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Isogeometric analysis of finite deformation
nearly incompressible solids

Kjell Magne Mathisen, Knut Morten Okstad, Trond Kvamsdal and Siv Bente Raknes

Summary. This paper addresses the use of isogeometric analysis to solve finite deformation
solid mechanics problems, in which volumetric locking may be encountered. The current work
is based on the foundation developed in the project ICADA for linear analysis, that herein is
augmented with additional capabilities such that nonlinear analysis of finite deformation prob-
lems in solid mechanics involving material and geometrical nonlinearities may be performed.
In particular, we investigate two mixed forms based on a three-field Hu-Washizu variational
formulation, in which displacements, mean stress and volume change are independently approx-
imated. The performance of the mixed forms is assessed by studying two numerical examples
involving large-deformation nearly incompressible elasticity and elastoplasticity. The results
obtained with NURBS are shown to compare favorable with classical Lagrange finite elements.
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Introduction

The new paradigm of Isogeometric analysis, introduced by Hughes et al. [1, 2], demon-
strates that much is to be gained with respect to efficiency, quality and accuracy by
replacing traditional finite elements by volumetric NURBS (Non-Uniform Rational B-
Splines) elements. By using NURBS—which is standard technology employed in CAD
systems—as basis functions in the finite element analysis, one may transfer models from
design directly to analysis without any modifications. This reduces the man-hours needed
for establishing analysis-suitable finite element meshes, as well as no loss of accuracy in
the geometrical description of the object at hand. Thus, using NURBS seems to be a very
appealing step forward for finite element analysis. It is therefore natural to investigate
the numerical performance of NURBS compared to traditional Lagrange basis functions.
We have been doing so for linear elasticity problems and obtained very promising results,
and now we start to address this for finite deformation problems.

Two important features with NURBS are its capability to exactly represent conical
sections (e.g., circles) and that a regular p-th order NURBS basis is Cp−1 continuous.
Many industrial solid/structural mechanics problems involve objects where part of the
geometry is described by circles or circle segments, and traditionally this has been rep-
resented inaccurately by means of low-order Lagrange polynomials, whereas by using
NURBS these inaccuracies may be eliminated altogether. Furthermore, in elasticity we
have continuous stresses and strains except for at certain singular points, lines or surfaces,
i.e. the displacement field is C1-continuous away from singularities. Classical finite ele-
ments based on Lagrange polynomials are only C0-continuous and this lack of regularity
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shows up in discontinuous finite element stress and strain fields across element interfaces,
whereas NURBS (p ≥ 2) may represent this behavior qualitatively correct.

”Locking” is a challenge in linear as well as nonlinear finite element problems: (1)
Shear locking in continuum elements, (2) transverse shear locking in Timoschenko beam,
and Reissner/Mindlin plate and shell elements, (3) membrane locking in curved shell,
membrane or solid elements, and (4) volumetric locking. In the present study we ad-
dress volumetric locking, often referred to as incompressible locking. This is a challenge
when nearly incompressible behavior is prevalent, such as in modeling of dense rubber by
hyperelastic materials, as well as in modeling of inelastic problems by large deformation
elastic-plastic response of metals or in analysis of undrained soils. Until recently nonlinear
finite element structural analysis has been dominated by the use of low-order displace-
ment elements specially designed to avoid volumetric or incompressible locking. Szabó et
al. [3,4] claim that the solution is to apply the p−method, in which the polynomial order
within C0 elements is increased on a fixed mesh.

More recently the isogeometric approach has formed the basis for overcoming the in-
compressibility problem. Elguedj et al. [5] has addressed this by the B̄- and F̄ -projection
methods, for infinitesimal and finite strain problems, respectively. Echter and Bischoff [6]
has demonstrated that NURBS in combination with the discrete shear gap method may be
used to partly alleviate transverse shear locking and obtain improved accuracy compared
to other locking-free elements. For linearized and finite strain elasticity and plasticity,
Simo et al. [7] showed that B̄-projection methods may be derived from a three-field vari-
ational formulation. More recently Taylor [8] demonstrated that NURBS may be used to
improve the performance of two-dimensional mixed solid elements based on a three-field
variational formulation. The latter work forms the basis for the current study, where we
adopt two mixed formulations based on a three-field Hu-Washizu variational formulation,
originally presented by Simo et al. [7], later extended to hyperelastic materials in principal
stretches by Simo and Taylor [9], and to general problems by Zienkiewicz and Taylor [10].
These formulations have been implemented into an object-oriented environment for per-
forming isogeometric finite element analysis (IFEM ), using splines and NURBS as basis
functions.

Nonlinear Elasticity

Finite deformation elasticity and elastoplasticity is herein based on a multiplicative split
of the deformation gradient into volume-preserving and dilatational parts, which enables
exact satisfaction of the constraint condition of isochoric motion. Constitutive models
for finite deformation elastoplasticity is formulated in terms of principal stretches [10–
12] which have proven to be especially useful in the modeling of elastoplastic materials
undergoing large plastic strain.

Compressible neo-Hookean material model

In deriving the constitutive models for finite elasticity, we first assume hyperelastic homo-
geneous isotropic material behavior for which there exist a free-energy function (stored
energy or strain energy function) Ψ that depends on the left Cauchy-Green deformation
(finger) tensor b

Ψ = Ψ(b) with b = FFT and F = I +
∂u

∂X
, (1)
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where F is the deformation gradient, u is the displacement and I is the 2nd order unit
tensor. Isotropy implies that Cauchy stresses σ may be derived from the three invariants
of b

σ =
2

J

∂Ψ

∂b
=

2

J

(
ΨIb + 2ΨIIb

2 + J2ΨIIII
)
, (2)

where ΨI ,ΨII ,ΨIII are the derivatives of Ψ with respect to the invariants of b, and
J = detF the determinant of the deformation gradient. For hyperelastic materials ex-
hibiting a completely different volumetric and isochoric response, the free-energy function
may be additively decomposed into a volume-changing (dilatational) part, and a volume-
preserving (isochoric) part

Ψ(J,b) = Ψdil(J) + Ψiso(J,b). (3)

The dilatational part is here expressed in terms of J

Ψdil(J) = λU(J) =
1

2
λ (ln J)2 , (4)

and the isochoric part is expressed in terms of J and the finger tensor b

Ψiso(J,b) =
1

2
µ (trb− 3)− µ ln J, (5)

where λ and µ are the Lamé parameters that may be derived from Young’s modulus, E,
and Poisson’s ratio, ν, by

λ =
νE

(1 + ν) (1− 2ν)
and µ =

E

2 (1 + ν)
. (6)

Thus, as ν → 1
2
, λ→∞. The limit value ν = 1

2
thus represents incompressibility.

Cauchy stresses are obtained from the first derivatives of Ψdil and Ψiso

σij = σdil
ij + σiso

ij =

(
λ
∂U

∂J
+
∂Ψiso

∂J

)
δij +

2

J
bij
∂Ψiso

∂I
=

1

J
[µbij + (λ ln J − µ) δij] , (7)

where I = trb = bkk is the first invariant of b.
Spatial tangent moduli are similarly obtained from the second derivatives

cijkl = cdil
ijkl + ciso

ijkl =
1

J
[λδijδkl + 2 (µ− λ ln J) Iijkl] , (8)

where Iijkl = 1
2

[δikδjl + δilδjk].

Modified neo-Hookean material model

Materials with rubber-like behavior are characterized by a relatively low shear modu-
lus and high bulk modulus, i.e., they are nearly incompressible while highly deformable
when sheared. For such materials it is convenient to make a multiplicative split of the
deformation gradient into a dilatational and isochoric part

F = FdilFiso

{
Fdil = J1/3I ⇒ detFdil = detF = J
Fiso = J−1/3F ⇒ detFiso = 1

, (9)
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where the latter defines an isochoric motion. A modified deformation gradient F̄ is ob-
tained by replacing J with the scalar parameter J̄ in the dilatational part, resulting in

F̄ = F̄dilFiso =

(
J̄

J

)1/3
F where F̄dil = J̄1/3I⇒ det F̄ = J̄ . (10)

Using the multiplicative split the isochoric part of the finger tensor becomes

b̄ = biso = Fiso(Fiso)T = J−2/3b, (11)

and again has unit volume change. The isochoric part of the free-energy function may
now be written in terms of the modified invariant Ī = trb̄ = J−2/3trb

Ψ(J, Ī) = Ψdil(J) + Ψiso(Ī), (12)

where
Ψdil(J) = κU(J) = 1

4
κ (J2 − 1− 2 ln J) ,

Ψiso(Ī) = 1
2
µ
(
Ī − 3

)
,

(13)

and where κ and µ are equivalent to the small strain bulk and shear moduli, respectively.
The volumetric part of the Cauchy stresses is proportional to U(J) which for the above
volumetric behavior gives rise to the hydrostatic pressure

σdil
ij = κ

∂U

∂J
δij =

κ

2J
(J2 − 1)δij, (14)

while the deviatoric part now may be expressed in terms of the modified deformation
tensor b̄ij

σiso
ij =

µ

J
b̄d
ij where b̄d

ij = b̄ij −
1

3
δij b̄kk. (15)

Current spatial tangent moduli for the modified neo-Hookean material model are again
obtained from the second derivatives of the free-energy function w.r.t. J and Ī

cijkl = cdil
ijkl + ciso

ijkl, (16)

where
cdil
ijkl = κ

J
[J2δijδkl + (1− J2)Iijkl] ,

ciso
ijkl = 2µ

3J

[
b̄mm(Iijkl − 1

3
δijδkl)− δij b̄d

kl − b̄d
ijδkl

]
.

(17)

Mixed Formulation

Mixed elements are often used to accommodate the volume constraint in incompressible
material problems. They are designed to model material behavior with high incompres-
sibility, such as fully or nearly incompressible hyperelastic materials and nearly incompres-
sible elastoplastic materials undergoing large plastic strain. In order to satisfy the extra
constraints exactly, the displacements have to be augmented by two additional unknowns,
the pressure and the volume change parameters, respectively.
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A three-field mixed variational form

For many constitutive models, such as hyperelasticity that can have multiple deformation
states for the same stress level, it is convenient to use a three-field mixed Hu-Washizu
variational form to overcome volumetric locking. A three-field mixed approximation has
led to successful lower-order solid elements that can be used in finite deformation elasticity
problems exhibiting compressible and/or nearly incompressible behavior for a large class of
materials. Assuming an independent approximation of the displacement u, the hydrostatic
pressure p and the volume change parameter θ, the standard displacement form of the
variational problem may be augmented to the following form [7,8, 10]

Π(u, p, θ) =

∫
Ω

Ψ(J, b̄)dΩ +

∫
Ω

p(J − J̄)dΩ− Πext, (18)

where Πext includes effects of body forces and surface tractions. The parameter p is here
a Lagrange multiplier that constrains the determinant of the deformation gradient, J , to
its independent representation, J̄ . It may be identified as the Cauchy mean or hydrostatic
stress

σdil
ij = pδij. (19)

For computations, we let J̄ be related to the volume change parameter θ through

J̄ = 1 + θ ⇒ θ = 0 in C0, (20)

such that no initial values need to be assigned to θ in the initial configuration. Note that

the deformation gradient F is replaced by F̄ =
(
J̄/J

)1/3
F, and J = detF is replaced by

J̄ , in the expression for b̄ in equation (11), that defines the strain energy function Ψ(J, b̄)
in equation (18)

b̄ = J̄−2/3F̄F̄T = J−2/3b. (21)

Discrete form

In a standard isoparametric finite element solution, classical Lagrange polynomials define
the basis functions, Na, used to parameterize reference coordinates, X, and displacements,
u

X =
nu∑
a=1

Na(ξ)X̃a and u =
nu∑
a=1

Na(ξ)ũa, (22)

where X̃a and ũa denote nodal reference coordinates and displacements, respectively, and
ξ are the parametric coordinates. For isogeometric elements, geometry and displacements
are parameterized by tensor product NURBS basis functions

X =
n1∑
i=1

n2∑
j=1

n3∑
k=1

Np
i (ξ)N q

j (η)N r
k (ζ)X̃ijk,

u =
n1∑
i=1

n2∑
j=1

n3∑
k=1

Np
i (ξ)N q

j (η)N r
k (ζ)ũijk,

(23)

where X̃ijk and ũijk are the reference coordinates and the displacements of control points,
p, q and r are the order of, and n1, n2 and n3 denote the number of basis functions Np

i ,
N q
j and N r

k , in the ξ, η and ζ-directions, respectively.
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If we approximate the volume change θ and the pressure p by interpolation functions
L and M in reference coordinates X, respectively

θ =
nθ∑
b=1

Lb(X)θ̃b = Lθ̃ and p =
np∑
b=1

Mb(X)p̃b = Mp̃, (24)

the linearized discrete form of the variational equation takes the form Kuu Kuθ Kup

Kθu Kθθ Kθp

Kpu Kpθ 0


dũ

dθ̃
dp̃

 =


Ru

Rθ

Rp

 . (25)

Residuals are expressed as sums over elements as

Ru = f −
∑
e

∫
Ωe

BT σ̂J̄dΩ,

Rθ =
∑
e

∫
Ωe

LT (p̄− p)dΩ,

Rp =
∑
e

∫
Ωe

MT (J − J̄)dΩ,

where

σ̂ = σ̄ + m(p̂− p̄),
p̄ = 1

3
mT σ̄,

p̂ = (J/J̄)p,
mT = [1, 1, 1, 0, 0, 0] ,

(26)

in which f is the external force, and adopting the spatial formulation B is identical to the
form of the small deformation strain-displacement matrix [10]. In three dimensions the
portion of this matrix associated with a node a is defined by

BT
a =

 Na,1 0 0 Na,2 0 Na,3

0 Na,2 0 Na,1 Na,3 0
0 0 Na,3 0 Na,2 Na,1

 . (27)

Contrary to the material description where reference coordinates X are used to compute
shape functions and their derivatives, in the spatial description the current configuration
coordinates x are used to compute the derivatives Na,i = ∂Na/∂xi. The tangent matrix
terms needed to determine dũ, dθ̃ and dp̃ are given by

Kuu =
∑
e

∫
Ωe

BT D̄dBJ̄dΩ + KG,

Kuθ =
∑
e

∫
Ωe

BT d̄L̄J̄dΩ = KT
θu,

Kup =
∑
e

∫
Ωe

BTmMJdΩ = KT
pu,

Kθθ =
∑
e

∫
Ωe

L̄T L̄J̄dΩ,

Kθp =
∑
e

∫
Ωe

LTMdΩ = KT
pθ.

(28)

D̄d is the deviatoric part of the expanded material moduli D̄ on matrix form

D̄d = IdD̄Id − 2
3

(
mσ̄Td + σ̄dm

T
)

+ 2 (p̄− p̂) I0 −
(

2
3
p̄− p̂

)
mmT ,

d̄ = 1
3
IdD̄m + 2

3
σ̄d, d̄ = 1

9
(mT D̄m− 3p̄), Id = I− 1

3
mmT ,

KG
ab =

∫
Ωe

Na,iσ̄ijNb,jdΩI, L̄ = L/J̄, I0 = 1
2
d2, 2, 2, 1, 1, 1c.

(29)
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To avoid numerical locking the approximations for the primary unknown u, and the
constraint variables θ and p, must be selected to satisfy the Babuška–Brezzi condition [13,
14]. For the three-field forms applied in the present study the Babuška–Brezzi condition
implies that the displacement space has to be larger than the corresponding spaces for the
volumetric change and the pressure fields that may be of equal size. In order to predict
the propensity of volumetric locking we define the constraint ratio [15]

rc =
nu
np

=
nu
nθ
, (30)

where nu, nθ and np are the number of unknown displacement ũ, volume θ̃, and pressure
parameters p̃, respectively. The ideal value of the ratio rc would then be the ratio between
the number of equilibrium equations divided by the number of incompressibility conditions
for the governing system of partial differential equations, i.e. the ratio between the number
of space dimensions, nsd, and 1, respectively. Thus, in two dimensions, the ideal ratio
would be rc = 2. If rc < 2 volumetric locking may be anticipated, and if rc ≤ 1 severe
locking may be encountered.

The above count condition is a necessary condition to avoid singularity, but not suf-
ficient to avoid incompressibility locking. However, it provides a guideline to construct
possible approximations that are not over-constrained.

In the current study we have implemented and studied two different constraint ap-
proximations based on the three-field mixed variational form:

Qp/Pp−1 : The discretization of u is of degree p with Cp−1 continuity within each ”patch”,
while the discretization of θ and p is discontinuous between each knot-span
and of degree p− 1.

Qp/Qp−1 : The discretization of u is of degree p with Cp−1 continuity, whereas the dis-
cretization of θ and p is of degree p−1 with Cp−2 continuity within each ”patch”,
respectively.

Discontinuous θ − p approximations

For the Qp/Pp−1 approximation the discretizations for θ and p are identical (L = M) and
assumed to be discontinuous between contiguous elements. Hence, the residuals Re

θ and
Re
p may be expanded in individual elements, which imply that θ̃ and p̃ may be condensed

out on the element level. For NURBS approximations, however, θ and p are assumed to
be discontinuous between contiguous knot-spans. Hence, for NURBS approximations the
residuals Re

θ and Re
p are expanded in individual knot-spans. The linearized form may

then be reduced to
K̄uuũ = Ru, (31)

where
K̄uu = Kuu + KupK

−1
θpKθθK

−1
pθ Kpu −KuθK

−1
θpKpu −KupK

−1
θpKθu. (32)

An efficient procedure to compute the reduced tangent, that requires the determination
of the inverse of Ke

θp, may be found in [10].
The lowest order Qp/Pp−1 approximation is with p = 1, for which NURBS and La-

grange approximation results in the same Q1/P0 element. In two and three dimensions,
displacements u are represented by the bilinear and the trilinear Lagrange interpolation
polynomials (that are identical to NURBS of order p = 1), respectively, while θ and p are
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approximated by functions that are constant. Although the Q1/P0 element fails to sat-
isfy the Babuška–Brezzi condition condition for some mesh configurations (checkerboard
mode), it is the most widely used element for large deformation analysis of industrial
problems for nearly incompressible and incompressible materials.

We also note that the constraint ratio, rc, indicate that the discontinuous θ−p NURBS
approximations will experience severe volume locking as the polynomial order of the
approximation functions is increased. Numerical results, however, justify that as the
ratio λ/µ is large but not infinite, the Qp/Pp−1 approximations will not experience severe
volumetric locking, even for values up to polynomial order p = 4.

Continuous θ − p approximations

In contrast to the Qp/Pp−1 approximation where θ and p are approximated locally, the
θ and p approximations are continuous between contiguous elements for Qp/Qp−1. With
NURBS approximations this implies that θ and p have one control point less in each knot
direction compared to the displacement

θ =
n̄1∑
i=1

n̄2∑
j=1

n̄3∑
k=1

Np
i (ξ)N q

j (η)N r
k (ζ)θ̃ijk,

p =
n̄1∑
i=1

n̄2∑
j=1

n̄3∑
k=1

Np
i (ξ)N q

j (η)N r
k (ζ)p̃ijk,

(33)

where n̄1, n̄2 and n̄3 are the number of control points defining θ̃ijk and p̃ijk, respectively.
The NURBS approximation spaces for a one-dimensional patch of four elements is

given in Figure 1 for p = 1, 2 and 3. In general the Qp/Qp−1 approximation may attain
Cp−1/Cp−2 continuity for displacements/constraint variables, respectively, for all values of
p > 1.

It is also noted that elimination of the volume change parameters θ̃ locally would
lead to a form with displacements and hydrostatic pressure continuous, while the volume
change remains discontinuous. This would have resulted in a more efficient formulation
in terms of computational effort keeping the accuracy at almost the same level [8].

Numerical Studies

The performance of the three different forms; (1) One-field standard displacement Qp for-
mulation, (2) three-field mixed Qp/Pp−1 formulation with discontinuous p and θ, and (3)
three-field mixed Qp/Qp−1 formulation with continuous p and θ, is numerically assessed on
two benchmark test problems. For both problems the above three forms with NURBS are
compared to results obtained with classical Lagrange Qp approximation. The accuracy
and the convergence characteristics of the formulations are assessed in the finite deforma-
tion regime. The numerical simulations involve finite deformation nearly incompressible
elastic and elastoplastic problems in plane strain conditions. For the elastic problem the
response is governed by a modified neo-Hookean material model, while the elastoplastic
response is governed by a finite deformation elastoplastic model with a J2 yield surface.

Cook’s membrane problem in the nonlinear regime

In the first example, a nonlinear extension of the well-known Cook’s membrane problem
is considered. This problem has frequently been used to assess finite elements under
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Figure 1. Basis functions Qp/Qp−1; p = 1, 2 and 3, for a one-dimensional patch of four elements.

combined bending and shear for linear elastic materials. More recently this example has
been used to validate and test the performance of formulations for incompressible or nearly
incompressible materials in both small and large deformation [16–26]. Its extension to
finite strain plasticity was proposed by Simo and Armero [27], and has later also been
studied by others [5, 28,29].

The problem consists of a tapered panel clamped on one end and subjected to a uni-
form shearing load on the opposite end. Figure 2 depicts the initial geometry, loading
and boundary conditions of this problem. The problem has been assessed in the finite
deformation regime with two different material models. First, we consider the modi-
fied neo-Hookean material model with strain energy function defined by equations (12)
and (13). Second, we consider a J2−finite strain model expressed in principal stretch
form [10–12], which represent an hyperelastic extension of J2−flow theory with a mod-
ified neo-Hookean model for the elastic part, and nonlinear isotropic hardening with an
associative flow rule based on von Mises yield criterion with isotropic hardening following
a saturation law for the plastic part [12,30,31]. The nonlinear isotropic hardening rule is
defined in terms of the yield stress in uniaxial tension

σy = σ∞ + (σ0 − σ∞) exp(−βep) +

√
2

3
hep, (34)

where σ0 is the initial yield stress, σ∞ is the residual yield stress, β is the saturation
exponent, h is the isotropic hardening coefficient, and ep is the equivalent plastic strain.
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Figure 2. Cook’s membrane problem: Geometry, loading and boundary conditions.

The material parameters are those used in the study by Simo and Armero [27], and are
presented in Table 1.

The panel is parameterized by a single NURBS patch and analyzed using quadratic,
cubic, and quartic NURBS as basis functions only, since for p = 1 NURBS and Lagrange
approximations coincide. We then compare with standard Lagrange Qp finite elements
of corresponding degree. The load is applied over 5 and 20 equally sized load increments
for the elastic and elastoplastic material models, respectively. As the analytical solution
is not available for either cases, we consider as reference solution the values obtained
with a quartic Qp/Qp−1 formulation for the nearly incompressible finite elastic case and a
quartic Qp/Pp−1 formulation for the case with finite deformation plasticity. Both reference
solutions were obtained with a very fine mesh with 5.01× 105 degrees of freedom (dofs).

In previous studies the vertical displacement of the top right corner of the panel has
been considered as the quantity of interest. However, in this study we present the results
in terms of the error in energy versus number of dofs, which accounts for the accuracy of
the overall solution.

The results for nearly incompressible finite elasticity are presented in Figure 3. From
Figure 3a) we observe that except for quadratic NURBS, the NURBS solution is better

Table 1. Cook’s membrane problem: Loading and material parameters.

Nearly incompressible Finite deformation
finite elasticity plasticity

Constant traction t 100/16 = 6.25 5/16 = 0.3125
Bulk modulus κ 40.0942× 104 164.21
Shear modulus µ 80.1938 80.1938
Initial yield stress σ0 0.45
Residual yield stress σ∞ 0.715
Isotropic hardening h 0.12924
Saturation exponent β 16.93
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Figure 3. Cook’s membrane problem − nearly incompressible finite elasticity: a) Energy norm errors. b)
von Mises stress distribution on deformed configuration for the finest mesh with quartic Qp/Pp−1 NURBS
at the final configuration. b) Close-up view of the von Mises stress distribution around point A.
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than the corresponding Lagrange solution with the same polynomial order, and that the
difference increases as the polynomial order p of the basis functions is increased. We also
notice that for all formulations the solution is improved as p increases. From Table 1 we
notice that near incompressibility is achieved with the high ratio between the bulk and
shear modulus which is of the order 104 for the finite elasticity case, and corresponds
to a Poisson’s ratio of ν = 0.4999, hence volumetric locking is evident. This explains
why the two mixed formulations Qp/Pp−1 and Qp/Qp−1 lead to a better approximation
compared to the standard displacement Qp formulation. Figure 3a) also documents that
the continuous Qp/Qp−1 mixed formulation outperform the discontinuous Qp/Pp−1 mixed
formulation in terms of accuracy for all values of p, even though the difference is reduced
as p is increased. As the polynomial degree p increases the constraint ratio, rc, indicate
that the Qp/Pp−1 formulation will anticipate volumetric locking. This explains the rather
poor performance of the discontinuous Qp/Pp−1 formulation compared to the continuous
Qp/Qp−1 formulation, for which the constraint ratio equals the optimal value, rc = 2, for
all values of p.

Figure 3b) shows the von Mises stress distribution obtained with the reference solution
at the final configuration. From Figure 3c) we observe that we have a singularity at point
A that we do not catch with the coarser meshes. If the convergence study has been
extended with even finer meshes it is assumed that the singularity would have caused the
curves in Figure 3a) to flatten out when number of dofs is increased.

Figure 4 presents the results for finite deformation plasticity. From Figure 4a) we
observe that the NURBS solution is better than the corresponding Lagrange solution
with the same polynomial order, for all values of p. As observed for finite elasticity, we
notice that the two mixed formulations lead to a better approximation compared to the
standard displacement formulation also for finite deformation plasticity. Comparing the
two mixed formulations, we observe that the continuous Qp/Qp−1 formulation is more
accurate compared to the discontinuous Qp/Pp−1 formulation for p = 2, nearly coincide
for p = 3, and less accurate for p = 4. Hence, increasing the polynomial order p, the
Qp/Pp−1 becomes more accurate compared to Qp/Qp−1 for finite deformation plasticity.

Figure 4b) shows the distribution of the equivalent plastic strain obtained with the
reference solution at the final configuration. Again as observed for finite elasticity, we
observe that we have a singularity at point A, where the equivalent plastic strain ep =
8.758, which is much higher than elsewhere in the domain.

Plain strain localization problem

In the second example, we consider a plane strip subjected to uniform extension and plain
strain loading conditions. This is a standard test problem for finite deformation plasticity,
and has been studied by a number of authors [8,25–28,32,33]. The same material model
is considered as for the Cook’s membrane problem − finite deformation plasticity. The
geometry and material properties are presented in Figure 5.

In order to trigger necking, an initial geometric imperfection in the form of a linear
reduction of the width from its initial value, w, at the top to center width, wc = 0.982w,
is prescribed. Only one quarter of the strip is discretized imposing symmetry boundary
conditions. The analyses are performed with prescribing a total displacement, u = 5, of
the top edge in 500 equally sized increments. The analyses are carried out on a discretiza-
tion consisting of 7 × 13 grid points with a more refined mesh in the necking area, as
shown in Figure 5. In case of Lagrange elements, the number of grid points corresponds
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Figure 5. Necking of an elastoplastic strip: Geometry, mesh and properties.

to the number of nodes, while for NURBS, the number of grid points corresponds to the
number of control points in the width and length direction, respectively.

Figure 6a) shows the horizontal (necking) displacement of the bottom right corner
of the discretized model (the shaded area in Figure 5) whereas Figure 6b) shows the
reaction (necking) force versus prescribed (vertical) displacement of the top edge for the
three different formulations for polynomial degree p = 1, 2 and 3 obtained with the 7×13
grid.

Except for the results obtained with the Qp displacement formulation for the lowest
polynomial degree (p = 1), which exhibit volumetric locking, the results for the three
different formulations for p = 2 and 3 are nearly indistinguishable on the plots presented
in Figure 6. In order to study the accuracy and convergence of the different formulations
the coarsest 7×13 grid is successively refined into 13×25, 25×49 and 49×97 grid points,
respectively.

As in the previous example, the analytical solution is not available, we therefore con-
sider as reference solution the values obtained with a cubic Qp/Pp−1 mixed formulation
with a very fine mesh with 5.9× 105 dofs. The results in terms of the error in the necking
force versus number of dofs are presented in Figure 7a). From Figure 7a) we observe that
the NURBS Qp solution is better than the corresponding Lagrange solution with the same
polynomial order, and that the difference do not decrease notably as the polynomial order
p of the basis functions is increased. We also notice that for all formulations the solution
is improved as p increases. Also note that the accuracy and convergence of the NURBS
Qp solution coincide with the discontinuous Qp/Pp−1 mixed formulation when the poly-
nomial order p ≥ 3. Figure 7a) also documents that the discontinuous Qp/Pp−1 solution
(as well as the NURBS Qp solution for p ≥ 3) is more accurate than the corresponding
continuous Qp/Qp−1 solution for all values of p.

Figure 7b) shows the von Mises stress distribution obtained with the finest 49 × 97
grid with NURBS Q3/P2 approximation at the final configuration.
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Concluding Remarks

This paper has addressed the use of isogeometric analysis for finite deformation solid
mechanics problems involving nearly incompressible hyperelastic and elastoplastic mate-
rials. Two different mixed formulations, based on a three-field Hu-Washizu variational
principle, has been compared with a standard displacement formulation using NURBS
as basis functions in the spatial discretization. The numerical results show that using
NURBS is favorable compared with classical finite elements with Lagrange polynomials
as basis functions. It also shows that the two mixed formulations are more accurate than
the standard displacement formulation also for NURBS.
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