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A Bayesian approach to vibration based structural health
monitoring with experimental verification

Antti Huhtala and Sven Bossuyt

Summary. In this paper we present a damage identification method for use in structural
health monitoring. Our method uses Bayesian inference to solve the inverse problem of locating
structural damage based on measurements of vibrational parameters of the structure. Based
on a structure model, a damage model and a measurement model we can estimate measured
parameters for a given damage state. Using statistical assumptions of the measurement noise
and the possible damage states we derive an estimate of the damage state. Finally, the method
is experimentally verified to correctly identify damage on a steel cantilever beam.
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Introduction

In structural health monitoring, damage sensitive mechanical parameters (for example
vibration amplitudes and frequencies) of an operational structure are continuously mea-
sured to assess its health and to verify its safety. This measuring is done using a network
of sensors attached to the structure. Currently information of a structure’s health, i.e.
its ability to perform its function, is often only obtained by scheduled maintenance and
periodic inspections, which are expensive because of the amount of labor and downtime
involved.

Methods of structural health monitoring have been under active research over the past
30 years [7, 15, 6, 5, 9]. Many of the proposed methods are based on the fact that vibration
characteristics of a structure change when it receives mechanical damage. This change is
not only related to the extent of damage, but also to its locations [15, 5, 14, 12]. As the
vibration modes of a structure can be measured even when the excitation to the structure
is not exactly known [13, 1, 3, 4], for instance the vibrations induced by the wind, they
are well suited for damage identification.

Methods which seek also to locate the damage, in addition to just detecting its pres-
ence, are often based on a model of the structure and on an assumption of the way damage
changes that model. The simulated modal parameters of the structure are then compared
against those measured from the structure, and a damage state is sought in such a way
that the simulated modal parameters equal the measured ones. This, however, is an
ill-conditioned problem and can only be solved approximately under regularizing assump-
tions.

As measurement noise and modeling error are always present in a realistic case, the
approach presented in this paper is a statistical one. The ability to take these uncertainties
directly into account is a benefit of the proposed method. Given prior information of the
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probability of damage and the different types of damage, Bayesian inference can be used
to update this information based on a set of measured modal parameters.

Finally, the presented method is experimentally verified by using measurements done
on a cantilever beam.

Structural dynamics

Structure model

We assume that we have a suitably accurate discretized linear model of the dynamic
behaviour of our structure. Such a model can for instance be obtained by creating a
rough finite element model and using one of several model updating procedures to refine
its parameters [8].

The free vibrations (without damping) of the structure can then be characterized as
the solutions of a differential equation of the form

M ü + Ku = 0 , (1)

where M ∈ Rn×n is the mass matrix, K ∈ Rn×n is the stiffness matrix and u ∈ Rn

is a vector of the degrees of freedom in the model. Assuming that the discretization is
obtained using the finite element method for an elasticity problem, both M and K are
known to be symmetric positive definite.

One approach to solve equation (1) is to first consider the generalized eigenvalue
problem given by

Kx i = ω2
i M x i, (2)

where the eigenvectors x i are called the mode shapes of the vibration and the eigenvalues
ω2
i are the squares of modal frequencies. Collecting the eigenvectors into columns of a

matrix X and the corresponding eigenvalues into a diagonal matrix Ω2, then equation
(2) can be written as

KX = M X Ω2. (3)

The eigenvectors are commonly chosen to be mass normalized, i.e.,

X TM X = I . (4)

Multiplying equation (3) by X T from the left then gives

X TKX = X TM X Ω2 = Ω2. (5)

Taking a change in variables
u = Xη (6)

and inserting it to equation (1) gives

M X η̈ + KXη = 0 . (7)

Multiplying this by X T from the left and using equations (4) and (5) then gives

η̈ + Ω2η = 0 , (8)

which just describes n uncoupled harmonic oscillators. The solution to each one is given
by

ηi(t) = Ai cos(ωit) +Bi sin(ωit), (9)
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where Ai and Bi depend on appropriate initial conditions specified for u and u̇ . The
solution to equation (1) is then given by

u(t) = Xη(t) =
n∑

i=1

ηi(t)x i. (10)

The free vibrations of a damped structure, on the other hand, can be characterized by
the solutions of the equation

M ü + Cu̇ + Ku = 0 . (11)

Now the analysis becomes much more convoluted since in general one ends up with non-
normal operators. A special case, however, is the so called modal damping. In this case,
the damping matrix C is such that

X TCX = D , (12)

where D is a diagonal matrix with Dii = 2ζiωi.
Equation (11) is now transformed to

η̈ + D η̇ + Ω2η = 0 , (13)

which describes n uncoupled damped harmonic oscillators. The solution to each one is
given by

ηi(t) = exp(−ζiωit)
(
Ai cos(

√
1− ζi ωit) +Bi sin(

√
1− ζi ωit)

)
, (14)

where Ai and Bi again depend on the intial conditions. The damping ratios ζi for steel
structures are typically in the range ζi = 0.02 . . . 0.05 [2]. This translates to a change
in frequency of 0.02% to 0.15%, which is quite insignificant compared to measurement
errors. As it is possible to show a similar result even without assuming modal damping,
the use of the undamped model is quite sufficient for structures with light damping.

Damage model

Ultimately we want to estimate damage based on measured changes in the behaviour of a
structure. In order to do that, we first need a model of how damage affects the structure.
In this article we will present only a very simple damage model, which nevertheless is
adequate for our experimental setup. More elaborate models are described in the literature
[17, 16].

The first assumption made is that the damage does not affect the mass of the structure,
i.e., the mass matrix of the structure model stays constant under damage. Common types
of damage, such as fatigue and corrosion cause no relevant change in mass. The stiffness
of the structure, however, is affected. In this simple model, we begin with the fact that
the stiffness matrix of a finite element model can be expressed as

K =
N∑
i=1

K Ti
, (15)
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where K Ti
is the stiffness contribution of element Ti, andN is the total number of elements

in the structure model. The stiffness of the structure model with damage is then

K d =
N∑
i=1

(1− di)K Ti
, (16)

where di is the stiffness reduction in element Ti. The variables di get values in the
range [0, 1], where 0 indicates no damage and 1 indicates total loss of stiffness in the
corresponding element. It is useful to define the damage state vector as

d =

d1
...
dN

 ∈ RN . (17)

For any damage state d , the modes of the damaged structure model can be obtained
from the generalized eigenvalue problem

K dx d,i = ω2
d,iM x d,i. (18)

Measurement model

In this article, we assume that we can measure a number of the structure’s vibration
modes individually. Our measurement then consists of modal frequencies and observed
components of mode shapes for these modes. Such data can be extracted also from
output-only time-domain data using algorithms described in the literature [13, 1, 3, 4].

Let us say that we can measure p modes of the structure. We will denote the measured
modal frequencies by ω̂i and the measured mode shapes by ŷ i, where i = 1, . . . , p. The
measured mode shapes are vectors of the measured components of the actual mode shapes.
For example, if the modes of the structure are measured using accelerometers, then each
ŷ i contains the acceleration amplitudes (and phases) of vibration mode i measured at the
locations of the accelerometers. We will collect all the measurements into a measurement
vector as

m̂ =


ω̂1

ŷ1
...
ω̂p

ŷp

 . (19)

The idea of the measurement model is to estimate what the measurements would be,
if we knew the damage state of the structure. In our case we first compute the vibration
modes of our structure model, using equation (18). The computed modal frequencies can
be directly compared with the measured ones, but for each of the mode shapes, however,
we need to simulate the output of the measurement sensors to obtain data comparable
with the measured mode shapes.

Let ωd,i and x d,i be the modal frequencies and mode shapes of the structure model
under damage. We assume that our measurement sensors have a linear response. In this
case, the output of each sensor can be modeled as a linear functional of the mode shape.
We can thus simulate the measured mode shapes as

y i,d = H x i,d. (20)
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Let the modes be indexed so that each simulated mode (ωi,d,y i,d) corresponds to the
measured mode (ω̂i, ŷ i) for i = 1, . . . , p. The simulated measurements are then collected
into a vector as

md =


ωd,1

yd,1
...

ωd,p

yd,p

 . (21)

For simplicity of notation, we define a function f such that the simulated measurement
md is expressed as

md = f (d), (22)

where d ∈ RN is any valid damage state of the structure.
We then assume that the actual measurement m may be decomposed as

m = f (d) + ε, (23)

with some unknown damage state d and additive error ε.

Statistical inverse

Bayesian inference

As the measurement process always contains some random measurement error, it is quite
natural to consider the measuring as a statistical process. It turns out that the Bayesian
framework is very useful for problems of this sort. In this framework all variables are
considered random variables [10, 11].

Let the measurement outcome be denoted by M , the damage state by D and errors
by E . We then assume, that these random variables are related as

M = f (D) + E , (24)

i.e. the measurement can be explained by our measurement model with some damage state
and an additive error term. We go on to assume that the error term E is independent of
the damage state D and that it is normally distributed so that

E ∼ N (µ,Σ ). (25)

The probability density of such a distribution is given by

p(E = ε) = C exp

(
−1

2
‖S(ε− µ)‖2

)
, (26)

where S is such that STS = Σ−1, for instance the Cholesky decomposition of Σ−1, and
C is a normalization constant.

Now, assume that the damage variable has a fixed value, i.e. D = d . Under this
condition equation (24) gives

M = f (d) + E , (27)

which means that the measurement M has the same distribution as the error E , but only
shifted by the constant f (d). Hence under the condition D = d we have

M ∼ N (f (d) + µ,Σ) (28)
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and thus

p(M = m |D = d) = C exp

(
−1

2
‖S(m − f (d)− µ)‖2

)
. (29)

This is the probability density of seeing measurement m , when we know the damage is d .
When the structure is undamaged, this can be used to estimate the statistical parameters
µ and Σ of the error variable.

For damage estimation we would like to know the probability density of having damage
d when we have obtained measurement m . For this purpose, we can use Bayes’ formula
[10, 11], which states

p(D = d |M = m) =
p(M = m |D = d)p(D = d)

p(M = m)
. (30)

Bayes’ formula thus switches the roles of the random variables in the conditional prob-
ability. It does this with the aid of additional information contained in the distribution
p(D = d). This is the so-called prior distribution, which does not yet take into account
the additional information provided by the measurement, and relies only on a prior as-
sessment of the likelihood of finding different damage states d . Bayes’ formula effectively
takes this prior information and combines it with our measurement model to produce what
is called the posterior probability distribution. The factor p(M = m) in the formula is
the probability density of obtaining measurement m . However, since m has actually
already been obtained, this factor can be interpreted just as a normalizing constant.

Prior distribution

The prior distribution describes for each possible damage state what we already know
(or assume) before processing the additional information obtained from measurements.
It is thus the probability of having damage state d in general. Since there are strict
physical limits on the values of the damage parameters di, then at the very least the
distribution should be such that there is zero probability of di < 0 or di > 1 in any
element Ti. While monitoring the structure, it is most probable that the structure is in
fact not damaged (all di = 0). Even if there is damage it is probable that the damage is
small. It is hence desirable that the prior distribution gives higher probability to states
of low damage compared to states of high damage. A very simple statistical model for
this is the truncated normal distribution. This model assumes that

p(D = d) = Cχ[0,1](d) exp

(
− 1

2σ2
‖d‖2

)
, (31)

where

χ[0,1](d) =

{
1, if 0 ≤ di ≤ 1 ∀i = 1, . . . , N
0, otherwise

, (32)

σ2 is the variance of the underlying normal distribution and C is a normalizing constant.
Many other distributions could be used as well. In this paper, this distribution was chosen
because of its simplicity and because it was sufficient for our test case.

Following the statistical framework, the parameter σ should be estimated using sta-
tistical data of actual structural damage from similar structures. In practice, however,
such information is not available. Data driven parameter estimation methods can be
used instead, such as Morozov’s discrepancy principle or the L-curve method [11]. To get
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correct qualitative results, it is often sufficient to just have σ set to the correct order of
magnitude.

Using this distribution as our prior in equation (30), we can write the posterior prob-
ability distribution as

p(D = d |M = m) = Cχ[0,1](d) exp

(
−1

2
‖S(m − f (d)− µ)‖2 − 1

2σ2
‖d‖2

)
, (33)

where all the normalizing constants are merged into C.

Maximum a posteriori estimate

Although the posterior probability density contains all the information of the inverse
problem solution, and sometimes is considered the solution of a statistical inverse problem,
it is often still not very useful as it is. Instead, in many cases some representative point
estimate is desired. Common point estimates of probability distributions are for instance
the mean and the median. However, the computation of these estimates for non-linear
problems like the one presented here is computationally very intensive requiring sampling
schemes such as Markov Chain Monte Carlo (MCMC) methods. We therefore turn to
a third commonly used point estimate, which is the mode of the distribution. In the
vocabulary of statistical inference, the mode of the posterior distribution is called the
maximum a posteriori (MAP) estimator. It is defined as

dMAP = argmax
d

p(D = d |M = m)

= argmax
d

Cχ[0,1](d) exp

(
−1

2
‖S(m − f (d)− µ)‖2 − 1

2σ2
‖d‖2

)
= argmax

0≤di≤1
exp

(
−1

2
‖S(m − f (d)− µ)‖2 − 1

2σ2
‖d‖2

)
= argmin

0≤di≤1

{
1

2
‖S(m − f (d)− µ)‖2 +

1

2σ2
‖d‖2

}
.

(34)

For our choice of distributions in the exponential family, this corresponds to generalized
Tikhonov regularization. This is a problem of non-linear least squares, which may be
solved for instance by using the methods of Gauss-Newton or Levenberg-Marquardt.

As this is a non-linear problem, it is not known if the optimization methods will
converge to a global optimum. However, in the prior distribution it was assumed that
there is high probability of low damage levels. This limits the amount of non-linearity
that can be present. The optima are thus expected to be clustered close to each other,
and that any one of them is qualitatively representative of the distribution.

Experimental verification

Experimental setup

A steel cantilever beam of length 1400 millimeters (x direction) and of rectangular cross-
section 5 millimeters thick (y direction) and 60 millimeters wide (z direction) was mea-
sured with 7 accelerometers. Initial measurements were taken when the beam was still
undamaged. Using a hacksaw an approximately 1 millimeter wide slot was then sawn into
the beam, at approximately 260 millimeters from the fixed end. The orientation of the

336



260 mm

1400 mm

60 mm

x

z

Figure 1. A schematic view of the cantilever under experiment.

slot was such that it made a rectangular hole in the xz-plane. This is the direction where
the beam stiffness is least sensitive to the depth of the slot. See figure 1 for an illustration
of the beam. Measurements were taken at 4 different slot depths: 5 millimeters, 10 mil-
limeters, 15 millimeters and 20 millimeters. Photographs of the experiment are presented
in figure 2.

In each damage state of the beam 5 individual measurements were taken. Each mea-
surement contained 30 seconds of acceleration data following a tap with a rubber hammer.
The modal parameters were identified from each of the individual measurements indepen-
dently. As the structure was simple and the excitation was approximately an impulse,
the identification of 6 modes (modal frequencies and measured mode shapes) was done
by hand from the spectral magnitude response of the measured accelerations (figure 3).
Such a task becomes excessively difficult for more complex structures under more general
excitation. Methods described in the literature [13, 1, 3, 4] should be used for such cases.

A finite element model of the vibrations in the y direction of the beam was created
using the measured dimensions and material parameters E = 210 GPa, ρ = 7860 kg/m3.
The modes of the beam in the other two directions were not considered as they fell out of
the measured range of frequencies. The beam was modeled as an Euler-Bernoulli beam
using 50 standard C1-elements along the length. The modeled beam had a constant
flexural rigidity EI = 131.25 Nm2 and mass of unit length µ = 2.358 kg/m along its
length. Boundary conditions were set so that the beam was rigidly fixed at one end
(x = 0 m) and free at the other (x = 1.4 m).

The data from the accelerometers were assumed as point values of the second time
derivative of the displacement field, i.e. point values of the acceleration field. The mea-
sured mode shapes are thus point values of the acceleration mode shapes. The accelerom-
eters were measured to be located at 350, 520, 700, 875, 1045, 1225 and 1390 millimeters
from the fixed end.

The differences between the finite element model and the measurements, which are
caused by measurement noise and model error, were expressed as an error term, as defined
in equation (24). In the initial state, the damage state is known to be zero. Hence the
measurements in this state were used to estimate the statistics of the error term using
equation (27). For this purpose, we assumed that the individual components of the error
term are independent. The variance of each component was then estimated as the sample
variance of the computed errors. The mean of the error term was estimated as the sample
mean of the computed errors. As we only had 5 samples, we did not test our statistical
assumption of normality.

Allowing the error term to have a non-zero mean value removes any constant modeling
error, but does not affect non-constant modeling error (i.e. error depending on the damage
state). This remaining part of the error could be made smaller by performing model
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Figure 2. Photographs of the cantilever under experiment.

updating [8]. In our model, the modeling error of the modal frequencies in the initial
measurements was in the order of 5%.

The distribution defined in equation (31) with σ = 0.1 was chosen as the prior distri-
bution. The choice was based on a qualitative assessment comparing the clearness of the
reconstruction with the numerical stability of the optimization problem. The reconstruc-
tions were not exceedingly sensitive to the exact value of this parameter. Qualitatively
similar results would still be obtained even with an order of magnitude higher or lower
value.

Experimental results

The measured changes in the modal parameters were quite small. The largest absolute
change in modal frequencies between the undamaged case and the most damaged case
was just over 5 rad/s. The largest relative change on the other hand was just under 1.5%.
However, due to the large amount of parameters and the low noise levels, the measured
changes had high statistical significance.

Using the Levenberg-Marquardt method for equation (34), we computed the maximum
a posteriori estimates of the damage for each of the 5 individual measurements in each
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Figure 3. Upper: frequency response of the undamaged beam when excited with a tap of a rubber
hammer. Lower: close-up on first spike, where one can clearly see the responses of individual sensors.
Sensor 7, which was located near the free end, detected the largest deflection, whereas sensor 1, which
was closest to the fixed end, detected the smallest deflection.

damage case. Instead of looking at the individual MAP estimates in each damage case,
we chose to compute the first, second and third quartiles of the damage parameter values
over the individual MAP estimates. The first quartile is the value for which 75% of the
estimates give a higher value. The second quartile is the median value of the estimates,
and the third quartile is the value for which 75% of the estimates give a lower value.

No damage

The damage state estimation was also run on the measurements taken of the undamaged
structure. This was done as a sanity check for the method. A characterization of the MAP
estimates is visualized in figure 4. As expected, the estimates show damage parameter
values which are close to zero. No damage is detected.

Slot depth 5mm

A characterization of the MAP estimates is visualized in figure 5. Two areas in the
estimates show a few percent loss of stiffness. However, changes of a few percent in
stiffness are possible by environmental factors. No damage is detected.
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Figure 4. Characterization of the maximum a posteriori estimates in the case with no damage. No
damage is detected.
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Figure 5. Characterization of the maximum a posteriori estimates in the case of a 5mm deep slot. No
damage is detected.
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Figure 6. Characterization of the maximum a posteriori estimates in the case of a 10mm deep slot. No
damage is detected.
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Slot depth 10mm

This set of measurements contained spurious values, which are either due to some envi-
ronmental factors which were not modeled or some error that happened when taking the
measurements. A characterization of the MAP estimates is visualized in figure 6. As with
the 5mm slot depth case, areas of a few percent loss of stiffness are seen. No damage is
detected.

Slot depth 15mm

A characterization of the MAP estimates is visualized in figure 7. There are two areas
where significant localized loss of stiffness is estimated. One of them is localized near
0.3 m from the fixed end. As the actual slot was located at 0.26 m from the fixed end, we
conclude that the method detected the damage and that it was localized to within two
possible locations.

Slot depth 20mm

A characterization of the MAP estimates is visualized in figure 8. There are four areas
where significant localized loss of stiffness is estimated, with one area much larger than
the others. This area of heavy loss of stiffness is seen located near 0.3 m from the fixed
end. As the actual slot was located at 0.26 m from the fixed end, we conclude that the
damage is detected and localized.

Conclusions

At the very least, the presented method correctly detected the location of the damage
when the slot depth was 20 mm. For the slot depth of 15 mm, the detection is not quite
as clear. However, if a similar case would come up in an actual structure, one would
inspect it at the indicated locations and find the damage. The presented method can
hence detect and localize damage in simple structures, given that the damage levels are
high enough to cause changes in measurement which exceed modeling errors and noise.
In this simple case a sufficiently good model was easily obtained. For complex structures
this is no longer the case, and we expect that the need to use model updating schemes is
in practice unavoidable.

The direction of the slot was deliberately chosen to be such that the stiffness of the
beam was not much affected by it. Hence, only small changes in the modal parameters
were expected. This was also observed. It would provide an interesting comparison, if the
same experiment were carried out with the slot sawn in the direction where the beam is
most sensitive to it.

Even though the presented method does not handle real-time data as such, it could still
be used for almost real-time structural health monitoring. New data could be collected
while the previous set is processed. Assuming the damage does not occur faster than, say,
in the order of a day, it should be possible to identify it in essentially real time.

Acknowledgements

This research is a part of ISMO, the Intelligent Structural Health Monitoring project of
the Multidisciplinary Institute for Digitalisation and Energy of Aalto University.

341



0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.05

0.1

0.15

0.2

0.25

distance from the fixed end (m)

es
tim

at
ed

 d
am

ag
e 

pa
ra

m
et

er
 v

al
ue

 

 
3rd quartile
median
1st quartile
actual location of damage

Figure 7. Characterization of the maximum a posteriori estimates in the case of a 15mm deep slot. Two
areas with significant loss of stiffness are seen in the estimates. One of them is close to the actual damage
location. Damage is thus detected and localized within two possible locations.
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Figure 8. Characterization of the maximum a posteriori estimates in the case of a 20mm deep slot. Four
areas with significant loss of stiffness are seen in the estimates. One of them is much larger than the
others, and it is also close to the actual damage location. Damage is thus detected and localized.
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