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On the derivation of boundary-layer equations 

Eero-Matti Salonen and Markku Lindroos 

Summary. Some results which may be useful in teaching boundary-layer momentum equations 
are derived by employing kinematical relations of flow near a rigid impermeable wall. The 
derivations are based on Taylor expansions of the velocity components and the boundary form 
in the neighbourhood of the wall. The Newtonian fluid with the no-slip boundary condition and 
the inviscid fluid model with the free-slip boundary condition are dealt with. Additionally, 
kinematical relations resulting from the continuity equation are made use of. The treatment is 
restricted to steady, incompressible, two-dimensional, laminar flow. 
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Introduction 

The rigid impermeable wall is the most usual boundary type encountered in fluid 
mechanics. The present article deals with some consequences due to the constraints 
imposed on the flow by kinematical relations near a rigid wall. The relations employed 
are the no-slip boundary condition and the continuity equation in the case of the real 
Newtonian fluid model and the free-slip boundary condition and the irrotational flow 
condition in the case of the ideal inviscid fluid model. 

 The treatment is restricted to the steady, incompressible, two-dimensional, laminar 
flow. The well-known equations governing the flow are the continuity equation 
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and the constitutive relations 
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Above, x and y are rectangular Cartesian coordinates, u and v the corresponding velocity 
components, ρ  the (constant) density, p the pressure, xσ ′  and yσ ′  the deviatoric normal 
stresses, xyτ  the shearing stress and μ  the (constant) viscosity. In more detail, the 
deviatoric normal stresses appear as 
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where xσ  and yσ  are the normal stress components. 
The constitutive relations are valid for the so-called isotropic Newtonian fluid 

obeying Stokes’ law of friction [6, p. 48]. Here we shall call such a fluid shortly real 
fluid in contrast to the ideal fluid model considered later. 

Basic expansions 

Figure 1 depicts a section of a fixed wall in a two-dimensional case. To study the flow 
near a certain point O at the wall, it is convenient to define a local rectangular Cartesian 

, -x y coordinate system with its origin at point O. The x-axis is taken along the tangent 
to the boundary at point O, and the y-axis is directed towards the fluid side of the 
boundary. We emphasize that during the derivations the selected coordinate system is 
kept fixed. 

                                                 
Figure 1.  Two-dimensional flow and wall. 

It is assumed that the boundary form and the velocity distribution are smooth 
enough so that they can be expressed as Taylor expansions about point O. We thus 
obtain 
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Here, subscript o refers to the value of a quantity evaluated at point O. Similarly, 
subscript b refers to the value of a quantity evaluated at the wall boundary. The term 

o1/ R  is the curvature of the boundary at point O: 
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It is positive if the centre of curvature K (Figure 1) is on the fluid side of the boundary. 
Terms up to the second order have been shown in expressions (5) and (6). Terms ( )b oy  

and ( )b od / dy x  vanish due to the choice of the coordinate system. 
 When expression (5) is substituted into expressions (6), we obtain 
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In the present article, the nature of the flow near a curved (or in a special case near a 
flat) wall is explained using rectangular Cartesian coordinates (cf. Figure 1). Later, the 
results obtained are applied to derive the standard boundary-layer momentum equations. 
However, in this approach there is initially a discrepancy as with curved boundaries the 
normal way to present the governing equations is to use an orthogonal curvilinear 
coordinate system — sometimes called a body intrinsic coordinate system, e.g. [1. p. 
197]. This system is commented on further at the end of the article in connection with 
Figure 3. The symbols for the coordinates and the velocity components are the same as 
above, but their content is different. The abscissa, x, is measured along the curved wall, 
and the ordinate, y, at right angles to it. Symbols u and v refer now to the velocity 
components in the directions of the local -x  and -y axes. 

Using the intrinsic system we still have relations of the type ( ),u u x y=  and 
( ),v v x y=  and we can write expansions (6) as before. However, we do not need 

equation (5) as the boundary is given now by 0y =  and instead of (8) we have 
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The analogues of equations (1) to (3) become rather complicated in intrinsic 
coordinates. For instance, the continuity equation is [6, p. 68] 

 0R u v v
R y x y R y

∂ ∂
+ − =

− ∂ ∂ −
, (10) 

where the radius of curvature of the wall R depends on x. With the intrinsic coordinates 
we could try to proceed in the same way as with the Cartesian coordinates used in the 
present article. However, the derivations would become rather involved for teaching 
purposes. Thus, at this phase it might be enough to refer to the literature to inform the 
student that the use of the more involved equations finally give locally a formulation 
identical to that obtained by using Cartesian coordinates. 

Real fluid  

For a real fluid, the no-slip condition on a fixed wall requires that the fluid velocity 
disappears: 
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Comparison of expressions (8) and equations (11) thus gives the following ”generalized 
no-slip conditions”: 
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These are obtained by equating the coefficient of each power of x to zero in (8). 
 It is to be noted that no approximations are involved in equations (12) even if they 
are obtained from the first few terms of the series expansions. To convince ourselves 
about this we can proceed as follows. For instance, with b 0u =  in the former of 
expressions (8), we first let x tend to zero. This gives o 0u = . (The terms ignored may 
be represented by a remainder term which tends to zero as x tends to zero; so we do not 
need to worry about any convergence questions of infinite series.) Putting now o 0u =  
in the equation and dividing it by x gives 
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We let 0x → , which gives ( )o/ 0u x∂ ∂ = , etc. This procedure is naturally based on the 
premise that the expansions exist to an order high enough. (For (12) to be valid, it is 
sufficient that u and v are three times continuously differentiable in the neighbourhood 
of point O.) 
 Next we make use of the continuity equation (1). The no-slip condition 
( )o/ 0u x∂ ∂ =  applied in (1) gives the additional constraint 
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When this is put into the last of equations (12), we obtain the further result 
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 By employing all the kinematical results derived above, the original expansions (6) 
can finally be written as 
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 It is also of some interest to record the stress components on the wall: 
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Thus the deviatoric stress components vanish on the wall and the shearing stress 
expression becomes simpler. These results follow from equations (12) and (14). The 
second formula (17) in fact indicates that the values measured from a flowing fluid by 
manometers through small openings on rigid surfaces really give values of pressure and 
not just values of the corresponding normal stress. 
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Boundary-layer momentum equations 

Let us initially consider the situation according to Figure 1. When we consider flow 
along the line 0x =  near the wall it is obvious from (16) that the flow direction is in 
general roughly parallel to the wall and thus 

 v u<< . (18) 

An exceptional case is with ( )o/ 0u y∂ ∂ = , which is associated with the separation of 
flow. Then the boundary-layer assumptions are no more valid. The main additional 
simplifying idea is that the rate of change in values for certain quantities is in general 
much smaller in the tangential than in the wall normal direction: 

 ( ) ( )
x y

∂ ∂
<<
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. (19) 

However, these intuitively appealing arguments are not enough for making rational 
simplifications. 
 In the literature the most usual way to produce the simplifications is to apply the 
order-of magnitude analysis which is described, for instance, in [3], [5] and [6]. We 
present here an alternative way, which is based mostly on the series representations 
containing the kinematical constraints due to the no-slip boundary condition and the 
continuity equation. 
 We need the derivatives of the velocity components. From (16), 
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Using (20) and (16), the acceleration terms are thus  
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when terms up to the second order are retained. We compare the terms on the line 0x =  
to obtain 
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 To get the final expressions (23) and (24) we have made use of equations 
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obtained by differentiation of the continuity equation. Additionally, to get (24), one of 
the formulae in (12) has been used. 
 It can be seen that the terms /u u x∂ ∂  and /v u y∂ ∂  are of the same order of 
magnitude. The term /u v x∂ ∂  is small (actually zero) compared to them when the 
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boundary is straight ( o1/ 0R = ). This may also be considered to be valid when the 
curvature o1/ R  is reasonably small. Now we can first write the momentum equations in 
the form 
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in the neighbourhood of the wall. We then look at the terms containing the viscous 
stress components. From equations (3) and (20): 
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Again, equation (27) has been used. If the boundary is straight, / 0x xσ ′∂ ∂ = . We may 
assume this result to be valid also when the curvature is small. To get further we now 
make use of relation (19) and drop all terms containing the derivative with respect to x. 
This gives / 0y yσ ′∂ ∂ = , / 0xy xτ∂ ∂ = , and the conventional boundary-layer momentum 
equations 
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are obtained with 
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in laminar flow. Motivation for dropping the term /v x∂ ∂  from the full expression (3) is 
reinforced by representation (17) for yxτ  at the wall. 



195 

 

 We have left the first equation (30) in such a form that it is valid in the turbulent 
case, too (cf. [3, p. 44]), then with the expression 

 yx
u u v
y

τ μ ρ∂ ′ ′= −
∂

 (32) 

for the shearing stress. In this case u and v refer to the mean and u′  and v′  to the 
fluctuating values. However, we do not try to derive expression (32) here as the present 
article is limited to laminar flow. 

Ideal fluid 

Next we develop some formulae using the frictionless fluid model with respect to the 
boundary condition. The resulting formulae will also prove useful in boundary-layer 
considerations. 
 Under the free-slip boundary condition for an inviscid fluid, the fluid velocity v is 
tangential to a fixed wall boundary or, equivalently, perpendicular to the normal of the 
boundary: 

 b b b 0x yn u n v⋅ = + =n v . (33) 

Here n is the unit normal vector (with components xn  and yn ) of the boundary, 
pointing towards the fluid (Figure 1). By analytic geometry we have 
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where i and j are the unit base vectors. From expression (5) it follows that 
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and by using a binomial series expansion and the above result we have 
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Thus, when only terms up to the first order are retained, we obtain 
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Substitution of expressions (37) and (8) into equation (33) yields 
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Thus the ”generalized free-slip conditions” are 
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and the original expansions (6) reduce to (when only terms up to the first order are 
retained) 

 
o

o o

o
o o

1

u uu u x y
x y

vv u x y
R y

⎛ ⎞∂ ∂⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂
= + +⎜ ⎟∂⎝ ⎠

L

L

 (41) 

 If the flow is further assumed to be irrotational — as is usual in ideal fluid 
(potential) flow analysis applied to determine the impressed pressure on the boundary 
layer — we have the additional kinematical constraint 
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x y
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and the second condition (40) can be put into the form 
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The content of this formula is best understood by looking at Figure 2. For a given ou  
the magnitude and sign of the normal derivative ( )/u y∂ ∂  at the wall are determined by 
the curvature o1/ R . When the wall is concave (convex) as looked from the fluid side, 

o1/ R  is positive (negative), and the magnitude of the tangential velocity component 
near the wall is decreasing (increasing) when the wall is approached. 
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Figure 2.  Tangential velocity distribution on the wall normal with (a) concave, (b) straight, (c) 
convex wall. 

 Formula (43) explains for instance why high fluid velocities and danger for 
cavitation can be expected in convex areas with high value of curvature; this point is 
discussed in reference [2, p. 386], where the equivalent of the formula is derived by a 
different procedure. 

 With proper interpretation the free-slip conditions can even be employed in 
connection with real fluid flow. In reality we should not apply our formulae at the rigid 
surface, where the velocity is actually zero, but at some distance from it. Especially, 
formulae (39) to (41) are exactly valid anywhere in the flow if we just consider the 
boundary replaced by a streamline with a point O on it now used as the expansion 
centre. (It should be realized that above we have only used kinematical equations and no 
constitutive relations have been invoked.) The subscript o in formulae (39) to (41) can 
now be removed to avoid confusion with the case where point O is on the wall. 

 As an application we consider the assessment of the term /u v x∂ ∂  which is usually 
neglected in the boundary layer equations. Application of the second formula in (40) 
results in the relation 

 21vu u
x R
∂

=
∂

. (44) 

The expression 1/ R  is the unknown curvature of the streamline. We put b1/ 1/R R≈  
where b refers now to the boundary value and use 0v =  from the first equation (40). 
The second momentum equation (2) reduces then in the frictionless case to 

 2

b

pu
R y
ρ ∂

= −
∂

. (45) 

This may be considered as a more accurate boundary-layer momentum equation 
compared to the second of (30) and is called the ”centrifugal force” equation in [3, p. 
41]. 
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Final remarks 

The derivation of the boundary-layer momentum equations presented in this article was 
based on the fixed , -x y coordinate system according to Figure 1. If the wall is actually 
straight, the equations are also valid elsewhere than in the neighborhood of the selected 
origin of the coordinate system. 

            
Figure 3. (a) An orthogonal curvilinear and (b) a rectangular coordinate system. 

 As discussed at the end of Section “Basic expansions”, with a curved wall an 
intrinsic coordinate system of the type shown in Figure 3 (a) is usually applied in 
connection with the boundary-layer theory. Some coordinate lines are sketched in the 
figure. It can be shown, e.g. [5, p. 314], that if the thickness of the boundary layer is 
essentially smaller than the radius of the curvature of the wall, the equations valid for a 
straight boundary can also be applied with sufficient accuracy in the curvilinear system. 
From the mathematical point of view, the treatment can then finally be considered to 
take place in the rectangular coordinate system of Figure 3 (b). However, when 
calculating the potential flow needed for impressing the pressure on the boundary layer 
flow, the original geometry of Figure 3 (a) must be employed. 

 Reference [4] is concerned with the use of Taylor expansions in the neighborhood 
of a rigid wall to study the conditions of separation in boundary layers. The present 
article is similar in approach. In reference [4] the derivations are performed for a plane 
surface and the free-slip condition is not included. 

 Finally, it is not claimed that the steps employed in the present article to obtain the 
boundary-layer momentum equations are rigorous. The exact order of magnitude 
analysis is, however, rather involved and demanding to the student, and if one cannot 
spend much time on teaching the subject, the above way of presentation is suggested as 
a possible alternative. 
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