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Principle of virtual work and the discontinuous 
Galerkin method 

Jouni Freund and Eero-Matti Salonen 

Summary. The article describes the application of the so-called discontinuous Galerkin 
method to bar and beam trusses. The formulation is based on the principle of virtual work 
modified by additional interface terms. This extended principle of virtual work and 
discontinuous approximation give the usual discontinuous Galerkin method as a particular case 
and allows one to proceed in the same manner as with the standard principle of virtual work and 
continuous approximation. The key features are a two-field formulation suitable for structures 
combining different engineering models, and a computationally efficient one–field 
implementation. Particular emphasis is placed on explaining the logic of the terms of the 
extended principle without too many technical details that may shadow the underlying idea.  
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Introduction 

Main contents 

The so-called discontinuous Galerkin finite element method has obtained more and 
more attention in recent years. In it the finite element representations for certain 
quantities are allowed on purpose to have the possibility of discontinuities. This gives 
flexibility to the approximation. For example, the degree of approximation can vary 
from element to element as may be locally needed without problems since strict 
continuity at the element interfaces is not required. On the other hand, for a fixed mesh 
and degree of polynomials in the approximation, the degrees of freedom of a 
discontinuous Galerkin method often exceed considerably that of the standard Galerkin 
method, although the two methods converge roughly at the same rate. Implementation 
on an existing software designed for continuous approximations may not also be 
straightforward. 
 The purpose of this article is to try to explain to a reader not familiar with the 
discontinuous Galerkin method how the maybe initially mysteriously looking terms in 
the various equations can be motivated without going deep into analysis of the solution 
method properties and mathematics needed therein. We further concentrate on structural 
applications and especially on truss applications, as the writers are not aware of attempts 
to use the method in complex truss geometry. The two-field formulation presented 
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allows one to treat structures combining different engineering models straightforwardly 
much in the same manner as when using the standard Galerkin method. 
 The other purpose is to discuss the ways to make a discontinuous Galerkin method 
competitive with the standard Galerkin method in computational simplicity. Although 
introduction of an additional unknown may seem initially to be a bad idea in this 
respect, it turns out to be the key feature. The first option is based on an additional 
algebraic relationship between the fields and leads to what is called here as the standard 
discontinuous Galerkin method. An alternative option, based on static condensation on 
the element level, is a novelty in connection with the discontinuous Galerkin method, as 
far as the writers are aware of. 
 As a first step, the method is explained starting from a simple setting and detailed 
explanations. Second, the outcome is generalized to an extended principle of virtual 
work. The principle corresponds to local forms of the balance laws of mechanics written 
under less severe continuity assumptions than usually. To be more specific, differential 
equations are replaced by physically correct jump conditions on lines or surfaces of 
discontinuities. In the third and final step, the generic extended principle of virtual work 
is applied to bar- and beam-trusses. These applications indicate that the extended 
principle of virtual work and discontinuous approximation can be used much in the 
same manner as the standard principle of virtual work and continuous approximation. 
 
Nitsche’s formulation 

Some references consider an article by Nitsche [1] as containing the main ingredients on 
which the discontinuous Galerkin method can be based. We therefore start here with an 
analogous setting consisting of the equation set 

 

  0s b∇⋅ + =


   in Ω , (1) 
 

  0t t− =   on tΓ , (2) 
 

  0u u− =   on uΓ , (3) 
 

in which t n s= ⋅
 

, n  is the unit outward normal vector to Γ  and the constitutive 
equation is taken as 

 

  s S u= ∇


.  (4) 
 

The equations may be considered to represent for instance the small transverse 
deflection ( , )u u x y=  of a stretched membrane in a plane domain Ω  with a given 
uniform tension force S per unit length. The traction t is given on the traction boundary 

tΓ . Similarly, the deflection u  is given on the displacement boundary uΓ . The disjoint 
boundary parts tΓ  and uΓ  form together the whole boundary Γ . The generic symbols 
Ω  and Γ  are commonly in use in the finite element literature although if wanted they 
could be replaced here say with A  and s. The meaning of the rest of the notations in (1) 
to (4) is obvious. In what to follow, we should remember that ( )s s u=

 

 and ( )t t u= , 
that is, these quantities depend on the deflection. However, to shorten the formulas, 
these dependencies are usually not shown. 
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 One well-known conventional starting point towards the finite element treatment of 
the problem described by equations (1) to (4) is to write down the functional (potential 
energy of the system corresponding to the standard Galerkin method when minimized in 
a finite dimensional space) 

 

  
t

G 1 d d d
2

V s u b u t u
Ω Ω Γ

Ω Ω Γ= ⋅∇ − −∫ ∫ ∫


  . (5) 
 

Normally u in (5) is demanded to satisfy in advance (3). The variation of (5) gives first  
 

  
t

G d d dV s u b u t u
Ω Ω Γ

δ δ Ω δ Ω δ Γ= ⋅∇ − −∫ ∫ ∫


  . (6) 
 

Integration by parts in the first term of the expression gives further the identity 
 

  
t

d d ( ) ds u t u s u
Ω Γ Ω

δ Ω δ Γ δ Ω⋅∇ = − ∇⋅∫ ∫ ∫
  . (7) 

 

It is to be noted that the boundary integral is here only over tΓ  since due to (3), 0uδ =  
on uΓ . Collecting the terms above, the variation is found to become 

 

 
t

G ( ) d ( ) dV s b u t t u
Ω Γ

δ δ Ω δ Γ= − ∇⋅ + + −∫ ∫


  . (8) 
 

Setting the requirement G 0Vδ =  for arbitrary uδ  gives the field equation (1) and the 
traction boundary condition (the so-called natural condition) (2). On the basis of these 
results, the standard steps applied in the conventional finite element method with 
continuous approximation making use of (5) can be understood. 
 Nitsche changed the setting described above by not demanding u  to satisfy in 
advance equation (3) in the variational principle. The change can be performed as 
follows. Let us alter the situation by first using the well-known Lagrange multiplier 
method. Thus we consider (3) as a constraint on functional (5) and use a modified 
functional 

 

 
u

L G ( )dV V u u
Γ

λ Γ= + −∫  , (9) 
 

where λ  is the Lagrange multiplier. When we now take the variation, we obtain with 
respect of the right-hand side of (6) the extra terms 

 

  
u u

d ( )du u u
Γ Γ

λδ Γ δλ Γ+ −∫ ∫  . (10) 
 

Further, in the integration by parts the boundary term in the manipulation (7) is now 
over the whole Γ  as constraint (3) is not put in advance on u and uδ  is thus arbitrary 
also on uΓ . We obtain 

 

 L ( ) dV s b u
Ω

δ δ Ω= − ∇⋅ +∫


  
 

 
t u
( ) d [( ) ( )]dt t u t u u u

Γ Γ
δ Γ λ δ δλ Γ+ − + + + −∫ ∫  . (11) 
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Here uδ  and δλ  and are arbitrary. We can deduce now equations (1), (2) and (3) and 
further, the interpretation 

 

  tλ = − . (12) 
 

This gives the possibility to substitute result (12) back into (9) to arrive at the functional 
 

 
u u

N G 21( )d ( ) d
2

V V t u u u u
Γ Γ

Γ τ Γ= − − + −∫ ∫  . (13) 
 

The additional last term which has emerged on the right-hand side is explained as 
follows. Deeper mathematical analysis shows that for the formulation to work properly 
in finite dimensional cases (in the finite element method) some additional weighting 
should be put on the satisfaction of constraint (3). This is achieved by adding on the 
right-hand side of (9) the least-squares (boundary) functional (the so-called penalty 
term) 

 

 
u

LSB 21 ( ) d
2

V u u
Γ
τ Γ= −∫  , (14) 

 

where τ  is a non-negative parameter which may vary on uΓ . It is seen that demanding 
the variation of (14) to vanish gives immediately equation (3). It may be noted that the 
factor 1/ 2  in (14) is used here just for aesthetic reasons and is not essential as the 
magnitude of the term depends ultimately on the selection of τ . Expression (14) is in 
detail 

 

 
u u u

LSB 2 21 1d d ( ) d
2 2

V u u u u
Γ Γ Γ
τ Γ τ Γ τ Γ= − +∫ ∫ ∫  . (15) 

 

As the last term is a constant, it will disappear when the variation is taken and, if 
wanted, it can thus be neglected. In [1], the corresponding term has been dropped. We 
prefer the more compact form (14). 
 The formulation by Nitsche in [1] has now produced the two last extra integrals in 
(13). Factors like τ  are called in the literature usually “stabilization parameters” or 
“tuning parameters” or “weightings” and much research has been devoted on the 
selection of appropriate values for them. The selection of the parameter should make the 
expression dimensionally homogeneous and ensure that the boundary terms imply that 
the essential boundary condition is satisfied also in a finite dimensional space. In fact, 
from the structural point of view, expression (14) can be interpreted here as the strain 
energy contribution to the total potential energy from an imaginary spring with a spring 
constant τ attaching the structure to the surroundings. 
 
Discontinuities inΩ  

A line loading in the membrane problem or a point force in a string problem may induce 
a discontinuity in internal force. The discontinuity in force or even in transverse 
deflection may also be due to function set wherein the solution is sought and therefore 
the cause can be called as numerical. In the discontinuous Galerkin method, 
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discontinuities appear inside the computational domain along element interfaces as the 
finite dimensional set of function does not have any built-in continuity restrictions at the 
element interfaces. Here, we do not make difference between a physical or numerical 
source but rather try to treat both possible sources on the same footing. 
 
 

                           

 

 

 

 

 

 
Figure 1 Domain consisting of two sub-domains. 

 
 To explain the notation to follow, we consider next the domain of Figure 1. Just one 
line of discontinuity crosses the domain dividing it into two sub-domains Ω−  and Ω+  
or with a more compact notation eΩ  { , }e E∈ = + − . With the finite element method in 
mind, the sub-domains could be considered as two large elements and IΓ  the common 
interface of the two elements.  
 The unknown in the membrane or string problem is the transverse deflection u , 
which is considered to be continuous by its nature. This is represented mathematically  

 

  0u u u+ −≡ − =   on IΓ ,  (16) 
 

where |u u Ω± ±=  (with the restriction notation) denote deflections inside sub-domains 
Ω± . To be precise, u±  in (16) mean limit values at IΓ  taken from Ω±  but we omit the 
detail as technical one. The continuity condition (16) can alternatively be written in the 
form 

 

   
0

0

u u

u u

+ ∗

− ∗

 − =

 − =

  on IΓ , (17) 

 

and the displacement condition 0u u− =  on uΓ  can be expressed  
 

   
0

0

u u

u u

∗

∗

 − =

 − =



  on uΓ . (18) 

 

Finally, we may express (17) and the first equation of (18) in a concise form 
 

   0eu u∗− =   on Γ , (19) 
 

x  

y

Ω+  Ω−  

n−n+

IΓ

Γ

Γ

+−  
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in which the superscript e takes as its values all the indices of the sub-domains 
{ , }E = + −

 
having a point p Γ∈  in common. In the example case of Figure 1, 

p { , }E = + −
 Ip Γ∈ , p { }E = +

 
on uΓ  of Ω+ , and p { }E = −

 
on uΓ  of Ω− . Now we 

consider Γ  as the entire boundary consisting of the interior and exterior boundaries. 
This is consistent with the usage of Γ in the previous chapter as there the interior 
boundary did not exist. Above we have introduced an interface displacement u∗  defined 
everywhere on the sub-domain boundaries. The use of an additional unknown of this 
type seems to be a novelty in connection with a discontinuous Galerkin method 
although the idea of using a frame approximation has been discussed earlier e.g. in [2] 
and [3].  
 We try now to extend the Nitsche’s idea of treating the displacement boundary 
condition in [1] to discontinuities inside the domain with the interface displacement 
concept. Instead of equations (1) to (3) , we assume the following set 

 

  0s b∇⋅ + =


   in I\Ω Γ , (20) 
 

  0e
e t t− + =∑    on

 u\Γ Γ , (21) 
 

 0eu u∗− =   on Γ ,  (22) 
 

 0u u∗ − =   on uΓ ,  (23) 
 

in which u t IΓ Γ Γ Γ= ∪ ∪ . The representation is implied by the generic balance laws 
of mechanics: differential equation (20) is obtained only under certain continuity 
assumptions on s  if the material element is chosen inside the membrane and therefore it 
is not valid on Γ . If a highly localized force b  is idealized as line loading t  acting 
on IΓ  or tΓ , the outcome is (21) where the sum is over set pE E⊆ . As discussed in 
connection to the simplified setting of Figure 1, the set contains the indices of the sub-
domains having point p Γ∈  on their boundaries. In (22), the index takes all the values 
in pE . In string and membrane applications, pE  contains one or two elements but later 
–in truss applications– any number of sub-domains may have point p Γ∈  on their 
boundaries. 
 We start with the functional 

 

 
I I u

L
\ \ \

1 d d d
2

V s u b u t u
Ω Γ Ω Γ Γ Γ

Ω Ω Γ∗= ⋅∇ − −∫ ∫ ∫


    
 

 
u

( )d ( )de e
e u u u u

Γ Γ
λ Γ λ Γ∗ ∗+ − + −∑∫ ∫  . (24) 

 

External potential energy expression has now a contribution from t  also on IΓ . The 
constraints (22) and (23) have been taken into account with the Lagrange multipliers eλ  
e E∈  and λ . Above we make difference between a sum inside integral and outside of 
it. In the latter case, the interface points are excluded. This will be indicated by notation 

 

  I\
d de

e
e Ef f

Ω Γ Ω
Ω Ω∈≡∑∫ ∫ . (25) 
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If a sum is placed inside integral, only the sub-domains having a point in common are 
accounted for. This will be indicated by notation 

 

  p
d ( )de

e e Ef f
Γ Γ

Γ Γ∈≡∑ ∑∫ ∫ . (26) 
 

The somewhat unconventional definition (26) becomes understandable later, when more 
than two sub-domains may share an interface point. 
 The variation of (24) is  

 

 
I I u

L
\ \ \

d d deV s u b u t u
Ω Γ Ω Γ Γ Γ

δ δ Ω δ Ω δ Γ∗= ⋅∇ − −∫ ∫ ∫


   
 

 
u

[ ( ) ( )]d [ ( )+ ]de e e e
e u u u u u u u

Γ Γ
δλ λ δ δ Γ δλ λδ Γ∗ ∗ ∗ ∗+ − + − + −∑∫ ∫  . (27) 

 

The steps needed are rather tedious but to gain confidence in the emerging formulas we 
obviously should go through them. Integration by parts over the sub-domains gives the 
identity 

 

 
I I\ \

d d ( ) de e
es u t u s u

Ω Γ Γ Ω Γ
δ Ω δ Γ δ Ω⋅∇ = − ∇⋅∑∫ ∫ ∫

   (28) 
 

and the variation is found to become  
 

 
I u

L
\ \

( ) d ( ) de
eV s b u t u

Ω Γ Γ Γ
δ δ Ω λ δ Γ∗= − ∇ ⋅ + − +∑∫ ∫



   
 

 ( ) d ( )de e e e e
e et u u u

Γ Γ
λ δ Γ δλ Γ∗+ + + −∑ ∑∫ ∫  

 

 
u u

( )d ( ) de
eu u u

Γ Γ
δλ Γ λ λ δ Γ∗ ∗+ − + −∑∫ ∫ . (29) 

 

We obtain thus from the requirement L 0Vδ =  the correct field equations and the 
displacement continuity equations (22) and (23). Further, we have the interpretations 

 

  e etλ = −    on Γ , (30) 
 

  e
eλ λ=∑   on uΓ  (31) 

 

and when these are applied in (29) we finally obtain the satisfaction of (21). The next 
step is to substitute (30) and (31) back to (24) to obtain the functional 

 

 
I I u

L
\ \ \

1 d d d
2

V s u b u t u
Ω Γ Ω Γ Γ Γ

Ω Ω Γ∗= ⋅∇ − −∫ ∫ ∫


   
 

 
u

( )d ( )de e e
e et u u t u u

Γ Γ
Γ Γ∗ ∗− − − −∑ ∑∫ ∫  . (32) 

 

 Summarizing, the relevant functional is thus 
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 G JI JB LSI LSBV V V V V V= + + + + , (33) 
 

where the standard contribution, taking into account equation (20) and partly equation 
(21), is 

 

  
I I u

G
\ \ \

1 d d d
2

V s u b u t u
Ω Γ Ω Γ Γ Γ

Ω Ω Γ∗= ⋅∇ − −∫ ∫ ∫


  . (34) 
 

Points where the integrand may be discontinuous have explicitly been excluded as 
indicated by notation I\Ω Γ . The jump contributions taking into account partly 
equation (21) and equations  (22) and (23) are 

 

 JI ( )de e
eV t u u

Γ
Γ∗= − −∑∫ , (35) 

 

 
u

JB ( )dV t u u
Γ

Γ∗= − −∫  . (36) 
 

 We have not yet performed a similar step as in equation (13) of putting extra weight 
on the constraints. Thus we can speculate on using additionally the least-squares 
interface and boundary functionals 

 

  LSI 21 ( ) d
2

e e
eV u u

Γ
τ Γ∗= −∑∫ , (37) 

 

  
u

LSB 21 ( ) d
2

V u u
Γ
τ Γ∗= −∫  , (38) 

 

where parameters eτ  and τ  are dimensionally correct but otherwise arbitrary. Now, 
expressions (37) could also be interpreted as the strain as the strain energy contributions 
from imaginary springs with spring constants eτ attaching the sub-domains to the frame. 

 We notice that the exact solution to equations (20) to (23) makes all the terms in 
excess to GV  vanish. To simplify the expressions, one may impose additional 
assumptions on the function set wherein the stationary value of the functional is sought 
in the same manner as with the standard formulation. For example, the displacement 
boundary condition 0u u∗ − =  on uΓ  can be satisfied in the strong sense so that terms 
(36) and (38) vanish. The selection is particularly useful in the one-dimensional case 
when Γ consists of points as no interpolations are involved. 

Principle of virtual work for the membrane 

Extended principle of virtual work 

For comparison with the presentation to follow, we may represent the formulation (33) 
also using the principle of virtual work. Then the goal is to find ,u u∗  such that 

 

  0Wδ =   ,u uδ δ ∗∀ . (39) 
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The detailed specification of the function set wherein the solution is sought is a 
technical detail in this connection. Roughly, the function set is assumed to be consistent 
with the assumptions used in the strong form. The virtual work expression consists of 
the standard, jump, and least-squares contributions each giving two terms to  

 

  INT EXT JI JB LSI LSBW W W W W W Wδ δ δ δ δ δ δ= + + + + + .  (40) 
 

This will be called here as extended principle of virtual work to discern it from the 
standard form. 
 The standard contributions of internal and external forces, taking into account 
equation (20) to and partly equation (21) are  

 

 INT
\

dW s u
Ω Γ

δ δ Ω= − ⋅∇∫
 ,    (41) 

 

 
u

EXT
\ \

d dW b u t u
Ω Γ Γ Γ

δ δ Ω δ Γ∗= +∫ ∫  .  (42) 
 

The jump contributions taking into account partly equation (21) and equations (22) and 
(23) are 
 

 JI [ ( )]de e
eW t u u

Γ
δ δ Γ∗= −∑∫ ,   (43) 

 

 
u

JB [ ( )]dW t u u
Γ

δ δ Γ∗= −∫  ,   (44) 
 

and the least-squares contributions are  
 

 LSI 21 [ ( ) ]d
2

e e
eW u u

Γ
δ δ τ Γ∗= − −∑∫ , (45) 

 

 
u

LSB 21 [ ( ) ]d
2

W u u
Γ

δ δ τ Γ∗= − −∫  . (46) 
 

 The principle of virtual work can be taken as the stationarity condition of functional 
(33), with a slightly modified notation and, therefore, the two formulations are 
equivalent in the present case. However, the principle of virtual work makes sense also 
when a stationary principle of a functional does not exist and therefore it can be taken as 
more general.  When expanded with respect to the δ −operator, the jump contributions 
become  

 

 JI [ ( ) ( )]de e e e
eW t u u t u u

Γ
δ βδ δ δ Γ∗ ∗= − + −∑∫ ,   (47) 

 

 
u

JB [ ( ) ( )]dW t u u t u u
Γ

δ βδ δ δ Γ∗ ∗= − + −∫   ,   (48) 
 

in which 1β =  and 0uδ = . If parameter β  is given some other value, consistency 
with (20) to (23) is not affected, but the principle of virtual work does not represent a 
stationarity condition of any functional. The sign change modification 1β = −  discussed 
e.g. in [4], [5] has a favorable effect on stability properties on finite dimensional spaces, 
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and one may speculate that parameter β  can be used to balance the accuracy and 
stability of the discrete method.  
 The virtual work equation (39) is satisfied by the solution to equations (20) to (23) 
and therefore the formulation is consistent. Standard manipulation using integration by 
parts and fundamental lemma of the calculus of variations show that the principle 
implies equations (20) to (23) and therefore, the two representations are equivalent. 
Besides that, one would like to show that the extended principle of virtual work gives an 
unique solution with, say, piecewise continuous polynomial approximations to the 
unknown u  and u∗ . This theme is, however, out of the scope of the present article.  
 
One-field formulation 

The extended principle of virtual work discussed in the previous section does not 
require inter-element continuity of the approximation in a finite element application, but 
as a drawback involves separate approximations for elements and their interfaces. From 
the practical viewpoint, this makes the method less attractive than a one-field 
formulation. 
 The usual Galerkin method would be obtained by selecting the interface 
displacement to be the restriction of element displacement to Γ  i.e. by using condition 
 

  eu u∗ =   on Γ     (49) 
 

in the virtual work expression. Then also the approximation should be continuous to be 
consistent with the assumptions of the formulation. A slightly less restrictive algebraic 
relationship, along the same lines, follows from  

 

  ( ) 0e
e u u∗− =∑   on Γ .   (50) 

 

The selection can be motivated e.g. as follows. As τ  is a free parameter of the 
formulation, one may consider term (37) as constraint or penalty term and let τ →∞  so 
that the minimizer of (33) essentially satisfies (50). If, as in most cases, the number of 
terms in the sum is two on IΓ  and one on I\Γ Γ , the equation gives the mean value 
u u∗ =  on IΓ  and u u∗ =  on I\Γ Γ . With these relationships the virtual work 
expressions (43) and (44) become the usual terms of the standard discontinuous 
Galerkin method 

 

 JI 1 [ ]d
2

W t u
Γ

δ δ Γ= ∫    ,   (51) 
 

 
u

JB [ ( )]dW t u u
Γ

δ δ Γ= −∫  .   (52) 
 

The least-squares contributions associated with jump contributions take also the familiar 
forms 

 

 LSI 1 [ ]d
4

W u u
Γ

δ δ τ Γ= −∫     , (53) 
 



232 
 

 
u

LSB 1 [( ) ( )]d
2

W u u u u
Γ

δ δ τ Γ= − − −∫   , (54) 
 

assuming that eτ τ= . A discontinuous Galerkin method of this type is known to share 
the convergence and stability properties of the standard method based on a continuous 
approximation [5], [6]. Although an algebraic relationship like (50) is simple in the 
elastic membrane or string problem, the outcome can be quite complex when a 
structural model combines beams, plates, etc. Also the improvement in computational 
simplicity is not enough to make the method competitive with the standard Galerkin 
method. 
 We suggest here a quite different approach based on the elimination of element 
approximation eu  without additional restrictions like (50). Then manipulations are not 
possible on the virtual work expression level, but they are rather performed in discrete 
form of element contributions  

 

  

Te ee e e e
e

e
W

δ
δ

δ

∗

∗ ∗ ∗∗ ∗ ∗

               = − −                    

a K K a F

a K K a F
 (55) 

 

in which ea  and ∗a are the parameters of the element and interface approximations, 
respectively. Expression (55) can be manipulated into  

 

  1( ) ( )e ee e e− ∗ ∗= − −a K K a F , (56) 
 

  T 1 1( ) [{ ( ) } { ( ) }]e e ee e e ee eWδ δ ∗ ∗∗ ∗ − ∗ ∗ ∗ ∗ −= − − − −a K K K K a F K K F  (57) 
 

so that the final virtual work expression is obtained by summing the element 
contributions of expressions (57) containing only the parameters of interface 
approximations. After solving these, the parameters of element approximations follow 
from (56). Then, the computational work is dominated by the number of parameters of 
interface approximations which roughly coincides with that of the standard method. In 
principle, one may combine a low order interface approximation with a high order 
element approximation and use a discontinuous Galerkin method without much 
computational overhead, although accuracy may be restricted by the interface 
approximation. As far as the writers know this type of elimination procedure has not 
been put into practice although the possibility has been mentioned already in [2]. 
 The implementation used in the application examples to be discussed later, makes 
use of the elimination method, in which the extended principle of virtual work is used as 
it is. As an attractive feature, the parameters of element approximations are treated as 
internal variables not necessarily visible to the user of software at all. From the user 
viewpoint, the implementation looks exactly like the one based on a continuous 
approximation with additional parameters defining the polynomial degree of element 
approximations. 
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Figure 2 Transverse displacement /u U  of a string as function of /x L . Exact solution in blue 
line, element solution in black line, and interface solution in black markers. 
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String application example 

As a preliminary example, the method is applied to the one-dimensional string problem 
on ]0, [LΩ =  with a constant S , sinusoidal b  and a specified value of u  on the 
boundary u {0, }LΓ = . Exact solution to the problem is given by 

 

 sin(2 )u x
U L

π= , (58) 
 

where U is the maximum transverse deflection. The discrete solution method is based 
on the extended principle of virtual work and piecewise polynomial approximation of 
degree p  inside the elements without any continuity restrictions on IΓ . The 
stabilization parameter expression was chosen as  

 

  S
h

τ α= ,   (59) 
 

in which h  is the element size and 0α > . 
 Discrete solutions for some representative selections of stabilization parameter α , 
symmetry parameter β , number of elements n , and polynomial degree of 
approximation p  are compared to the exact solution in Figure 2. The interface solution 
with 1β =  is exact and therefore also independent of α , p  and n , which was verified 
by solving a set of discrete problems with the exact arithmetic of Mathematica 
environment. Therefore, large α  does not mean numerical troubles when 1β = . For 
large values of α , the element solution is practically continuous no matter the 
polynomial degree 1p ≥  and independent of β . The numerical solution by non-
symmetric formulation 1β = −  behaves much in the same manner, although the 
interface solution is not exact as with the symmetric formulation.  
 The precise roles of parameters α  and β  were studied from analytical solutions to 
the discrete problem. As the outcome, the minimum value of α  for stability increases in 
p  according to (save a positive multiplier) 

 

 min ( 1)p pα β= + . (60) 
 

Therefore, if β  is chosen to be negative, any positive value of α suffices for stability 
(but not necessarily for accuracy). The same conclusion follows also from a more 
careful stability analysis [5]. The selection 

 

 4( ) 10 max{ ( 1) ,1}p p pα β= ⋅ +  (61) 
 

based on (60) will be used later in connection with examples where the main interest is 
not in the effect of α .  

Principle of virtual work 

Some notations 

We now try to generalize the approach described in the previous chapter to linear 
elasticity. The goal is to use the extended principle of virtual work and discontinuous 
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approximation in the same manner as the standard principle of virtual work and 
continuous approximation. A coordinate system invariant representation based on 
vectors and dyads, denoted a  and a , will be used to keep the expressions concise. 
There, double dots in expression :a c  means double inner product and conjugate dyad 

ca , defined by ca c c a⋅ = ⋅
     c∀ , represents transpose. If ca a=

  , the dyad is taken 
symmetric and, if ca a= −

   anti-symmetric. The double inner product of a symmetric 
and anti-symmetric dyad a  and c  satisfies : 0a c =

 

. The usual rules of vector algebra 
apply and e.g. the double inner product can be interpreted as just two inner products. In 
a Cartesian coordinate system, where i j ije e δ⋅ =

 

 (Kronecker delta), the detailed 
component representations of conjugate dyad and double inner product are 

 

  c , j i iji ja e e a=∑   ,   (62) 
 

  c , , ,: ( ) : ( )i j ij l k kl ij iji j k l i ja c e e a e e c a c= =∑ ∑ ∑      .   (63) 
 

 The integration by parts formula, needed in connection with a linear elasticity 
problem,  

 

  c( ) d d : ( ) d
V A V

a c V n a c A a c V∇⋅ ⋅ = ⋅ ⋅ − ∇∫ ∫ ∫
      

, (64) 
 

assumes that a  and c  are continuous in V  (or have even continuous first derivatives in 
connection with the fundamental theorem of calculus). In the present context, continuity 
assumption of (64) does not hold as it is, but V consists of disjoint sub-domains wherein 
(64) is valid. Then the integration by parts formula can be written as   
 

 
I I

c\ \
( ) d d : ( ) deV A A V A

a c V n a c A a c V∇⋅ ⋅ = ⋅ ⋅ − ∇∑∫ ∫ ∫
       ,  (65) 

 

where I\V A  is the union of the sub-domains and A  consist of the interior boundary IA  
and of the exterior boundary V∂ . If IA =∅ , as in connection with (64), A V= ∂ . The 
sum is over the sub-domains having a point p A∈  on their boundaries. On physical sub-
domain interfaces or interior boundary the number of those is two and on the exterior 
boundary one. In connection with engineering models and truss-like structures, the 
number of terms may exceed two.  
 
Standard form 

The principle of virtual work in its standard form states that the sum of the virtual works 
of internal forces and external forces acting on a body is zero for any kinematically 
admissible virtual displacement. In mathematical notation 

 

 INT EXT 0W W Wδ δ δ= + =   uδ∀ 

 (66) 
 

in which the virtual work of the internal forces is given by (small displacement theory is 
assumed) 

 

 INT
c: d

V
W Vδ σ δε= −∫

  (67) 
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and that of the external forces is 
 

 
t

EXT d d
V A

W b u V t u Aδ δ δ= ⋅ + ⋅∫ ∫




 

  . (68) 
 

The meaning of the notations should be rather obvious but some comments are in place. 
First, no variations of quantities called internal work or external work are involved. The 
left-hand sides are just short-hand notations for the expressions appearing on the right-
hand sides. Second, quite often in the literature, the minus sign is not used in the 
definition of the internal virtual work. Then the corresponding term appears on the other 
side of virtual work equation. In what to follow, some expression can be taken as 
variations of some other expression and some should be considered independent. To 
make difference with the two meanings of the delta-symbol, we use the operator 
notation [ ]Vδ  with brackets in the former case and omit the brackets when we mean an 
independent quantity like Wδ . 
 We will recall shortly how the above expressions are arrived at. The well-known 
local forms of the balance laws of momentum, moment of momentum and the additional 
displacement restriction on the boundary   

 

 0 inb Vσ∇⋅ + =




 , (69) 
 

 c 0 in Vσ σ− =
  ,    (70) 

 

 t0 ont t A− =
 

 . (71) 
 

 u0 onu u A− =
 

 , (72) 
 

in which t n σ= ⋅


   and n  is the unit outward normal vector to A , are taken as the 
governing equations. The balance law of moment of momentum excludes volume 
moments in its present form (70).  
 We remember the important point that the principle of virtual work is valid for a 
body irrespective of the constitutive law of the material of the body. This is reflected in 
equations (69) to (71) as no material law appears there. Naturally, to solve an actual 
problem, we must introduce at some level information about the material behavior, as 
we did in equation (4). Preferably, this should be done as late as possible to keep the 
formulation as general as possible. Here we proceed thus assuming that the stress σ  
finally depends in some way through the constitutive law on the displacement u . 
However, in most to follow, we do not show directly this dependence. Also, the 
constitutive equation is assumed to satisfy equation (70) ‘a priori’ and therefore (70) 
does not enter into the discussion. We would like to emphasize, however, that we could 
well treat (70) on the same footing as the other conditions implied by the basic laws of 
mechanics.  
 The steps are as follows. Equation (69) is multiplied by an arbitrary (weighting) 
function uδ   of position, and integrated over the domain. A scalar equation is obtained: 

 

 ( ) d d 0
V V

u V b u Vσ δ δ∇ ⋅ ⋅ + ⋅ =∫ ∫


  

 . (73) 
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Integration by parts with (64) gives  
 

 c( ) d d : ( ) d
V A V

u V n u A u Vσ δ σ δ σ δ∇ ⋅ ⋅ = ⋅ ⋅ − ∇∫ ∫ ∫
       . (74) 

 

The well-known manipulations based on the assumed symmetry of σ , division of 
displacement gradient into the symmetric and anti-symmetric parts according to 

 

  c c
1 1[ ( ) ] [ ( ) ]
2 2

u u u u uδ δ δ δ δ δε δω∇ = ∇ + ∇ + ∇ − ∇ ≡ +
      ,  (75) 

 

identity : 0σ δω =


, and definition of traction t n σ= ⋅


   in (74) give 
 

 c: d d d 0
V V A

V b u V t u Aσ δε δ δ− + ⋅ + ⋅ =∫ ∫ ∫




  

 . (76) 
 

Now (76) is seen to be nearly the virtual work equation (66). In the conventional 
application form, one additionally takes the interpretation [ ]u uδ δ=  , so that the 
additional restriction (72) imposed on the boundary implies 

 

 0uδ =


 on uA , (77) 
 

and uses the condition of (71)  
 

 t t=
 

  on tA      (78) 
 

to obtain the standard form. The purpose of the selection (77) in (76) is to prevent the 
unknown traction on boundary uA  to appear in the formulation. 
 We see many analogues here with the manipulations performed in the earlier 
chapters. However, there is one important difference. The principle on virtual work in 
its general form is not a variational principle in the sense that the first variation of a 
functional is set to zero and we thus cannot make use, say of a principle [ ] 0Wδ = . 
 
Extended form 

The principle of virtual work will be modified next to take into account a possible 
discontinuity in stress σ  and displacement u  inside the domain. We assume that the 
domain can be divided into disjoint sub-domains so that conditions for (69) to (72) are 
still valid everywhere except on the sub-domain interfaces.  Displacement u∗  on the 
sub-domain boundaries becomes an additional unknown of the problem, displacement 
inside the sub-domains is denoted by u  and a superscript eu  will be used to denote 
displacement in a typical sub-domain e E∈ .  
 The local forms of the balance laws of momentum, moment of momentum and the 
additional displacement restrictions on the boundary become now  

 

 0bσ∇⋅ + =




   in I\V A ,     (79) 
 

 c 0σ σ− =
    in I\V A ,    (80) 
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 0e
e t t− + =∑
 

   on u\A A , (81) 
 

 0eu u∗− =
    on A ,  (82) 

 

 0u u∗ − =
 

   on uA ,  (83) 
 

where u t IA A A A= ∪ ∪ . As the derivation of the balance law of momentum (79) 
assumes certain continuity on stress and require that a material is inside the domain, the 
equation is not valid e.g. at points where an external surface load t



  is acting. These 
points, inside the domain or at the traction boundary, have been excluded from (79) and 
taken into account in (81) (implied by the very same law) instead. Continuity of the 
displacement is represented by (82) and the displacement boundary condition by (83).  
 Instead of going through in detail the straightforward but somewhat lengthy 
manipulations of the previous sections, we start directly analogously from the extended 
principle of virtual work: find ,u u∗   such that 

 

  0Wδ =   ,u uδ δ ∗∀
  . (84) 

 

Again, the virtual work expression consists of the standard, jump, and least-squares 
contributions each giving two terms to  

 

  INT EXT JI JB LSI LSBW W W W W W Wδ δ δ δ δ δ δ= + + + + + ,  (85) 
 

where the detailed expressions are now chosen to match (79) to (83). The standard 
contributions of internal and external forces, taking into account equation (79) and 
partly equation (81)  

 

 
I

INT
c\

: d
V A

W Vδ σ δε= − ∫
 ,      (86) 

 

 
I

EXT
\ \

d d
uV A A A

W b u V t u Aδ δ δ ∗= ⋅ + ⋅∫ ∫




 

      (87) 
 

should have rather clear physical meanings. Notation I\V A  indicates that points where 
the integrand may be discontinuous have been excluded. The symmetric jump 
contributions taking into account partly equation (81) and equations (82) and (83) are  

 

 JI [ ( )]de e
eA

W t u u Aδ δ ∗= ⋅ −∑∫


  ,      (88) 
 

 
u

JB [ ( )]d
A

W t u u Aδ δ ∗= ⋅ −∫


 

 .   (89) 
 

The generalizations of (88) and (89) containing the symmetry parameter β  and  
corresponding to (47) and (48) should be obvious. Finally, the least-squares 
contributions associated with (88) and (89) are  

 

 LSI 1 [( ) ( )]d
2

e e
eA

W u u u u Aδ δ τ∗ ∗= − − ⋅ ⋅ −∑∫
     ,  (90) 

 



239 
 

 
u

LSB 1 [( ) ( )]d
2 A

W u u u u Aδ δ τ∗ ∗= − − ⋅ ⋅ −∫
    

  , (91) 
 

in which one may assume cτ τ=   without loss of generality as only the symmetric part 
of τ  has effect on the setting. 
 We apply next the generic equations to derive the extended virtual work expressions 
of bar-truss and beam-truss models in the same manner as is done with the standard 
principle and more severe continuity assumptions. We are not aware of a similar 
consistent development in connection with discontinuous Galerkin methods.  

Bar- truss application  

Some notations 

The first application is a truss consisting of bars connected by frictionless spherical or 
cylindrical joints. Displacements at the joints are continuous but rotations of bars may 
show jumps there. Joints are also able to transmit forces but not moments. A bar truss 
can be loaded by distributed forces in the directions of the bars and point forces acting 
on the joints. Although the bar-joint system is an elastic body having just a complex 
network geometry, the joints are idealized as small rigid bodies so that the geometrical 
axes of bars extend to the same point at a joint. With this idealization, detailed geometry 
of a joint becomes immaterial. 
 Geometrically, bars are slender cylindrical bodies so that V A Ω= ×  in which Ω  is 
the (mathematical) solution domain. Material xyz − systems are used to identify the 
particles of bars. Although not necessary, the x − axes are chosen to coincide with the 
geometrical axes. A structural XYZ − system is used as common reference frame. The 
unit vectors of the material and structural coordinates are denoted by , ,i j k



 

and , ,I J K
  

, 
respectively. The well-known kinematic and kinetic assumptions of the bar model are  

 

 ( )u u x i=


 ,    (92) 
 

 iiσ σ=


   (93) 
 

and interface (joint) displacement  
 

  X Y Zu u I u J u K∗ ∗ ∗ ∗= + +
  

   (94) 
 

may have one, two or three components depending on the truss type. It is noteworthy 
that the interface displacement (94) is represented in the basis of the structural 
coordinate system whereas the relative displacement (92) is represented in the basis of 
material coordinate system. 
 It is noteworthy that the displacements of bar particles are defined by (92) and (94) 
together. By assumption, cross-sections move as rigid bodies so that one may attach a 
material coordinate system to any of them. The positions and orientations of material 
coordinate systems are determined by the interface points. Only the rigid body rotation 
around the x − axis remains non-specified, but that does not matter in the bar model.  
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Bar-truss equations 

The differential equation of the bar-truss problem is given by  
 

 ( ) 0F B i′ + ⋅ =
 



   in I\Ω Γ , (95) 
 

in which F


 is the stress resultant, B


  is the resultant of the external volume forces, and 
the superimposed comma means derivative with respect to x . Joints located on IΓ  are 
excluded as the derivation of (95) assumes certain continuity of F



. On points of 
discontinuities, the balance law of momentum gives instead 

 

 0e
eT T− + =∑
 

   on u\Γ Γ ,   (96) 
 

in which e e eT n F≡
 

 and 1en = ±  is the unit outward normal to eΩ . In the bar-truss 
model, the number of bars connected to a joint is not restricted to two and therefore the 
sum may have more than two terms, too. The given external point force T



  is assumed 
to act on joints where displacement is not specified as indicated by u\Γ Γ . Continuity 
of displacement at joints is expressed as 

 

 ( ) 0e eu u i∗− ⋅ =


    on Γ ,   (97) 
 

 ( ) 0eu u i∗ − ⋅ =


 

   on uΓ , (98) 
 

which stand for a set of equations written for all the bars connected to a joint. The 
domain notation correspond to that used earlier and u t IΓ Γ Γ Γ= ∪ ∪ . 
 Assuming that the given traction t



  is acting only on the end planes of bars, the 
resultants of external surface and volume forces become  

 

 dT t A= ∫




  ,   (99) 
 

 dB b A= ∫




  ,    (100) 
 

in which b


  is the given volume force, and the integrals are over cross-sections. 
Finally, the resultant of internal forces acting on the cross-sections is 

 

 dF i Aσ= ⋅∫




 .   (101) 
 

Equations above are valid no matter the material model. 
  
Virtual work expression 

The extended virtual work expressions of the bar-truss problem follow from generic 
expressions (86) to (90) when the kinematic and kinetic assumptions of the model are 
applied there. Hence, we proceed exactly in the same manner as with the (standard) 
principle of virtual work.  
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Figure 3 Axial displacement /u U  of bar as function of /x L . Exact solution in blue line, 
element solution in black line, and interface solution in black markers. 
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The standard contributions of internal and external forces, taking into account equation 
(95) to and partly equation (96) 

 

  INT
\

dW F u
Ω Γ

δ δ Ω′= − ⋅∫


 ,       (102) 
 

  EXT
\\

d ( )
u

W B u T uΓ ΓΩ Γ
δ δ Ω δ ∗= ⋅ + ⋅∑∫

 

 

       (103) 
 

should be obvious. The jump contributions taking into account partly equation (96) and 
equations (97) and (98) are 
 

 JI [ ( )]e e
eW T u uΓδ δ ∗= ⋅ −∑ ∑



  ,      (104) 
 

 
u

JB [ ( )]e
eW T u uΓδ δ ∗= ⋅ −∑ ∑



 

 ,   (105) 
 

and the least-squares contributions associated with the jump terms become 
 

 LSI 1 [( ) ( )]
2

e e e
eW u u u uΓδ δ τ∗ ∗= − − ⋅ ⋅ −∑ ∑      , (106) 

 

 
u

LSB 1 [( ) ( )]
2

e
eW u u u uΓδ δ τ∗ ∗= − − ⋅ ⋅ −∑ ∑     

  . (107) 
 

More details of the rather straightforward derivation of these expressions are given in 
Appendix A.  
 
Linearly elastic material model 

In linearly elastic, homogeneous and isotropic case when the stress-strain relationship is 
given by the generalized Hooke’s law and the linear strain-displacement relationship 
suffices, constitutive equation (101) becomes  

 

 

dF i A iEAuσ ′= ⋅ =∫


 

 ,

  

(108) 
 

in which E  is the Young’s modulus of material. One parameter family of weightings  
 

 EA ii
h

τ α=


 ,  (109) 
 

of the least-squares terms (107) and (106) suffices here, as the main emphasis is on the 
explanation of the two-field formulation. 
 
Bar application example 
The first application example is a bar under a sinusoidal distributed load. Left end of the 
bar is fixed and the right end is free meaning that no external force is acting there. The 
exact solution to the problem is  

 



243 
 

  sin(7 )
2

u x
U L

π= ,  (110) 
 

in which U  is the maximal displacement. The discrete solution method is based on the 
extended principle of virtual work and piecewise polynomial approximations of degree 
p  without any continuity restrictions at joints or at the element interfaces. The 

displacement boundary condition is satisfied in the strong sense. 
 The discrete solution with the symmetry parameter 1β =  and some representative 
values of stabilization parameter α , number of elements n , and polynomial degree p  
are compared to the exact solution in Figure 3. From the numerical viewpoint, an elastic 
bar problem does not differ from the string problem and the discussion and conclusion 
therein applies also here. 
 
 
 
 
 
 
 
 

 
 
 
 
 
  

Figure 4 Truss consisting of two bars. 
 

Bar-truss application example 

The second application example is a bar-truss consisting of two elastic bars connected 
by frictionless spherical joints shown in Figure 4. The joints of the initial geometry are 
at points 1p (0,0,0)= , 2p ( ,0,0)L= , 3p (0,0, )L=  on the X −  and Z − axes of the 
structural coordinate system. Bars 1 and 2 of the truss have end points 1 2(p ,p )  and 

3 2(p ,p ) , respectively, in which the order of points indicates the positive direction of the 
x − axis. Joint at 2p  is free to move and the remaining two are fixed. The cross-
sectional area A  and Young’s modulus E  are constants. Bar 1 is subjected to a 
distributed sinusoidal loading acting in the x − direction so that the exact solution is  

 

 2 1sin(5 )( )
2

u I K
U

π
∗
= +



 

,  (111) 
 

 
1

sin(5 )
2

u x
U L

π= .   (112) 
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The reference value U  controls the maximum displacement. Although bar 2 does not 
undergo a length change and 2 0u = , its orientation changes, as both bars are connected 
to the joint at 2p .  
 Again, the discrete solution method is based on the extended principle of virtual 
work and piecewise polynomial approximations of degree p  without any continuity 
restrictions at joints or element interfaces. The displacement boundary condition is 
satisfied in the strong sense. Stabilization parameter expression (61) is used to obtain a 
near-continuous discrete solution. The solution obtained with the representative values 
of symmetry parameter β  and polynomial degree p  are compared to the exact solution 
in Figure 5. The discrete solution behaves in the same manner as in the bar application. 

 

 

 
Figure 5 Axial displacement /u U  of bar 1 as function of /x L . Exact solution in blue line, 

element solution in black line, and interface solution in black markers. 

Beam- truss application 

Some notations 

The second engineering model application is a beam-truss. In the same manner as with 
the bar model, the solution domain is a 2D or 3D network of beams connected by 
spherical, cylindrical, or etc. joints transmitting force and moment components in some 
combination. The truss can be loaded by distributed external forces and moments acting 
on the beams and point forces and moments acting on the joints. The coordinate systems 
coincide with those of the bar-truss problem. The kinematic and kinetic beam 
assumptions are 

 

 0 ( ) ( )u u x xθ ρ= + ×


  ,  (113)   
 

 xx xy yx xz zxii ij ji ik kiσ σ σ σ σ σ= + + + +
 

    

 , (114)   
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in which 0( )u x  and ( )xθ


 denote the translation and (small) rotation of cross-sections 
and ( , )y z jy kzρ = +





  is the position vector relative to the intersection of cross-section 
and the x − axis. Interface displacement and rotation 

 

 X Y Zu u I u J u K∗ ∗ ∗ ∗= + +
  

 , (115) 
 

 X Y ZI J Kθ θ θ θ∗ ∗ ∗ ∗= + +
   

 (116) 
 

may have one, two or three components depending on the truss type. In the present case, 
the unknowns of the problem are the displacement and rotation components which 
should be accounted for in the interpretation [ ]u uδ δ=  . Also now, the displacements of 
beam particles are defined by interface and element displacements together so that the 
positions and orientations of material coordinate systems are determined by (115), and 
(116) and relative displacements by (113). 
 
Timoshenko model 

The strong form of a Timoshenko beam truss problem consists of differential equations 
 

 0F B′ + =
 

   in I\Ω Γ ,               (117) 
 

 0M i F C′ + × + =
 



   in I\Ω Γ ,    (118) 
 

in which F


 and M


 are the stress resultants, B


  and C


  are distributed forces and 
moments. When written for joints and other possible points of force and moment 
resultant discontinuities, the balance laws take the forms  

 

  0e
eT T− + =∑
 

   on u\Γ Γ , (119) 
 

 0e
e S S− + =∑
 

   on θ\Γ Γ , (120) 
 

in which e e eT n F≡
 

, e e eS n M≡
 

, and 1en = ±  is the unit outward normal to domain 
eΩ . The given external forces and moment T



  and S


  are assumed to act on joints 
where displacement or rotation are not given. Continuity of displacement and rotation at 
joints can be expressed as 

 

 0u u∗ − =
 

   on uΓ ,  (121) 
 

 0θ θ∗ − =
 

   on θΓ , (122) 
 

 0eθ θ ∗− =
 

  on Γ , (123) 
 

 0eu u∗− =
    on Γ . (124) 

 

 Assuming again that the given traction t


  is acting only on the end planes of beams, 
the resultants of external volume and surface forces become  
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 dB b A= ∫




  ,    (125) 
 

 dC b Aρ= ×∫




  ,   (126) 
 

 dT t A= ∫




  ,   (127) 
 

 dS t Aρ= ×∫






  ,  (128) 
 

in which yj zkρ = +




 is the relative position vector, b


  is the given body force, and the 
integrals are over cross-sections. Therefore, the moment resultants C



  and S


  are seen 
to depend on the selection of material coordinate systems. Finally, the resultants of 
internal forces acting on the cross-sections are 

 

 dF i Aσ= ⋅∫




 ,   (129) 
 

 dM i Aσ ρ= − ⋅ ×∫




 , (130) 
 

 T nF=
 

,   (131) 
 

 S nM=
 

.   (132) 
 

Equations above are valid no matter the material model which will again be introduced 
as late as possible to keep the formulation as general as possible. 
 
Bernoulli model 

In the Bernoulli beam-truss model, equations (117) and (118) are just rewritten as  
 

 ( ) 0i F B′⋅ + =
 



   in I\Ω Γ ,               (133) 
 

 ( ) 0M i B C′′ ′− × + =
 



    in I\Ω Γ .    (134) 
 

 0M i F C′ + × + =
 



   in I\Ω Γ ,    (135) 
 

and the shear force components yF  and zF  are taken as constraint forces to be solved 
from (135). Also, the corresponding kinematical so-called Bernoulli constraints   

 

 y zuθ ′= − ,   (136) 
 

 z yuθ ′=   (137) 
 

are used to eliminate the rotation components yθ  and zθ  from constitutive equations to 
be discussed later. In short, the main difference between the two models are the 
Bernoulli model expression  

 

  x z yi u j u kδθ δθ δ δ′ ′= − +


 

,     (138) 
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  x z yF F i M j M k′ ′= − +



 

   (139) 
 

valid when 0y zC C= =  . The interface displacement u∗  and rotation θ ∗  are the same 
as with the Timoshenko model. 
 
Virtual work expression 

The (extended) principle of virtual work follow from the generic expressions and the 
Timoshenko beam assumptions (113) and (114). Hence, we proceed exactly in the same 
manner as with the (standard) principle of virtual work. The weak form of the Bernoulli 
beam model follows from that of the Timoshenko model, when expressions (138) and 
(139) are substituted there. 
 The standard contributions of internal and external forces, taking into account 
equations (117) , (118) and partly (119), (120), become 

 

 
I

INT
\

[ ( ) ]dW F u M F i
Ω Γ

δ δ δθ δθ Ω′ ′= − ⋅ + ⋅ + × ⋅∫
   



 , (140) 
 

 I

EXT
\

( )dW B u C
Ω Γ

δ δ δθ Ω= ⋅ + ⋅∫
 



   
 

 uθ\ \( ) ( )T u SΓ Γ Γ Γδ δθ∗ ∗+ ⋅ + ⋅∑ ∑
 



   (141) 
 

The jump contributions taking into account equations (121) to (124), are  
 

 JI [ ( )] [ ( )]e e e e
e eW T u u SΓ Γδ δ δ θ θ∗ ∗= ⋅ − + ⋅ −∑ ∑ ∑ ∑

  

  ,      (142) 
 

 
uθ

JB [ ( )] [ ( )]e e
e eW T u u SΓ Γδ δ δ θ θ∗ ∗= ⋅ − + ⋅ −∑ ∑ ∑ ∑

  

 

  ,   (143) 
 

and the least-squares terms are 
 

 LSI
u

1 [( ) ( )]
2

e e e
eW u u u uΓδ δ τ∗ ∗= − − ⋅ ⋅ −∑ ∑       

 θ
1 [( ) ( )]
2

e e e
eΓ δ θ θ τ θ θ∗ ∗− − ⋅ ⋅ −∑ ∑

   

 ,  (144) 
 

 
u

LSB
u

1 [( ) ( )]
2

e
eW u u u uΓδ δ τ∗ ∗= − − ⋅ ⋅ −∑ ∑     

   

 
θ

θ
1 [( ) ( )]
2

e
eΓ δ θ θ τ θ θ∗ ∗− − ⋅ ⋅ −∑ ∑

   



  . (145) 
 

Some details of the derivation are given in Appendix B.  
 
Linearly elastic material model 

In the linearly elastic, homogeneous and isotropic case, when the stress-strain 
relationship is given by the generalized Hooke’s law and the linear strain-displacement 
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relationship suffices, the Timoshenko beam constitutive equations (129) and (130) 
become  

 

 

d ( ) ( )x y z z yF i A iEAu jGA u kGA uσ θ θ′ ′ ′= ⋅ = + − + +∫



  

 ,

  

(146) 
 

  

d ( )yy zz x zz y yy zM i A iG I I jEI kEIσ ρ θ θ θ′ ′ ′= − ⋅ × = + + +∫



  



   

(147) 
 

in which E  and G  are the Young’s and shear module of material, respectively. In the 
beam model, the geometry of the cross-sections is described by the moments  
 

  dA A= ∫ , (148) 
 

  drS r A= ∫ , (149) 
 

  drsI rs A= ∫ , (150) 
 

where , { , }r s y z∈ . The simple constitutive equations assume that the material 
coordinate system is chosen so that the first moments 0y zS S= =  and the second 
moments 0yz zyI I= = . The weightings  

 

 u u
1 ( )iiEA jjGA kkGA
h

τ α= + +


 

 ,   (151) 
 

 θ θ
1 [ ( ) ]yy zz zz yyiiG I I jjEI kkEI
h

τ α= + + +


 

   (152) 
 

of the least-squares terms (145) and (144) suffice for demonstrative purposes. 
Expressions can be obtained by considering polynomial approximations and the cases of 
pure bending, torsion etc. separately and combining the results. 
 Bernoulli model constitutive equations follow from (146) and (147) when Bernoulli 
constraints (136) and (137) are used there (actually, the Bernoulli constraints follow 
from the constitutive equations (146) and (147), but this theme is somewhat out of 
scope). When combined with expression (139), the outcome is 

 

 x yy y zz zF iEAu jEI u kEI u′ ′′′ ′′′= − −



 

,   (153) 
 

 ( )yy zz x zz z yy yM iG I I jEI u kEI uθ ′ ′′ ′′= + − +



 

.  (154) 
 

The weightings of the least-squares terms are obtained also here by considering first the 
cases of pure bending, torsion etc. separately and combining the results. The outcome is 

 

  u u 2 2
1 1 1( )yy zziiEA jj EI kk EI
h h h

τ α= + +


 

 ,   (155) 

 

  θ θ
1 [ ( ) ]yy zz zz yyiiG I I jjEI kkEI
h

τ α= + + +


 

 .   (156) 

 



249 
 

 

 
 

Figure 6 Deflection /w W  and rotation /θ Θ  as functions of /x L . Exact solution in blue line, 
element solution in black line, and interface solution in black markers. 
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Beam bending application example 

The first application example is pure bending of a simply supported beam in the 
XZ − plane under a sinusoidal distributed load. Cross-sectional area A , second moment 
of area I , Young’s modulus E , and shear modulus G  are constants. The cross-
sectional area is taken to be large so that  
 

 in(5 )sw
W

x
L

π= ,     (157) 
 

is the exact solution to the Bernoulli and Timoshenko models. Rotation follows from 
wθ ′= − . The discrete solution is based on expressions (140) to (145), and polynomial 

approximation of degree p  for displacement in the Bernoulli model and p , 1q p= −  
for displacement and rotation, respectively, in the Timoshenko model. Stabilization 
parameters u ( )pα α=  and θ ( )qα α=  according (61) strive for a near continuous 
discrete solution. 
 Figure 6 shows the discrete solutions to w  and θ  with some representative values of 
the symmetry parameter β , number of elements n , and polynomial degree p . The 
discrete solutions by the two models practically coincide and β  has a negligible effect 
due to the large α . Interface displacement and rotation are exact when 1β = , 3p ≥ and 

1q p≥ − . A converging solution is obtained also when 2p = , but accuracy of the 
interface solution is lost and the values of uα  and θα  become significant. When 

1p q= = , the Timoshenko model solution shows severe shear locking.  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 7 Truss consisting of two beams.  
   
Beam-truss application example 

The second application example is a truss consisting of two elastic beams shown in 
Figure 7. The geometry is the same as with the bar-truss application example. The 
cross-sectional area A , second moment of area I , Young’s modulus E , and shear 
modulus G  are constants. Cross-sectional area is large so that the exact solutions to the 
Bernoulli and Timoshenko models practically coincide and axial displacements are 

X 

Z 

3p  

2 

1 

x 

x 

z 

z 
1p  2p
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negligible. Beam 1 is subjected to a distributed transverse sinusoidal load, beam 2 is 
clamped at 3p , beam 1 rotates freely at 1p  and displacements and rotations are 
continuous at 2p . The exact solution to the Bernoulli beam model is 
 

 2
1 3 2in(3 ) ( )[( ) 1]

6
1 s
2 4 2

x x x
L L L

w
W

ππ + −
+

= ,     (158) 

 

 

2
29 (

12 8 2
) ( 2)w x x

W L L
π

= −
+

.
   

(159)
 

 

The reference value of deflection W  controls the maximum displacement. As the cross-
sectional area is considered very large, beams are inextensible in the axial directions and 
joint at 2p  may undergo a rotation but not displacement. 
 In the discrete solution, the displacement and rotation boundary conditions are 
satisfied in the strong sense. Discrete solutions to the deflection and rotation of beam 1 
are compared to the exact solution (158) in Figure 8. Stability parameter expression was 
according to (61) i.e. u ( )pα α=  and θ ( )qα α= . The interface solutions by the 
symmetric formulation are exact and therefore independent of α  and 3p ≥ . The 
discrete solution by the Bernoulli and Timoshenko models practically coincide and 
Figure 8 serves for both cases and also 1β = ±  due to the large α used. The discrete 
solutions to beam 2 of the truss coincide with the exact solution in all cases of Figure 8.  
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Figure 8 Deflection /w W  and rotation /θ Θ  of beam 1 as functions of /x L . Exact solution 
in blue line, element solution in black line, and interface solution in black markers. 

Concluding remarks 

In this work the standard principle of virtual work was extended to the case, where the 
usual continuity assumptions are not valid. The extended principle of virtual work was 
derived directly from the basic balance laws of mechanics taking into account 
discontinuities. As a novelty, a two-field representation was applied to treat the 
conditions for domains of smooth behavior and those for discontinuities. 
 The extended principle of virtual work for 3D continuum can be used in the same 
manner and for the same purposes as the standard one. First, the corresponding principle 
for an engineering model follows when kinematical and kinematic assumptions are 
substituted there as indicated by the bar- and beam-truss application examples. 
Although the extended principle of, say, for the elastic Timoshenko and Bernoulli beam 
models can be derived from the boundary value problem directly, the use of the generic 
form is more straightforward. Second, the differential equations and the correct jump 
conditions follow from the extended principle for an engineering model in the well-
known manner. Third, the extended principle serves as a consistent and ready-to-use 
weak form of a discontinuous Galerkin method. 
 The principle of virtual work is attractive from an engineering viewpoint as the 
terms have clear physical meanings. The first two terms of the extended expression 
practically coincide with those of the standard expression. The jump terms combining 
the virtual work of internal forces in jumps and continuity constraint of displacement, 
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are unique up to the symmetry parameter β  of the displacement constraint. Arbitrary 
multiplier α  of least-squares terms brings another parameter that can be used to tune 
the method to match the approximation used. The application examples indicate that a 
symmetric formulation is exceptionally accurate. In connection with bar and beam 
models, the interface solutions or nodal values were exact, and therefore independent of 
α and polynomial degree p . Also, if α  is chosen large, the discrete solution becomes 
insensitive to β . 
 Implementation and usability issues are important in practice. Implementation on a 
standard finite element framework with various conventions concerning concepts and 
algorithms should also be possible. One of the major advantages of standard Galerkin 
methods over discontinuous Galerkin methods has been computational simplicity. The 
ways to eliminate either the interface or element quantities presented here aim to make 
the method competitive with the standard one. The first option used e.g. in [5] seems not 
to help much in this respect. Another novelty of the present study is the use of the 
interface approximation as the primary unknown. Then the (asymptotical) 
computational complexity in arithmetic operations becomes the same as with the 
standard method no matter the element approximation, the method fits well in the 
existing implementations, and additional assumptions are not needed. The last item is 
important in truss applications or when different engineering models are used to model 
a structure. As far as the writers are aware, this type of elimination procedure has not 
been put into practice although the possibility has been mentioned in [2]. 
 As an illustrative example, elimination method gives the element contribution  

 

 

T
1 1

1 1
3

2 2

2 2
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δ
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ε
ε
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       
       

       = − −       −             +       

− − −
− + − −

+
− −

   

 

for a Timoshenko beam in xz −plane bending and a distributed constant load, when 
1β = , 3p ≥  and 1q p≥ − . It is noteworthy that the weighting of the least squares 

terms or the degree of polynomial used in the element approximation do not affect the 
expression. Parameter 2/ ( )EI h GAε =  goes to zero in the Bernoulli limit and the 
element contribution is seen to coincide with the well-known expression of the 
Bernoulli beam. One may speculate that elimination along the same lines could be used 
to generate element contributions for models like Reissner-Mindlin plate or shells 
suffering from locking phenomena in the same manner as the Timoshenko beam model. 
 Exceptional accuracy of the interface solution is obtained as the Green function of 
the adjoint problem (self-adjoint in this particular case) is polynomial which belongs to 
the approximation space when p is chosen large enough. When the Green function is 
not polynomial as e.g. in connection with beam on an elastic foundation, using a large 
p  is advantageous as the Green function can be approximated better and thereby also 

the interface solution becomes more accurate. The ability of the element approximation 
to be discontinuous at the interface points is essential in both cases. The prize of the 
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well-known remedy –use high degree polynomials– is no problem in the present context 
due to the elimination of most unknowns at the element level. 
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Appendix A  

We assume a Cartesian material coordinate system so that i


 is constant in a bar. The 
variations of the element and interface displacement and the gradient of the element 
displacement are  

 

 [ ]u u uiδ δ δ= =


  ,   (A.1) 
 

 [ ]u uδ δ∗ ∗=
  ,  (A.2) 

 

 u i uδ δ ′∇ =


  .  (A.3) 
 

The gradient operator of the material coordinate system is / / /i x j y k z∇ = ∂ ∂ + ∂ ∂ + ∂ ∂


 

 
and the derivative with respect to x  is denoted by the usual comma notation. The 
generic virtual work densities (virtual work per unit volume or area indicated by a 
subscript) can be manipulated into the forms 

 

 INT
c: ( )Vw i uδ σ δε σ δ ′= − = − ⋅ ⋅



   .    (A.4) 
 

 EXT
Vw b uδ δ= ⋅





 ,    (A.5) 
 

 EXT
Aw t uδ δ ∗= ⋅





 ,    (A.6) 
 



255 
 

 
JI [ ( )]e e
A ew t u uδ δ ∗= ⋅ −∑



  ,
  

(A.7) 
 

 
JB [ ( )]Aw t u uδ δ ∗= ⋅ −



 

 .
  

(A.8)
  

After integration over the cross-section, the virtual work expressions of internal and 
external forces become  

 

  
I

INT
\

dW F u
Ω Γ

δ δ Ω′= − ⋅∫


 ,       (A.9) 
 

  
I

EXT
\\

d ( )
u

W B u T uΓ ΓΩ Γ
δ δ Ω δ ∗= ⋅ + ⋅∑∫

 

 

  .     (A.10) 
 

Above we have assumed that given tractions are acting on the edge surfaces of the bars. 
The jump contributions take the forms 

 

 JI [ ( )]e e
eW T u uΓδ δ ∗= ⋅ −∑ ∑



  ,     (A.11) 
 

 
u

JB [ ( )]e
eW T u uΓδ δ ∗= ⋅ −∑ ∑



 

 .   (A.12) 
 

Integration over the cross-sections above needs to done inside the summing as joints are 
idealized as points. Finally, the least-squares terms associated with the jump 
contributions become 

 

 LSI 1 [( ) ( )]
2

e e e
eW u u u uΓδ δ τ∗ ∗= − − ⋅ ⋅ −∑ ∑      ,  (A.13) 

 

 
u

LSB 1 [( ) ( )]
2

e
eW u u u uΓδ δ τ∗ ∗= − − ⋅ ⋅ −∑ ∑     

  , (A.14) 
 

in which the cross-sectional areas are embedded in eτ . For consistency the stability 
dyad should be of the form 

 

  iiτ τ=


     (A.15) 
 

in which τ  is arbitrary in this context. 

Appendix B  

We assume a Cartesian material coordinate system so that i


 is constant in a beam. The 
variations of the element and interface displacement and the gradient of element 
displacement are  

 

 0[ ]u u uδ δ δ δθ ρ= = + ×


   ,   (B.1) 
 

 0[ ]u u uδ δ δ δθ ρ∗ ∗ ∗ ∗= = + ×


   ,  (B.2) 
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 0 ( )u i u i I iiδ δ δθ ρ δθ′ ′∇ = + × − − ×
 

  

  ,  (B.3) 
 

in which the gradient operator, the unit dyad, and the relative position vector in the basis 
of material coordinate system are / / /i x j y k z∇ = ∂ ∂ + ∂ ∂ + ∂ ∂



 

, I ii jj kk= + +



 

, and 
( , )y z jy kzρ = +





 , respectively. 
 The generic virtual work densities (virtual work per unit volume or area indicated by 
a subscript) can be manipulated into the forms 
 

 INT
c 0: [( ) ( ) ( ) ]Vw i u i i iδ σ δε σ δ σ ρ δθ σ δθ′ ′= − = − ⋅ ⋅ − ⋅ × ⋅ + ⋅ × ⋅

 
   

      ,   (B.4) 
 

 EXT
0 ( )Vw f u f u fδ δ δ ρ δθ= ⋅ = ⋅ + × ⋅

   

 

   ,     (B.5) 
 

 EXT
0 ( )Aw t u t u tδ δ δ ρ δθ∗ ∗ ∗= ⋅ = ⋅ + × ⋅



  

 

   ,    (B.6) 
 

 
JI [ ( )]e e
A ew t u uδ δ ∗= ⋅ −∑



  ,
   

(B.7) 
 

 
JB [ ( )]Aw t u uδ δ ∗= ⋅ −



 

 .
  

(B.8)
  

In (B.4) we have used the vector identities ( ) ( )a b c a b c× ⋅ = ⋅ ×
 

     and : ( ) 0Iσ δθ× =


  (as 
I δθ×



is anti-symmetric) and assumed that the balance law of moment of momentum 
cσ σ= 

 is satisfied ‘a priori’. In (B.5) and (B.6) we have used the vector identity 
( ) ( )a b c a b c× ⋅ = ⋅ ×

 

     in the second term on the right hand side.  
 After integration over cross-section, the virtual work expressions of internal and 
external forces become  

 

 
I

INT
0\

[ ( ) ]dW F u M F i
Ω Γ

δ δ δθ δθ Ω′ ′= − ⋅ + ⋅ + × ⋅∫
   



 ,
  

(B.9) 
 

 
I

EXT
0\

( )dW B u C
Ω Γ

δ δ δθ Ω= ⋅ + ⋅∫
 



     
 

 uθ
0\ \( ) ( )T u SΓ Γ Γ Γδ δθ∗ ∗+ ⋅ + ⋅∑ ∑

 



  . (B.10) 
 

Above we have assumed that given tractions are acting on the edge surfaces of the bars. 
The jump contributions take the forms 
 

 JI
0[ ( )] [ ( )]e e e e

e eW T u u SΓ Γδ δ δ θ θ∗ ∗= ⋅ − + ⋅ −∑ ∑ ∑ ∑
  

  ,     (B.11) 
 

 
uθ

JB
0[ ( )] [ ( )]e e

e eW T u u SΓ Γδ δ δ θ θ∗ ∗= ⋅ − + ⋅ −∑ ∑ ∑ ∑
  

 

  ,   (B.12) 
 

where integration over the cross-sections above is performed inside the summing as 
joints are idealized as points. The unknown functions 0u  and θ



 are constants with 
respect to integration over the cross-section. Finally, the least-squares terms associated 
with the jump contributions become 
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 LSI
0 u 0

1 [( ) ( )]
2

e e e
eW u u u uΓδ δ τ∗ ∗= − − ⋅ ⋅ −∑ ∑       

 θ
1 [( ) ( )]
2

e e e
eΓ δ θ θ τ θ θ∗ ∗− − ⋅ ⋅ −∑ ∑

   

 ,  (B.13) 
 

 
u

LSB
0 u 0

1 [( ) ( )]
2

e
eW u u u uΓδ δ τ∗ ∗= − − ⋅ ⋅ −∑ ∑     

   

 
θ

θ
1 [( ) ( )]
2

e
eΓ δ θ θ τ θ θ∗ ∗− − ⋅ ⋅ −∑ ∑

   



  . (B.14) 
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