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On the self-excited vibrations of a viscoelastically covered
cylinder in rolling contact using FE method

Anssi T. Karttunen and Raimo von Hertzen

Summary. As a result of ever-increasing speeds, the self-excited vibration of polymer-covered
cylinders in rolling contact is becoming a more serious problem in many industrial processes.
The vibration is generated by the viscoelastic behavior of the polymer covers. In this work, this
vibration phenomenon, often referred to as barring, is studied using a two-dimensional rolling
contact finite element model. The contact between two cylinders is modeled as a hard contact
and the kinematic contact algorithm is used. The material parameters of the viscoelastic polymer
cover of the other cylinder span a large relaxation spectrum. Readily available finite element
software and tools are used for modeling and computations. The results show that strong barring
vibration is a result of a resonance condition created in the rolling contact system. The vibration
leads to the formation of a wave-like polygonal deformation pattern on the polymer-covered
cylinder. The finite element model can provide detailed information on various phenomena,
such as the nip waves, which have not been detected before by simplistic models.
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Introduction

Contact vibrations of polymer-covered rolling cylinders have an adverse effect on the
quality of the end product in industrial processes such as paper calendering and pressing.
The vibrations originate from the viscoelastic behavior of the covers. Let us consider
a two-cylinder system with a polymer cover on the other cylinder. The cover deforms
viscoelastically within the contact area of the cylinders, that is, in the nip. For the most
part, the deformations on the polymer cover recover quickly outside the nip, but the
residual deformation acts as a time-delayed feedback as it returns to the nip after one
revolution, causing self-excited vibration in the system. The vibration can lead to the
formation of a wave-like deformation pattern on the cover of the cylinder. Furthermore,
the surface deformations have a tendency to accumulate, which leads to severe, unstable
vibration of the rolling system during its operation. In the present paper, the aim is to
investigate this vibration phenomenon, often referred to as barring.

Classic papers related to contact vibrations deal with elastic bodies in rolling contact
[1, 2]. The well-known methods to analyze rolling contact systems are summarized in
Johnson’s book, which covers also basic aspects of contact vibrations [3]. Another in-
depth treatise on contact mechanics, concentrating more on three-dimensional bodies
and numerical aspects, is Kalker’s book [4]. In recent years, as the available computing
power has increased, the focus has been on applying the finite and the boundary element
methods in contact problems. For viscoelastic bodies rolling in contact see e.g. [5, 6, 7].
Most contact mechanical studies focus purely on the analysis of contact stresses. It is
customary that the inertial effects are neglected and the vibration of the rolling bodies is

231



not of interest. There is a clear need for models which reach out towards inertia-related
issues in rolling contact of viscoelastic bodies.

The self-excited vibration mechanism caused by viscoelastic cover behavior in rolling
contact is not yet fully understood. The barring vibration has been studied primarily using
1D models [8, 9, 10, 11, 12, 13, 14]. Together these papers succeed in explaining important
basic characteristics of barring. In addition, interesting experimental results related to
the problem can be found in papers by Chinn and Vuoristo et al. [15, 16, 17]. Based on
the 1D modeling approach, methods have been developed to diminish harmful vibrations
in rolling contact systems [18, 19, 20, 21]. Although the vastly studied 1D models bear
notable intelligence, from the point of view of multidimensional contact mechanics and
viscoelasticity the 1D modeling approach is insufficient.

In a recent study, a step has been taken towards the right direction by using a proper
2D contact mechanical approach in modeling the nip contact of two cylinders [14]. Still,
to model realistic material behavior, the relaxation spectrum of the viscoelastic material
should be taken into account to a larger extent. Ultimately, any comprehensive analytical
model leads to a rigorous set of equations for which it is impossible to find an analytical
solution. Another possibility, utilized in this paper, is to approach the viscoelastic contact
problem using the finite element method and tools which are already provided by up-to-
date FE softwares. In this paper, for the purpose of elucidating the self-excited vibration
mechanism, a 2D FE rolling contact model built using ABAQUS is studied.

Numerical model of a rolling contact system

General setup

The 2D two-cylinder system under investigation is shown in Fig. 1. The polymer-covered
upper cylinder is rolling in frictionless contact with the lower cylinder. The angular
velocities of the cylinders are given as time-dependent kinematic conditions. At the
beginning of the simulation the cylinders are touching at a point. The contact is created
by setting a vertical force to the center of the upper cylinder. The force increases linearly
from zero to a constant value in a short period of time. Simultaneously, the cylinder also
starts to rotate from rest to a desired angular velocity.

Figure 1. Schematic representation of the studied viscoelastically covered rolling contact system.

232



Figure 2. Mesh detail of the polymer cover.

The upper cylinder is supported by a linear spring-damper system and the cylinder is
allowed to translate only in vertical direction. The steel core of the cylinder is modeled as
rigid and the mass of the core is m. The polymer cover on the outer rim is viscoelastic.
The lower cylinder is modeled as a massless rigid surface and the support of the cylinder
is also rigid. The diameters of the upper and lower cylinder are 0.42 m (with cover) and
0.8 m, respectively. The thickness of the polymer cover is 7 mm. For the utilized plane
strain model the width of the polymer cover in the longitudinal direction is set to 0.15
m. The polymer cover is modeled using three-node constant strain triangle (CST) finite
elements1 with linear viscoelastic constitutive behavior. The model has 27160 elements
and a total of 15103 nodes, a detail of the mesh is shown in Fig. 2. The global element
size has been set to 0.75 mm and the size on the inner edge to 1.0 mm.

Constitutive behavior of the viscoelastic polymer cover

Within the context of small strains, the constitutive equation for an isotropic viscoelastic
material can be written in an hereditary integral form as

σ(t) =

∫ t

0

2G(t− τ)
de

dτ
dτ + I

∫ t

0

K(t− τ)
dφ

dτ
dτ , (1)

where σ is the Cauchy stress tensor, G is the shear modulus, K is the bulk modulus, e is
the deviatoric part of the strain, φ is the volumetric part of the strain, t is current time,
τ is past time and I is the identity tensor [22].

The moduli can be represented in terms of the Prony series. For the shear modulus
we get

G = G0

[

1−
N
∑

i=1

gi(1− e−t/τG
i )

]

, (2)

where gi = Gi/G0 [22]. An analogous expression can be written for the bulk modulus.
The deviatoric and volumetric parts are allowed to follow different relaxational behavior.
The Prony representation corresponds to the solution of the classical Generalized Maxwell
model of viscoelasticity. To perform numerical analysis, Eq. (1) needs to be integrated
to the numerical solution, see [22]. The material parameters used for the polymer cover
in this study are given in Table 1.

1ABAQUS/Explicit element type CPE3
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Table 1. Material parameters of the viscoelastic polymer cover for the computations. The instantaneous
Young’s modulus E0 = 3.5166 GPa and the Poisson’s ratio ν = 0.35. In the computations, the density
of the polymer is scaled from ρ = 1500 kg/m3 to ρ = 9000 kg/m3. This halves the computation time
without affecting the physical behavior of the system significantly.

i 1 2 3 4 5 6 7 8 9 10
gi, ki .0291 .0292 .0329 .0341 .0365 .0397 .0363 .0410 .0423 .0408

τGi , τKi [s] 10−5 10−4 10−3 10−2 10−1 1 101 102 103 104

The material parameters span a large relaxation spectrum to model the mechanical
behavior of the polymer realistically. Those viscoelastic processes, for which the relaxation
time τi is larger than 104 seconds, can be assumed to be inactive within the present time
scale.

Contact modeling

The frictionless contact between the cylinders is modeled as a hard contact with finite
sliding. The pure master-slave kinematic contact algorithm is used to enforce the me-
chanical contact constraints. In a hard contact, the surfaces transmit pressure only if the
nodes of the slave surface (upper cylinder) contact the master surface (lower cylinder).
Penetration of the surfaces is not allowed and there is no limit for the magnitude of the
contact pressure that is transmitted. The finite sliding formulation allows for arbitrary
separation, sliding and rotation of the surfaces.

The implemented kinematic contact algorithm is a prediction/correction process which,
in general, progresses as follows:

i) Regarding the current increment, the kinematic state of the model is advanced into
a predicted configuration without considering the contact conditions.

ii) It is determined which slave nodes penetrate the master surface.

iii) The depth of the node penetrations, the associated masses, and the time increment
are used to calculate the resisting forces required to counteract the penetrations, that
is, had they been added before the increment, no penetration would have occurred
between the surfaces.

iv) The masses and the resisting forces related to the slave nodes are applied on the
master surface to calculate an acceleration correction for it. Then, acceleration
corrections are determined for the slave surface nodes based on the predicted pene-
trations, the time increment, and the corrections calculated for the master surface.
These corrections are used to obtain a corrected configuration in which the contact
constraints are enforced.

Computational details

The computations are performed by using ABAQUS/Explicit. For the equations pre-
sented in this section, see [22]. To calculate the response of a system, ABAQUS utilizes
explicit central-difference based time integration. Accelerations are computed at the start
of an increment by

ü(i) = M−1
(

F(i) − I(i)
)

, (3)
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where M is the diagonal element mass matrix, F is the vector of externally applied forces
and I is the vector of internal forces. Velocities and displacements are computed by

u̇(i+1/2) = u̇(i−1/2) +
∆t(i+1) +∆t(i)

2
ü(i) (4)

u(i+1) = u(i) +∆t(i+1)u̇(i+1/2) . (5)

After this, the element level calculations are performed and then the next incremental
step is taken. The method is explicit in the sense that the kinematic state is advanced
using values of u̇(i−1/2) and ü(i) based on the previous increment.

In the explicit method, each increment is computationally inexpensive, because there
are no simultaneous equations to be solved. An estimate for the stable time increment is

∆tstable ≈
Lmin

cd
, (6)

where Lmin is the smallest element dimension in the mesh and the dilational wave speed
is

cd =

√

λ+ 2µ

ρ
, (7)

where λ and µ are Lame constants, and ρ is the density of the material. With a dense mesh,
Eq. (6) typically results in very small time increments. Therefore, the explicit method is
naturally suitable for achieving high resolution solutions for high-speed transient dynamic
events, especially, if contact conditions causing extreme discontinuities are included.

For accuracy considerations, the energy balance of the model is investigated. Com-
paring the energy components of the model, it can be determined whether the analysis is
giving physically reasonable results. The total energy expression used in ABAQUS, which
should be a constant (zero), for the model is

ETOT = EE + ECD + EV + EKE − EW − EPW , (8)

where EE is the strain energy, ECD is the energy dissipated by viscoelasticity, EV is the
viscous dissipated energy, EKE is the kinetic energy, EW is the work of external forces
and EPW is the work of contact penalties. Generally, there is a small error in ETOT in
a numerical model. Large errors imply that the time increment is too large and causes
instability, or the mesh is not dense enough. However, note that the energy inspection
does not completely replace a mesh convergence study.

The studied model can be decomposed efficiently into eight domains, which allows the
use of parallel computing. The memory requirements in the explicit method are very low,
due to the absence of a global stiffness matrix required in implicit methods, in particular.
Numerical computations are performed using an up-to-date Windows workstation and
HP CP4000 BL ProLiant supercluster at CSC. With the current model, one second of
simulation takes about five hours. Cluster computing allows one to perform multiple
simultaneous computer runs, but does not increase the simulation speed as the model
cannot be divided efficiently into more than eight domains.

By default, ABAQUS uses artificial bulk viscosity damping to introduce some damping
into an explicit model. However, in this study the bulk viscosity has been set to zero.
Damping is included in the model via the viscoelasticity of the polymer cover and the
discrete dashpot of the upper cylinder.
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Results

In the computations, the total mass of the upper cylinder was 572 kg and the parameter
values for the support stiffness and damping were set to k = 51.8 MN/m and c = 84
Ns/m, respectively. Fig. 3 shows the vertical displacement of the upper cylinder in a
simulation run. The cylinder is accelerated from rest to an angular velocity of ω = 100
rad/s using a linear ramp in the time interval 0− 5 s. In the interval 5− 55 s, a smaller
angular acceleration is applied and after 55 s the angular velocity ω = 146.1 rad/s (fr =
ω/2π = 23.25 Hz) is held constant. After the contact has been created during the first
two seconds, the vertical force at the center of the upper cylinder is F = 50 kN and the
vertical displacement of the upper cylinder is 70 µm. Evidently, the size of the contact
area between the cylinders has an effect on the eigenfrequency of the system. With the
created nip compression the eigenfrequency for the vertical vibration of the upper cylinder
is fn = 210 Hz.
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Figure 3. Vertical displacement response of the upper cylinder. Within the time intervals 0− 5 s, 5− 55
s and 55− 60.5 s, the angular accelerations α = 20 rad/s2, 0.922 rad/s2 and 0 are used, respectively.

It can be seen from Fig. 3 that there are angular velocity ranges in which the vibration
amplitude of the cylinder increases quickly, that is, strong barring appears. Fig. 4 shows
a waterfall plot computed using the displacement signal from the time interval 5 − 55 s.
Fig. 4 shows that there is an amplitude peak in the vicinity of f = 210 Hz corresponding
to the strong barring velocity ranges, indicating that the system is in resonance. We can
define a polygonal number Ni = f/fr which gives essential information on the deformation
pattern of the polymer cover. The pattern is evidently linked to the vibration frequency of
the system – the long-term shape of the pattern is determined by the number of vibration
periods of the upper roll in one revolution period. At t = 60 s the polygonal number is
N9 = f/fr = 210/23.25 = 9. It can be seen from Fig. 4 that all the polygonal shapes
seem to co-exist, however, only one is dominant at a time.
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Figure 4. Waterfall plot computed by FFT from the displacement signal of Fig. 3 in the time interval
5 − 55 s. The amplitude peak appears at 210 Hz corresponding to the eigenfrequency of the system.
Thus, the system is in barring resonance.

The energy balance of the model is investigated briefly in Fig. 5 based on the sim-
ulation of Fig. 3. The relative error in ETOT stays under 0.1 % at all times, thus the
numerical analysis yields physically feasible results.
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Figure 5. Energy balance of the system based on the simulation of Fig. 3. The numerical errors are
small, therefore, the model produces realistic results. Here Eext = EW +EPW is the total external work
done on the system (see Eq. (8)).
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Figure 6. Vertical displacement response of the upper cylinder. The angular velocity achieves the value
146.1 rad/s at t = 5 s after which it remains constant. This value corresponds to the polygonal number
N9 = 9 and leads to a strong resonance.

Fig. 6 shows the displacement response of the upper cylinder as it is accelerated from
rest to an angular velocity of ω = 146.1 rad/s in five seconds and after this the angular
velocity is held as constant. In the time interval 7−17 s the vibration amplitude increases
in a linear manner, after which there is a fast exponential type increase for a short period
of time, then the amplitude continues to increase steadily at a lower pace.
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Figure 7. Radial displacement of the surface of the polymer cover. Nip waves are generated by a strong
and sudden deformation of the cover when entering or leaving the nip.

238



The deformed shape of the polymer cover during the simulation of Fig. 6 is studied
in Figs. 7 and 8 which show the radial displacement of the surface of the polymer cover.
Fig. 7 shows the cover surface at t = 6 s. As can be seen in Fig. 7, the polymer cover
exhibits a strong deformation in the nip which creates an interesting wavefront advancing
to both directions from the nip at the speed of sound (dilation wave) in the polymer.
The effect of these nip waves on barring vibrations is not yet known. Fig. 7 shows
that there is a large compression in the middle of the nip, where as, on the edges of the
nip the cover extrudes. It is notable that the superposition of these compressions and
extensions determines the development of the cover deformation pattern in the long run.
The extensional deformation is also affected by the centrifugal force acting on the polymer
cover.
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Figure 8. Wave-like polygonal deformation pattern on the polymer cover generated by barring. The
relaxation of the polymer is a long-term process.

In the simulation run shown in Fig. 6, the contact between the cylinders is removed at
t = 60 s and the angular velocity is decreased to zero using a linear ramp within the time
interval 60−61 s. Fig. 8 shows clearly that the deformation pattern generated by barring
consists of nine sinewave-like humps. It can be seen that within the time interval 60− 61
s the average radial displacement of 3.5 µm of the cover surface decreases by about 0.15
µm, while the wave-like deformation pattern itself remains practically unchanged. This
shows that the wave pattern in this case is mainly due to slower relaxation processes, for
which the relaxation times are clearly longer than 1 s.

Fig. 9 shows an amplitude versus angular velocity plot for the vertical vibration of the
upper cylinder, which has been created from separate simulations performed in the same
way as the one in Fig. 6. The amplitudes have been measured at two instances, t = 12
and 15 s, that is, within the zone of the linear increase in amplitude. The amplitude
curves display a peak in the vicinity of ω = 146 rad/s as a result of a resonance condition
created in the system.
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Figure 9. Amplitude plot of the vertical vibration combined from separate simulations. The barring
mechanism creates a resonance condition in the system, seen as an amplitude peak in this figure.

Conclusions

In this study, the barring vibration phenomenon caused by a viscoelastic polymer cover
in a rolling contact system was studied by using a finite element approach. Up-to-date
finite element softwares provide suitable tools for this purpose.

By using a two-dimensional FE model, it was shown that strong self-excited barring
vibration is a result of a resonance condition in a rolling contact system. In the long run,
barring leads to the formation of a sinewave-like deformation pattern on the polymer-
covered cylinder. By using a FE model, the existence of nip waves radiated from the nip
in both directions was discovered. The barring resonance condition will be investigated
in detail in further studies.
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