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A simple J2-plasticity-damage model for metals in 
the small strain regime  

Timo Saksala 

Summary. This article presents a simple constitutive model for metal plasticity. The model is 
based on the classical small strain J2-flow theory with nonlinear isotropic and kinematic 
hardening laws and isotropic damage concept. The introduction of damage extends the 
capabilities of plain plasticity models to account for the stiffness degradation observed in the 
experiments. The plastic and damage parts of the model are combined in the effective stress 
space so that the plasticity computations, i.e. the stress return mapping, can be performed 
independently of the damage computations. This effective stress space formulation results in a 
particularly simple formulation of the combined model which enables rather easy derivation of 
the consistent tangent modulus. The performance of the model is demonstrated with numerical 
examples using a single (finite) element model.    
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Introduction 

Metal structures and machine parts have been traditionally designed so that the yield 
strength of the material is not exceeded, i.e. plastic deformations or damage are not 
allowed, in any operational conditions. However, considerations involving plasticity and 
damage are needed, e.g., in collapse analyses of steel frames and low-cycle fatigue 
analyses of machine components. Ductile damage of metals occurs simultaneously with 
plastic deformation larger than certain threshold. Therefore, a material model aiming at 
realistic prediction of failure conditions should accommodate both the damage and 
plasticity descriptions. 

J2-flow theory, i.e. an elastoplastic model based on the von Mises yield function 
with associated flow rule, is the most popular model in computational plasticity analyses 
of metals. During the last five decades, the model has been extended from its classical 
form characterizing the material with elastic-perfectly plastic or isotropic hardening 
behavior to complex behavior of various materials including nonlinear isotropic and/or 
kinematic hardening, anisotropy, strain rate dependency and damage [1][2][3]. By 
introduction of the damage concept into the classical J2-plasticity model, it can 
accommodate the stiffness and strength degradation, as illustrated schematically in 
Figure 1b, resulting from the breakage of atomic bonds due to an accumulation of 
arrested dislocations [1].  

The classical J2-plasticity model with the linear hardening model implemented in 
FEM and Newton-Raphson algorithm to solve the discretised equilibrium equations can 
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predict the material response up to the point at which the slope of the stress-strain curve 
reaches zero, i.e. the turning point from hardening to softening (see Figure 1a). The 
softening regime can, of course, be modelled with a softening plasticity model and a 
path following algorithm. It seems simpler, however, to enhance the classical model by 
combining it with a damage model since then no softening plasticity model is needed 
and the stiffness degradation can be accounted for at the same computational cost.   

 

Figure 1. Schematic 1D illustration of the material response in uniaxial tension with a classical 
hardening plasticity model (a) and a plasticity-damage model (b). 

The purpose of this paper is to present a simple extension of the classical model 
equipped with nonlinear kinematic and isotropic hardening laws to account for the 
stiffness and strength degradation via isotropic damage concept. The model is 
formulated under the small deformation (strains and rotations) framework. The damage 
and plasticity parts of the model are combined with the effective stress space 
formulation which allows for a separate treatment of the plasticity and damage 
computations and results in a particularly simple consistent tangent matrix. The theory 
is illustrated with numerical examples using a single element model, i.e. only 
constitutive response of the model is demonstrated.  

Theory of the model 

Classical J
2
 plasticity with nonlinear isotropic and kinematic hardening 

For present purposes the yield function of J2-plasticity, i.e. the von Mises criterion, is 
defined as follows  
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is the yield strength, σ is the stress tensor, X is the so-called back stress tensor related to 
kinematic hardening, and R is the isotropic hardening variable. Following Lemaitre [1], 
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the hardening functions for both the isotropic and kinematic hardening are assumed to 
be nonlinear in equivalent plastic strain by  
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where R∞ and X∞ are saturation stresses of the isotropic and kinematic hardening, 
respectively, b and γ are hardening parameters to be determined from the experiments, 
and p

eqvε is the equivalent plastic strain defined via its rate as   

 ppp εε  :3
2

eqv =ε  (3) 

with pε  being the plastic strain tensor.  
The underlying assumption in the small strain plasticity framework is the additive 

split of the total strain into the elastic and plastic parts:   

 pe εεε  +=  (4) 

The rate of the plastic strain in (4) is defined via the associative flow rule as 
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where λ is the plastic increment.  
With relations (3) and (5) the hardening evolution laws can now be derived as the 

time derivatives of the hardening functions (2). Accordingly, by the chain rule,  
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where symbol ∂x denotes derivation with respect to x (here tensor). In view of the flow 
rule (5), it is observed from Equation (6) that the back stress is proportional to the 
plastic strain. In order to complete the model from the computational point of view, it is 
noted that, along with the above equations, consistency conditions of Kuhn-Tucker form 

 0λ,0λ,0,0 vMvMvM ==≥≤ fff λ  (7) 

must be fulfilled. The hardening functions defined in (2) are more realistic than the 
usually employed linear hardening rules since it is experimentally observed that both 
hardening types tend to saturate [1].  Next, the damage part of the model is presented. 
 
Isotropic damage concept  

At the micro-scale, the mechanism of damage is debonding and microcracking thereof. 
At the meso-scale damage can, however, manifest as brittle, ductile and creep damage 
depending on the loading conditions, temperature and the nature of the material. In this 
paper only ductile damage of metals is considered. For a detailed account of different 
damage mechanisms, see Lemaitre [1].  
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Since metals can be treated as isotropic and homogeneous materials, the damage is 
assumed isotropic in this paper. This more or less justified assumption implies that the 
effect of damage on the constitutive equations can be treated with a scalar damage 
variable ω that relates, in 1D case, the effective cross-sectional area, Aeff, of a bar in 
tension to its initial or nominal area A0, as ω = 1 − Aeff/A0. The basic components of a 
scalar damage model are the nominal-effective stress relation  
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where fd is the damage loading function,ε~ is the equivalent strain, κd is the damage-
driving variable, and gd is the damage evolution function. The damage loading function 
defines the elastic domain, i.e. the set of stress states where no damage growth occurs. 
The equivalent strain accounts for the multiaxiality of the strain state.  

As ductile damage of metals is modeled in this paper, the damage process is driven 
by the plastic strain, i.e. p

eqvd εκ = . Therefore, no damage function is needed since the 
von Mises yield criterion indicates stress states resulting in plastic flow and hence the 
damage evolution as well.  

A very simple linear damage evolution function is chosen as 

 













≥

<≤
−

−

<

==

pReqv

pReqvpD
pDpR

pDeqv

pDeqv

eqvd

  if  ,

 if  ,

 if  ,0

)(

εεω

εεε
εε
εε

ω

εε

εω

p
c

p
p

c

p

pg  (10) 

where εpD and εpR are the damage threshold and rupture strain, respectively, and ωc is 
the critical value of damage leading to rupture. 

As the damage variable is related to the degrading effect of an opening microcrack 
or microcavity in tension, relation (8) may not be valid in compression. In compression 
microcracks tend to close and thus the stiffness of the material is recovered. This effect 
can be treated easily with the Heaviside function in 1D case but the multiaxial case is 
far from trivial. Following Lemaitre [1], the decomposition of the principal stress in the 
positive and negative parts can be employed. Accordingly,      
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where <> denote the McAuley brackets, ii n and σ are the principal stress and 
corresponding direction of the effective stress, and h is a crack closure parameter. 
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According to Lemaitre [1] this parameter is usually of the same magnitude as ωc. Next, 
the plasticity and damage parts of the model are combined.   
 
Combining the plasticity and damage parts of the model 

The plasticity and damage parts of the model are combined with the effective stress 
space formulation. It provides a natural means to separate the plasticity and damage 
computations so that the robust methods of computational plasticity can be employed in 
the stress integration [4].  

According to this method, an effective stress state violating the yield criterion is first 
returned onto the yield surface with the stress return scheme chosen and then the 
damage variable is updated (Equation (10)) and the nominal stress is calculated 
according to Equation (8) or (11) in cyclic loading. Next, the stress return mapping is 
presented.  

Stress return scheme 

The stress return scheme for the classical J2-plasticity model with linear hardening law 
is particularly simple due to the existence of an exact solution via the radial return 
mapping. With the present model iteration is needed due to the nonlinearity of the 
hardening laws. In this section a stress integration algorithm and a consistent tangent 
stiffness matrix for the combined model are presented.  

 
Return mapping algorithm 

The stress return is performed with the generalised cutting plane algorithm illustrated 
geometrically in Figure 2. This method is an explicit procedure that involves only 
functional evaluations and has a quadratic convergence rate in state variables [3].  

 

Figure 2. Geometric illustration of the cutting plane algorithm in 2D principal stress space. 
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The method is based on the usual elastic predictor-plastic corrector splitting. A trial 
stress state violating the yield surface is returned on this surface iteratively. At each 
iterate (•)(k) the constraint  
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is linearized. In Equation (12), ∆λ is the plastic increment and q is a vector of internal 
variables. The next iterate (•)(k+1) is determined as the intersection of the plane normal to 
f(k) = 0 with the level set f(k+1) [3].  

The main steps of the algorithm applied to the present model are: 
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In the above algorithm E is the linear elasticity tensor. A single-step exact solution 
exists despite the nonlinearity of the hardening functions (2). This is due to the structure 
of the plastic corrector according which the hardening moduli in Steps 3 and 4 are 
evaluated with the equivalent plastic strain from the previous iteration k. This feature 
combined with the fact that an exact (single-step) solution exists for the same model 
with a linear hardening laws implies the existence of the exact solution. Thus, 
essentially the cutting plane algorithm for the present J2-plasticity model results in a 
piecewise linear approximation of the hardening functions (2).  

 
 
 



65 
 

Consistent tangent modulus 

Consistent tangent modulus is needed to speed up the convergence in solving the system 
equations at the global level with the Newton-Raphson iteration. According to Simo and 
Hughes [3], the exact linearization of the generalized cutting plane algorithm cannot be 
obtained in closed form. However, as the exact solution exists for the present J2-
plasticity model with both the cutting plane algorithm and with the general closest point 
return mapping (which is the radial return mapping in case of J2-plasticity) in case of 
linear hardening laws, the consistent tangent modulus of the latter method can be used 
here as well. It can be written in form (for the derivation, see [3])    

 
1

2
vM

2
1c

vMvMvMcvM

vMcvMc

cepc   with
:::

::

−

−








∂
∂

∆+=

∂
∂

∂
∂

++
∂
∂

∂
∂

∂
∂

⊗
∂
∂

−=

σ
EE

σσσ
E

σ

σ
E

σ
E

EE

f

ff
hh

ff

ff

XR

λ

 (13) 

This is the consistent elastoplastic tangent modulus with no coupling to damage. In 
order to account for damage, Equation (8) is perturbed slightly as 
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where Eepdc is the general form of elastoplastic-damage tangent modulus. In view of 
Equations (3) and (10), it can be written for the present model as  
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When the equivalent plastic strain is smaller than the damage threshold value, εpD, 
elastoplastic modulus Eepc is valid. Beyond it, elastoplastic-damage modulus Eepdc 

should be employed. During elastic loading and unloading, the damage elastic modulus, 
(1−ω)E, is used. Next, the present model is demonstrated with numerical simulations.   

Numerical Examples 

The present model response is demonstrated in uniaxial constitutive tests using a single 
element mesh depicted in Figure 3 with the material properties and model parameters. 
The governing field equations are discretized in time as well and then solved with the 
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implicit Newmark time integration scheme as sketched in Appendix A. The model is 
implemented in a self-written Matlab code. 

 

Figure 3. Single hexahedral element mesh and material properties. 

The first example is a simulation of the 1D tension test due to a monotonically 
increasing loading applied to the nodes of the element as described in Figure 3. The 
loading sequence is divided in 388 time steps of equal lengths, 1 µs, and the maximum 
value of the loading is 2.7 times the yield load σYAele (= 20 kN). The results of the 
simulations are shown in Figure 4. 

0 0.01 0.02 0.03 0.04 0.05
0

100

200

300

400

500

600

εz

σ
z [M

P
a]

 

 

Plasticity-Damage
PlasticityTime step 100

Time step 200

Time step 400

Time step 430, ω = 0.016

Time step 466, ω = 0.33

 

Figure 4. Simulated stress-strain response of the model in monotonic 1D tension test. 

The effect of damage on the stress-strain response predicted with the model is crucial as 
it can be observed in Figure 4 where the results for the same test without the damage are 
plotted as well. The plain plasticity model goes on with the hardening needing ever 
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higher load level (until the saturation limit is reached R∞) to increase the strain while the 
plasticity-damage model results in softening response and extensive straining in the 
loading direction.  

In order to study the convergence properties of the model in global iteration, the 
error norms, i.e. the Euclidian norm of the residual, computed at the time steps indicated 
in Figure 4 are given in Table 1. 

 
Table 1. Error norms for selected time steps in monotonic tension test. 

 
Residual Norm ||r||, TOL = 1E−5 

Iteration/Time step 100 200 400 430 466 

1 8.6341E+02 7.0232E+01 5.0926E+01 1.4920E+01 1.0664E+03 

2 1.2248E−12 6.9354E+00 5.6437E−00 2.7747E−01 1.2517E+01 

3  5.7291E−12 2.0099E−11 3.1421E−02 1.1051E+00 

4    4.0591E−04 4.8147E−02 

5    1.2600E−07 1.0234E−03 

6     6.5272E−06 

 
According to the residual norms in Table 1, the convergence rate is very high, especially 
before the onset of damaging. This convergence is due to the incrementally (in time 
steps) linear nature of the cutting plane algorithm. After the damage process is 
activated, the convergence rate is considerably slower. However, on decreasing the time 
step, the convergence is substantially accelerated. Indeed, when one tenth of the time 
step leading to convergence rates in Table 1 was used, the error norms given in Table 2 
were obtained.      

 
Table 2. Error norms for the last time step (4660) in tension test with reduced time step. 

 
Iteration cycle 1 2 3 4 

Residual Norm ||r||  7.9054E+01 6.2409E−03 4.1506E−06 3.3504E−10 

 
This observation indicates that the tangent modulus (15) for the combined plasticity-
damage model is algorithmically consistent. It should be noted that due to the predictor-
corrector formulation of the solution scheme (see Appendix A) even the linear elastic 
loading (Time step 100 in Table 1) requires two steps to reach balance. Moreover, the 
hardening and damage parameters in Figure 3 are more or less randomly chosen and do 
not necessarily represent any real material.   

The next (and final) test is a displacement (strain) driven cyclic loading in z-
direction demonstrating the applicability of the model in low-cycle fatigue analyses. 
The sinusoidal loading programme is shown in Figure 5.  
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Figure 5. Sinusoidal cyclic strain BC for 1D tension-compression test. 

The results of the simulation with the damage-plasticity model as presented above, pure 
plasticity model with nonlinear hardening laws (2), and pure plasticity model with linear 
isotropic and kinematic hardening are shown in Figure 6. The modulus for the linear 
isotropic and kinematic hardening is 0.1E (20 GPa).  

(a)
-0,005 -0,0025 0 0,0025 0,005

-400

-300

-200

-100

0

100

200

300

400

εz

σ
z [M

P
a]

ω = ωc

-0,005 -0,0025 0 0,0025 0,005
-400

-300

-200

-100

0

100

200

300

400

500

εz

σ
z [M

Pa
]

-0,005 -0,0025 0 0,0025 0,005
-1000

-500

0

500

1000

εz

σ
z [M

P
a]

 

   (b)             (c) 
Figure 6. Simulated stress-strain response for 1D tension-compression test: Plasticity-damage 
model with nonlinear hardening laws (a), Plasticity model with nonlinear hardening laws (b), 

and Plasticity model with linear hardening laws (c).  
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The response in each case is quite different reflecting the importance of the model 
components for the adequacy of the simulated results. An ever increasing – and thus 
totally non-realistic – cyclic hardening behaviour is obtained with the linear hardening 
laws (Figure 6c). A substantially more realistic response is predicted with the non-linear 
hardening laws (see Figure 6b). The hardening behaviour saturates quickly after few 
cycles which is the realistic manifestation of hardening in general. However, the elastic 
loading and unloading takes place with the initial stiffness which is not realistic. 
Incorporation of the damage part of the model mends this deficiency by accommodating 
the stiffness degradation, as can be observed in Figure 6a. The microcrack closure effect 
(via relation (11)) can be clearly observed in Figure 6a as an asymmetry of the stress-
strain response between tension and compression cycles. This is a real manifestation of 
many steels in low-cycle fatigue tests, see an example for AISI 316L stainless steel in 
[1]. Finally, the Bauschinger effect is observable in all the results in Figure 6. 

Conclusions 

The simple J2-plasticity-damage model with nonlinear hardening laws presented in this 
paper can capture many of the salient features of metal behavior in low-cycle fatigue 
tests. These features include isotropic and kinematic hardening manifested as a rising 
yield strength and motion of the yield surface in the direction of plastic flow, strength 
degradation or softening, and stiffness degradation or damage. The features the model 
cannot capture are mostly those dictated by the small strain assumption and isotropic 
damage model. These include, e.g., the necking in uniaxial tension test up to the fracture 
and damage induced anisotropy.   

The plasticity and damage parts were combined with the effective stress-space 
formulation resulting in a particularly simple and hence computationally cheap 
expression for the tangent stiffness matrix.  
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Appendix A 

Here the algorithm for solving the spatially (FE) discretized equations of motion of the 
boundary/initial value problem in time is presented for the convenience of the reader. 
The implicit Newmark time integration scheme is chosen for time discretization while 
Newton-Raphson method is employed in the iteration of materially nonlinear equation 
of motion 
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where M is the lumped mass matrix, C is the damping matrix (set to zero in this paper), 
B is the small deformation kinematic matrix, fint and fext are the internal and external 
force vector, respectively, Ve is the element volume and, finally, A is the standard finite 
element assembly operator. The integration in (A1) is performed numerically in the 
Gaussian points.  

Since the elemental stresses σe are obtained through the stress return mapping 
scheme, Equation (A1) is nonlinear (materially) and needs to be solved iteratively by 
using the Newton-Raphson method. For this end, the internal force vector (other terms 
are linear) needs to be linearized resulting in relation 
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where Equation (14) and relation ε = Bu have been used along with (A1), and Ealg 
denotes the algorithmic tangent modulus depending on the loading as explained earlier. 
Ktan is the global tangent stiffness matrix.   

The Newmark difference formulas are 
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where ∆t is the time step and γ, β are the parameters which, with values γ = 0.5, β = 
0.25, give the method unconditional stability with respect to time step. Now the solution 
algorithm can be written as follows: 
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+
∆+ t

k
tt

k
ttt

k
tt

k
tt β

γ
β

  

uuu ∆+= ∆+
+
∆+

k
tt

k
tt

1 . Set k = k + 1 and go to 2. 
 
While zero-acceleration predictor has been used in Step 1 of the algorithm, other kind of 
predictors are possible as well.  
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