
185 
 

Rakenteiden Mekaniikka (Journal of Structural Mechanics) 
Vol. 43, No 4, 2010, pp. 185-213 

Numerical study on a post-processing method for 
Reissner-Mindlin plate finite elements 

Jukka Aalto and Eero-Matti Salonen 

Summary. The paper presents an element by element post-processing method for improving 
bending and twisting moments and shear forces, which can be used in connection with some 
simple Reissner-Mindlin plate elements. The method is restricted to straight sided triangular and 
quadrilateral elements, whose degrees of freedom are the deflections and rotations of the corner 
nodes. Experimental convergence studies for demonstrating the efficiency of the technique are 
given.  
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The plate elements 

We consider in this paper triangular and quadrilateral elements (Figure 1) with three and 
four nodes, respectively.  In the following we use the symbol n  ( 3 or 4)n n   for the 
number of corner nodes of the element. In order to perform the derivations concisely, 
we consider a typical element side ij or a typical node j , which is connected to element 
sides ij  and jk . After an equation corresponding to element side ij  or a node j  has 
been obtained, it can be applied for all the element sides or nodes using cyclic 
permutation 1,2,3 or 1,2,3,4 of the indices , ,  etc.i j . 

The length of the element side ij is 
 

 2 2( ) ( )ij j i j ih x x y y     (1) 

 
and the cosine and sine of the direction angles of the element side are 
 

 cos ,  sin .j i j i
ij ij ij ij

ij ij

x x y y
c s

h h
 

 
     (2) 

 
The degrees of freedom of these original plate elements are the nodal deflections jw  

and rotations1  xj  and yj  1, ,j n   (see Figure 2). 

  

                                                 
1 The term ‘rotation’ is used to denote the longer terms ‘rotation of the normal’ in the following.   
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Figure 1: (a) A three node triangular and (b) a four node quadrilateral element. 

 

 

 

 

 

 

 

 

Figure 2: Nodal deflections and rotations and tangential shears of element sides in (a) triangular 
and (b) quadrilateral Reissner-Mindlin elements.  

Nodal curvatures and shears 

Assumptions 

The purpose of the proposed post-processing technique is to construct improved nodal 
values for the curvatures and shears2, which can then be used to obtain improved linear 
or bilinear approximations to these kinematic quantities within the element. With the 

                                                 
2 The terms ‘curvatures’ and ’shears’ are used to denote the longer term ‘curvatures and twist’ 
and ‘transverse shear strains’ in the following.  
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help of these the moments3 and shear forces are obtained straightforwardly based 
moment-curvature and shear force-shear relations. The starting points of improving the 
approximations of the curvatures is to (i) represent the deflection and shear along the 
element sides as a cubic polynomial and a constant, respectively, and (ii) to assume the 
rotation transverse the side to be linear along the element sides. The idea of 
approximating the curvatures and shears of this paper has already been applied in 
connection with simple Reissner-Mindlin plate elements of reference [1]. Therefore 
detailed derivation of results, which have already been presented in that reference, is not 
repeated here.  
   
Nodal curvatures in terms of the nodal degrees of freedom of the 
element and shear parameters 

The deflection ( )w s  along the element side ij  is assumed to be cubic and using 
Hermitean shape functions of form 

 
 1 2 3 4 2 4( ) ( ) ( )ij ij ij ij

i s i j s j sw H w H H w H H H         (3) 

 
Here iw  and jw  are the deflections at nodes i  and j , respectively, ( )ij

s i  and ( )ij
s j  are 

the rotations along side ij  at nodes i  and j , respectively, and parameter ij
s  (see Figure 

2) is the tangential component of shear on side ij , which is assumed to be constant. 
With the help of the expression ,s s sw    the rotation along the element side can 
also be expressed in terms of the same parameters and it can further be differentiated to 
get its derivative ,s s  with respect to the side coordinate s. Thus it is possible to get 
such derivatives on sides ij  and jk  and further their values ,( )ij

s s j  and ,( )jk
s s j  at 

node j . Using the linearity assumption of the transverse rotation n  along element 
sides, it is possible to express its derivatives ,( )ij

n s j  and ,( )jk
n s j  at node j  in terms of 

the nodal rotations. Thereafter it is possible to express the Cartesian derivatives ,( )x x j , 

,( )x y j , ,( )y x j  and ,( )y y j  of the rotation components at node j  in terms of the 
obtained derivatives ,( )ij

s s j , ,( )jk
s s j , ,( )ij

n s j  and ,( )jk
n s j . Finally the curvatures at node 

j  can be evaluated from ,x x x   , ,y y y    and , ,2 xy x y y x     . With the 
help of the described sequence of operations the nodal curvatures xj , yj  and 2 xyj  
can be expressed linearly in terms of the nodal deflections, nodal rotations and the 
tangential shears of the element sides. The resulting relationships can be written as 
 
  Aa Bbk , (4) 

                                                 
3  The term ‘moments’ is used to denote the longer term ‘bending moments and twisting 
moment’ in the following. 
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where  
 

1 1 1
3 1

2 2 ,
T

x y xy xn yn xyn
n

     


   k  

 1 1 1
3 1

,
T

x y n xn yn
n

w w   


   a    (5) 

12 1

1
.

Tn
s s

n
 


   b   

 
are column vectors of the nodal curvatures, nodal deflections and rotations and 
tangential shears of the element sides, respectively. The improved curvature 
approximation (4) is thus defined by the known nodal parameters a  of the applied plate 
element and n  ( 3n   triangle, 4n   quadrilateral) additional unknown parameters b , 
which are called here shear parameters. These parameters are not necessarily available 
and it will be shown in the following, how they can be determined.  The elements of 
matrices A  and B  are listed in appendix A. Detailed derivation of these results has 
been presented in appendix A of reference [1]. 
 
Nodal shears in terms of the shear parameters 

It is possible to express the nodal Cartesian shear components xj  and yj   at node j  

linearly in terms of the tangential shears ij
s  and jk

s . The derivation of this result is 

based on the assumption, that the tangential shears are constants along the element 
sides.  The result corresponding to each node can be written as 
 
 ,Cbg  (6) 
 
where 
 

 1 1
2 1

.
T

x y xn yn
n

   


   g  (7) 

 
The elements of the corresponding matrix C  are given in appendix A. Detailed 
derivation of this result has been presented in appendix B of reference [1]. This 
derivation is based on the shear approximation first presented in references [2] and [3]. 

Nodal moments and shear forces 

The plate moment curvature relation is of form  
 

 ,M D   (8) 
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where D  is the moment curvature matrix and   the vector of the curvatures ,  x y   
and twice the twist xy . In the special case of an isotropic plate, which we use in the 
numerical examples, we present it in the form 

 

1 0

1 0 , 

0 0 (1 ) / 2
bD






 
   
  

D  (9) 

 
where bD  is the bending stiffness and   Poisson’s ratio. For a homogeneous plate and a 
thin face sandwich plate the bending stiffnesses are  
 

 
23

2
  and   ,

212(1 )

f
b b

E d tEh
D D


 


  (10)

   
respectively. E  is the modulus of elasticity and h  the thickness of the homogeneous 
plate and fE  modulus of elasticity, d  distance and t  thickness of the faces of the 
sandwich plate. For a homogeneous plate both in equations (9) and (10a)   is the 
Poisson’s ratio of the plate and for a sandwich plate in equation (9)   is the Poisson’s 
ratio of the faces.   

Applying relations (8) at each node, the nodal moments can be expressed in terms of 
the nodal curvatures k  by 
 
 ,M D k  (11) 

 
where  
 

 1 1 1
3 1 3 3

,  .
T

x y xy xn yn xyn
n n n

M M M M M M





 

 
      
  

D 0 0

0 D 0

0 0 D

M D  (12) 

 
The plate shear force shear relation is of form  
 
 ,Q D   (13) 

  
where D  is the shear force shear matrix and   the vector of the shears x  and y . In 
the special case of an isotropic plate we present it in the form 
 

 
1 0

,
0 1sD
 

  
 

D  (14) 

 
where sD  is shear stiffness. For a homogeneous plate and a thin face sandwich plate the 
shear stiffnesses are 
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   and   ,s s cD kGh D G d   (15) 

 
respectively. Here 5 / 6k   is the shear correction factor and G  the shear modulus of 
the homogeneous plate and cG  the shear modulus of the core of the sandwich plate.  

Applying relations (13) at each node, the nodal shear forces can be expressed in 
terms of the nodal shears g  by 

 
 ,Q =D g  (16) 

 
where  
 

 1 1
2 1 2 2

,  .
T

x y xn yn
n n n

Q Q Q Q



 

 
        

D 0

0 D
Q D  (17) 

          

Determining the shear parameters 

Least squares equations 

In the following the shear parameters b  are determined by demanding first the plate 
equilibrium equations  
 
 , , , ,,  x x x xy y y xy x y yQ M M Q M M     (18) 

 
to hold in least squares sense at the nodal points of the element. The least squares 
condition is 
 

 ( ) ( ) min,Ts    Q Q Q Q  (19) 
 
where Q  is the vector of nodal shear forces of the element and Q  is the corresponding 
vector calculated using equations (18), whose elements corresponding to node j  are   
 
 , , , ,( ) ( ) ,  ( ) ( ) .xj x x j xy y j yj xy x j y y jQ M M Q M M     (20) 

 
With the help of equations (16) the least squares condition (19) gets the form 
 

 ( ) ( ) min.Ts     Cb CbD Q D Q  (21) 

 
Based on this condition the set of equations for the shear parameters b  becomes 
 

 .T T
  C Cb CD D D Q  (22) 
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Expressing the nodal shear forces Q  in terms of the nodal moments M  

Let us determine the derivatives of the bending moment xM  at node j , if its nodal 
values at nodes i , j  and k  are known. Its derivatives along sides ij  and jk  at node j  
can be written as 
 

 
, ,

, ,

( ) ( , ) ( ) ,

( ) ( , ) ( ) .

x sij j ij x x j ij x y j

x sjk j jk x x j jk x y j

M c M s M

M c M s M

 

 
 (23) 

 
By inverting these relations we get for the corresponding Cartesian derivatives 
 

 

, , ,

, , ,

1
( ) [ ( ) ( ) ],

1
( ) [ ( ) ( ) ],

x x j jk x sij j ij x sjk j
j

x y j jk x sij j ij x sjk j
j

M s M s M
d

M c M c M
d

 

  
 (24) 

 
where 
 
 .j ij jk ij jkd c s s c   (25) 

 
 
Because the distribution of the bending moment xM  along the element sides is assumed 
to be linear, its derivatives on these sides ij  and jk  are constants and of form 
 

 

 , ,,  .xj xi xk xj
x sij x sjk

ij jk

M M M M
M M

h h

 
   (26) 

 
These results apply also at node j  and thus using equations (24) we can write for the 
Cartesian derivatives of the bending moment xM  at node j  the result  
 

 

,

,

1
( ) ( ) ,

1
( ) ( ) .

jk jk ij ij
x x j xi xj xk

j ij j ij jk j jk

jk jk ij ij
x y j xi xj xk

j ij j ij jk j jk

s s s s
M M M M

d h d h h d h

c c c c
M M M M

d h d h h d h

    

    

 (27) 

 
Similar results are obtained for the Cartesian derivatives of the bending moment yM  
and the twisting moment xyM at node j . Equations (20) now give for the shear forces 

xQ  and yQ  at node j  
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1
( )

1
          ( ) ,

1
( )

1
          ( )

jk jk jk ij
xj xi xyi xj

j ij j ij j ij jk

jk ij ij ij
xyj xk xyk

j ij jk j jk j jk

jk jk jk ij
yj xyi yi xyj

j ij j ij j ij jk

jk ij ij
yj

j ij jk j

s c s s
Q M M M

d h d h d h h

c c s c
M M M

d h h d h d h

s c s s
Q M M M

d h d h d h h

c c s
M

d h h d

    

   

    

   .ij
xyk yk

jk j jk

c
M M

h d h


 (28) 

 
These results corresponding to each node can be expressed in matrix form as  
 
 . EQ M  (29) 
 
The elements of the corresponding matrix E  are given in appendix A. 
 
Solving the shear parameters 

Combining equations (4), (11), (22) and (29) gives the equation 
 
 ,Gb h  (30) 

 
where 
 

 T T
    G C C C E BD D D D  (31) 

 
and 

 

 .T
 h C E AaD D  (32) 

 
Equation (30) is the final set of equations for solving the shear parameters b .  It 
contains  (3 or 4)n  simultaneous equations.   

Calculating the nodal moments and shear forces 

After the shear parameters b  of the element are known, the element nodal curvatures k  
and shears g  can be calculated using equations (4) and (6). With the help of these the 
element nodal moments M  and shear forces Q can be calculated using equations (11) 
and (16).  
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Example problem 

In order to study numerically the behavior of the proposed post-processing technique a 
simply supported square plate of Figure 3 is used as an example problem. In support 
case “hard” all the edges of the plate have “hard” simple supports and in support case 
“mixed” two opposite edges have “hard” and “soft” simple supports, respectively.  

The example plate is loaded by sinusoidal load 
  

 0( , ) sin( )sin( ).
x y

q x y q
a a

   (33) 

 
Analytical solutions of a square Reissner-Mindlin plate under this load in both support 
cases considered are available and are used for comparison in the numerical examples 
given. 
 

 

 

 

 

 

 

 

 

Figure 3: Simply supported square plate: (a) support case “hard” and (b) support case “mixed”  

Typical cases of a homogenous plate and a sandwich plate are considered by using two 
values 0,01   and 10   for the dimensionless ratio 
 

 
2

b

s

D

D a
   (34) 

 
of the bending and shear stiffness bD  and sD .  In order to find out the effect of 
distortion of the finite element grid to the results in addition to uniform grids (Figures 4 
(a) and 5 (a)) also slightly distorted (Figures 4 (b) and 5 (b)) grids of both triangular end 
quadrilateral elements were used. The distortion of the grid was obtained by moving the 
coordinates of the internal nodes randomly within a tolerance of 0,2h .  

 
 

a a

x x 

y y

“hard” “hard” 

“hard”

“hard”“hard” 

“hard”

“soft” “soft”

(a) Support case “hard”: (b) Support case “mixed”: 
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Figure 4: Typical grids ( 6)eln   of triangular elements: (a) uniform (b) distorted 

 

 

 

 

 

 

 
Figure 5: Typical grid ( 6)eln   of quadrilateral elements: (a) uniform (b) distorted 

The behavior of the post-processing technique is studied both in ideal conditions, where 
the nodal parameters ea  are taken form the analytical solution of the problem, and in 
practical conditions, where the nodal parameters ea  are results of finite element analysis 
using simple Reissner-Mindlin plate elements. The elements used in this context are 

0C  continuous linear triangle with one point reduced integration and 0C  continuous 
bilinear quadrilateral with selective reduced integration with 2 2  and 1 1  Gauss 
quadratures for the bending and shear parts of the stiffness matrix, respectively.  

Special attention here is focused to the element nodal values of the moments and 
shear forces. In addition to the post-processed element nodal values of these quantities 
also the “consistent” nodal values obtained using the 0C  continuous plate elements 
used are calculated. Because the shear force and moment approximations of the 

0C  continuous triangle are constants within the element, these values as such are taken 
as “consistent” element nodal values at each element node. Typically in connection with 
the selectively integrated 0C  continuous quadrilateral the representative values of the 
moments and shear forces are at the four and one integration points, respectively. The 
corresponding “consistent” nodal values are thus obtained here by extrapolating these 

(a) (b)

a a

h h

(a) (b)

a a

h h  



195 
 

values from the integration points to the element nodes using bilinear and constant 
interpolation, respectively.  

In order to get a global measure of the accuracy of the obtained nodal moments and 
shear forces at the element nodes, relative error measures 
 

 

appr exact appr exact

exact exact

appr exact appr exact

exact exact

( ) ( )
100%,  

( ) ( )
100%,

e e T e e

e
M e T e

e

e e T e e

e
Q e T e

e





 


 








M M M M

M M

Q Q Q Q

Q Q

 (35) 

 
are used here. In these expressions the summation is performed over the elements of the 
grid. 
 
Results of numerical study of the example problem are described briefly in the 
following. A typical homogeneous plate and a typical sandwich plate with stiffness 
rations 10   and 0,01  , respectively, are considered. Analysis with both “hard” 
and “mixed” support conditions and regular and irregular grids, was performed. A 
careful comparison of post processed nodal shear forces and moments with the 
corresponding consistent ones is also made.  

Numerical results with triangular elements 

Numerical test results with triangular elements are here arranged as follows: Plots of 
dimensionless shear forces 0/( )xQ q a  and bending moments 2

0/( )xM q a  are shown in 
Figures  6 to 9. Experimental convergence plots of the error measures Q  and M  of the 
nodal shear forces and nodal moments, as a function of elements per side eln , are shown 
in Figures B.1 to B.4 of appendix B. Results with distorted grids are only shown here, 
because the corresponding results with uniform grids were very similar.  

In the “hard” support case, when the nodal parameters are taken form the analytical 
solution, the post-processed shear force and bending moment distributions seem to be 
good (Figures 6 and 7) and mostly better than the consistent ones. Also the convergence 
plots (Figure B.1) indicate, that both the nodal shear forces and moments converge. The 
distribution of the bending moment has clearly improved, but the shear forces seem to 
remain element by element constants. In sandwich plate case ( 10  ), the consistent 
and post-processed shear forces seem to coincide, but in homogeneous plate case 
( 0,01  ), the post-processed shear forces are clearly better. Also, if the nodal 
parameters are calculated using finite element analysis with 0C  continuous triangles 
and one point integration, the results remain very similar (Figure B.2).  

In the “mixed” support case, when the nodal parameters are taken either from the 
analytical solution or from finite element results, the post processed shear forces behave 
much like in the “hard” support case (Figures 8a and 9a). There is, however, a dramatic 
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change in the behavior of the post-processed moments. Severe oscillations appear in the 
bending moment distributions (Figures 8b and 9b) and nodal moments do not converge 
at all (Figures B.3 and B.4).   

Numerical results with quadrilateral elements 

Numerical test results with quadrilateral elements are arranged as follows: Plots of 
dimensionless shear forces 0/( )xQ q a  and bending moments 2

0/( )xM q a  are shown in 
Figures 10 to 13. Experimental convergence plots of the error measures Q  and M  are 
shown in Figures B.5 to B.8 of appendix B. Results with distorted grids are only shown 
here.  

In the “hard” support case, when the nodal parameters are either taken from the 
analytical solution or calculated using finite element analysis with 0C  continuous 
quadrilaterals and selective integration, both the post-processed shear force and bending 
moment distributions are clearly better than the consistent ones (Figures 10 and 11). 
Also the convergence plots (Figures B.5 and B.6) indicate, that both the nodal shear 
forces and moments converge.  
In the “mixed” support case the post-processed shear force and bending moment 
distributions are, by inspection, clearly better than the consistent ones (Figures 12 and 
13). Convergence plots (Figures B.7b and B8.b) reveal, however, that results for the 
nodal moments in connection homogeneous plate case ( 0,01  ) are not, better than 
the consistent ones. Convergence plots (Figures B.7 and B.8) indicate, that both the 
nodal shear forces and moments converge. This is a remarkable difference compared to 
the triangular element.   

A note on the shear approximation 

The shear parameters 12
s , 23

s    and 1n
s  or elements of vector b , are not independent, 

but related by a constraint equation 
 
 12 12 23 22 1 1 0,n n

s s sh h h      (36) 

 
which is based on compatibility of the shear deformation. This is shown in appendix C. 
Thus in connection with triangular and quadrilateral elements the shear approximation 
is presented using two and three independent parameters, respectively. 

In a triangular element this is equivalent to the fact that the post-processed 
approximations of the Cartesian shear components x  and y  are constants within an 
element. This is shown in appendix D. If the shear force shear matrix D  is constant 
within an element, also the post processed shear forces xQ  and yQ  will be element by 
element constants. This was actually observed in the numerical results with triangular 
elements.     
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(a) 

(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 6: Triangular elements, “hard” supports, nodal parameters from the analytical solution, 
10   

 
 
 
 



198 
 

(a) 

(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Triangular elements, “hard” supports, nodal parameters from the analytical solution, 
0,01   
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(a) 

(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Triangular elements, “mixed” supports, nodal parameters from the analytical solution, 

10   
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(a) 

(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Triangular elements, “mixed” supports, nodal parameters from the analytical solution, 

0,01   
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(a) 

(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure10: Quadrilateral elements, “hard” supports, nodal parameters from the analytical 
solution, 10   
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(a) 

(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Quadrilateral elements, “hard” supports, nodal parameters from the analytical 
solution, 0,01   
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(a) 

(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Quadrilateral elements, “mixed” supports, nodal parameters from the analytical 
solution, 10   
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(a) 

(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Quadrilateral elements, “mixed” supports, nodal parameters from the analytical 
solution, 0,01   
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Conclusions 

The given numerical results show, that the presented post-processing method works. In 
connection with triangular elements and “hard” supports both the post processed shear 
forces and bending moments converged, but in connection with “mixed” supports the 
post processed bending moments did not converge. These results indicate, that with 
triangular elements the method cannot handle the typical boundary layer of a Reissner-
Mindlin plate solution properly. Therefore the presented post-processing method is not 
recommended to be used with three node triangular plate elements.  

In connection with quadrilateral elements the post-processed shear forces and 
bending moments converged both in the “hard” and “mixed” support case. The post-
processed shear forces and bending moments seemed to be smoother and converged 
mainly better than the consistent ones.  Therefore the presented post-processing method 
can be used as one alternative in improving the shear force and bending moment results 
obtained using four node quadrilateral Reissner-Mindlin plate elements.  
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Appendix A: Elements of matrices A , B , C  and E  
 
The elements of matrix A can be obtained using equations 
 

3 2,3 2 2

6
,

ij jk
j i

j ij

c s
A

d h
    2 2

3 2,3 1 (2 ),  jk
j i ij ij

j ij

s
A c s

d h     3 2,3

3
,

ij jk ij
j i

j ij

s s c
A

d h    

3 2,3 2 2 2

6
( ),

ij jk ij jk
j j

j ij ij

c s s c
A

d h h
       

2 2 2 2
3 2,3 1

1
[ (4 ) (4 )],  

jk ij
j j ij ij jk jk

j ij jk

s s
A c s c s

d h h        

3 2,3

3 c
( ),  

ij jk ij jk
j j

j ij jk

s s c
A

d h h     

3 2,3 2 2

6
,  

ij jk
j k

j jk

s c
A

d h
    2 2

3 2,3 1 (2 ),   
ij

j k jk jk
j jk

s
A c s

d h     3 2,3

3
,

ij jk jk
j k

j jk

s s c
A

d h    

3 1,3 2 2

6
,  

ij jk
j i

j ij

s c
A

d h
    3 1,3 1

3
,  

ij jk ij
j i

j ij

s c c
A

d h    2 2
3 1,3 (2 ),

jk
j i ij ij

j ij

c
A s c

d h     

3 1,3 2 2 2

6
( ),  

ij jk ij jk
j j

j ij jk

s c c s
A

d h h
     3 1,3 1

3
( ),

jk ij ij jk
j j

j ij ik

c c s s
A

d h h            (A.1) 

2 2 2 2
3 1,3

1
[ (4 ) (4 )],

jk ij
j j ij ij jk jk

j ij jk

c c
A s c s c

d h h       

3 1,3 2 2

6
,  

ij jk
j k

j jk

c s
A

d h
    3 1,3 1

3
,  

ij jk jk
j k

j jk

c s c
A

d h    2 2
3 1,3 (2 ),

ij
j k jk jk

j jk

c
A s c

d h     

3 ,3 2 2

6
( ),j i ij jk ij jk

j ij

A c c s s
d h

    2 2
3 ,3 1

1
[ (2 ) 3 ],j i jk ij ij ij jk ij

j ij

A c c s s s c
d h      

2 2
3 ,3

1
[ (2 ) 3 ],j i jk ij ij ij jk ij

j ij

A s s c c c s
d h

     

12 12
3 ,3 2 2 2

12

6( ) 1 1
( ),

jk jk
j j

j jk

s s c c
A

d h h



    

2 2 2 2
3 ,3 1

1
[ (4 ) (4 ) 3 ( )],

jk ij ij jk
j j ij ij jk jk ij jk

j ij jk ij jk

c c c c
A c s c s s s

d h h h h         

2 2 2 2
3 ,3

1
[ (4 ) (4 ) 3 ( )],

jk ij ij jk
j j ij ij jk jk ij jk

j ij jk ij jk

s s s s
A s c s c c c

d h h h h
        



207 
 

3 ,3 2 2

6
( ),j k ij jk ij jk

j jk

A c c s s
d h

     2 2
3 ,3 1

1
[ (2 ) 3 ],j k ij jk jk ij jk jk

j jk

A c c s s s c
d h      

2 2
3 ,3

1
[ (2 ) 3 ]j k ij jk jk ij jk jk

j jk

A s s c c c s
d h

     

 
and cyclic permutation. The elements of matrix B  can be obtained using equations   
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and cyclic permutation. The nonzero element of matrix C  are obtained using equations 
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and cyclic permutation. The nonzero elements of matrix E  are obtained using equations 
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and cyclic permutation. In all these equations j ij jk ij jkd c s s c  .   
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Appendix B: Experimental convergence plots of the error measures Q  and M  of 
the nodal shear forces and moments. Comparison of consistent and post-processed 
results. 
 
      consistent      post processed      consistent    o  post processedQ Q M M        
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure B.1: Triangular elements, “hard” supports, nodal parameters from the analytical solution, 
distorted grid, (a) 10   and (b) 0,01    
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Figure B.2: Triangular elements, “hard” supports, nodal parameters from the finite element 
solution, distorted grid, (a) 10   and (b) 0,01   
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      consistent      post processed      consistent    o  post processedQ Q M M        

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure B.3: Triangular elements, “mixed” supports, nodal parameters from the analytical 
solution, distorted grid, (a) 10   and (b) 0,01      
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Figure B.4: Triangular elements, “mixed” supports, nodal parameters from the finite element 
solution, distorted grid, (a) 10   and (b) 0,01     
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       consistent      post processed      consistent    o  post processedQ Q M M        

 
 
 
 
 
 
 
 
 
 
 
  
 

Figure B.5: Quadrilateral elements, “hard” supports, nodal parameters from the analytical 
solution, distorted grid, (a) 10   and 0,01    
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Figure B.6: Quadrilateral elements, “hard” supports, nodal parameters from the finite element 
solution, distorted grid, (a) 10  and (b) 0,01   
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       consistent      post processed      consistent    o  post processedQ Q M M        

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.7: Quadrilateral elements, “mixed” supports, nodal parameters from the analytical 
solution, distorted grid, (a) 10   and (b) 0,01    

 
       consistent      post processed      consistent    o  post processedQ Q M M        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.8: Quadrilateral elements, “mixed” supports, nodal parameters from the finite element 

solution, distorted grid, (a) 10   and (b) 0,01     
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Appendix C: Constraint equation between the shear parameters eb  
 
The shear parameters 
 

 12 1

1
,  3 or 4

Te n
s s

n
n 


   b   (C.1) 

 
are not independent, but constrained by one compatibility equation. This equation is 
obtained as follows.  Because the tangential shears of the element sides are assumed to 
be constants, the differences of the nodal deflections caused by shear corresponding to 
element side ij can be written as 
 
 .s s ij

j i s ijw w h   (C.2) 

 
Writing equations (C.2) for the sides of a triangular element gives  
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Summing these equations gives  
 
 12 23 31

12 23 31 0.s s sh h h      (C.4) 

 
This equation is the shear compatibility equation of a triangular element. The 
corresponding equation for a quadrilateral element is obtained similarly and it is 

 
 12 23 34 41

12 23 34 41 0.s s s sh h h h        (C.5) 

 
Appendix D: Why in a triangular element the three parameter shear approximation 
results to constant Cartesian shear components x and y  within an element. 
 
Multiplying the relations  
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which express the tangential shears ij

s  and jk
s  of the element sides connected to node 

j  in terms of the Cartesian shears xj  and yj of node j , respectively, by side lengths 

ijh  and jkh  and taking further into account the relations ij j i ij ijx x x c h    and 

ij j i ij ijy y y s h    gives 
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Solving the Cartesian shears from these equations gives 
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where ( ) / 2ji kj ji kjA x y y x   is the area of the element. Similar expressions for the 

Cartesian shears of other nodes k  and i  are obtained using cyclic permutation. 
Subtracting the expressions of Cartesian shears of nodes i  and j  gives 
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Based on the shear compatibility equation (C.4) of a triangular element, equations (D.4) 
now give ,  .xi xj yi yj      Thus we conclude, that 1 2 3x x x     and 1 2 3y y y    , 

and the Cartesian shear components x  and y  are constants within each element. 


