will possibly become the building blocks of some innovative approaches in
mechanics tomorrow.
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