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Recent developments in the analysis and design of bilinear
shell elements

Antti H. Niemi

Summary. The paper discusses the mathematical theory of bilinear shell elements. The focus
is on the approximation of layer and vibration modes that are characteristic to curved shell
deformations. Recent results have shown that parametric error amplification, or numerical
locking, arises in these cases when bilinear elements are used and the formulation is based on
the so-called degenerated solid approach. Also an alternative way for designing bilinear shell
elements has been proposed by the author. We sum up these recent developments and perform
some supplementary numerical experiments concerning the vibration analysis of curved fan
blades.
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Introduction

In the theory of elasticity, bodies which are bounded by two closely-spaced curved surfaces
are referred to as shells. Because such structures support external loads very effectively,
they are applied widely especially in naval and aerospace engineering where the combina-
tion of light weight and high strength is of uttermost importance. But thin elastic shells
are rather common in nature as well. For instance, biomechanical models of artery walls
in the human cardiovascular system are receiving a great deal of attention at the present
time.

Since the equations of elasticity specialized to thin curved bodies cannot be solved an-
alytically in general, practical shell problems are usually solved numerically by the finite
element method. The exponential growth in raw computer power during the last decades
has enabled structural engineers to address very complex problems with many interacting
effects. Nevertheless, modeling of thin-walled structures with three-dimensional contin-
uum elements would require several elements through the thickness and might lead to
fairly expensive computations particularly when nonlinear and transient analyses are per-
formed, cf. [1]. Therefore, special structural elements known as “shell elements” are often
preferred in engineering applications. Among these, certain low-order formulations based
on the so-called degenerated solid approach seem to be the most popular ones thanks
to their relative simplicity and excellent performance in many benchmark problems, see
e.g. [2, 3, 4, 5]. Rather paradoxically, the mathematical understanding of parametric
locking effects within these formulations is still fairly light albeit the “underlying math-
ematical model” of the discretizations has been identified and studied in several works,
see [6, 7, 8, 9, 10] and the references therein.

The present paper reviews the mathematical theory of the bilinear MITC4 shell ele-
ment introduced by Bathe and Dvorkin in [4, 11]. Our approach to MITC4 (and other
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bilinear degenerated elements) is based on a reformulation of the original 3D element in
the context of a specific 2D shell model. This model was derived directly from the geo-
metrically exact Reissner-Naghdi shell model by Malinen in [12, 13] and may be viewed
as a refined variant of the shallow shell models found from the classical books on shell
theory such as [14, 15, 16, 17, 18]. The model includes some geometric simplifications but
it should be precise enough to study the accuracy of low-order finite element formulations
where rather crude geometric approximations are being performed anyway. In fact, the
numerical effect of the bilinear geometry representation involved in MITC4 can be un-
folded adequately when the formulation is understood in this context [13]. Regarding the
approximation of bending- and membrane dominated deformations of a shell, the finite
element error analysis was performed some time ago by Havu and Pitkäranta, see [19, 20].

The picture has been completed later on by an analysis of locking effects related to
the various boundary and interior layer modes appearing in shell deformations [21]. Some
of these results apply to the approximation of vibration modes as well since these modes
involve locking effects similar in nature to those found when approximating layers [22].
Moreover, the latest theory asserts that the usefulness of classical shell models is not
limited to academic purposes only. On the contrary, the refined shallow shell model
can be used as a solid basis for efficient and accurate computations using bilinear finite
elements as demonstrated in a recent article [23] by the author.

Classical shell model

Consider an elastic body occupying a domain Ω in 3-space and deformable according
to the laws of linear elasticity theory. Denote the displacements along the coordinates
x1, x2, x3 by u1, u2, u3 and the corresponding displacement vector field by u = (u1, u2, u3).
The strain energy of the body is then proportional to the quadratic functional

A(u,u) =

∫
Ω

σ(u) : ε(u) dΩ (1)

where σ is the stress tensor and ε is the strain tensor. Assuming homogeneous and
isotropic material, the stress is related to the strain by the material law of Hooke as

σ = λ tr(ε)I + 2με (2)

Here λ, μ are the Lamé parameters of the material which are connected to the Young
modulus E and Poisson ratio ν by

λ =
Eν

(1 + ν)(1 − 2ν)
, μ =

E

2(1 + ν)

In a Cartesian coordinate system (x̄1, x̄2, x̄3) the strain tensor is defined as the symmetric
gradient, i.e.

εij =
1

2

(
∂ūi

∂x̄j
+

∂ūj

∂x̄i

)
(3)

but in the geometric description of a shell body it is more suitable to employ curvilinear
coordinates1.

1We rely on conventional notation in physical components, although more general tensor notation is
often preferred in modern presentations of shell theory.
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More precisely, the position of any point in a shell may be determined by three coordi-
nates x, y, z so that x and y specify the position on the middle surface, while z expresses
the normal distance to the point from the middle surface. The middle surface is assumed
to be a parametric surface r(x, y), where r is a smooth function that maps the parameter
region ω ⊂ R

2 into 3-space. Denoting by n the unit normal vector to the middle surface,
a shell domain of constant thickness t can now be defined as Ω = Φ(ω × (−t/2, t/2)),
where Φ is a smooth map of the form

Φ(x, y, z) = r(x, y) + zn(x, y) (4)

In classical shell theories the displacement field u = (u1, u2, u3) at a point (x, y, z) is
defined so that u1, u2 are the tangential displacements to the middle surface and u3 is the
normal displacement. Moreover, the variation of the displacement field u with respect to
the normal coordinate z is assumed to be of the form

u1(x, y, z) = u(x, y) − zθ(x, y)

u2(x, y, z) = v(x, y) − zψ(x, y)

u3(x, y, z) = w(x, y)

(5)

where u, v and w are the displacements of the middle surface and θ and ψ are the so-
called rotations. In other words, straight material fibres which are perpendicular to the
middle surface before deformation remain straight after deformation and do not change
their length. Nowadays, this assumption is probably best known as the Reissner-Mindlin
kinematic assumption.

In addition, most of the classical shell models neglect the normal stress in comparison
with the remaining stresses. Together with (2), the plane stress assumption σ33 = 0
implies that

ε33 = − ν

1 + ν
(ε11 + ε22) (6)

Obviously this contradicts assumption (5) which already implies that ε33 = ∂u3/∂z = 0.
The conflict causes ultimately no problem, but a rigorous justification of the plane stress
hypothesis is actually a rather delicate matter. The mathematical reasoning can be based
on a quadratic expansion of u3 in the normal coordinate z. As a matter of fact, the
condition σ33 = 0 then follows (approximatively, see e.g. [24]) from the minimization of
the 3D strain energy with respect to the linear and quadratic components in u3.

Anyway, substitution of ε33 from (6) back to (2), (1) yields the 3D strain energy of a
linear elastic problem with σ33 = 0 (homogeneous, isotropic material):

A(u,u) =
E

1 − ν2

∫
Ω

[
ν(ε11 + ε22)

2 + (1 − ν)(ε2
11 + 2ε2

12 + ε2
22)

]
dΩ

2E

(1 + ν)

∫
Ω

(
ε2
13 + ε2

23

)
dΩ

(7)

Referring to the assumed expansion (5) of the displacement field, the remaining strains
in the expression (7) can be put in the approximative form

εij(x, y, z) = βij(x, y) − zκij(x, y), i, j = 1, 2,

2εi3(x, y, z) = ρi(x, y), i = 1, 2

Here βij are referred to as the membrane strains, κij as the bending strains and ρi as
the transverse shear strains. These are in general variable-coefficient linear combinations
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of the displacement components u, v, w, θ, ψ and their first-order partial derivatives with
respect to x, y. The actual form of the coefficients depends on how the coordinates x, y
have been chosen, but when the coordinate lines are orthogonal, the coefficients can be
written (see [17]) in terms of the two Lamé parameters

A1 =

∣∣∣∣∂r

∂x

∣∣∣∣ , A2 =

∣∣∣∣∂r

∂y

∣∣∣∣
and the three radii of curvature2

1

R11

= − 1

A2
1

n · ∂2r

∂x2
,

1

R22

= − 1

A2
2

n · ∂2r

∂y2
,

1

R12

= − 1

A1A2

n · ∂2r

∂x∂y

The quantities A1 and A2 (also referred to as scale factors) determine the differential of
the arc length on the middle surface by

ds2 = A2
1dx2 + A2

2dy2

whereas the quantities 1/R11 and 1/R22 represent the normal curvatures of the middle
surface along the coordinate lines. The geometric depiction of the twist 1/R12 is more
complex, but it can be related to the principal curvatures 1/R1 and 1/R2, from which
one is the maximum and the other one a minimum of the normal curvature, as

1

R12
=

(
1

R2
− 1

R1

)
sin α cos α

where α is the angle between the x-coordinate line and the direction of the principal
curvature 1/R1.

Refined shallow shell model

In what follows, the coordinates x, y are identified as the projections of points of the shell’s
middle surface on a plane K ↔ ω ⊂ R

2 so that the middle surface may be represented as

r(x, y) = xi + yj + f(x, y)k, (x, y) ∈ K (8)

Here i, j,k are the basis vectors of the Cartesian coordinates x̄1, x̄2, x̄3 and f is a smooth
function. Let us denote the smallest radius of curvature of r(x, y) over K by R =
min{R11, R22, R12} and the diameter of K by hK = diam(K). We will assume that
|∇f | = O(hK/R) which implicates that the plane K is (approximatively) tangent to the
middle surface. It follows that the coordinate lines on the middle surface are orthogonal
within the accuracy of O(h2

K/R2). Up to this accuracy, the scale factors may be written
as

A1 =

√
1 +

(
∂f

∂x

)2

≈ 1, A2 =

√
1 +

(
∂f

∂y

)2

≈ 1 (9)

and the curvatures may be taken to be the second derivatives of f in (8), i.e.

1

R11

≈ ∂2f

∂x2
,

1

R22

≈ ∂2f

∂y2
,

1

R12

≈ ∂2f

∂x∂y

2We follow the usual convention in shell theory, where the normal curvature at a point (x, y) ∈ ω is
positive when the corresponding center of curvature lies in the direction −n(x, y) from r(x, y).
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However, an attractive option is to compute these directly from the unit normal vector n
as

1

R11
≈ ∂n

∂x
· i, 1

R22
≈ ∂n

∂y
· j, 1

R12
≈ ∂n

∂x
· j ≈ ∂n

∂y
· i (10)

The strain-displacement3 relations over K can now be written for the membrane strains
as

β11 =
∂u

∂x
+

w

R11
, β22 =

∂v

∂y
+

w

R22
, β12 =

1

2

(
∂u

∂y
+

∂v

∂y

)
+

w

R12
(11)

for the transverse shear strains as

ρ1 = θ − ∂w

∂x
+

u

R11
+

v

R12
, ρ2 = ψ − ∂w

∂y
+

u

R12
+

v

R22
(12)

and for the bending strains as

κ11 =
∂θ

∂x
+

1

2

1

R12

(
∂u

∂y
− ∂v

∂x

)
, κ22 =

∂ψ

∂y
− 1

2

1

R12

(
∂u

∂y
− ∂v

∂x

)

κ12 =
1

2

[
∂θ

∂y
+

∂ψ

∂y
− 1

R11

(
∂u

∂y
− w

R12

)
− 1

R22

(
∂v

∂x
− w

R12

)] (13)

where the curvatures 1/Rij are the only visible geometric parameters. The above forms
have been obtained by admitting a truncation error of O(hK/R) which arises from the
substitution of (9) into the usual 2D strain expressions as given by Gol’denveizer in [17,
Eqs. (19.1)–(19.5)].

By writing dΩ = dx dy dz, the three-dimensional deformation energy (7) may be
integrated over z within the adopted accuracy . The resulting two-dimensional strain
energy functional of the shell over K takes the form

AK(u,u) =
Et

1 − ν2

∫
K

[
ν(β11 + β22)

2 + (1 − ν)(β2
11 + 2β2

12 + β2
22)

]
dxdy

+
Et

2(1 + ν)

∫
K

[
ρ2

1 + ρ2
2

]
dxdy

+
Et3

12(1 − ν2)

∫
K

[
ν(κ11 + κ22)

2 + (1 − ν)(κ2
11 + 2κ2

12 + κ2
22)

]
dxdy

(14)

The shell model (11)–(14) whose derivation is outlined above serves as the starting
point of our study. The model was originally presented by Malinen in [13] using general
coordinates and tensorial notation. Actually the bending strains proposed in [13] differ
from the ones in (13) by the relations

κM
11 = κ11 − 1

R12
β12, κM

22 = κ22 − 1

R12
β12

but like any modification of the bending strains by an added linear combination of βij ’s,
this causes an insignificant perturbation of the energy (14) when t is small. On the other
hand, the effect of the tangential displacements u and v in the expressions of the bending
strains is neglected completely in the classical engineering theory of shells (also known as

3Note that here the displacement components do not follow the coordinate axes x̄1, x̄2, x̄3, but are
tangents to the middle surface in planes parallel to the coordinate planes (u, v, θ, ψ) and normal to the
middle surface (w).
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the Donnell-Musthari-Vlasov theory of thin shells). From the modern perspective, this
type of simplification is reasonable e.g. when the goal is to understand locking of finite
element algorithms because the bending strains are not so critical in this respect.

However, when the model is used in realistic computations to represent the strain en-
ergy of a single element K, there are generally two possibilities as, according to [25], the
omission of the middle surface displacements from (13) effectively attaches the displace-
ment component w to the k-direction. Either all terms in the expression (13) are retained
or the direction of the third displacement component is defined differently within each
element. In any event, the strain energy of the entire shell may be expressed formally as

A(u,u) =
∑
K

AK(u,u)

where the sum is taken over all elements used in the representation of the structure.

Membrane and shear locking, MITC4S

The difficulties in linear shell finite element models originate mainly in the approximation
of inextensional deformations with vanishing membrane and transverse shear strains. Such
deformations may occur when the kinematic constraints along the edge of the shell are
weak enough to allow pure bending of the curved structure. To illustrate the problems
with the associated displacement modes, we consider a simple example in the spirit of
[26].

Assume a four-node isoparametric quadrilateral element occupying a rectangular do-
main aligned with the coordinate axes x, y. The element expansions of u and w take then
the bilinear form

u(x, y) = αu + βux + γuy + δuxy, w(x, y) = αw + βwx + γwy + δwxy

where the constants αu, βu, etc. depend on the values of u and w at the element nodes.
The requirement β11 = 0 implies according to (11) that(

βu +
αw

R11

)
+

βw

R11
x +

(
δu +

γw

R11

)
y +

δw

R11
xy = 0

so that four constraints are imposed on u and w. In particular, w is not allowed to vary
with respect to x which is a rather heavy requirement from the viewpoint of approximation
theory. Moreover, each of the conditions β12 = β22 = 0 and ρ1 = ρ2 = 0 satisfied by an
inextensional deformation restricts the bilinear displacement field with additional four
constraints. Note that when the element is a part of a large rectangular mesh, it has
approximatively one degree of freedom per displacement component4. In other words,
the element is heavily over-constrained which results in a severe underestimation of the
displacements, or locking, see [24].

As a quick device for estimating an element’s tendency to over-stiffness, Hughes has
introduced the so-called constraint ratio

r =
Neq

Nc
(15)

4For a N × N mesh of rectangular elements, the ratio of number of nodes to number of elements
approaches unity as N → ∞ because limN→∞

(N+1)2

N2 = 1
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• •β22, ρ2 β22, ρ2

•

•

β11, ρ1

β11, ρ1

• β12

Figure 1. The evaluation points for the membrane and the transverse shear strains in the projection rule.

where Neq is the total number of discrete equilibrium equations and Nc is the total number
of harmful constraints, see [26]. Ideally, the value of r should approach rideal, the ratio of
equilibrium equations to constraints for the continuous problem, as the mesh is refined.
If r < rideal, locking is expected, whereas r > rideal might indicate that the element is too
flexible. In our case the ideal value is rideal = 5

5
= 1 while for the bilinear element we have

r = 5
20

= 0.25.
We have seen that if the convenient bilinear interpolations for the displacements are to

be used, some kind of reduction of constraints is necessary in order to suppress the locking
effect. In mathematical terms, such reduction can be carried out in many ways like by us-
ing strain projections (assumed strain approach) or by resorting to mixed methods where
the membrane and transverse shear stresses are approximated as independent unknowns.
The schemes become unavoidably rather elaborate for isoparametric elements of irregular
shape, but there exists a canonical projection rule valid for rectangular elements which we
shall describe next. In what follows, this formulation is referred to as MITC4S because of
its close relation with the MITC4 shell element used in actual engineering computations.

The procedure begins with evaluation of the components of membrane and transverse
shear strains tangent to each of the element’s four edges at the midpoint of the edge
in question. In other words, the components β11, ρ1 are evaluated at the midpoints of
the horizontal edges and the components β22, ρ2 are evaluated at the midpoints of the
vertical edges. Moreover, the membrane shear strain β12 is evaluated at the center of
the element, see Figure 1. The nine values so obtained are then used to determine the
constants c1, . . . , c9 in the expressions

βh =

[
c1 + c2y c5

c5 c3 + c4x

]
, ρh =

[
c6 + c7y
c8 + c9x

]
(16)

Accordingly, on a large rectangular mesh we will have two constraints per each side
and one constraint per each element, i.e. five constraints per element on average5 so
that r = 1, the ideal value. In addition, the weakened constraints may be viewed as
straightforward finite difference approximations of the corresponding constraints arising
from the continuous problem. For instance, the condition β11,h = 0 written in terms of
the (global) nodal displacement degrees of freedom reads

u(xi+1, yj) − u(xi, yj)

xi+1 − xi
+

1

2R11(xi+1/2, yj)
(w(xi+1, yj) + w(xi, yj)) = 0

5For a N×N mesh of rectangular elements, the ratio of number of nodes to number of sides approaches
one half as N → ∞ because limN→∞

(N+1)2

2N(N+1) = 1
2 .
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which turns out to be a second order scheme with respect to x for the equation ∂u/∂x +
w/R11 = 0. The complete 5 × 5 system which arises in the approximation of bending-
dominated deformations has been analyzed under strong assumptions about the geometry
of the problem by Havu and Pitkäranta in [19].

On the other hand, the use of βij,h in place of βij breaks the Rayleigh-Ritz code obeyed
by standard finite elements, cf. [27]. The violation, which arises locally in the computation
of the strain energy (14), requires careful analysis of the consistency error functional

A(u,v) −Ah(u,v) = δh(v) (17)

especially when the displacement field u to be approximated is not bending-dominated.
Note that here v denotes an arbitrary trial function from the finite element space where
the kinematic constraints of the problem have been replaced by their homogeneous ver-
sions (see e.g. [28] for more details). Concerning membrane-dominated deformations,
i.e. situations where pure bending of the shell is prevented for instance by kinematic con-
straints, sharp bounds for the consistency error functional have been derived in [20], but
again under rather strong assumptions about the problem set-up.

The analysis in [19, 20] left open two questions in particular. Firstly, the ability
of MITC4S to capture boundary and interior layers was not addressed in these works.
Secondly, the necessity of the highly specific assumptions made in the error analysis
remained unclear. These questions have been answered to some extent in the recent
works [29] and [30].

The approximation of shell layers was studied in [29] by introducing a set of academic
model problems where the shell is under a concentrated point load. In the paper, the
problem set was solved by MITC4S along with standard (i.e. no projection rule is applied
whatsoever) high-order finite finite elements and the results were compared with analyt-
ical reference solutions. The results confirm the robustness of high-order finite elements
and show that the numerical modifications in MITC4S improve the standard bilinear
scheme considerably also when approximating layers. Note that while point loads are
not admissible in the variational sense within the Reissner-Mindlin framework, they are
anyway rather common in engineering practice. Point loads ought not to be overlooked by
mathematicians either because the corresponding solution represents the Green’s function
for the problem.

In the other work the reduced strain scheme was investigated under more general
circumstances. First of all, different extensions of the above projection rule were exam-
ined so as to allow more general quadrilateral element shapes. The performance of the
alternative formulations was then evaluated in both membrane- and bending-dominated
problems with different shell geometries. Because of the dual nature of the problem, it
turned out to be very difficult to obtain a reasonable bound for the consistency error
functional (17) in membrane-dominated deformations and circumvent the locking effect
in bending-dominated deformations at the same. Although none of the studied formu-
lations can be called as “locking-free” on a general quadrilateral mesh, it appears that
on distorted meshes the explicit reduction of the usual 2D membrane strains might work
better than the implicit modifications arising from the use of bilinear degenerated 3D
elements.

In fact, certain differences between MITC4S and MITC4 were anticipated already
in [12, 13] where the inter-element connection was established in the first place. These
differences will be highlighted in the following sections.
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Bilinear degenerated 3D FEM, MITC4F

The majority of shell finite elements used in engineering practice are not derived from
2D shell models basically because the mapping (4) defining the shell geometry is not
readily available in computer-aided design programs. Instead, the geometric initial data
consists of nodes located on the shell middle surface in conjunction with their associated
unit normal vectors and thickness parameters, see e.g. [10]. The shell geometry is then
approximated using isoparametric finite element techniques and the previously discussed
kinematic and mechanical assumptions of the Reissner-Mindlin type are imposed in that
context. This hinders numerical error analysis of such formulations, since the mathe-
matical understanding of shell deformations is based predominantly on the geometrically
exact 2D shell models. In particular, the question pertains to bilinear formulations where
the geometry approximation involving straight-sided elements becomes rather crude. To
see this, we follow [13] and examine how the leading terms of the usual two-dimensional
strains are represented by bilinear degenerated elements.

For this purpose, we analyze a single element K̄ which is thought to be given in terms
of (4) and (8) by replacing f and n by their bilinear interpolants f̃ and ñ, respectively6.
In our notation, the Reissner-Mindlin kinematic assumption at a node i reads

ui = (ui − zθi)e
(i)
1 + (vi − zψi)e

(i)
2 + wie

(i)
3

where e
(i)
3 = ñ(xi, yi) is the nodal director and e

(i)
1 , e

(i)
2 are two orthogonal directions to

it. Let us assume that these are constructed so that e
(i)
1 and e

(i)
2 are (approximatively)

orthogonal to j and i, respectively, so that ui, vi, wi, θi, ψi can be regarded directly as the
degrees of freedom for the refined shallow shell model. Resolving ui into components
parallel to the directions i, j,k used in the geometry representation yields

ui = ūii + v̄ij + w̄ik

where
ūi = ui + wi(e

(i)
3 · i) − zθi

v̄i = vi + wi(e
(i)
3 · j) − zψi

w̄i = wi − ui(e
(i)
3 · i) − vi(e

(i)
3 · j)

(18)

within the relative error of O(h2
K/R2).

Concerning the implementation of the plane stress hypothesis, we note that slightly
different directions for which the stresses vanish have been proposed in the literature, see
e.g. [31, 32]. Here, as in [13], the normal stress in the x̄3-direction will be neglected by
using the assumption (6). Consequently, the strain energy functional takes then the form
(7) where the rectangular Cartesian components of the strain tensor are given by (3):

ε11 =
∂ū

∂x̄1
, ε22 =

∂v̄

∂x̄2
, ε12 =

1

2

(
∂ū

∂x̄2
+

∂v̄

∂x̄1

)

and

ε13 =
1

2

(
∂ū

∂x̄3
+

∂w̄

∂x̄1

)
, ε23 =

1

2

(
∂v̄

∂x̄3
+

∂w̄

∂x̄2

)

6Note that when the four nodes of K̄ are coplanar, f̃ may be taken to be identically zero.
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Still following [13], we define the corresponding membrane and bending strains of the
approximative middle surface x̄3 = f̃ as

β̄ij = εij(x̄1, x̄2, f̃), κ̄ij = −∂εij

∂x̄3

(x̄1, x̄2, f̃) i, j = 1, 2

and the transverse shear strains as

ρ̄i = 2εi3(x̄1, x̄2, f̃), i = 1, 2

Referring to the xyz-coordinate system we may write then

β̄11 =
∂ū

∂x̄1

∣∣∣∣
x̄3=f̃

=
∂ū

∂x

∣∣∣∣
z=0

+ O(hK/R) (19)

Assume now that K is a rectangle so that the interpolated normal vector at a node (xi, yi)
can be expanded as

e
(i)
3 = ñ(0, 0) +

∂ñ

∂x
(xi, yi)xi +

∂ñ

∂y
(0, 0)yi, i = 1, 2, 3, 4

where the origin of the coordinates x, y coincides with the element center. Using this
expansion together with (19), (18) and (10) yields

β̄11 =
∂u

∂x
+ Πx

(
w

R11

)
+

Ry(w)

R12(0, 0)
(20)

where Πx and Ry are generalized interpolation operators defined as

Πx(q) =

4∑
i=1

∂Ni

∂x
xiqi, Ry(q) =

4∑
i=1

∂Ni

∂x
yiqi (21)

Here Ni denotes the standard isoparametric bilinear shape function which attains the
value one at the node (xi, yi) and vanishes at the other nodes. Similar calculations show
that

β̄22 =
∂v

∂y
+ Πy

(
w

R22

)
+

Rx(w)

R12(0, 0)
(22)

and

β̄12 =
1

2

(
∂u

∂y
+

∂v

∂x
+

Πxw

R12(0, 0)
+

Πyw

R12(0, 0)

)

+
1

2

[
Rx

(
w

R11

)
+ Ry

(
w

R22

)] (23)

where

Πy(q) =

4∑
i=1

∂Ni

∂y
yiqi, Rx(q) =

4∑
i=1

∂Ni

∂y
xiqi (24)

in analogy with (21).
We see that the above computed β̄11 and β̄22 agree with β11,h and β22,h obtained in (16)

if the last terms were omitted from (20) and (22). However, by utilizing the additional
terms involving Rx, Ry, it can be shown as in [13] that

β̄11 = β̄22 = 0 ⇒ β̄12 = β12,h + O(h2
K/R2) (25)
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This means that when bilinear degenerated elements are used to approximate inexten-
sional displacement modes, the underlying difference equations for the constraints βij = 0
are almost identical with those arising from the utilization of (16). As a matter of fact,
the above analysis provides a slight generalization of the original result in [13]. Namely,
we did not assume that the element-wise defined geometric curvatures are constant pa-
rameters as in [13] where these were computed from a quadratic expansion of f in (8).
It should be noted that the formal accuracy is not any better when the curvatures are
derived from the interpolated normal vector ñ by using (10), but in order to keep the
constraint ratio (15) at the optimal value, only one membrane constraint per each side of
the mesh is allowed7.

On the other hand, in the MITC4 element of Bathe & Dvorkin, the transverse shear
strains are modified explicitly by using reduced strain techniques into the covariant strain
components ε1z , ε2z. Using tensor transformation rules, it can be shown that the mixed
interpolation of the tensorial components leads (approximatively, see [13]) to transverse
shear strains of the form

ρ̄1,h = Πxθ − ∂w

∂x
+ Πx

(
u

R11

)
+ Πx

(
v

R12

)

ρ̄2,h = Πyψ − ∂w

∂y
+ Πy

(
u

R12

)
+ Πy

(
v

R22

)

which are readily in agreement with those obtained from (16). We note that the geometry
approximation leads generally to a modification of the bending strains as well, see [13].
However, as the bending strains are not very prone to parametric effects, it seems that
the numerical effect of this modification is rather marginal (although undesirable). The
above interpretation of the MITC4 shell element is referred to as MITC4F.

MITC4F versus MITC4S

We have seen that on rectangular meshes, the leading terms of the membrane and trans-
verse shear strains of MITC4F and MITC4S are closely related, the chief difference being
the additional terms in the expressions of the membrane strains of MITC4F. If K is of
size hx × hy, we have

Rx(q) ∼ hx
∂q

∂y
, Ry(q) ∼ hy

∂q

∂x
(26)

and

q − Πx(q) ∼ hx
∂q

∂x
, q − Πy(q) ∼ hy

∂q

∂y
(27)

so that the use of either element causes formally an effect of relative order O(hK/L) to the
relevant consistency error functional when the displacement field to be approximated is
uniformly smooth with respect to t in the length scale L. However, the anisotropic charac-
ter of the estimates (26) may change the situation rather dramatically if the displacement
field varies in different length scales in different coordinate directions. To observe this,
we let the length scales characterizing the deformation mode be L and H in the x- and
y-direction, respectively, and assume that L 
 H . Then Ry(w) ∼ hy/L by (26) so that
if MITC4F is used, some terms in (17) may become amplified by the ratio of anisotropy

7This is crucial also in practice if the computations are based on the refined shallow shell model and
the curvatures of the shell are rapidly varying.
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r = H/L � 1 as compared with the approximation theoretically optimal order hy/H .
Note that anisotropically varying displacement modes are rather common among shell
deformations in the form of boundary and interior layers but vibration modes arising in
dynamical problems may also exhibit similar behavior, cf. [22].

In addition to the possibly harmful amplification of the consistency error functional,
the energy formulation of layer and vibration problems may enforce membrane constraints
that can be problematic for MITC4F. The reason for this lies in the fact that in order for
β̄12 to reduce to the midpoint evaluation, β̄11 and β̄22 must vanish. Because this is not the
case for layer and vibration modes (see [25, 22]), MITC4F may become over-constrained
in their approximation.

In paper [21], a detailed error analysis is carried out concerning the approximation of
Fourier layer modes of the form

u(x, y) = U cos(ky)e−λ(t)x

using different bilinear elements on rectangular grids. Here H = k−1 = R is the (fixed)
length scale of variation along the layer generator and L = L(t) = 1/Re λ(t) is the
characteristic decay length scale of the layer mode such that L(t) → 0 as t → 0. Three
possibilities were investigated where

L(t) =

⎧⎪⎨
⎪⎩
√

Rt, Case 1
3
√

R2t, Case 2
4
√

R3t, Case 3

depending on the shell geometry. It was shown that when MITC4F is used, parametric
locking arises as a rule. Namely, the derived a priori error estimates predict error magnifi-
cation by factors R/L (Cases 1,3) and (R/L)2 (Case 2) from the optimal convergence rate
when the relative error is measured in the modified energy norm. The error amplification
effect is also observed in numerical experiments. In addition, it is demonstrated that
MITC4S can maintain the optimal accuracy of bilinear finite elements if the membrane
strains are first computed locally as suggested by shallow shell theory and then modified
carefully in order to avoid locking.

A sceptical reader may have doubts about our simplified theory where certain small-
looking terms are neglected while some other terms, which are formally of the same
order, are kept. In order to assure the applicability of the theory, the author decided to
compare MITC4S directly with the bilinear elements of the commercial codes ABAQUS
and ADINA in benchmark tests involving layer and vibration modes. The results of this
comparison have been reported in the article [23]. Moreover, the formulation of MITC4S
in the paper is suitable for rather general (linear) shell analyses as it allows elements of
arbitrary quadrilateral shape to be used and requires only the nodal positions and normals
as geometric initial data. The benchmark computations of the paper show that, in cases
where shell layers or vibration modes are approximated on anisotropically refined meshes,
the accuracy of the proposed formulation is indeed superior to the ones within ABAQUS
and ADINA.

We conclude the present paper with a practical example that should put things in
perspective.
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Case study: Vibration analysis of a fan blade

A shell problem of considerable practical importance is that of the vibration of curved
fan blades. Such fan blades are quite common in jet engines powering aircraft around
the globe. A cylindrical compressor blade depicted in Figure 2 serves as a representative
example. Some time ago, Olson and Lindberg constructed an experimental model of this
blade which was made of steel and built-in to a rigid foundation along the other curved
edge as indicated in Figure 2. The vibration modes of the shell were then excited by a
sinusoidal magnetic force and the first twelve vibration frequencies have been reported in
[33] together with an initial finite elements analysis.

Properties of the blade:

Young modulus8: 3 · 107 psi (2.07 · 1011 Pa)

Poisson ratio: 0.3

Mass density: 0.28 lb/in3 (7750 kg/m3)

Thickness: 0.12 in (0.030 cm)

Radius of curvature (R): 24 in (30.48 cm)

Developed width (W ): 12 in (15.24 cm)

Height (H): 12 in (15.24 cm)

Figure 2. A cylindrical compressor blade made of steel.

Here we perform the finite element analysis by using two kinds of bilinear isoparametric
representations of the blade as shown in Figure 3. Some of the lowest vibration frequencies
(cycles per second) have been computed by using MITC4S as formulated in paper [E] and
the original MITC4 element of ADINA together with its generalization MITC4IM, where
the in-plane displacements are supplemented by the so-called incompatible displacement
modes, cf. [32].

8It should be noted that multiplication of the Young modulus by the “gravitational” factor
32.17405 (lb · ft)/(lbf · s2) is required to arrive at a coherent system of units.
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Figure 3. Two bilinear finite element models of the compressor blade.

The frequencies in Table 1 contrast sharply with laboratory test results which indicates
that the mesh is too coarse. On the other hand, the few lowest frequencies in Table 2
are already in a rather good agreement with the experimental values. Note that the
fundamental frequency, i.e. the lowest frequency, is approximated within the engineering
accuracy of 2% by MITC4S whereas the error of MITC4 is about 8%. The conjecture
is that this occurs because the energy formulation of the corresponding vibration mode
enforces the membrane constraints9 β22 = 0 and β12 = 0, but not the constraint β11 = 0,
see [22]. Consequently, the implication (25) is not disposable and MITC4 becomes slightly
over-constrained via the constraint β̄12 = 0. Apparently, the incompatible displacement
modes in MITC4IM are able to relax this constraint.

Mode MITC4S MITC4 MITC4IM [33]

1 66.3 68.6 68.6 86.6
2 157.7 125.5 112.3 135.5
3 261.4 481.3 380.5 258.9

Table 1. The vibration frequencies (Hz) of the first three modes: 1 × 2 mesh.

Mode MITC4S MITC4 MITC4IM [33]

1 87.9 93.5 89.5 86.6
2 145.4 148.1 142.2 135.5
3 249.7 266.4 262.7 258.9
4 391.5 410.5 394.2 350.6
5 443.6 452.2 439.8 395.2
6 579.7 601.1 600.1 531.1
7 801.5 857.1 842.2 743.2

Table 2. The vibration frequencies (Hz) of the first seven modes: 4 × 8 mesh.

9Here 1 refers to the axial direction and 2 to the angular direction.
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