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Thermodynamic interpretation of finite volume algorithms

Arkadi Berezovski

Summary. The thermodynamic consistency is a desired feature of numerical algorithms for
physical problems. Such a consistency can be achieved if the computational cells are consid-
ered as discrete thermodynamic systems. It is shown that faithful, accurate, and conservative
finite-volume algorithms are compatible with thermodynamics through the identification of nu-
merical fluxes and excess quantities. One-dimensional wave propagation and heat conduction
are considered as examples.
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Introduction

Finite volume methods are broadly applied to the solution of systems of hyperbolic con-
servation laws (Godlewski and Raviart, 1996; Toro, 1997, 2001; LeVeque, 2002; Guinot,
2003) due to their physical soundness and accuracy. The main idea of such methods is
the control of conservation laws on each finite volume cell in the computational domain.
However, the division of a body into a finite number of computational cells requires the
description of all fields inside the cells as well as on the interaction between neighbor-
ing cells. It is desired that the corresponding description should be thermodynamically
consistent.

Thermodynamic notions can be introduced if a cell is considered as a thermodynamic
system. This means that the thermodynamic state of the cell should be clearly defined.
In the local equilibrium approximation, all notions of classical thermodynamics are valid
for quantities averaged over the cell. However, averaging of wanted fields inside the cell
leads to discontinuities of the fields at boundaries between cells. This also leads to the
appearance of excess quantities, which represent the difference between exact and approx-
imate values of the fields. The interaction between neighboring cells can be described by
means of fluxes at the boundaries of the cells. Therefore, the correspondence between
fluxes and excess quantities is needed to be established.

In what follows, we consider a method of attack the problem on the example of the
construction of numerical schemes for conservation laws. Linear elastic wave propagation
and heat conduction are chosen as representative cases due to their simplicity and broad
applicability. The one-dimensional setting is used for convenience.

The paper is organized as follows. Examples of conservation laws are presented in the
next section. General solution for the linear elastic case has been described then since it is
used in the construction of the finite volume wave-propagation algorithm. The algorithm
itself is presented on the example of linear elasticity. The alternative thermodynamic
interpretation of the construction of the algorithm is described in the following section.
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In the last section, it is shown that similar thermodynamic construction leads to the
well-known algorithm also in the case of heat conduction.

Examples of conservation laws

Conservation laws are time-dependent systems of partial differential equations (usually
nonlinear) with a particularly simple structure. In one space dimension the equations
take the form

∂

∂t
q(x, t) +

∂

∂x
f(q(x, t)) = 0, (1)

where t is time, x is space variable, q is a vector of conserved quantities, and f(q) is
called the flux function. If the problem is assumed to be hyperbolic, hence the Jacobian
f ′(q) has real eigenvalues and a complete set of eigenvectors.

The following examples represent the formulation of various problems in terms of
conservation laws.

Euler equations of gas dynamics

It is well known (Thompson, 1972, e.g.) that gas dynamic flows are governed by the
following conservation laws:
Balance of mass:

∂ρ

∂t
+

∂ρv

∂x
= 0. (2)

Balance of linear momentum (no body forces):

∂ρv

∂t
+

∂(ρv2 + p)

∂x
= 0. (3)

Balance of energy:
∂ρe

∂t
+

∂v(ρe + p)

∂x
= 0. (4)

Here ρ = ρ(x, t) is the density, v is the velocity, ρv is the momentum, e is the specific
internal energy, and p is pressure. The pressure p is given by a known function of the
other state variables (the specific functional relation depends on the gas and is called the
”equation of state”).

Shallow water equations

The governing equations for shallow water are slightly simpler (Stoker, 1957):
Balance of mass:

∂h

∂t
+

∂hv

∂x
= 0. (5)

Balance of linear momentum:

∂hv

∂t
+

∂(hv2 + 1

2
gh2)

∂x
= 0. (6)

Here h(x, t) is the fluid depth, g is the gravitational acceleration. This nonlinear system
of conservation laws is similar to the Euler equations of gas dynamics but with depth
playing the role of density.
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Heat conduction equation

The heat conduction equation is based on the balance of energy (Lienhard and Lienhard,
2004):

∂ρe

∂t
+

∂q

∂x
= 0, (7)

where q is the heat flux.
In the simplest case, the specific internal energy is proportional to temperature

e = Cpθ, (8)

where θ is temperature and Cp is the heat capacity of the material.
Applying the Fourier’s law of heat conduction

q = −k
∂θ

∂x
, (9)

where k(x) is the coefficient of thermal conductivity, we arrive at the one-dimensional
heat conduction equation

ρCp

∂θ

∂t
−

∂

∂x

(

k
∂θ

∂x

)

= 0. (10)

Linear elasticity

In the linear elasticity (Achenbach, 1973), the balance of linear momentum

ρ(x)
∂v

∂t
−

∂σ

∂x
= 0, (11)

is complemented by the kinematic compatibility condition

∂ε

∂t
−

∂v

∂x
= 0, (12)

and the stress-strain relation in the form of the Hooke’s law

σ = (λ+ 2µ)ε, (13)

where ρ(x) is the matter density, v(x, t) is the particle velocity, σ(x, t) is the uniaxial
stress, λ and µ are Lamé coefficients, and ε(x, t) is a measure of the uniaxial strain.

General solution in the linear elastic case

The conservation law (1) in the case of linear elasticity can be expressed in the form

∂

∂t
q(x, t) +A

∂

∂x
q(x, t) = 0, (14)

where the matrix A corresponds to the system of Eqs. (11) – (13)

A =

(

0 −1/ρ
−ρc2 0

)

, and q(x, t) =

(

ε
ρv

)

, (15)

and c =
√

(λ+ 2µ)/ρ is the velocity of elastic wave.
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For hyperbolic conservation laws the matrix A is diagonalizable, i.e.

R−1AR = Λ, (16)

where R = |r1|r2| is the eigenvector matrix and Λ = diag(λI , λII). In the case of linear
elasticity, the eigenvector matrix and its inverse are

R =

(

1 1
Z −Z

)

, R−1 =
1

2Z

(

Z 1
Z −1

)

, (17)

where Z = ρc is impedance.
Correspondingly, the diagonalized matrix Λ is the following one

Λ =

(

λI 0
0 λII

)

=

(

−c 0
0 c

)

. (18)

It easy to see that the conservation law (14) can be represented as

R−1 ∂

∂t
q(x, t) +R−1ARR−1 ∂

∂x
q(x, t) = 0, (19)

and then rewritten in the characteristic form

∂

∂t
w +Λ

∂

∂x
w = 0, (20)

where w = R−1q is introduced. The system of equations (20) consists of two decoupled
equations for the components of the vector w

∂wI

∂t
− c

∂wI

∂x
= 0,

∂wII

∂t
+ c

∂wII

∂x
= 0, (21)

solution of which are left-going and right-going waves

wI(x, t) = wI(x+ ct), wII(x, t) = wII(x− ct). (22)

Therefore, the general solution of the system of equation (14) is their linear combination
by means of eigenvectors

q(x, t) = Rw(x, t) = wI(x, t)

(

1
Z

)

+ wII(x, t)

(

1
−Z

)

. (23)

This decomposition will be used in the construction of numerical methods. To be more
precise, we consider the finite-volume method for the linear elasticity.

Example of finite volume methods: wave-propagation algorithm

In the presentation of the one-dimensional wave-propagation algorithm we will follow
LeVeque (2002).
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Averaged quantities

Let us introduce a computational grid of cells Cn = [xn, xn+1] with interfaces xn = n∆x
and time levels tk = k∆t. For simplicity, the grid size ∆x and time step ∆t are assumed
to be constant. Integration Eq. (1) over the control volume Cn × [tk, tk+1] gives

∫

∆x

q(x, tk+1)d x−

∫

∆x

q(x, tk)d x+

+

∫ tk+1

tk

Aq(xn+1, t) dt−

∫ tk+1

tk

Aq(xn, t) dt = 0.

(24)

Equation (24) can be rewritten as a numerical scheme in the flux-differencing form

Qk+1
n = Qk

n −
∆t

∆x
(Fk

n+1 − Fk
n) (25)

after introducing the average Qn of the exact solution on Cn at the time t = tk and
the numerical flux Fn that approximates the time average of the exact flux taken at the
interface between the cells Cn−1 and Cn, i.e.

Qn ≈
1

∆x

∫ xn+1

xn

q(x, tk)dx, Fn ≈
1

∆t

∫ tk+1

tk

Aq(xn, t)dt. (26)

In general, however, the time integrals in the right-hand side of (24) cannot be evaluated
exactly since q(xn, t) varies with time along each edge of the cell. A fully discrete method
follows from an approximation this average flux based on the values Qn.

Numerical fluxes

Numerical fluxes Fn are determined by means of the solution of the Riemann problem at
interfaces between cells. The solution of the Riemann problem (at the interface between
cells n− 1 and n) consists of two waves, which we denote, following LeVeque (2002), WI

n

and WII
n . The left-going wave WI

n moves into cell n− 1, the right-going wave WII
n moves

into cell n (Fig. 1). The state between the two waves must be continuous across the

n− 1 n

Qn−1

Qn

WI
n

WII
n

Figure 1. Left-going and the right-going waves.

interface (Rankine-Hugoniot condition) (LeVeque, 2002):

WI
n +WII

n = Qn −Qn−1. (27)
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In the linear case, the considered waves are determined by eigenvectors of the matrix A

(LeVeque, 2002):
WI

n = γI
nr

I
n−1, WII

n = γII
n rIIn . (28)

This means that Eq. (27) is represented as

γI
nr

I
n−1 + γII

n rIIn = Qn −Qn−1. (29)

Substituting the eigenvectors into Eq. (29), we have

γI
n

(

1
Zn−1

)

+ γII
n

(

1
−Zn

)

= Qn −Qn−1. (30)

In the case of linear elasticity Eq. (30) has the form

(

1 1
ρn−1cn−1 −ρncn

)(

γI
n

γII
n

)

=

(

ε̄n − ε̄n−1

ρnv̄n − ρn−1v̄n−1

)

. (31)

Solving the system of linear Eqs. (31), we obtain the amplitudes of left-going and right-
going waves. Then the numerical fluxes are determined as follows

Fk
n+1 = −λI

n+1W
I
n+1 = −cn+1γ

I
n+1r

I
n, (32)

Fk
n = λII

n WII
n = −cnγ

II
n rIIn . (33)

Finally, the Godunov-type numerical scheme is expressed in the form

Qk+1
n = Qk

n +
∆t

∆x

(

cn+1γ
I
n+1r

I
n − cnγ

II
n rIIn

)

. (34)

This is the standard form for the wave-propagation algorithm (LeVeque, 2002).

Second order corrections

The scheme considered above is formally first-order accurate only. The Godunov scheme
exhibits strong numerical dissipation, and discontinuities in the solution are smeared
causing low accuracy. In order to increase the order of accuracy, the correction terms are
introduced as follows (LeVeque, 2002)

Fn =
1

2

∑

p

|λp|

(

1−
∆t

∆x
|λp|

)

W p
n . (35)

The obtained Lax-Wendroff scheme,

Qk+1
n −Qk

n =
∆t

∆x
(Fk

n+1 − Fk
n)−

∆t

∆x

(

Fk
n+1 − Fk

n

)

, (36)

is more accurate in smooth parts of the solution, but near discontinuities, numerical
dispersion generates oscillations also reducing the accuracy. A successful approach to
suppress these oscillations is to apply flux limiters (LeVeque, 1997, 1998; Fogarthy and
LeVeque, 1999).
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Conservative wave propagation algorithm

Another possibility to increase the accuracy on smooth solutions is the conservative wave
propagation algorithm (Bale et al., 2003). Here the solution of the generalized Rie-
mann problem is obtained by means of the decomposition of the flux difference AnQn −
An−1Qn−1 instead of the decomposition (27)

LI
n + LII

n = AnQn −An−1Qn−1. (37)

The fluxes LI and LII are still proportional to the eigenvectors of the matrix A

LI
n = βI

nr
I
n−1, LII

n = βII
n rIIn , (38)

and the corresponding numerical scheme has the form

Qk+1
n −Qk

n = −
∆t

∆x

(

(LII)kn + (LI)kn+1

)

. (39)

Coefficients βI and βII are determined from the solution of the system of linear equations
(37), which reduces in the linear elastic case to

(

1 1
ρn−1cn−1 −ρncn

)(

βI
n

βII
n

)

=

(

−(v̄n − v̄n−1)
−(ρnc

2
nε̄n − ρn−1c

2
n−1ε̄n−1)

)

. (40)

As it is shown (Bale et al., 2003), the obtained algorithm is conservative and second-order
accurate on smooth solutions.

The wave-propagation method was successfully applied to the simulation of wave
propagation in inhomogeneous media with rapidly-varying properties with some addi-
tional modifications to ensure the full second order accuracy (LeVeque, 1997, 1998; Fog-
arthy and LeVeque, 1999). The advantages of the wave-propagation algorithm are high-
resolution (Bale et al., 2003) and the possibility for a natural extension to higher dimen-
sions (Langseth and LeVeque, 2000).

Local equilibrium approximation

In solid mechanics, hyperbolic conservation laws relate to the wave and front propaga-
tion, which is characterized by the values of the velocity of the order of 1000 m/s. The
corresponding characteristic time is of the order of hundreds or even tens of microseconds,
especially in the impact induced events. It is difficult to expect that the corresponding
states of material points during such fast processes are equilibrium ones. The hypothesis
of local equilibrium is commonly used to avoid the troubles with non-equilibrium states.

However, any numerical procedure supposes the division of the continuous body into
a finite collection of sub-bodies, and the local equilibrium hypothesis should be extended
on the whole sub-body to characterize its thermodynamic state. Moreover, all these
sub-bodies interact with each other.

Often the mesh refinement is required to resolve the troubles with high gradients or
simply to show that the results are independent of the mesh. If we refine the mesh, a sub-
body considered as a system in local equilibrium in the sense of the coarse mesh, should
be at the same time a compound system, composed by a number of local-equilibrium
subsystems (sub-bodies) in the sense of the fine mesh. This dual representation of the same
system results in the appearance of excess quantities in the local equilibrium description
as it is shown in (Muschik and Berezovski, 2004).
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Numerical methods (including finite volume methods) deal with approximated values
of field variables. In finite volume methods such an approximation is achieved by simple
averaging over the computational cell. This means that the value of any extensive quantity
A is the sum of its averaged counterpart Ā and its excess part Aex,

A = Ā+ Aex. (41)

However, the introduced excess quantities are useless (and even superfluous) until the
rules of their treatment are specified.

Excess quantities and numerical fluxes

The splitting of the body into a finite number of computational cells and averaging all
the fields over the cell volumes leads to a situation, which is known in thermodynamics
as ”endoreversible system” (Hoffmann, Burzler and Schubert, 1997). This means that
even if the state of each computational cell can be associated with a corresponding local
equilibrium state (and, therefore, temperature and entropy can be defined as usual), the
state of the whole body is a non-equilibrium one.

In the admitted non-equilibrium description (Muschik and Berezovski, 2004), variables
are represented as the sum of averaged (local equilibrium) and excess parts:

σ = σ̄ + Σ v = v̄ + V. (42)

Here overbars still denote averaged quantity and Σ and V are the corresponding excess
quantities.

Integrating the balance of linear momentum (11) over the computational cell gives:

ρ
∂

∂t

∫ xn+1

xn

vdx = σ+
n − σ−

n = σn + Σ+
n − σn − Σ−

n = Σ+
n − Σ−

n , (43)

where superscripts ”+” and ”-” denote values of the quantities at right and left boundaries
of the cell, respectively. Similarly, the kinematic compatibility (12) leads to

∂

∂t

∫ xn+1

xn

εdx = v+n − v−n = vn + V+
n − vn − V−

n = V+
n − V−

n . (44)

The definition of averaged quantities

ρvn =
1

∆x

∫ xn+1

xn

ρ(x, tk)v(x, tk)dx, εn =
1

∆x

∫ xn+1

xn

ε(x, tk)dx, (45)

allows us rewrite a first-order Godunov-type scheme (25) in terms of excess quantities

(ρv)k+1
n − (ρv)kn =

∆t

∆x

(

Σ+
n − Σ−

n

)

, (46)

ε̄k+1
n − ε̄kn =

∆t

∆x

(

V+
n − V−

n

)

. (47)

Here the superscript k denotes time step and the subscript n denotes the number of
computational cell.

Though the excess quantities are determined formally everywhere inside computational
cells, we need to know their values only at the boundaries of the cells, where they play the
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role of numerical fluxes. To determine the values of excess quantities at the boundaries
between computational cells we apply the non-equilibrium jump relations (Berezovski,
Engelbrecht and Maugin, 2008). The excess stress Σ is related to the averaged stress by
the non-equilibrium jump relation in bulk, which is reduced in the isothermal case to

[[σ̄ + Σ]] = 0. (48)

Here [[A]] = A+ − A−, and A± are the uniform limits of the field A in approaching
the boundary from its positive and negative sides, respectively. The same condition
follows from the jump relation for the linear momentum, because the boundary between
computational cells does not move.

Similarly, the jump relation following from the kinematic compatibility reads

[[v̄ + V]] = 0. (49)

It is instructive to represent the non-equilibrium jump relation (48) in the numerical form

(Σ+)n−1 − (Σ−)n = (σ̄)n − (σ̄)n−1, (50)

which is illustrated in Fig. 2.

n− 1 n

σ̄n−1

σ̄n

Σ+
n−1

Σ−

n

Figure 2. Stresses in the bulk.

This means that the jump condition (48) can be considered as the continuity of the
genuine unknown field at the boundaries between computational cells. The values of
excess stresses and excess velocities at the boundaries between computational cells are
not independent. To demonstrate that, we consider the solution of the Riemann problem
at the interface between cells.

Riemann invariants

In the one-dimensional homogeneous case, the kinematic compatibility and balance of
linear momentum

∂ε

∂t
=

∂v

∂x
, (51)

ρ
∂v

∂t
=

∂σ

∂x
, (52)

complemented by the linear constitutive relation

σ = ρc2ε, (53)
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can be represented in the form
∂σ

∂t
− ρc2

∂v

∂x
= 0, (54)

ρ
∂v

∂t
−

∂σ

∂x
= 0. (55)

Multiplying Eq. (55) by c we can rewrite the system of Eqs. (54) – (55) as follows

∂σ

∂t
− ρc2

∂v

∂x
= 0, (56)

ρc
∂v

∂t
− c

∂σ

∂x
= 0. (57)

Summing up the last two equations and subtracting the first from the second, we obtain
the characteristic form of this system of equations

∂

∂t
(ρcv + σ)− c

∂

∂x
(ρcv + σ) = 0, (58)

∂

∂t
(ρcv − σ) + c

∂

∂x
(ρcv − σ) = 0. (59)

Denoting Y = ρcv + σ, Z = ρcv − σ, we can rewrite the system of Eqs. (58) – (59) as
follows

∂Y

∂t
− c

∂Y

∂x
= 0, (60)

∂Z

∂t
+ c

∂Z

∂x
= 0. (61)

The last two equations possess general solutions

Y = f(x+ ct), Z = g(x− ct) ∀f, g. (62)

The lines x ± ct = const are called as characteristic lines, and Y and Z are called as
Riemann invariants, because they are conserved along characteristic lines.

Any solution of the system of Eqs. (54) – (55) can be constructed from the two
Riemann invariants

σ =
1

2
(Y − Z), (63)

ρcv =
1

2
(Y + Z). (64)

Riemann problem

The Riemann problem at the boundary between computational cells consists of piecewise
constant initial data for the system of Eqs. (54) – (55) (Fig. 3)

{

v(x) = v̄n−1, σ(x) = σ̄n−1, if x < xn;
v(x) = v̄n, σ(x) = σ̄n, if x > xn.

(65)

The solution to the Riemann problem is constructed by means of values of the Riemann
invariants. At the boundary between cells

Y = ρcv + σ = ρncnv̄n + σ̄n, (66)
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n− 1 n

Qn−1

Qn

Figure 3. Riemann problem.

Z = ρcv − σ = ρn−1cn−1v̄n−1 − σ̄n−1. (67)

Inserting the relations (42) into the expression for the Riemann invariants at the interface
(66) – (67), we obtain

Y = ρcv + σ = ρncnv̄n + ρncnV
−

n + σ̄n + Σ−

n = ρncnv̄n + σ̄n, (68)

Z = ρcv − σ = ρn−1cn−1v̄n−1 + ρn−1cn−1V
+
n − σ̄n−1 − Σ+

n−1 = (69)

= ρn−1cn−1v̄n−1 − σ̄n−1.

It follows immediately that
ρncnV

−

n + Σ−

n ≡ 0, (70)

ρn−1cn−1V
+
n−1 − Σ+

n−1 ≡ 0, (71)

i.e., the excess quantities depend on each other at the cell boundary.

Excess quantities at the boundaries between cells

Rewriting the jump relations (48), (49) in the form

(Σ+)n−1 − (Σ−)n = (σ̄)n − (σ̄)n−1, (72)

(V+)n−1 − (V−)n = (v̄)n − (v̄)n−1. (73)

and using the dependence between excess quantities (Eqs. (70) and (71)), we obtain then
the system of linear equations for the determination of the excess velocities

V+
n−1 − V−

n = v̄n − v̄n−1, (74)

V+
n−1ρn−1cn−1 + V−

n ρncn = ρnc
2
nε̄n − ρn−1c

2
n−1ε̄n−1. (75)

In matrix notation the latter system of equations has the form

(

1 1
ρn−1cn−1 −ρncn

)(

−V+
n−1

V−

n

)

=

(

−(v̄n − v̄n−1)
−(ρnc

2
nε̄n − ρn−1c

2
n−1ε̄n−1)

)

. (76)

Comparing the obtained system of equations with Eq. (40), we conclude that

βI
n = −V+

n−1, βII
n = V−

n . (77)
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This means that excess quantities following from non-equilibrium jump relations at the
boundary between computational cells correspond directly to numerical fluxes in the con-
servative wave-propagation algorithm. Consequently, we can conclude that the wave-
propagation algorithm is thermodynamically consistent.

The advantage of the wave-propagation algorithm is that every discontinuity in the pa-
rameters is taken into account by solving the Riemann problem at each interface between
discrete elements. The algorithm in its thermodynamic representation was successfully
applied to the solution of various problems (Berezovski and Maugin, 2001, 2002, 2003;
Berezovski, Engelbrecht and Maugin, 2003; Berezovski, A., Berezovski, M., and Engel-
brecht, 2006; Berezovski, Engelbrecht and Maugin, 2008; Berezovski, A., Berezovski, M.,
and Engelbrecht, 2009).

Heat conduction in one space dimension

As the next example, let us consider the construction of a numerical algorithm for heat
conduction. In the simplest case with normalized heat capacity (ρCp = 1), the energy
conservation can be represented as

∂θ

∂t
+

∂q

∂x
= 0, (78)

where θ is temperature and q is the heat flux.
Following the approach described above, we introduce average (local equilibrium) and

excess quantities both for temperature and heat flux

θ = θ̄ +Θ, q = q̄ +Q, (79)

where, as previously, overbars denote averaged quantities and Θ and Q are the corre-
sponding excess quantities.

Integration Eq. (78) over the computational cell gives

∂

∂t

∫ xn+1

xn

θdx = −q+n + q−n = −q̄n −Q+
n + q̄n +Q−

n = −Q+
n +Q−

n . (80)

Introducing the averaged temperature

θ̄n =
1

∆x

∫ xn+1

xn

θ(x, t)dx, (81)

and integrating over the time step, we arrive at

θ̄k+1
n − θ̄kn =

1

∆x

∫ tk+1

tk
−
(

Q+
n −Q−

n

)

dt. (82)

Calculating the integral in the right hand side of Eq. (82) by means of the trapezoidal
rule, we arrive at the numerical scheme

θ̄k+1
n − θ̄kn = −

∆t

2∆x

(

(

Q+
)k+1

n
+
(

Q+
)k

n
−

(

Q−
)k+1

n
−

(

Q−
)k

n

)

. (83)

However, the values of the heat flux excess are not determined yet. To do this, let us
consider jump relations at boundaries between computational cells. The first one follows
from the continuity of temperature

[[θ̄ +Θ]] = 0. (84)
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n− 1 n

θ̄n−1

θ̄n

Θ+
n−1

Θ−

n

Figure 4. Temperatures at a boundary between cells.

The continuity of temperature should hold at any time step. It is instructive to represent
the condition in the numerical form. At the left boundary we have

θ̄kn−1 +
(

Θ+
)k

n−1
= θ̄kn +

(

Θ−
)k

n
, θ̄k+1

n−1 +
(

Θ+
)k+1

n−1
= θ̄k+1

n +
(

Θ−
)k+1

n
, (85)

respectively. Similar relations hold at the right boundary

θ̄kn +
(

Θ+
)k

n
= θ̄kn+1 +

(

Θ−
)k

n+1
, θ̄k+1

n +
(

Θ+
)k+1

n
= θ̄k+1

n+1 +
(

Θ−
)k+1

n+1
. (86)

This is illustrated in Fig. 4.
Now we turn to heat flux. According to the Fourier’s law, heat flux is proportional to

the temperature gradient

q(x, t) = −k
∂θ

∂x
. (87)

Integration Eq. (87) over the computational cell leads to

∫ xn+1

xn

qdx = −kθ+n + kθ−n = −k(θ̄n +Θ+
n − θ̄n −Θ−

n ) = −k(Θ+
n −Θ−

n ). (88)

The latter means that the average value of heat flux is determined by the difference of
the temperature excess at the boundaries of the same computational cell

q̄n =
1

∆x

∫ xn+1

xn

qdx = −
k

∆x
(Θ+

n −Θ−

n ). (89)

The heat flux excess is assumed to be continuous

[[Q]] = 0, (90)

and determined by the difference of the temperature excess at the boundary of neighboring
computational cells

Q+
n−1 = Q−

n =
k

∆x
(Θ−

n −Θ+
n−1). (91)

The latter relation allows us to calculate the heat flux excess difference

Q+
n −Q−

n =
k

∆x
(Θ−

n+1 −Θ+
n −Θ−

n +Θ+
n−1). (92)

168



Due to the continuity of temperature we can represent the difference in terms of averaged
temperatures

Q+
n −Q−

n =
k

∆x
(θ̄n − θ̄n+1 − θ̄n−1 + θ̄n) = −

k

∆x
(θ̄n+1 + θ̄n−1 − 2θ̄n). (93)

The obtained relation between the heat flux excess difference and averaged temperatures
holds true for each time step. Therefore, the numerical scheme (83) can be represented
in terms of averaged temperatures as

θ̄k+1
n − θ̄kn =

k∆t

2∆x∆x
(θ̄k+1

n+1 + θ̄k+1
n−1 − 2θ̄k+1

n + θ̄kn+1 + θ̄kn−1 − 2θ̄kn). (94)

The latter scheme is nothing else but the standard Crank-Nicolson method.

Conclusions

The main steps in the construction of a thermodynamically consistent numerical method
are the following. Division of a body into a finite number of computational cells requires
the description of all fields inside the cells as well as the interaction between neighboring
cells. The state of each computational cell is associated with the corresponding local equi-
librium state (and, therefore, temperature and entropy can be defined as usual). The local
equilibrium approximation is achieved by averaging of all fields over the cell. The approx-
imation of wanted fields inside the cells leads to discontinuities of the fields at boundaries
between cells. This also leads to the appearance of excess quantities, which represent the
difference between exact and approximate values of a field. Interaction between neigh-
boring cells is described by means of fluxes at the boundaries of the cells. These fluxes
are calculated by means of (non-equilibrium) jump relations at the boundaries between
cells. Mathematically inspired well-established numerical methods are then recovered for
wave propagation and heat conduction.

It should be noted that the thermodynamic representation of finite volume methods,
which is formally identical to well-known numerical methods on smooth solutions, gives
additional possibilities in the solution of problems with moving discontinuities (like cracks
and phase-transition fronts) due to its ability to handle jump relations at discontinuities
(Berezovski and Maugin, 2005, 2006; Berezovski et al., 2007; Berezovski, Engelbrecht and
Maugin, 2008; Berezovski, 2008).

Acknowledgments

Support of the Estonian Science Foundation under grant No. 8702 is gratefully acknowl-
edged.

References

Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland, Amsterdam, 1973.

Bale,D. S., LeVeque,R. J., Mitran, S., Rossmanith, J.A.: A wave propagation method for
conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci.
Comp. 24: 955–978, 2003.

Berezovski, A.: Influence of geometry and loading conditions on the martensitic front
propagation. Smart Struct. Syst. 4: 123–135, 2008.

169



Berezovski, A., Berezovski,M., Engelbrecht, J.: Numerical simulation of nonlinear elastic
wave propagation in piecewise homogeneous media. Mater. Sci. Engng. A 418: 364–
369, 2006.

Berezovski, A., Berezovski,M., Engelbrecht, J.: Waves in Inhomogeneous Solids. In: Ap-
plied Wave Mathematics - Selected Topics in Solids, Fluids and Mathematical Methods,
E. Quak, T. Soomere (Eds.), Springer, Berlin, pp. 55-81, 2009.

Berezovski, A., Berezovski,M., Engelbrecht, J., Maugin,G.A.: Numerical simulation of
waves and fronts in inhomogeneous solids. In: Multi-Phase and Multi-Component Ma-
terials under Dynamic Loading, W.K.Nowacki and Han Zhao (Eds.), Inst. Fundam.
Technol. Research, Warsaw, (EMMC-10 Conference), pp. 71-80, 2007.

Berezovski, A., Engelbrecht, J., Maugin,G.A.: Numerical simulation of two-dimensional
wave propagation in functionally graded materials. Eur. J. Mech. - A/Solids 22: 257–
265, 2003.

Berezovski, A., Engelbrecht, J., Maugin,G.A.: Numerical simulation of waves and fronts
in inhomogeneous solids. World Scientific, Singapore, 2008.

Berezovski, A., Maugin,G.A.: Simulation of thermoelastic wave propagation by means of
a composite wave-propagation algorithm. J. Comp. Physics 168: 249–264, 2001.

Berezovski, A., Maugin,G.A.: Thermoelastic wave and front propagation. J. Thermal
Stresses 25: 719–743, 2002.

Berezovski, A., Maugin,G.A.: Simulation of wave and front propagation in elastic and
thermoelastic heterogeneous materials. Comput. Mater. Sci. 28: 478–485, 2003.

Berezovski, A., Maugin,G.A.: Stress-induced phase transition front propagation in ther-
moelastic solids Eur. J. Mech.- A/Solids 24: 1–21, 2005.

Berezovski, A., Maugin,G.A.: Numerical simulation of phase-transition front propaga-
tion in thermoelastic solids. In: Numerical Mathematics and Advanced Applications
(Proceedings of ENUMATH 2005), A. Bermudez de Castro, D. Gomez, P. Quintela, P.
Salgado (Eds.), Springer, Berlin, pp. 703-711, 2006.

Fogarthy,T., LeVeque,R. J.: High-resolution finite-volume methods for acoustics in peri-
odic and random media. J. Acoust. Soc. Am. 106: 261–297, 1999.

Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Con-
servation Laws . New York, Springer, 1996.

Guinot,V.: Godunov-type Schemes: An Introduction for Engineers . Elsevier, Amsterdam,
2003.

Hoffmann,K.H., Burzler, J.M., Schubert, S.: Endoreversible thermodynamics. J. Non-
Equil. Thermodyn. 22: 311–355, 1997.

Langseth, J.O., LeVeque, R. J.: A wave propagation method for three-dimensional hyper-
bolic conservation laws. J. Comp. Physics 165: 126–166, 2000.

170



LeVeque,R. J.: Wave propagation algorithms for multidimensional hyperbolic systems. J.
Comp. Physics 131: 327–353, 1997.

LeVeque,R. J.: Balancing source terms and flux gradients in high-resolution Godunov
methods: the quasi-steady wave-propagation algorithm. J. Comp. Physics 148: 346–
365, 1998.

LeVeque,R. J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University
Press, 2002.

Lienhard, JohnH. IV, Lienhard, JohnH.V: A Heat Transfer Textbook . Third Edition,
Phlogyston Press, Cambridge MA, 2004.

Muschik,W., Berezovski, A.: Thermodynamic interaction between two discrete systems
in non-equilibrium. J. Non-Equilib. Thermodyn. 29: 237–255, 2004.

Stoker, J. J.: Water Waves: The Mathematical Theory With Applications . Interscience,
New York, 1957.

Thompson, P.A.: Compressible Fluid Flow . McGraw-Hill, New York, 1972.

Toro, E. F.: Riemann Solvers and Numerical Methods for Fluid Dynamics . Springer,
Berlin, 1997.

Toro, E. F. (ed.): Godunov Methods: Theory and Applications . Kluwer, New York, 2001.

Arkadi Berezovski
Centre for Nonlinear Studies
Institute of Cybernetics at Tallinn University of Technology
Akadeemia tee 21
Tallinn, 12618, Estonia
Arkadi.Berezovski@cs.ioc.ee

171


