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Simulation of frictional effects in models for calculation of
the equilibrium state of flexible pipe armouring wires in
compression and bending

Niels Højen Østergaard, Anders Lyckegaard and Jens H. Andreasen

Summary. The motivation for the work presented in this paper is a specific failure mode
known as lateral wire buckling occurring in the tensile armour layers of unbounded flexible
pipes. Such structures are steel-polymer composites with a wide range of applications in the
offshore industry. The tensile armour layers are usually constituted by two layers of oppositely
wound steel wires. These may become laterally unstable when a flexible pipe is exposed to
repeated bending cycles and longitudinal compression.

In order to model the mechanical behavior of the armouring wires within the pipe wall,
a formulation based on the equilibrium of a curved beam embedded in an initially cylindrical
surface bent into a toriod is applied. In the present work, the response of a single armouring wire
subjected to compression and cyclic bending will be studied, in order to detect lateral buckling
of the wire. Frictional effects are included as distributed tangential and transverse loads based
on a simple regularized Coulomb model.

Key words: curved beam equilibrium, wire mechanics, friction, flexible pipes, lateral buckling of

armour wires

Introduction

Unbounded flexible pipes are steel-polymer composite structures with a wide range of
applications in the offshore industry. A flexible pipe structure is usually constituted
by numerous layers with different properties, see Figure 1. The pipe bore, denoted the
carcass, is constituted by helically wound profiles surrounded by a pressure armour. These
layers ensure the structural integrity against external and internal pressure. The pressure
armour is surrounded by a polymeric liner, which like the external pipe sheath, is a fluid
barrier layer. The space between liner and outer sheath is usually denoted the ’pipe
annulus’. In the pipe annulus, the tensile armour layers are located, usually constituted
by two layers of oppositely wound steel wires. Usually, the total number of wires is
80 − 150. These layers ensure the structural integrity against longitudinal and torsional
loads. The tensile armour layers are in flexible pipes for deep-water applications usually
surrounded by a high strength tape in order to prevent radial deflections. Flexible pipes
are usually designed in accordance with the specifications given in the API17J-standard,
[1].

In the present paper, only the mechanics of the tensile armour wires are addressed.
During pipe laying, the flexible pipe is in a free-hanging configuration from an installation
vessel to the seabed, see Figure 3. Furthermore, the pipe is empty, in order to ease
the installation process, and hydrostatic pressure on the end cap causes longitudinal

243



compression. Due to vessel movements, wave loads and current the flexible pipe is also
exposed to repeated bending cycles. This is known possibly to lead to lateral wire buckling
failure, especially, if the outer sheath of the pipe is breached such that the pipe annulus
is flooded. This leads to, that external pressure no longer induce sufficient frictional
resistance to prohibit wire slippage. The failure mode was first described by Braga and
Kaleff, [2], who reproduced it experimentally in the laboratory. Further experimental
investigations were conducted in [3]-[6].

In repeated bending the wires within the pipe wall may slip towards a configuration
in which the wire lay angle is not constant, like in the initial helical configuration. For a
pipe subjected to longitudinal compression, the geometrical configurations of the wires ob-
tained after a significant number of bending cycles, may be associated with wire buckling
within the pipe wall leading to a reduced load carrying ability of the pipe structure.

The mechanics of armouring wires in flexible pipes have been subject of both academic
and industrial research in the past few decades. Féret and Bournazel, [7], derived expres-
sions for prediction of the global response of straight flexible pipes on basis of analysis of
internal components. The methods were implemented in a computerprogram, see [8], in
which the armouring tendons were described as perfect helices. The global behavior of
flexible pipes has been investigated further in numerous publications, see [9]-[12].

Witz and Tan, [13], and Kraincanic and Kabadze, [14], considered progression of wire
slippage along curves with constant lay angles for flexible pipes in bending. Sævik, [16],
addressed the same problem, but based his analysis on a finite element formulation based
on finite-strain continuum mechanics. Out and von Morgen, [15], considered wire slip
towards the geodesic of a toriod in bending. Leroy and Estrier, [17], simulated wire
slippage due to cyclic bending based on curved beam equilibrium with frictional effects
taken into calculation. However, a prescribed experience-based solution form was applied.

1.Carcass

3.Pressure armour

4.Tensile armour

5.Tensile armour

2.Inner liner

6. Outer sheath 

Figure 1. Flexible pipe design.
Figure 2. Buckling mode, triggered experimentally
and simulated.

The approaches to wire mechanics are obviously all incapable of predicting transverse
wire slippage for a flexible subjected to bending and compression. A method for cal-
culation of the equilibrium state of a wire which was free of geometrical constraints was
proposed in [6] and elaborated further in [18]. The problem of a curved beam embedded in
a frictionless toroid was addressed, assuming that the wire equilibrium state reached after
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Figure 3. Principle drawing, flexible pipe during installation.

a significant number of bending cycles when friction is present, is reached instantaneously
when the wire is loaded, if friction is neglected. The proposed method was applied to the
lateral buckling problem, see [6], in which it was shown that the method was capable of
representing the buckling modes of deformation. An example of simulated and experi-
mentally triggered buckling modes is presented in Figure 2. The governing equations were
formulated analytically, but solved by numerical means. However, frictional effects were
not investigated. Since transverse wire stabilization due to friction may possibly increase
the buckling load and shorten the modes of deformation, frictional effects are included in
the present approach. For the sake of simplicity, only a single wire within the wall of a
flexible pipe subjected to compression and repeated bending cycles will be analyzed, since
frictional effects on all wires and arising couplings to the global constitutive behavior of
flexible pipes demands severe computational power.

In the present approach, the focus has mainly been on adding some frictional stabi-
lization in order to study, how this influences the wire responses, rather than to model an
exact physical behavior with a frictional law based on experimentally obtained parame-
ters. Despite results may not correlate well with experimental measurements, the chosen
theoretical approach and the obtained results is of a very interesting nature due to, that
very little research in the mechanics of wire slippage is available.

Single wire mechanics

System of field equations

In this section, the system of field equations governing the wire equilibrium state is pre-
sented. The system of equations was derived in [6] and [18], but for the sake of com-
pleteness the derivation is summarized in the Appendix. The wire geometry is shown in
Figure 4 with a curvilinear (tnb) coordinate frame. Before proceeding, the assumptions
on which the present formulation is based are summarized

• The wire will in the initial configuration be assumed to constitute a geodesic on a
cylinder, hence, a helix.
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Figure 5. Wire coordinate triads.

• The pipe will be assumed bent to a constant radius of curvature. Hence, a wire
constitutes a curve on a cylindrical surface, which is bent into a toroid with major
radius R = 1/κ.

• A wire will be modeled as a long and slender curved beam of rectangular cross
section. The dimensions of the cross sections are assumed small compared to both
minor and major torus radii.

• Wire friction will be modeled using Coulombs law. Hence, the frictional load is
assumed speed independent.

• Wire inertia terms are neglected, since these are estimated small compared to stiff-
ness related terms. A similar approach was followed in [17].

• The wires in the inner layer of tensile armour have responses which in terms of sta-
ble/unstable behavior are sufficiently equivalent to only consider a single armouring
wire.

Frictional effects will be accounted for by applying transverse loads. However, since inertia
terms are small, second order terms related to the wire slip acceleration in the equilibrium
equations will be neglected. Furthermore, applying Coulomb friction, the transverse wire
loads constituting frictional effects are governed only by the normal wire load and the
frictional coefficient. The direction of the frictional loads will be determined on basis of
the previous load step.

Six differential equations in torus coordinates u and θ, wire lay angle φ, tangential
wire force Pt, Shear force in the binormal wire direction Pb and normal moment Mn as
functions of wire arclength s is derived.

du

ds
=

cosφ

1 + rκ cos θ
(1)

dθ

ds
=

sinφ

r
(2)

246



dφ

ds
= − κ sin θ

1 + rκ cos θ
cosφ+ κg (3)

dPt
ds

= κnPn − κgPb − pt (4)

dPb
ds

= κgPt − τPn − pb (5)

dMn

ds
= −κnMt + τMb + Pb (6)

The system is derived on basis of Kirchhoff’s equations for curved beam equilibrium
given on vectorial form by Reissner, [19], and concepts from differential geometry for
mathematical description of curves on surfaces.

In order to discretize the system on a known regular mesh, the unknown arclength s
in the deformed state is converted to initial helical arclength s0. Assuming strains small,
this can be done by applying Cauchy’s definition of strain, ε, which is given by

ds

ds0
= (1 + ε) (7)

The initial arclength is given by the well-known relation valid for a helix

s0 =
rθ

sin(φhel)
(8)

in which φhel is the initial wire lay angle.
The system will be solved with respect to boundary conditions corresponding to the

physics of a wire within the wall of a flexible pipe

u(0) = 0 θ(0) = θAini φ(0) = φhel (9)

Papp = Pt cosφ+ Pb sinφ θ(SL) = θBini φ(SL) = φhel (10)

in which Papp is the external load on the wire in the longitudinal pipe direction and SL
is the total arclength of the wire. θAini and θBini denotes the circumferential wire angles in
both end of the pipe.

Wire stability in dynamic bending

Stability problems have to a wide extend been investigated and are well-described in the
literature. In general, compressive loads are known possibly to cause the equilibrium
equations of a given structure to be fulfilled in buckled geometrical configurations as-
sociated with large deflections and rotations. The corresponding equilibrium paths in
force-displacement diagrams may exhibit softening, bifurcation or limit point behavior.
Neglecting friction on the wires, a classical stability approach to the lateral wire buckling
problem was followed in [6]. In the present approach, simulation of frictional loads en-
captures an additional physical effect, namely, that cyclic loads must be applied in order
for the wire to slip. A different definition of stability must therefore be considered. Con-
sidering the equilibrium paths of a point on the modeled wire, these will, except for the
points s = 0 and s = SL, exhibit a ’loop-like’ behavior (examples of such loops are given
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in Figure 11 and 12). If the wire when subjected to cyclic loads converges towards an
equilibrium state in which this loop is closed, the wire will in the following be considered
stable. If this is the case, the pipe strain obtained by the analysis after each bending cycle
has been completed, will be constant after a number of bending cycles have been applied.
On the other hand, if the (load-strain) loops are not closed, the slip with respect to the
initial configuration will increase for each bending cycle. This may lead to, that the yield
strength of the wire steel is exceeded and failure occurs due to formation of plastic hinges.

In [6] it was demonstrated that buckling could be triggered by adding a small harmonic
response to the initial helical geodesic curvature, such that κg can be determined by

κg =
Mn

EIn
+

m∑
i=1

γi sin

(
iπs

L

)
(11)

In the following, the imperfection will be calculated by setting γ1...20 = −0.001 in accor-
dance with [6].

Frictional forces

The wire loads in the toroid tangent plane, pt and pb, will be defined such that they
constitute frictional resistance. In order to do so, the problem will be defined and solved
stepwise for a prescribed load history. First, the wire will be loaded longitudinally. Af-
terwards cyclic bending will be simulated. An example of such a definition of loads is
presented in Figure 7 and 8. Since the mass of the wire is small and assuming bending to
be applied slowly, inertia terms can be neglected. Coulomb friction is for a given speed v
defined as

pfric ≤ −µpn
v

‖v‖
(12)

(13)

The slip speed can be observed only to provide the direction of the frictional force. How-
ever, the formulation given in equation (12) in inconvenient for implementation in nu-
merical solvers. A regularization will therefore be applied by assuming a transition, z,
between zero frictional force for v = 0 to full frictional force at v = z

v < z : pfric = −p(v)
v

‖v‖
(14)

v ≥ z : pfric = −µpn
v

‖v‖
(15)

in which z is the length of the transition zone and p(v) is a polynomial of second order
determined on basis of the conditions

p(0) = 0 p(z) = µpn
dp(z)

dv
= 0 (16)

The slip D is calculated with respect to the previous load step, see Figure 6. For the load
step i and the curvature fixed to κ = κi the slip is given by

D(s)i = x(s)i − x(s)i−1 (17)

The slip speed can on this basis be calculated as

v(s)i =
Di

∆t
(18)
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Figure 6. Definition of wire slip, which is calculated with respect to the deformed underlying layer.
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Figure 7. Load history, applied longitudinal
wire force.
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Figure 8. Load history, curvature applied as
harmonic response.

With these assumptions, the frictional loads can be calculated as

pt,i = pfric,i · ti (19)

pb,i = pfric,i · bi (20)

The normal load is obtained from equation 42 governing the normal force equilibrium

pn = −dPn
ds
− κnPt + τPb (21)

In the present approach, radial elasticity of the pipe wall being modeled, is not taken into
account in an exact manner. Since the effect is crusial to the magnitude of the frictional
forces, the minor torus radius will be assumed a function of the applied load. Neglecting
ovalization due to bending, the minor torus radius is given by

rd =

(
1 +

∆r

r

)
r =

(
1− ka

kr

∆L

L

)
r (22)

in which ka and kr constitute respectively an axial and a radial spring coefficient of the
pipe being modeled. This approach is equivalent to the methods described in [7] and are
based on the equilibrium of perfect helices. The consequence of calculating the normal
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load in this manner is, that pn is estimated in a fair manner prior to buckling, while the
value of pn may be inaccurate after occurrence of instability, since buckling leads to large
changes of wire lay angle.

Since the problem is solved numerically by a commercially available BVP-solver, the
length of the slip transition zone, z , must be chosen in such a manner, that convergence
can still be obtained. All time steps will be set to ∆t = 1 s. With this assumption,
the slip speed is related to the slip by Di = vi · [1 s]. By numerical experiments it was
determined, that a solution could not be obtained for very short values of z. A transition
length of z = 0.005 was the smallest value, for which the analysis could be performed with
reasonable precision. An obvious consequence of this choice, is that the wires when loaded
may not experience full friction, since the slip speed does not cause, that the length of the
transition zone is exceeded. In the present analysis, stick effects are therefore simulated
in a manner, so the wire has a small speed.

Results

An armouring wire with rectangular cross section within the wall of a flexible pipe will
be modeled on basis of the following geometrical input

r = 0.2762m Lpitch = 1.474 m φhel = 30 deg (23)

width = 12.5 mm height = 5 mm
ka
kr

= 1.9 (24)

The wire steel will be considered isotropic with elastic modulus E = 210 GPa and Pois-
son’s ratio ν = 0.3. Five analyses will be conducted for compressive wire loads, 2.0 kN,2.5
kN, 2.75 kN, 3.0 kN and 3.5 kN. 20 bending cycles from κ = 1/1000 m−1 configuration
(almost straight) to κ = 1/11 m−1 will be simulated. The frictional coefficient will be set
to µ = 0.1, which corresponds well to values chosen in [9] and [17]. The length of the
frictional transition zone will be set to z = 0.005 m.

Initially, the geometry obtained at the last load step of the simulation will be con-
sidered for the compressive load levels 3.0 kN and 3.5 kN, see Figure 9. While the
configuration of the wire obtained for the first load level can be observed not to differ
significantly from the initial helical shape, the wire configuration obtained for the second
load level can be observed to have changed. Obviously, the conclusion can be drawn, that
the second load level has caused the wire to exhibit buckling behavior. However, it is
not possible solely on this basis to determine, if the first load level considered is stable or
not. The wire geometry with maximum curvature for the last simulated bending cycle is
shown in Figure 10.

The average pipe strain will now be considered. This is given by

∆L

L
=
u(SL)− u(0)

L
(25)

In Figure 11 and 12 examples of the loops formed by the equilibrium paths due to cyclic
bending are presented. Since it is difficult to draw conclusions regarding stability of these
loops, this will be studied on basis of the pipe strain.

In Figure 13 the pipe strain for all analyzed load levels are plotted as functions of
the load steps number. Yet, it is still difficult to draw conclusions regarding stability of
a specific load level. Furthermore, it is on this basis not possible to draw conclusions
regarding if buckling will occur if further bending cycles are applied. Therefore, the
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Figure 9. Modes of deformation, redcurve:
Papp = −3.0 kN after 20 bending cycles,
bluecurve: Papp = −3.25 kN after 20 bend-
ing cycles.

Figure 10. Modes of deformation, redcurve:
Papp = −3.25 kN, maximum bending,
bluecurve: Papp = −3.25 kN, maximum
bending, first cycles.
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Figure 11. Equilibrium path loop, Papp =
−2.0kN , s = SL/2.
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Figure 12. Equilibrium path loop, Papp = −3.0
kN, s = SL/2.

change of strain after each bending cycle has been concluded with respect to the strain
obtained after the first bending cycle will be considered, see Figure 14. The slope of these
curves can now be taken as basis for consideration of if the wire will remain in a stable
configuration, or if instability may occur after a larger number of bending cycles. The
magnitude of slope for the analyses with Papp set to −2.0 kN and −2.5 kN is decreasing
while this value for the remaining analyses is increasing. The conclusion can therefore be
drawn, that the wire for the two first load levels seem to converge against a closed loop in
(force-strain)-diagrams, while the geometry of the equilibria obtained with the remaining
load levels do not converge towards closed loop behavior. The limit compressive load for
the wire can on basis of this method be estimated to lie between 2.5 and 2.75 kN.

It is interesting to compare this measure for the maximum load carrying ability of
a single wire with the limit load obtained from a frictionless analysis of both layers of
armouring wires by methods proposed in [6]. Calculating the compressive load per wire,
an equilibrium path as shown on Figure 15 is obtained. A limit load of −2.33 kN is
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Figure 13. Pipe strains.
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Figure 14. Change of pipe strain.

obtained as maximum load carrying ability by the analysis. This is slightly less than the
value determined on basis of the present analysis.

In order to compare the wire mode of deformation associated with instability obtained
by the present method with the buckling mode determined with no friction, these are
shown in Figure 17. It is noted that the frictionless buckling mode is calculated with a
deformation controlled model and that direct comparison of the magnitude of the two
responses is not possible. Furthermore, the two responses do not represent the same load
level, since this cannot be ensured due to significant differences in the chosen means for
controlling the model. However, it can be concluded that the two deformation modes
have approximately the same shape. Hence, inclusion of friction in the model can not be
concluded to have changed buckling modes significantly. In order to investigate the effect
of the frictional coefficient, three analyses with Papp = −2.75 kN and frictional coefficients
0.05, 0.1 and 0.15 were carried out. The results are available in Figure 16. As expected,
the strain rate increases after a lower number of applied bending cycles if the frictional
coefficient is decreased.
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It is a well-described phenomenon that stick-slip effects in the tensile armour layers
cause hysteresic flexural behavior in flexible pipes, see [11] and [13]. In order to inves-
tigate, how the present approach to frictional effects on armouring wires corresponds to
the descriptions given in other publications, the moment-curvature relation is studied in
Figure 18. The total local wire moment M is calculated on vectorial form as the sum of
the moments around the wire tnb-directions. The obtained moment can afterwards be
projected onto the z-axis on basis of a unit vector k in this direction.

M = Mtt +Mnn +Mbb Mz = M · k (26)

The behavior detected by the present approach corresponds well to the expected hysteresic
flexural behavior despite only the contribution from a single wire is considered. However,
it is noted that a force term should be added in equation 26 if the total contribution from
the analyzed wire to the global pipe moment is desired, see [6].

0 1 2 3 4 5 6
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Wire arclength, s(m)

W
ire

 la
y 

an
gl

e,
 φ

 (
ra

d)

 

 

After 1 bending cycle
After 10 bending cycles
After 15 bending cycles
After 18 bending cycles
Frictionless equilibrium, ∆ L/L=−0.001

Frictionless equilibrium, ∆ L/L=−0.002

Figure 17. Comparison of deflection modes,
wire lay angle, results obtained with and with-
out inclusion of frictional effects.

0 0.02 0.04 0.06 0.08 0.1
−2

0

2

4

6

8

10

Pipe curvature, κ (1/m)

M
om

en
t c

on
tr

ib
ut

io
n 

fr
om

 w
ire

 (
N

m
)

P
app

=−2.0 kN

Figure 18. Wire contribution from local mo-
ments to global pipe hysteresic flexural behav-
ior for Papp = −2.04 kN, s = SL/2.

For small wire slips, it is reasonable to calculate slippage in terms of a tangential and a
transverse components by projecting the wire slip for load step i onto the initial tangent,
t0, and initial binormal, b0 for fixed curvature

Dt = ‖D · t0‖ Db = ‖D · b0‖

The two slip components are plotted versus each other, see Figure 19 and 20. Similar
results are presented in [17] and [21].

Conclusions

On basis of an established model for determination of the equilibrium state of an armoring
wire within the wall of a flexible pipe, means for inclusion of frictional effects have been
presented. Solutions are obtained as the solution to a boundary value problem solved
for each step in a predefined load history. Friction has been modeled as tangential and
transverse distributed wire loads with magnitudes based on a regularized Coulomb law
and the normal distributed wire load. The directions of the frictional loads have been
calculated on basis of the wire slippage with respect to the the previous load step. Despite
the choice of slip speed transition is arguable, the proposed method has proven capable
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Figure 19. Tangential wire slip vs. transverse
wire slip for Papp = −3.0 kN.
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of limiting the wire slippage in dynamic loading and representing key-effects which are
known to be caused by friction.

The proposed method was applied to a specified pipe design and the stability of a
single wire subjected to prescribed cyclic loads was examined. It was found, that when
simulating only a limited number of bending cycles, an estimation of if the wire would
remain in a stable configuration could be found by considering the change of strain ob-
tained after each bending cycle with respect to the strain found after the first bending
cycle. The sloop of the obtained curves may serve as basis for stability considerations,
since they reveal if wire slippage converges towards a stable configuration or not. The
buckling modes determined were approximately of the same shape as buckling modes
found if friction was neglected. The load carrying ability was slightly larger than the
limit load determined when friction was neglected.

With larger computational power, than used for conducting the present analyses, the
proposed method may be used to model all wires within the wall of a flexible pipe. How-
ever, coupling the stick-slip effects to the global flexural pipe constitutive relations, which
due to friction is known to exhibit hysteresic behavior leading to variations of the radius
of curvature, is a task which calls for further research. Due to the assumption, that the
global curvature is constant, this cannot be conducted, without extending the present
formulation. Furthermore, it is desirable to investigate means for implementation of a
shorter transition zone and possibly a frictional law based on measured parameters. In-
clusion of such means in the analysis are likely to limit wire slippage further and represent
the modeled physics in a more accurate manner. In order to do so, further research and
severe computational power is needed. However, very little research in slip mechanics
allowing transverse slips limited by friction has been conducted, and the present research
may therefore serve as a valuable basis for further research.
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Appendix: Derivation of equations governing the wire equilibrium state

In this section, the methods used for determination of the equilibrium state of an armour-
ing wire within the wall of a flexible pipe are described.

Geometry

A point on the toroid given by a set of (u, θ)-coordinates is in cartesian coordinates given
by

x(u, θ) =

 ( 1κ + r · cos θ
)

cos (κu)− 1
κ(

1
κ

+ r · cos θ
)

sin (κu)
r · sin θ

 (27)

A curve α is defined by specifying a relation in (u, θ)-coordinates. Assuming that such a
relation is given, the following norms are defined

xu =
∂x

∂u
xθ =

∂x

∂θ
(28)

Assuming the curve parametrized by arclength s, a local curvilinear coordinate triad of
orthonormal vectors, tangent t, normal n and binormal b, see Figure 5, can be attached
to the curve

t =
dα

ds
= xu

du

ds
+ xθ

dθ

ds
n =

xu × xθ
‖xu × xθ‖

b = t× n (29)

In equation (29), the wire normal has been defined equal to the surface normal. Hereby, it
is assumed that adjacent pipe layers are sufficiently stiff to prohibit the wire from rotating
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freely around the local tangent. Hence, the rotation around t is geometrically governed
by the underlying toroid.

Adressing the definition of the wire tangent geometry, an alternative definition can be
based on the following vectors spanning the tangent space of the toroid

t = cosφ tu + sinφ tθ (30)

in which tu and tθ, which span the toroid tangent space, are given by

tu =
xu
‖xu‖

tθ =
xθ
‖xθ‖

(31)

In order for this definition to be consistent with equation (29), the following two differential
equations must hold

du

ds
=

cosφ

‖xu‖
=

cosφ

1 + rκ cos θ

dθ

ds
=

sinφ

‖xθ‖
=

sinφ

r
(32)

These equations govern the wire geometry in the surface tangent plane.

Transformation formulaes

Having defined two orthonormal frames, (t,n,b) and (tu, tθ,n), see Figure 5, it is desirable
to relate those by a transformation formula t

n
b

 =

 cosφ sinφ 0
0 0 1

sinφ − cosφ 0

 tu
tθ
n

 (33)

Furthermore, considering the (t,n,b)-frame, it is desirable to relate the triad vectors to
their derivatives in arclength. Defining a normal curvature component, κn (curvature
in the (t,n)-plane), a geodesic curvature component, κg (curvature in the (t,b)-plane)
and a wire torsion component, τ (in the (n,b)-plane), this transformation, known as the
Darboux frame, is given by

d

ds

 t
n
b

 =

 0 κn −κg
−κn 0 τ
κg −τ 0

 t
n
b

 (34)

It is noted, that the transformation contained in equation (34) implies that a positive
rotation about a given triad axis corresponds to a positive change of curvature for a
positive change of arclength. This is sufficient to specify the signs in the constitutive
relations for the wire.

Equilibrium equations

The equations of equilibrium for a curved Bernoulli-Euler beam segment were formulated
by Kirchhoff and included in Love’s book on theory of elasticity, [20]. On vectorial form,
the equilibrium equations were given by Reissner, [19]

dP

ds
+ p = 0

dM

ds
+ t×P + m = 0 (35)
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in which P denotes sectional force, M sectional moments, p distributed loads and m
distributed moments. These may on components form be written as

P = Ptt + Pnn + Pbb

M = Mtt +Mnn +Mbb

p = ptt + pnn + pbb

m = mtt +mnn +mbb (36)

Equation (35) can now be rewritten on the form

dP

ds
+ p = (37)

Pt
dt

ds
+ Pn

dn

ds
+ Pb

db

ds
+ t

dPt
ds

+ n
dPn
ds

+ b
dPb
ds

+

ptt + pnn + pbb = 0 (38)

dM

ds
+ m + t×P = (39)

Mt
dt

ds
+Mn

dn

ds
+Mb

db

ds
+ t

dMt

ds
+ n

dMn

ds
+ b

dMb

ds
+

mtt +mnn +mbb− Pbn + Pnb = 0 (40)

in which the crossproduct t×P is given by

t×P = t× (Ptt + Pnn + Pbb) = Ptt× t + Pnt× n + Pbt× b = Pnb− Pbn

The equations of equilibrium can now be written on the following form

dPt
ds

+ Pnt ·
dn

ds
+ Pbt ·

db

ds
+ pt = 0 (41)

dPn
ds

+ Ptn ·
dt

ds
+ Pbn ·

db

ds
+ pn = 0 (42)

dPb
ds

+ Ptb ·
dt

ds
+ Pnb ·

dn

ds
+ pb = 0 (43)

dMt

ds
+Mnt ·

dn

ds
+Mbt ·

db

ds
+mt = 0 (44)

dMn

ds
+Mtn ·

dt

ds
+Mbn ·

db

ds
− Pb +mn = 0 (45)

dMb

ds
+Mtb ·

dt

ds
+Mnb ·

dn

ds
+ Pn +mb = 0 (46)

Applying the transformation given in equation 34, the following expressions are derived

κn = n · dt
ds

= −t · dn
ds

κg = t · db
ds

= −b · dt
ds

(47)

τ = b · dn
ds

= −n · db
ds
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The wire curvature components can now be calculated on basis of the chosen geometry

κn = − κ cos θ

1 + rκ cos θ
cos2 φ− 1

r
sin2φ (48)

κg =

(
κ sin θ

1 + rκ cos θ
cosφ+

dφ

ds

)
(49)

τ =

(
κ cos θ

1 + rκ cos θ
− 1

r

)
cosφ sinφ (50)

Constitutive relations

In order to relate the changes of curvature with respect to the initial helical wire state
(κ = 0) to sectional wire moments, the constitutive relations will be assumed linear. This
is a reasonable assumption if the wire cross sectional dimensions are small compared to
the minor torus radius, which is the case when modeling a flexible pipe. Furthermore, it
will be assumed that the wire strains, ε, are small, so Cauchy’s definition of strain applies.
The following constitutive relations can then be assumed valid

Pt = EAε Mt = GJ∆τ

Mb = EIb∆κn Mn = EIn∆κg

Similar constitutive relations have to a wide extend been applied when investigating the
mechanics of armouring wires, see [8, 13, 17].

Field equations

In order to determine the geometry of the wire which on basis of the chosen constitutive
relations satisfy the equations of equilibrium, a sixth order system of first order differential
equations can be derived by considering the following:

• Equation (32) governing the wire geometry in the toroid tangent plane provides two
differential equations in u and θ.

• The definition of the geodesic curvature, equation (49), provides one differential
equation in φ.

• The equilibrium equations in tangential force, equation (41), in binormal force, equa-
tion (43) and normal moment, equation (45), provides three differential equations
in Pt, Pb and Mn.

This yields the system of six first order differential equations (1-6).
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