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Stability of moving viscoelastic panels interacting with
surrounding fluid

Tytti Saksa, Juha Jeronen and Tero Tuovinen

Summary. We study a model describing the out-of-plane vibrations of an axially moving
viscoelastic panel submerged in flowing fluid. The panel is assumed to travel at a constant
velocity between two fixed supports, and it is modeled as a flat panel made of viscoelastic
Kelvin-Voigt material. The fluid flow is modeled with the help of the added mass coefficients.
The resulting dynamic equation is a partial differential equation of fifth order in space. Five
boundary conditions are set for the studied problem. The behavior of the panel is analyzed with
the help of its eigenvalues (eigenfrequencies). These characteristics are studied with respect to
the velocity of the panel. In our study, we have included the material (total) derivative in the
viscoelastic relations. We study the effects of the surrounding flowing fluid on the behavior of
the moving viscoelastic panel. It was found that, in presence of flowing fluid, the critical panel
velocity was significantly lower than in the vacuum case. Secondly, for high enough values of
viscosity, the panel did not experience instability detected at low values of viscosity in the form
of divergence. The flowing fluid was found to diminish the stabilizing effects brought about by
material viscosity.
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Introduction

In industrial processes with axially moving materials, such as making of paper, steel or
textiles, high transport speed is desired but it also may cause loss of stability. In model-
ing of such systems, the researchers have generally studied dynamic behavior of strings,
membranes, beams and plates taking into account the transverse, Coriolis and centripetal
accelerations of the material motion. For materials with low density, interaction with
surrounding fluid affects significantly the behavior of traveling material. For example for
traveling paper webs, the effect of the surrounding air is important [20, 21, 36].

Industrial materials usually have viscoelastic characteristics [14], and consequently,
viscoelastic moving materials have been recently studied widely. In paper making, wet
paper webs are highly viscous, and therefore, viscoelasticity should be taken into account
in the model [1]. Both fluid-structure interaction and material viscosity belong to fields
of research, which are challenging and remain many open questions.

Vibrations of traveling elastic strings, beams, and bands in vacuum have been stud-
ied extensively. The first studies on them include Sack [39], Archibald and Emslie [2],
Miranker [27], Swope and Ames [42], and Mote [29, 30, 31].

Archibald and Emslie [2] and Simpson [41] studied the effects of axial motion on
the frequency spectrum and eigenfunctions. In their research, it was shown that the
natural frequency of each mode decreases as the transport speed is increased, and that
the traveling string and beam both experience divergence instability at a sufficiently high
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speed. Wickert and Mote studied stability of axially moving strings and beams using
modal analysis and Green’s function method [49]. They presented the expressions for
the critical transport velocities analytically. However recently, Wang et al. [46] showed
analytically that no static instability occurs for the transverse motion of a string at the
critical velocity. For axially moving beams with a small flexural stiffness, Kong and
Parker [19] found closed-form expressions for the approximate frequency spectrum by a
perturbation analysis.

First studies on modeling the effects of the surrounding air on the moving web behavior
by the analytic added mass approximation include the research by Pramila, and Niemi
and Pramila [32, 36, 37, 38]. In all of these studies, the surrounding air was found to
reduce the eigenfrequencies and critical transport velocities significantly compared to the
vacuum case. According to Pramila’s study from the year 1986, the presence of air may
reduce both about 15–26 % of the vacuum case. However, the model that was used, was
later interpreted by Pramila to mean that the fluid particles move with the traveling web,
which probably is not the actual physical case there. Recently, Frondelius et al. used
an added mass model with non-constant coefficients computed from the boundary-layer
theory [13]. However, if the boundary-layer theory is used, one needs to include a leading
edge in the model.

The added mass approach has been further used and developed, e.g., by Chang and
Moretti in their study on out-of-plane vibrations of a moving web [7]. They developed
a method for computing the effect of surrounding enclosure on the aerodynamic inertia
coefficient and presented an example calculation for a web translating through a drying
oven. They also compared their theory with wind-tunnel experiments for stationary webs
surrounded by flowing air.

Recently, Lin and Qiao [24] studied vibrations and stability of axially moving beams
taking into account both the material viscoelasticity and the effects of surrounding fluid.
They investigated a beam with uniform circular cross-section using similar approach to
Gosselin et al. [16]. Gosselin et al. studied extruding of a cantilevered beam with circular
cross-section, in which case the formulations for axial tension are different from that of
beams with both ends being supported. The problem of extruding of cantilevered beams
immersed in fluid was first studied by Taleb and Misra [43]. Their study was corrected by
Gosselin et al. [16] and Päıdoussis [35]. In all these studies on extruding of cantilevered
beams, material viscoelasticity was taken into account with the help of Kelvin-Voigt
model.

Lin and Qiao found that moving beams with circular cross-section undergo buckling-
type instability at a sufficiently high speed [24]. At higher values of traveling speed, the
beam may undergo flutter instability.

Fluid surrounding the moving web has been modeled also as potential flow [3, 4, 6, 7,
17, 45, 48], by acoustic elements placed on one side of the web [18], by utilizing fluid-solid
interaction based on acoustic theory [20] and by using a Navier–Stokes code [48].

First studies on transverse vibration of viscoelastic material traveling between two
fixed supports was done by Fung et al. [14] using a string model. Extending their work,
they studied the material damping effect in their later research [15].

Oh et al. [33] and Lee and Oh [23] studied critical speeds, eigenvalues, and natural
modes of axially moving viscoelastic beams using the spectral element model. They
analyzed dynamic behavior of axially moving viscoelastic beams using modal analysis,
performed a detailed eigenfrequency analysis, and reported that viscoelasticity did not
affect the critical moving speed.
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Marynowski and Kapitaniak compared two different internal damping models in mod-
eling of moving viscoelastic (non-linear) beams [26]. For the linearized Kelvin–Voigt
model, it was found that the beam exhibits divergent instability at some critical speed.
In the case of non-linear Bürgers model, the critical speed decreased when the internal
damping was increased, and the beam was found to experience the first instability in the
form of flutter.

In the discussed studies above, a partial time derivative has been used instead of a ma-
terial derivative in the viscoelastic constitutive relations. Mockensturn and Guo suggested
that the material derivative should be used [28]. They studied non-linear vibrations and
dynamic response of axially moving viscoelastic strings, and found significant discrepancy
in the frequencies at which non-trivial limit cycles exist, comparing the models with the
partial time derivative or the material time derivative. Recently, the material derivative
has been used in most of the studies concerning axially moving viscoelastic beams (see
e.g. [8, 9, 10, 11]). Kurki and Lehtinen [22] suggested, independently, that the mate-
rial derivative in the constitutive relations should be used in their study concerning the
in-plane displacement field of a traveling viscoelastic plate.

In a recent study by Saksa et al., eigenvalues and stability characteristics of viscoelastic
axially moving panels in vacuum were studied [40]. They used the material derivative in
the viscoelastic constitutive relations, which leads to a partial differential equation of fifth
order in space. The similar equation was also obtained by the other researchers who used
the material derivative but usually the problem was solved setting only four boundary
conditions. Saksa et al. derived a fifth boundary condition for the studied problem. In
their study, it was also found in the numerical studies that if the viscosity is high enough,
all the modes behave stable with damping vibrations for any value of transport velocity
and no critical speed was detected.

Models for pipes conveying fluid often share similarities with the models for axially
moving materials [34, 35]. In the study by Drozdov [12], a pipe filled with a moving fluid
was studied modeling the pipe as a viscoelastic beam driven by the forces caused by the
fluid. Drozdov investigated stability of the system under a periodic flow. It was found
that for some parameter values, an increase in viscoelasticity resulted in a decrease in the
critical fluid velocity while for other choices of parameters, an increase in viscoelasticity
resulted in an increase in the critical velocity. Recently, Wang et al. [47] derived a sixth
order model for a curved viscoelastic pipe conveying fluid based on Hamilton’s principle.
Viscoelasticity of the pipe was modeled with the help of the Kelvin–Voigt model. The
viscoelastic pipe was found to undergo divergent instability in the first and second order
modes and, for greater values of fluid velocity, single-mode flutter took place in the first
order mode.

Existing studies on moving viscoelastic materials interacting with surrounding fluid
seems to be limited to the cases of beams having circular cross-section [16, 24, 43] and to
viscoelastic pipes conveying fluid [12, 47]. These models do not fit to the case in which
we tackle a problem with thin and wide webs traveling between supports and having low
density and high viscosity.

In this study, we take both material viscosity and interaction with fluid into account
in the model for thin panels, moving axially at a high speed. We use the term panel
for a two-dimensional web with the assumption that the transverse displacement of the
web does not vary in the direction perpendicular to the moving direction of the web.
Term flat panel has been used e.g. by Bisplinghoff and Ashley in their classical book on
aeroelasticity [5].
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Figure 1. An axially moving panel submerged in flowing fluid.

An axially moving panel traveling through an enclosure

Consider an axially moving panel, traveling between two fixed supports at a constant
velocity. We assume that the transverse displacement does not vary in the y direction,
i.e. the transverse deformation of the panel is cylindrical [5, 44]. The panel is supported
at x = 0 and x = ℓ, and the length of the span is ℓ. The transport velocity of the panel
is assumed to be constant and denoted by V0. The transverse displacement of the panel
is denoted by the function w = w(x, t). The width of the panel is denoted by b, and the
thickness of the panel by h (assumed to be constants).

The panel is assumed to travel through a long enclosure with rectangular cross-section
to model a web traveling through a drying oven. The height of the enclosure is H and
the width of it is B. The velocity field of fluid is denoted by U (not necessarily constant).
See Figure 1.

A traveling viscoelastic panel in vacuum

We study a panel be made of viscoelastic material. Viscoelasticity is taken into account
with the help of the Kelvin–Voigt model consisting of an elastic spring and a viscous
damper connected in parallel. The spring element is described by the parameters E (the
Young’s modulus) and ν (the elastic Poisson ratio), and the damper by η (the viscous
damping coefficient) and µ (the Poisson ratio for viscosity). See Fig. 2.

,

,

Figure 2. The rheological Kelvin–Voigt model.

We denote stress and strain in the x direction by σ and ε, respectively. Assuming the
cylindrical deformation, the stress-strain relation for the Kelvin–Voigt panel is described
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as [40]

σ =
E

1− ν2
ε+

η

1− µ2
(ε,t + V0ε,x) . (1)

Using the stress-strain relation in (1), the dynamic equilibrium for the transverse
displacement w can be written as [11, 40]

mw,tt + 2V0mw,xt + λDw,xxxxt + (mV 2

0 − T0)w,xx +Dw,xxxx + V0λDw,xxxxx = 0 . (2)

In Eq. (2), m is the mass per unit area, T0 is constant tension at the panel ends, D is the
bending rigidity of the panel defined as

D =
Eh3

12(1− ν2)
, (3)

and λ is the creep time constant defined as

λ =
η

E
, (4)

the unit of which is the second. We have assumed that the Poisson ratios ν and µ coincide.

Traveling panel interacting with flowing fluid

In this section, we consider the model for an axially moving viscoelastic panel that was
introduced in the previous section, but we further take into account the aerodynamic
effects. As Chang and Moretti [7] and Chang et al. [6], we include added mass due to the
transverse, Coriolis and centripetal acceleration (in all inertia terms) denoted by m1, m2,
and m3, respectively.

We insert the added mass terms into Eq. (2), and have the following final equation
for the out-of-plane displacement w:

(m+m1)w,tt + 2V0(m+m2)w,xt + λDw,xxxxt

+ [(m+m3)V
2

0 − T0]w,xx +Dw,xxxx + V0λDw,xxxxx = 0 . (5)

The added mass terms in (5) can be calculated as [6, 7]

m1 =
π

4
Caρb ,

m2 = 2ρδ∗ ,

m3 = 2ρθ , (6)

where Ca is the added mass coefficient depending on the problem geometry, ρ is the density
of air, δ∗ is the displacement thickness of the boundary layer and θ is the momentum
thickness of the boundary layer.

If U = U(r) is the velocity of the fluid flow with respect to the distance r from the
panel, δ∗ can be calculated as

δ∗ =
1

V0

∫ δ

0

U(r) dr , (7)

where δ is the thickness of the moving fluid layer.
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Similarly, the momentum thickness θ is

θ =
1

V 2
0

∫ δ

0

U2(r) dr . (8)

In the case of stationary air, terms m2 and m3 are negligible compared to the mass m
of the panel [35]. In that case, the dynamic equation reads

(m+m1)w,tt + 2V0mw,xt + λDw,xxxxt

+ [mV 2

0 − T0]w,xx +Dw,xxxx + V0λDw,xxxxx = 0 . (9)

As boundary conditions, we use clamped-clamped conditions at both ends and an
additional boundary condition at the in-flow end indicating that we have more information
there than at the out-flow end. The fifth condition can be derived with the help of
continuity of the panel [40]. The boundary conditions are

w(0, t) = w,x(0, t) = w,xx(0, t) = 0 , w(ℓ, t) = w,x(ℓ, t) = 0 . (10)

We transform the problem (5) and (10) into a dimensionless form. We perform the
following transformations

x →
x

ℓ
, t →

t

τ
, w(x, t) →

w(x, t)

h
, (11)

choose

τ = ℓ

√

m

T0

as a characteristic time, and introduce the dimensionless problem parameters

ζ =
m

m+m1

, ζ2 =
m2

m+m1

, ζ3 =
m3

m+m1

, (12)

and

c =
V0

√

T0/m
, α =

D

ℓ2T0

, γα =
λD

ℓ3
√
mT0

, (13)

where

γ =
λ

τ
=

η

E

√
T0

ℓ
√
m

(14)

is here called the dimensionless creep time constant. After transformations in (11) and
insertion of (12) – (14), we obtain

w,tt + 2cζ2w,xt + γαζw,xxxxt + (c2ζ3 − ζ)w,xx + αζw,xxxx + γαcζw,xxxxx = 0 , (15)

with the boundary conditions

w(0, t) = w,x(0, t) = w,xx(0, t) = 0 , w(1, t) = w,x(1, t) = 0 . (16)
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Dynamic analysis

To study stability of the problem (15) and (16), we perform classical dynamic analysis by
inserting the standard harmonic trial function

w(x, t) = W (x)est , (17)

into (15) and (16).
In (17),

s = iω , (18)

and ω is the dimensionless angular frequency of small transverse vibrations. The sign of
the real part of s characterizes the stability of the panel: if Re s > 0, the behavior is
unstable, and otherwise it is stable.

Insert (17) into (15), and obtain

s2W + s(2c ζ2W,x + γαζW,xxxx) + (c2ζ3 − ζ)W,xx + αζW,xxxx + γαcζW,xxxxx = 0 . (19)

The boundary conditions for W are

W (0) = W,x(0) = W,xx(0) = 0 , W (1) = W,x(1) = 0 , (20)

We study the stability behavior of the traveling viscoelastic panel by solving Eqs. (19)–
(20) with respect to the transport velocity.

The problem (19)–(20) was discretized via the finite difference method. We used
central differences of second-order asymptotic accuracy but at the out-flow edge for the
fifth order term, a backward difference scheme of second order asymptotic accuracy was
used. The finite differences schemes are given, e.g., in [40]. The interval [0, ℓ] is divided
to n+ 1 sub-intervals equal in length. The end points of the sub-intervals are labeled as
0 = x0, x1, x2, . . . , xn, xn+1 = ℓ. We use two virtual points (x−2 and x−1) at the in-flow
end and one virtual (xn+2) point at the out-flow end. From the boundary conditions (20),
we get at the in-flow end:

w−2 = −w2 , w−1 = w1 , w0 = 0 ,

and at the out-flow end:
wn+1 = 0 , wn+2 = wn .

We denote the derivative matrices by K1,K2,K4,K5 built up with the help of the
finite difference schemes with the following correspondence:

K1 : W,x , K2 : W,xx , K4 : W,xxxx , K5 : W,xxxxx .

Inserting the matrices K1,K2,K4,K5 into (19), we obtain the matrix equation

s2w + s [2cζ2K1 + γαζK4]w +
[

(c2ζ3 − ζ)K2 + αζK4 + γαcζK5

]

w = 0 . (21)

Note that in the case α = 0 or c = 0, we obtain a fourth-order equation needing only
four boundary conditions. This has been taken into account: the virtual point w−2 is
needed only by the matrix K5. When K5 is removed from the matrix equation (21), the
boundary condition w,xx(0) = 0 is simultaneously removed from the discretized problem.
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The matrix equation (21), which is a quadratic eigenvalue problem with respect to s,
can be rewritten as

[

−M1 −M0

I 0

] [

sw
w

]

= s

[

sw
w

]

, (22)

where

M0 = (ζ3c
2 − ζ)K2 + αζK4 + γαcζK5 ,

M1 = 2c ζ2K1 + γαζK4 . (23)

The matrix equation (22) is now an eigenvalue problem of the standard form

Ay = sy (24)

with

A =

[

−M1 −M0

I 0

]

, y =

[

sw
w

]

.

Some example studies

As an example, we consider simple flow through an enclosure with a rectangular cross-
section. We assume a Couette type flow such that the fluid velocity coincides with the
panel velocity on the panel surface and is equal to zero at the surface of the enclosure.
See Figure 3.

Similar example was considered by Chang and Moretti [7]. They computed also the
added mass coefficient Ca for different simple problem geometries assuming potential flow
in the cross-direction plane, obtaining the stream-function by a finite difference method,
summing up the kinetic energy in the flow field, and referring it to the web velocity. In
such conditions that H/B = 0.4 and b/B = 0.8, they found that Ca = 1.66. If b/B was
small, the added mass coefficient was close to 1 as would be expected.

U(z)

H

z

0

x

panel

Figure 3. Simple flow through a drying oven.

The parameters that were used were the following:

T0 = 500 N/m m = 0.08 kg/m2 E = 109 N/m2 ν = 0.3 ρ = 1.225 kg/m3

ℓ = 1 m b = 0.6 m h = 10−4 m H = 0.3 m B = 0.75 m (25)

Using the physical parameters in (25), the dimensionless parameter α in Eq. (13)
gets the value α = 1.8315 · 10−7. Creep time constant λ was given the values λ =
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5 · 10−5 s, 5 · 10−4 s, and 5 · 10−3 s, the dimensionless creep time constant γ getting the
values γ = 3.953 · 10−3 , 3.953 · 10−2 , and 0.3953 , respectively.

For the example flow, the added masses calculated from Eqs. (6) are

m1 =
π

4
Caρb ≈ 0.9583 kg/m2 , (26)

m2 =
1

2
ρH ≈ 0.1838 kg/m2 , (27)

m3 =
1

3
ρH ≈ 0.1225 kg/m2 , . (28)

Three different cases were studied:

1. traveling viscoelastic panel in vacuum (m1 = m2 = m3 = 0),

2. traveling viscoelastic panel surrounded by stationary fluid in an enclosure (m2 =
m3 = 0), and

3. traveling viscoelastic panel surrounded by laminar fluid flow in an enclosure.

The dimensionless frequency F was calculated with the help of the dimensionless
angular frequency ω = Im s. The dimensional frequency f is

f =
ω

2πτ
=

ω

2πℓ

√

T0

m
.

We define F by dividing it by the natural frequency of a non-moving panel in vacuum,
that is, by 1/(2ℓ)

√

T0/m:

F = f2ℓ

√

m

T0

=
ω

π
=

Im s

π
. (29)

The behavior of the dimensionless frequency F was studied with respect to the di-
mensionless panel velocity c. Computations were carried out for all the three cases. In
Figure 4 on the left hand side, the lowest dimensionless frequencies are plotted in the case
of elastic material. The results coincide with the previous investigations [4, 7, 37]: the
presence of fluid decreases the natural frequencies, and the effect of the flowing fluid is
that the critical panel velocity in decreased notably.

In Figure 4 on the right hand side, the effect of the material viscosity on the eigen-
frequencies can be seen. The greater the creep time constant λ, the greater the are the
values of the eigenfrequencies. That is, the effect of the material viscosity is opposite to
that of the fluid.

In Figure 5, the dependence of the dimensionless critical speed ccr on the dimensionless
creep time constant γ is shown for two different cases: on the left hand side, the behavior
in vacuum and in presence of stationary air are shown, and the right hand side presents
the behavior in the case of flowing air. As seen, the presence of stationary air does not
alter the value of the critical velocity independent of the value for the dimensionless creep
time constant. The effect of the viscosity is very small but visible. In the case of flowing
air, the critical speed of the viscoelastic panel with γ = 0.1 is about 1.6 · 10−4 % greater
than that of the elastic panel. In the case of stationary air and vacuum, the critical speed
of the viscoelastic panel with γ = 0.1 is about 4.4 · 10−4 % greater than that of the elastic
panel. In these cases, the effect of the viscosity is almost three times bigger than in the
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Figure 4. Dimensionless eigenfrequency F with respect to the dimensionless critical speed c.
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Figure 5. Dependence of the dimensionless critical speed c on the dimensionless creep time constant γ.

case of flowing fluid. This suggests that the effect of the viscosity is diminished in presence
of flowing fluid.

In Figures 6 and 7, the three lowest eigenvalues s are given for an elastic panel and
for three viscoelastic panels having different creep time constants. Figure 6 presents the
case for a stationary fluid (air). In the upper left corner, the eigenvalues for an elastic
panel are shown. In the sub-figures from left to right, from top to bottom, the viscosity
increases (the creep time constant increases). It can be seen that the real parts of the
eigenvalues before the critical velocity become negative when the viscosity is inserted to
the model. This means damping vibrations in the behavior of the panel. In a sub-figure
in the lower left corner, one may see that the critical velocity becomes slightly after the
point at which the imaginary part of the lowest eigenvalue becomes zero. The computed
critical velocity is also slightly greater than that of an elastic panel, see Figure 5. In the
lower right corner of Figure 6, critical velocity can not be detected and all the three lowest
eigenvalue stay negative, which means stable behavior at any value of velocity. The limit
value of the dimensionless creep time constant, after which no instability can be detected,
was calculated via the bisection method, and it was γ = 0.1022 which it exactly same as
in vacuum case [40].

In Figure 7, we see the three lowest eigenvalues in the case of flowing air. As above, we
have four cases: elastic panel, and viscoelastic panels with the three different creep time

97



constants. The behavior seems qualitatively similar to that of the case with stationary
fluid. However, the absolute value of the real parts of the eigenvalues are significantly
smaller suggesting that the damping of the vibrations before the critical velocity is weaker
than in the case of stationary fluid. The limit value of the dimensionless creep time
constant after which all the modes stay stable was calculated to be γ = 0.1625, which is
59 % greater than the one in the case of stationary fluid (and vacuum). This suggests
that in presence of flowing fluid, the viscoelastic panel is more unstable than in the case of
stationary fluid or vacuum, since e.g. for γ = 0.11 the panel surrounded by stationary air
is stable while the panel surrounded by flowing air still undergoes divergence instability
at some sufficiently high speed.

Typical behavior of moving viscoelastic materials were seen to remain even if the
fluid was inserted to the model with the added mass approach. For example such a
characteristic as removal of the coupled mode flutter typical of moving elastic materials,
was detected in the eigenvalue spectra of the viscoelastic moving panels [23, 47].
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Figure 6. Behavior of the eigenvalues for the stationary fluid case. The values of the creep time constants
in the figures from left to right, from top to bottom are λ = 0, λ = 5 · 10−5 s, λ = 5 · 10−4 s, and
λ = 5 · 10−3 s, in that order.
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s, in that order.

Conclusions

Stability characteristics of an axially moving viscoelastic web interacting with surrounding
fluid were studied. The material viscoelasticity was modeled with the help of the Kelvin-
Voigt model. Interaction with the fluid was taken into account by the added mass terms
based on potential flow theory. To our knowledge, this is the first study in which both
material viscoelasticity and aerodynamic effects were taken into account in modeling of
moving webs traveling between two supports.

Two different kinds of flow models were investigated in the numerical part. They both
concerned the case, in which a panel is traveling through a rectangular enclosure. The
first study concerned the case with assumption that the surrounding air is stationary or
that the effect of the boundary layer is negligible. In the second study, a laminar flow
around the moving panel was taken into account resulting in added mass terms containing
the displacement and momentum thicknesses of the boundary layer.

As expected, the presence of fluid decreased the value of the critical speed, and the
viscoelasticity had a stabilizing effect on the web behavior: the viscosity increased the
critical speed and for high enough values of viscosity, no instability occurred. These results
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are known from the studies were either the effects of the fluid or the effects of material
viscosity have been studied [25, 35].

As a new result, it was found that the presence of flowing fluid diminished the sta-
bilizing effect of viscosity. In other words, the viscoelastic panel with certain creep time
constant was stable when surrounded by stationary air but could be unstable when fluid
was flowing.

The presented model has an application in modeling the behavior of fast moving wide
webs in industry, e.g. in paper making. For more accurate predictions than in this paper,
one should notice that viscoelasticity in paper does not behave linearly and that, to take
account the complicated flows inside the machine, the added mass approach is probably
not accurate enough.
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