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load bearing structures  
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Summary. This article focuses on concrete composite reinforced by short metal fibres, where 
the main role of fibres is to carry the tensile stresses, while the concrete matrix transfers and 
distributes the loads to the fibres. The efficiency of load transferring from matrix to fibres de-
pends on both the bonding interface between matrix and fibres and the anchorage length of fi-
bres. The effect of fibre orientation in matrix on the strength of composite is also introduced.  In 
the paper the assumptions made in a cross-sectional dimensioning concerning the behaviour of 
ordinary reinforced or fibre reinforced cross-sections are discussed and compared.   
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Description of steel fibre reinforced concrete (SFRC) 

Today fibre reinforced concrete is perhaps one of the most realistic possibilities to de-
velop the use of concrete in load bearing structures. Even if the properties of fibre rein-
forced concrete have not been thoroughly explored, it is already widely used in the con-
struction industry but not usually as a load bearing structure. Its applications are concen-
trating on floors resting on soil and less extent on floor slabs, walls and foundations. 
Interest in using fibre reinforced concrete widely in various structural components is 
high, as its use is expected to improve quality of concrete structures. Its use may also 
increase the effectiveness of designers’ and constructors’ work.  

Theoretical background in terms of microstructure  

Most materials are heterogeneous not only on the microscale but also on the meso- and 
macroscales due to manufacturing or formation processes. While the properties of such 
materials vary point-wise in the material space, the concept of nonlocality might be of 
use to describe the material properties on average. In physical terms, nonlocality means 
that a field variable at a point X at time t depends on the values of field variables at 
points of the body other than the point X. Nonlocality in the frame of SFRC can be ex-
plained more precisely in the view of the behaviour of a single fibre as follows: if one 
end of the fibre is influenced by some stress then the other end of the fibre is also af-
fected. In meso-scale nonlocality with SFRC indicates the presence of the interactions 
between separate constituents of the material (steel fibres, aggregate, binder etc). The 
SFRC requires an approach, which takes into account the presence of a complex system, 
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which is composed of parts interrelated in a way, which is challenging to be described. 
As opposite to nonlocal behaviour, the local behaviour occurs when the stress in one 
point cannot easily be explained by the deformation occurring at a different point. For 
instance, the stress near the tip of a crack may not be explained by a global average 
stress field.  

The concept of microstructured materials is quite wide. Examples are media with 
regular or stochastic distributions of voids (dislocations), fibres (inclusions), cracks (dis-
locations), etc. Steel fibre reinforced concrete is a kind of microstructured material be-
longing to cement-matrix composites. This material has a basic matrix made of con-
crete, which includes embedded short metal fibres. All microstructured materials are 
characterised by the existence of intrinsic space-scales as the size of grain or a crystal-
lite, the distance between the microcracks, etc. that introduces scale dependence into 
governing equations. 

According to these factors two main questions are under consideration: the first 
question is heterogeneity / inhomogeneity and respectively the concept of nonlocality; 
the second question is the distribution of stresses in concrete steel fibre composite.  

Start up with the concept of homogeneous solids, which has been successfully ap-
plied to many technical problems. Nonlocality is actually introduced to validate a ho-
mogeneous model for a heterogeneous material. This could be explained by a simple 
example, as follows. 

Assuming that a block consists of periodically alternating layers of two different 
elastic materials, the gross material is elastic in the usual sense, but with the elastic 
module varying in a discontinuous manner throughout the body. The material can be 
homogenized by describing its gross behaviour with a constitutive equation involving 
only a single constant effective module. This crude homogenization may be acceptable 
for static problems.  

Research hypotheses and methods 

The investigation of SFRC might be divided into three stages. The first stage concerns 
uncracked material in the sense of macrocracks. In this stage a crucial point is to deter-
mine orientation distribution function of fibres in a continuum element.  This can be 
done by the mesoscopic theory, where the domain of the field quantities is enlarged by 
an additional variable characterizing the internal degree of freedom connected to the 
internal structure of the material [2, 3]. The orientation of fibres in the considered cross 
section can be characterized by an average vector n, which is composed from the re-
spective vector field. The vector field refers to the arrangement of all fibres in consid-
ered cross section. The vector n should be defined using the spherical coordinate sys-
tem, as in 3D case the position of the vector n can be unambiguously determined only 
by taking into account both angles, i.e. the inclination angle (between the vector n and 
the surface normal) and the in-plane angle (azimuth angle). This parameter will be taken 
as an additional variable in the mesoscopic theory. The orientation distribution of fibres 
is relevant, because only the component of the stress vector parallel to the main orienta-
tion vector n causes fibres to work, i.e., in a sample where fibres are mostly parallel to 
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the direction of applied stress, the work of fibres is more pronounced than in a sample 
where fibres are mostly perpendicular to the stress direction.   

 
Local solution for aligned fibres according to Taya and Arsenault  

As a simplification, it can be considered, that all fibres in a volume element are uni-
formly distributed. In modelling a crucial point is the choice of theory. A possible mod-
el can be a simplified description of microstructure (empirical or semi-empirical theo-
ries) obtained by assuming that a model developed for a unit cell is distributed uniform-
ly throughout the material [1]. This is basis for the shear lag model, which describes the 
gross behaviour of a composite material consisting of a matrix with embedded short fi-
bres distributed uniformly and aligned in loading direction. The unit cell consists of ma-
trix material with a single representative fibre of length 2l and diameter 2r. The width 
2R of the unit cell is taken as the mean lateral separation of neighbouring fibres (Figure 
1). 

 

 

 

 

 

 

 

Figure 1. Shear lag model for aligned short fibre after Taya and Arsenault (1989) 

If the unit cell is elongated with uniaxial strain e along x direction, the matrix will exert 
the shear stress 0  or df /dx at the matrix fibre interface, which is proportional to the 
difference, ( )u v , if the axial displacements in the fibre and the matrix on the boundary  
of the unit cell are denoted by u and v respectively [1]. 
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where f is the axial stress in the fibre, h  is a constant, which will be determined later,  
and the local coordinate x  is measured from the midpoint of the cell. In the fibre, one 
dimensional Hooke’s law is valid 
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 f f

du
E

dx
  , (2) 

 
where Ef  denotes elastic modulus of the fibre. The applied composite strain e  is equal 
to dv/dx. Hence, from eqs. (1) and (2) the ordinary differential equation can be obtained  
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The general solution to eq. (3) is given by  
 
 1 2cosh sinhf fE e C x C x     , (4) 

where 
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and 1C  and 2C  are unknown constants. Applying boundary conditions, 

0constant ( )f   at x l and df /dx=0 at 0x  , the stress of the fibre is  
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It is noted in eq. (6) that 0 0  was used in the original derivation by H.L.Cox, 
implying the absence of additional anchoring at the end of the fibre. 0  may not be 
zero, if anchoring affects around fibre ends are strong as it can be with hooked ends. 
The value of 0  in this case will be proportional to the method of anchoring of fibre 
ends (mechanical, chemical etc.) and the stress field f in the fibre will not be uniform. 
     The average fibre stress f  is computed as 
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Consider next the displacement along x direction at an arbitrary point ( )y y  in the 
matrix, w , where ( )w y r u  , and ( )w y R v  . Force equilibrium at y r  and 
arbitrary point ( )y y  provides 
 
 02 2y r    . (8) 

 
The shear strain at y y ,  is related to 0  as  
 

 0

m m
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    , (9) 

 
where  is the shear stress in the matrix at y y , and mG  is the shear modulus of the 
matrix. Integrating eq. (9) from y r to y R , it can be obtained 
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From eqs. (1) and (10) constant h  is solved as 
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From eqs. (5) and (11)   is found as 
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     The factor   reflects the relative rigidity of the surrounding matrix in respect to the 
fibre. With   given by eq. (12) the average stress f  in the fibre can be calculated 
from eq. (7). In order to describe the gross behaviour of the compound material along 
loading x direction, the mean stress value c can be estimated by using the law of 
mixtures 
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i.e. 
 
  1 m fc f fV V     , (14) 

 
where m  and f  are interpreted as the average quantities in the relevant domain and 

fV  is the volume fraction of fibres. For a given applied strain e, one can assume, that 
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 m mE e  , (15) 

 
 c cE e  . (16) 

 
A substitution of eqs. (7), (16) and (15) into eq. (14) yields Young’s modulus of the 
composite cE  
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where 0  can be equal to zero, which means there is no load transfer at the fibre ends. 
The shear lag model presented by Taya and Arsenault (1989) excludes nonlocal effects. 
It is a usual effective-modulus theory, which describes the composite material by the 
classical Hooke’s law 
 
 c cE e  . (18) 

 
The whole theory is about the determination of the effective Young’s modulus Ec from 
the geometric and material data. Certainly, a nonlocal model can be generated using 
some ideas from Taya and Arsenault’s approach, but in the original form it is an exam-
ple for localization. 

 
Nonlocal solution for aligned fibres according to Becker and Bürger  

Another approach includes nonlocality [4]. Becker and Bürger (1975) have studied a 
similar problem assuming the fibres being in contact with the matrix at their endpoints 
only. Consider the uniaxial stretching over elastic material (elastisity modulus Em) in 
which parallel elastic fibres (elastisity modulus Ef, cross-section area is Af, length 2l) are 
embedded. X and *X are, respectively, the position of the cross-section and the right 
endpoint of the fibre from the origin in the reference configuration. The fibre at position 

*X extends from * 2X l  to *X  (Figure 2). 
     The number of fibres per volume (number density) n in the cross-section A at X  
composes the volume fraction, which is equal to following 
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Figure 2. Fibre reinforced material, after Becker and Bürger (1975) 

The fibres are glued to the matrix material at their endpoints only. Therefore, the stress 
in one fibre, which passes through the cross-section at X is equal to 

* *( ( ) ( 2 ) 2 ) / 2fE x X x X l l l   . The relation ( )x x X  or *( )x x X  defines the mo-
tion expressed by Lagrangian description according to which the material point X or 

*X is transferring to the spatial point x . For the average stress ( )c X within the whole 
cross-section area A follows 
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From the eq. (20), taking into account the integral (19) and the following substitutions: 
(1 2 ) (1 )f m f mnA l E V E     and 2f f f fnA l E V E  as well as / 1xe dx dX  , the next 
expression can be obtained: 
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As opposed to eq. (18), Becker and Bürger’s eq. (21) exhibits true nonlocal behaviour. 

The second stage of investigation of considered material could be concentrated on 
the analysis of cracked solid. The crucial points of this stage are separation of the whole 
stress between fibres and matrix and cracks propagation and growth. To solve the prob-
lem with stress distribution Becker and Bürger’s (1975) approach could be employed. 
 

Cracks propagation and growth 

Crack resistance of material (viscosity of fracture) characterizes the ability of material 
to resist the propagation of pre existing cracks. In case of SFRC propagation of cracks is 
also under research. In connection with this, it is useful to recall A.A. Griffith’s theory 
about rupture in solids. It is well known, that theoretical strength of solids, calculated by 
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some atomistic model, is much higher than the real one [6]. A.A. Griffith was the first 
who suggested that this phenomenon occurs due to the presence of microscopic flaws 
(discontinuities) in the real material. Griffith’s theory gives excellent agreement for brit-
tle materials, but not applicable for ductile ones. A group led by G. R. Irwin assumed, 
that plasticity should play an important role in the fracture of ductile materials.  In such 
materials, a plastic zone d develops near the tip of a crack (see Figure 3).  As the stress-
es are increasing in the material, the value of plastic zone is increasing as well until the 
crack is growing and the material behind the crack tip is unloading. The ability of mate-
rial to resist crack propagation is expressed by the stress intensity factor K (SIF) and the 
energy release rate G , i.e. the work for plastic deformation per unit of newly created 
crack surface [6]. Assume an infinite body, uniaxial stress field and the case of plane 
deformation. In considered instance, the critical value of the stress intensity factor 

IcK (fracture toughness) will be equal to following: 
 
 IcK c  , (22) 

 
where  denotes a uniform stress field, subscript I denotes mode I loading, i.e. plane 
strain (a tensile stress is normal to crack plane), c denotes a half of the length of the 
crack and d denotes the length of the plastic zone in front of the crack (Figures 3, 4). 
  
 

 

 

Figure 3. Plastic zone in front of the crack    Figure 4. The length of a crack 

In real materials, the stress near the tip of a crack is very high and exceeds the yield 
strength of the material, i.e. the local plastic yielding occurs. Hence, plastic yielding 
plays a significant role in the fracture process of materials.  

Dugdale and Barenblatt have offered a model to find the extent of plastic zone. They 
considered a long, slender plastic zone at the crack tip in plane stress. The strip model is 
founded on a crack of length 2 2 2a c d  , where d is the length of the plastic zone 
with a closure stress equal to ys , applied at each crack tip, see Figure 5. The size of d 
is chosen that the stress singularity vanishes at the end of the effective crack [11], i.e.  

 
     0dK K   ,        (23) 
 

where the definition of K and dK will be given below. 
     The estimation of stress intensity due to the closure stress may be implemented as-
suming a normal force P acting on the crack at a distance x from the centre line of the 
crack, see Figure 6.  
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Figure 5. Stresses near the tips of a crack 

 
 

 

 

Figure 6. Applied load in a distance x  

The resultant stress intensity factors at the right and respectively at the left crack tips are 
[11]: 
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The closure force within the plastic zone is: 
 
  ysP dx  . (25) 

 
Hence, the total stress intensity at each crack tip resulting from the closure stress is ob-
tained by replacing c with c d a  [11], i.e.  
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The stress intensity from the remote tensile stress is K a    and accordingly eq. 
(23) leads to 
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The formula (27) allows to determine the length of plastic zone in cases, when linear 
fracture mechanics is powerless [6]. The value d a c   can be quite large and it aims 
to infinity when ys   . On the contrary, for « ys  neglecting the higher order 
terms in the series development of the cosine, d is found as [6] 
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Solution of the singularity at the end of a crack, i.e. J-integral 
Consider W to be the strain energy density (the density of elastic energy), which de-
pends on the infinitesimal strain tensor ( , )ij ij i je e u  , where  ( , ) , ,1 / 2i j i j j iu u u   is 
the symmetric part of the displacement gradient [6]. It is approved that the integral, 
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Figure 7. J-integral around a crack in two dimensional deformation field 
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ij j in   is the traction vector defined according to the outward normal jn  along  , 

/iu x   is the displacement vector and ds is an element of arc length along  , does not 
depend on the path of integration between points A and B (Figure 7). 
     For the proof, it is necessary to show, that integral (29) vanishes for any closed path. 
On the other hand, it can be proved, that if points A and B are taken on different edges 
of a crack, then 
 
 J G  , (31) 
 
where /G U   is the strain energy release rate, which is equal to the ratio of change 
in the total elastic energy U , contained in the domain S  with boundary  , to the 
propagation of crack end to a distance   [6] (Figure 8). 

 
 
 

 

 

Figure 8. Propagation of a crack 

Crack propagation is accompanied by the work of plastic deformation G  (strain en-
ergy release rate), which is also called resistance force of crack propagation [6]. If 
G does not reach the critical value of cG for a given material, the crack is stable. Crack 
becomes unstable when G  reaches or exceeds the critical value of cG . In case of plane 
strain (mode I loading), connection between the critical value of strain energy release  
rate (toughness) and the critical stress intensity factor (fracture toughness) is  
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where   is Poisson’s coefficient. In general, to assess the stability of a crack it is possi-
ble to compare K  (the actual value of stress intensity factor) with cK  (the critical value 
of stress intensity factor in considered loading mode and material). For stabilized crack 

cK K  must be.  
      Crack growth begins when crack opening is critical and equal to certain value c [6]. 
Let’s consider ( ,0) ( ,0)u c u c    , where indexes “+” and “–“ denote opposite crack 
surfaces. By choosing the way of integration as in Figure 9, the following can be re-
ceived: *0, ij j idy n n    is the stress applied in normal direction, and further  
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Figure 9. The way of integration 

For determination of the critical value of IcK  it is necessary to measure c  in a moment 
when the crack begins to grow  
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Crack propagation in a composite with aligned fibres 

In the researched material crack growth is interrupted by metal fibres, which disturb rel-
ative displacements of crack edges. The crack can achieve the value of ic  when fibres 
will be broken in some distance   from the tip of a crack [6] (Figure 10).  
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Figure 10. Crack growth in composite with short fibres 

 
 

 

 

Figure 11. Force applied on a fibre, which is fixed in a matrix 
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The simplest assumption would be that friction forces  per unit of surface area bal-
ance the tension stresses in fibres and prevent pull out of fibres from the matrix. Let Pf   
be the force, which is applied to the tip of a fibre with radius r fixed in the matrix. This 
force is balanced by the uniform shear stress in a segment with length l .   

The equation of balance is 
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Hence, the lengthening of fibre segment with length l  in y direction considering one 
half of the crack side (Figure 10) and eq. (35) will be 
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If c  is the average stress of the composite and the crack opening is controlled only by 
fibres, then  
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where fV  denotes volume density of fibres content in the material. Considering the cor-
relation (36), it can be noticed, that the relationship between the stress in a zone near the 
tip of a crack and the relative displacements of crack edges will be 
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the Rice-Cherepanov’s integral the following value of the work for plastic deformation 
can be obtained 
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It is expected, that the crack begins to grow when f achieves the value of fibre tension 
strength. Assuming that c f fV  and 0C   [6] the following can be obtained  
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From eq. (40) follows, that resistance of crack propagation increases together with fibre 
strength and volume density of fibres content in the material. However, it does not mean 
there is a simple linear relationship. At the same time friction forces, which are equal to 
matrix shear resistance, should not be too high.  

The third stage of researched material could include the identification of fracture 
mechanics. The main idea here might be to introduce the damage parameter as a macro-
scopic quantity growing with progressive damage in such a way, that it should be possi-
ble to relate reducing effective area of cross section to the growth of the damage param-
eter [7, 10]. 

Theoretical background of classical analysis of concrete structures 

As it is already known, when considering concrete at microscale, the structure of this 
material is heterogeneous. But when reinforcement bars are added to the tensioned cross 
sections of concrete in macroscale it becomes an orthotropic material. The presence of 
fibres in fibre reinforced concrete makes it necessary to consider this material at meso- 
and microscales. Regarding to this, a variable characterizing the characteristic length of 
the inner structure of the material and associated with the orientation of fibres has to be 
added to the governing equations. Determining the arrangement of fibres in the matrix is 
the most important starting point for further development of design rules for fibre rein-
forced concrete structures. Due to different structural scales, theory of reinforced con-
crete structures cannot directly be applied to the fibre reinforced concrete. However, 
brittle behaviour of concrete matrix is a common feature for both materials influencing 
on both the cross-sectional level and on the level of material interfaces. These common 
features may be possible to utilize in the dimensioning methods for load bearing struc-
tures of steel fibre reinforced concrete. For this purpose the dimensioning principles of 
concrete structures with ordinary reinforcement are introduced in this paragraph. 

Experimental basis of the theory of resistance of reinforced con-
crete and calculation methods of concrete structures 

The dimensioning principles of reinforced concrete structures are built up on the exper-
imental data and the principles of mechanics proceeding from the stresses and defor-
mations of members in various loading stages [8]. 

 
Three stages of stress and deformation state of reinforced concrete 
members in case of pure bending 

Having loaded reinforced concrete member by gradually increasing loading, it is possi-
ble to observe three stages of stresses and deformations:  
Stage one (I): uncracked tension zone. In this stage tension stresses are taken both by 
concrete and reinforcement (Figure 12), where ,ct yf f  denotes respectively concrete and 
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Figure 12. Stage one (I) of stress [deformation [ state in reinforced concrete 

 reinforcement tension strength, c is the concrete stress in compression zone, 
' ',s s s sA A   the stress and the cross section area of reinforcement bars respectively in 

tension and compression zones, sE is the Young’s modulus of the reinforcement, ctu  is 
the concrete ultimate strain in tension, 1c  is the concrete maximum strain in compres-
sion, ',s s  is the reinforcement strain and y is the relative strain of tensioned rein-
forcement. Stage two (II): cracks in tension zone, but stress in compressed concrete re-
mains under its maximum strength (Figure 13).  

 
 

 

 

 

Figure 13. Stage two (II) of stress and deformation state in reinforced concrete, cf denotes con-
crete compression strength. 

Tension stresses are taken by: a) in cracked sections  by reinforcement and concrete 
above the crack; b) between cracks  by both concrete and reinforcement. 
Stage three (III): the stage of failure. As a result of an increasing external load, the stage 
two moves to the stage three and, as a consequence, plastic deformations are developing 
in the compressed concrete zone. The location of the maximum compression stress in 
concrete moves from the edge of a section to its centre. The reinforcement tension 
stresses exceed the yield strength. The ultimate strain of concrete cu  plays a significant 
role during this stage. Usually it limits plastic deformations that may develop in the re-
inforcement prior to failure. In design codes the stage three is often divided in to two 
parts (Figure 14). Case 1. The failure of reinforced concrete begins by yielding of the 
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Figure 14. Stage three (III) of stress and deformation state in reinforced concrete 

reinforcement in the tension zone and ends by breaking of concrete in the compression 
zone. This kind of failure has a plastic character. Case 2. The failure of members with 
excess content of reinforcement or mainly compressed members. The fracture occurs in 
compression zone before yielding of the steel reinforcement. The failure is brittle. 

Stress redistribution in statically indeterminate structures  

The essence of the method of stress redistribution in statically indeterminate structures 
consists of following: under some load value the stresses in tensioned (soft) reinforce-
ment achieve the yield limit. Together with the developing of plastic deformations in 
bars, the area of large local deformations, called plastic hinge, is developing in concrete. 

In statically determinate structures, the developing of plastic hinge may cause con-
siderable deflections and decreasing of compressed zone and, as a result, the compres-
sion stresses achieve their ultimate value leading to the collapse of the structure. Differ-
ently from statically determinate structures, in statically indeterminate structures with 
the advent of plastic hinge, redundant connections prevent the rotation of parts of struc-
tural system in relation of each other and redistribute external loading within the system.   

Stage IIa occurs, when stress in tensioned reinforcement achieves the yield limit, but 
concrete stress does not achieve its ultimate value (Figure 15). At the same time, defor-
mations in plastic hinge are increasing, but the value of bending moment remains un-
changed 
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where cz is the distance (moment arm) between the pair of internal forces. The fracture 
of the structural member will occur when plastic hinges will be developed in all redun-
dant connections and redistribution of external forces is not possible anymore. 

 
 

 

 

 

 

Figure 15. Stage IIa at the section with plastic hinge 

Comments 

As it was mentioned, concrete with conventional reinforcement behaves like an ortho-
tropic material. The question concerning the orientation of bars is not under considera-
tion, as usually predicted tension in beams or columns coincides with the actual rein-
forcement. In other words, the principle of determinism can be applied. As a difference 
from a common reinforced concrete, steel fibre reinforced concrete is anisotropic. The 
level of anisotropy relies primarily on the degree of fibre orientation. If it would be pos-
sible to determine the rule for fibres orientation in the matrix considering reasonably the 
type of structure, casting method and the rheology of mixture, the calculation of cross-
sectional capacities can carried out similarly as done for conventional reinforced con-
crete cross-sections. However, the issue of anchorage failure must be studied separately. 
A more precise approach needs to take into account the anchorage length of fibres in the 
matrix, which depends a lot on the matrix-fibre interface and shape of fibres and, addi-
tionally, the work done by the matrix should also be considered. From the latter, the dif-
ference between conventional and fibre reinforced concrete rises once again: in com-
mon reinforced concrete the tension ability of concrete is simply not taken into account, 
but reinforcement anchorage is assumed also in tension zone. In general, designing of 
conventional reinforced concrete structures involves the work of two separate materials: 
concrete and steel.  Each of the materials has its own role for structural capacity: one 
deals with compression and another with tension. In case of steel fibre reinforced con-
crete the situation turns to integration of two materials, what finds its explanation in the 
theory of composites. 

 

1 0,35%c cu  

1%s su  

cz

 
y sf A

 cN

c cf Stage IIa 

M



 
 

61 
 

Possible solutions 

After reviewing the researched material from the point of microstructural material and 
from the already established theory of analysis of concrete structures, it can be conclud-
ed, that a valid, full and objective method, reflecting the behaviour of steel fibre rein-
forced concrete, does not exist. Fracture mechanics and corresponding calculation 
methods of steel fibre reinforced concrete are still open questions. The classical theory 
of reinforced concrete completely ignores the orientation of reinforcement bars. As it 
was stated above, certain important properties of steel fibre reinforced concrete directly 
depend on fibres orientation in the matrix. In order to predict the arrangement of fibres 
in the matrix, certainly both theoretical and practical work must be done. Concerning 
fibre orientation, a temping approach to this problem could be to employ the theory of 
probability and implement some initial assumptions about the location of fibres. How-
ever, the most valuable and reliable information about the orientation of fibres in the 
matrix must come from experiments as the orientation is influenced by the manufactur-
ing process of concrete mass with steel fibres.  

The diagram, shown in the Figures 16a and 16b may be a conclusion of this article. 
It shows the formation of composite and the main present ambiguities, which prevent 
from using SFRC in load-bearing structures safely. 
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Figure 16. The formation and the main present ambiguities of steel fibre reinforced concrete. 
(The figure continues on the next page.)
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Figure 16 (continued). The formation and the main present ambiguities of steel fibre reinforced 
concrete.
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