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Optimal design of stiffened plate using 
metamodeling techniques 
Ossi Heinonen and Sami Pajunen 

Summary. In this article mass minimization of a stiffened plate is reported. From the actual 
finite element model of the plate, surrogate models are constructed using response surface 
methodology and the Kriging method. Estimation of the structural response is carried out using 
three different design of experiment models. As a numerical example a typical off-shore 
structure is optimized with respect to stress constraint equations. The optimization procedure is 
based on the standard NLPQL algorithm with iteratively moving response estimation window. 
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Introduction 
In the design and optimization of practical load-carrying structures, the search for global 
optimum configuration requires usually huge computer resources and fine-tuned 
optimization algorithms and software. From this point-of-view it seems to be well 
reasoned to concentrate on optimization methods that can find at least local optimum 
solution with relatively small computational costs. Especially this is true in industrial 
applications, where fast design process does not usually allow any detailed optimization 
studies of the product. Moreover, in industrial applications, any enhancement (e.g. 
lower mass or lower costs) achieved by using optimization is appreciated. For example, 
moderate mass saving (i.e. finding a local optimum) achieved using amount c of 
computational costs is more attractive choice than somewhat larger mass saving (i.e. 
finding the global optimum) with costs of c, in which  is usually considerably larger 
than unity. Approximate optimization appears to be very suitable tool also for 
preliminary design of structures e.g. for sales and tendering purposes.  

Metamodeling, or in the other words the use of surrogate models, is an 
approximation methodology in which the original problem is expressed globally in 
more simple form using e.g. polynomial representation of structural responses as in [1]. 
If the basis functions for the response approximations are chosen a priori, the approach 
is called response surface methodology (RSM) [1-3]. If the problem contains 
remarkable non-linearity, restriction to a priori chosen basis functions may lead to large 
estimation errors. In such cases the Kriging method is more attractive choice [4,5]. In 
the Kriging method, the response estimation is expressed as a sum of a polynomial 
global function and a local stochastic function [6]. 
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In this paper, we apply the concept of metamodeling using the response surface 

methodology and the Kriging method for the single-objective optimization of a stiffened 
plate structure. Such structures are widely used e.g. in off-shore engineering [7]. The 
proposed sequential optimization procedure is however, not restricted to such structures, 
and it can applied generally. 

The basic idea of the paper is to demonstrate the mass minimization process using 
three different response estimations. First, quadratic polynomials are used to construct 
the global response surfaces using design of experiments data generated with the so 
called central composite design method (CCD) [8,9]. In this method, the design 
variables obtain five separate value levels as depicted in figure 1. Secondly, linear 
polynomials (two separate value levels) are fitted to the generated design of experiments 
data. Obviously, linear polynomials cannot be used for global estimation, but the 
response is estimated in a smaller window of the entire design variable space. In this 
case the optimization process must be iterative in nature, and the estimation window 
moves in the design variable space while the optimization proceeds. Finally, a 
compromise between linear and quadratic models is tested. We adopt the Kriging 
method to the set of design of experiments data generated using Hadamard test matrices 
[10]. Since the Hadamard test matrix is three-level, the estimation can be done for larger 
window than in the case of linear polynomials. This method shows some advantages, 
e.g. smooth convergence to (at least) local optimum as reported in the section of 
numerical example. 

The first step in defining the response estimates is to define how many experiments 
we will use, and what their locations in the design space are. When metamodeling is 
applied to structural optimization, the “experiment” means typically a FEM-analysis in 
which the design parameters are fixed to some chosen values and the required responses 
(stress, displacement, natural frequency, etc) are evaluated. The next section is devoted 
to highlight different strategies to the definition of design of experiments. 

When the required responses are evaluated in m locations in the design space, the 
regression analysis and other statistical methods are obtained for the construction of the 
metamodel that replaces the original structural problem. In this step, the primary goal is 
to define such models, which contain minimal estimation errors. Metamodel 
construction using either response surface method or the Kriging method is explained 
concisely in the surrogate models section. 

Structural optimization of the estimated problem is much easier than the 
optimization of the original problem. The cost we have to pay for this is the estimation 
error in response surfaces. Nevertheless, an iterative optimization strategy to cope with 
this error is tested in the context of a stiffened plate example problem. The standard 
NLPQL-algorithm is adopted for the mass minimization problem itself and 
ANSYS/WB v.13 is utilized for response evaluations and metamodel computations. 

Design of Experiments 
Let us consider a general problem having n factors that are chosen to represent the 
responses of the structure. When metamodeling is used in order to optimize the 
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structure, the factors are usually also the design variables. Let us define m points (called 
as design points) in the design space, in which the required responses of the structure 
are computed. Usually, and also in this study, the finite element method is utilized for 
this purpose. It is obvious, that using more design points gives us more information on 
the structural responses, and thus, the estimation errors reduce when the number of 
design points increases. In practice, we must make a compromise between the used 
computing time and required accuracy. The most simple way to estimate the structural 
response is to use m = n + 1 design points. In this case each design variable obtains 
values from two different levels. Using this minimal set of data, a multi-linear surface 
including all the design point values can be defined in a unique manner. This set of 
design of experiments is called linear model. 

Linear model can also be used if the number of design points m > n + 1. In this case 
the regression analysis (e.g. method of least squares) can be adopted to fit the multi-
linear surface in optimal way to the available data.  

If linear model cannot predict the responses accurately enough, we can increase the 
number of design points so that each design variable can get values from three different 
levels. In this case the class of Hadamard test matrices is one way to define minimal 
number of design points in a systematic and optimal way to the design space. It can be 
shown, that there are certain similarities between Hadamard and the well known 
Taguchi test matrices [10]. Since the number of design points is larger than in the linear 
model, it is not an efficient approach to span multi-linear response surfaces. More 
attractive choice is to use the Kriging method, in which the global polynomial surface is 
augmented by local stochastic variations. The Kriging method is explained concisely in 
the next chapter.     

When the number of design points is increased so that each design variable obtains 
three different values, it is also possible to construct full quadratic response surface that 
goes through each design point. These kind of full factorial designs are not favored, 
because the number of design points increases drastically with the number of design 
variables. Hence, fractional design of experiments are usually used. In fractional 
method, only a half or one-fourth of the all factor combinations are taken into account 
[8]. Usually the three value levels are chosen to be the lower and upper limits and the 
center of the design variable value range. 

One widely used design of experiments method is the so called central composite 
design (CCD), in which each factor achieves values from five different levels as 
depicted in figure 1. Total number of design points consists of at most 2n corner points, 
2n axial points and one central point. The central composite design method is discussed 
in detail in e.g. [8,9]. 

 
 
 
 
 
 
 
 



221 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Surrogate models 
Response surface method, RSM 

In the RSM the unknown function is expressed using usually linear or quadratic 
polynomials as in (1) and (2), respectively 
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in which y is the unknown estimated function of factors xi collected in vector x,  and  is 
a random error. If the number of design points is larger than the number of 
coefficients0, i, ii and ij, regression analysis can be utilized in order to fine-tune the 
surface so that certain error measure is minimized. The quadratic polynomial is full if 
all the cross-terms xixj are included in the surface expression. In this case, the minimum 
number of design points is [9]
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If the cross-terms are omitted, the model is called pure quadratic model, and the 
minimum number of design point evaluations is  
 

        12  nm                                                            (4) 
 

xi 
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Figure 1. Central Composite Design test points in the case n = 2. Radius , that defines the 
axial points, can be chosen according to various optimality criteria [8,9]. 
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The coefficients0, i, ii and ij can be listed in vector  that can be solved using e.g. 
method of least squares leading to the equation [11] 

 

          yXXXβ T1T 
                                    (5) 

 
in which X is a matrix containing the design points and y is vector containing the 
estimated function values at the design points. 

 
Kriging method 

In the Kriging method, the response is estimated as 
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in which f(x) is global known polynomial part, that is usually taken as constant , and 
Z(x) is a realization of a stochastic process with zero mean value, 2 variance and non-
zero covariance [11].  The local part Z(x) of the estimation takes into account local 
variations of the response. The details of the method are not repeated here, because they 
can be found in literature, see e.g.  [4,5,11]. Usually, the correlation function R between 
any two design points is chosen to be Gaussian type as 
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in which xi,k is kth component of design point xi and k is correlation parameter, the 
value of which determined to fit the model. Correlation functions can be collected to a 
positive definite matrix R whose component (i, j) is R(xi,xj). Diagonal elements of this 
square matrix have the value of 1. This leads to the following formula for the estimation 
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In which y is the column vector containing response values at the design points, f is unit 
vector and r is a correlation vector between current value x and the design points as  
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and estimation ̂  of  is  
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Numerical example for structural optimization 
Problem description 

As a numerical problem we consider the stiffened plate depicted in figure 2. Uniform 
pressure 0,1 MPa is acting on the top of the plate and the vertical z-directional 
displacement at the end edges (at y = 0 and at y = L) are restricted. The design variables 
are thickness of the top skin, thicknesses of the stiffener webs and flanges as well as the 
widths of the stiffener flanges as shown in figure 3. Total mass of the structure is 
minimized with respect to the following constraints: The von Mises stress must not 
exceed 200 MPa anywhere in the structure, absolute value of shear stress in the stiffener 
webs must not exceed 70 MPa and the compressive stress y in the top skin must not 
exceed 120 MPa. The design variables are not restricted to any range and all the design 
variables are considered as continuous variables. 

 
 

 
 

Figure 2. Loading, boundary conditions and dimensions of the stiffened plate. 

 
 

 
 

 

 
 
 

Figure 3. Design variables – seven thicknesses and four flange widths. 
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Results of the RSM utilizing linear surfaces 

First the plate was modeled using linear response surfaces for each output variable 
(stresses and mass) appearing in the minimization problem. Altogether 12 FEM 
analyses were used to span the response surfaces. The surfaces were constructed in the 
design variable space in a window the size of which is 10% from the design variable 
values. The window size was chosen to be so that the estimation errors remain rather 
small (less than 1%). 

In the optimization procedure, the estimation window at iteration step i+1 is placed 
so that the center of the window is in the result point of iteration step i. The optimization 
iteration results are depicted in figure 4 and in Table 1. The initial configuration was 
chosen from feasible range of the design space. 

Since the multilinear response surfaces were constructed with minimal number of 
design points, the surface goes through all of these points and the estimation errors in 
these points are zero. The optimal structure shown in figures 5 and 6 seems also to have 
only minor estimation errors. In the optimum configuration, the active constraint 
equations are the global von Mises stress (limit 200 MPa) and the shear stress in the two 
central stiffeners (absolute limit value 70 MPa). The shear stress constraint in the 
outermost stiffeners and the compressive stress constraint in the top skin are not active. 
Convergence of the constraint equation values is shown in figure 4. 

   
 
 
 
 
 
 
 
 
 
 

Figure 4. Convergence of the optimization iteration using RSM and linear surfaces. 
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Figure 5. Von Mises stress distribution in the optimized structure. Maximum value 199.35 MPa 

contains only 0.3% estimation error compared to the target value of 200 MPa. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Shear stress distribution in the optimized structure at the central stiffeners. Maximum 
value 70.1 MPa contains only 0.1% estimation error compared to the target value of 70 MPa. 

 
Table 1. Convergence of the optimization iteration using RSM and linear surfaces. The window 

size is reported only for the first iteration. 

 
 
 
 
 
 
 
 
 
 

Des. Variable Initial value

lower limit = 

0.9*inital value

upper limit = 

1.1*inital value Optimum

t 1 16 14,4 17,6 10,63

t 2 16 14,4 17,6 7,72

t 3 16 14,4 17,6 13,67

t 4 16 14,4 17,6 6,55

t 5 16 14,4 17,6 10,83

t 6 16 14,4 17,6 8,26

t 7 16 14,4 17,6 12,97

w 1 140 126 154,0 130,04

w 2 90 81 99,0 90,68

w 3 90 81 99,0 88,79

w 4 140 126 154,0 140,29

Iteration # 1
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Despite the fact, that the initial structure, loading and support are symmetric, the 
computed optimal configuration is not. This drawback is due to the estimation errors in 
multi-linear response surfaces. Since the symmetry is broken already at the first 
iteration step, the asymmetries accumulate when the iteration proceeds. Another and 
more severe drawback of the linear method is that the values of the thickness variables 
t1 – t7 do not converge to certain values, but they tend to oscillate between lower and 
upper limit values. 

It is also worth noting, that the geometric design variables (flange widths) w1 – w4 

remain almost constant, and small changes are present only in the three last iterations. 
This is due to the fact, that their influence to stresses is much smaller than the influence 
of thickness variables. Based on the results, it seems that the geometric variables could 
be even fixed to their initial values. 

 
Results of the Kriging method with Hadamard-model 

When the Kriging method is used with the Hadamard test matrices, the number of 
analyses for this case is 27. The correlation between the number of factors and number 
of test evaluations is discussed in detail in [10]. Window size is chosen to be ±20% 
from the current design variable values as shown in Table 2. The estimation window is 
moved in the design space as in the case of the RSM utilizing linear surfaces, but for the 
last iteration the window size is decreased to cover only ± 5% variations from the 
previous iteration step result. This adaptive window size adjustment is an attempt to 
fine-tune the response estimates in the vicinity of the local optimum. The initial values 
for the design variables are the same as in the previous model as shown in Table 2. The 
optimization convergence is depicted in figure 7 whereas figure 8 contains the von 
Mises stress distribution of the optimum configuration. In this method, the von Mises 
global stress constraint is the only active constraint equation. The optimization iteration 
was stopped after fifth iteration, after which the design variables were converged to 
certain final values. There was no need to the use of a priori defined mathematical 
convergence criterion, because such a criterion could not be adopted for the linear 
method at all. 

 
Table 2. Convergence of the optimization iteration using Kriging method. The window size is 

reported only for the first iteration. 

 
 
 
 
 
 
 
 
 
 
 

Des. Variable Initial value

lower limit = 

0.8*inital value

upper limit = 

1.2*inital value Optimum

t 1 16 12,8 19,2 10,34

t 2 16 12,8 19,2 8,31

t 3 16 12,8 19,2 8,69

t 4 16 12,8 19,2 8,19

t 5 16 12,8 19,2 13,71

t 6 16 12,8 19,2 9,17

t 7 16 12,8 19,2 9,00

w 1 140 112 168,0 138,93

w 2 90 72 108,0 89,35

w 3 90 72 108,0 89,39

w 4 140 112 168,0 138,90

Iteration # 1
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Figure 7. Convergence of the optimization iteration using Kriging method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Von Mises stress distribution in the optimized structure. Maximum value 199.37 MPa 
contains only 0.3% estimation error compared to the target value of 200 MPa. 
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Results of the RSM utilizing CCD and quadratic surfaces 

In the case of quadratic surfaces, the required number of the analyses is 151 even 
though fractional factorial tests are used with the CCD-method [8]. In this case, the 
initial point was chosen near the optimum found by the RSM and linear surface 
estimation as depicted in Table 3 and the whole range of admissible design variable 
space is estimated globally with no iterations. The results, given in Table 4 show, that 
the method is not too accurate in this example. After the optimal configuration is found, 
the estimation error is ca. 7%. This means, that an additional iteration with smaller 
estimation window would be required, but due to large number of analyses per iteration, 
this is not efficient. In general, CCD-method could be effective, if the initial point 
would be rather close to a optimum and the estimation window size would be smaller. 

 
 
 
 
 
 
 
 
 
 
 

Figure 9. Von Mises stress distribution in the optimized structure. Maximum value 214.86 MPa 
contains 7,4% estimation error compared to the target value of 200 MPa. 

 
 

Table 3. Convergence of the optimization iteration using RSM and quadratic surfaces.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Des. Variable Initial value lower limit upper limit  Optimum

t 1 10 6 14,0 9,96

t 2 10 6 14,0 11,17

t 3 14 8 20,0 20,00

t 4 10 6 14,0 13,76

t 5 10 6 14,0 14,00

t 6 10 6 14,0 14,00

t 7 14 8 20,0 14,50

w 1 80 40 160,0 80,05

w 2 50 25 100,0 54,51

w 3 50 25 100,0 53,79

w 4 80 40 160,0 80,12
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Conclusion 
Based on the results one could conclude, that the first step in the proposed optimization 
procedure is to find suitable window size for the adopted response estimation scheme. 
In the considered example, the suitable window sizes were approximately ±10% for the 
linear model, ±20% for the Hadamard model and less than ±40% for the quadratic 
model. Actually, the window size should be even smaller for the quadratic model, but 
due to the large number of required function evaluations, smaller window would not be 
efficient. The FEM-analyses needed for the estimation surfaces are in this example 12, 
27 and 151, respectively. Comparing the required computational work and the accuracy 
of the results, the use of quadratic model is rather doubtful. Its accuracy is the worst and 
its computational costs are highest among the three tested methods. Both the RSM with 
linear surfaces and the Kriging model worked well in the considered example problem, 
and according to Table 4, both the methods seem to be rather efficient. The Kriging 
method however, requires less FEM-evaluations and its convergence is much smoother. 
Thus, the Kriging method seems to be the best choice for the present problem type, and 
its applicability for other problems must be studied in future. It is also worth noting, that 
the final optimization problem solution time attached to each metamodel did not play a 
central role in the total solution time.  

 
 

Table 4. Results and required number of analyses of the different methods 

 
 
In general, the adopted methodology of metamodeling and sequential optimization 

seems to work efficiently in mass minimization. In the literature the accuracy of the 
surrogate model can be enhanced by adding extra design points to the estimation 
window [1]. However, in this article such approach is not utilized and the method based 
on moving estimation window seems to be accurate enough. 
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Method iterations analyses per iteration analyses total optimum mass

RSM / Linear 10 12 120 813.9 kg

Kriging /Hadamard 4 27 108 814,8 kg

RSM/quadratic 1 151 151 853,7 kg
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