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The quadrilateral fully-parametrized plate elements based
on the absolute nodal coordinate formulation

Marko K. Matikainen, Aki Mikkola and A. L. Schwab

Summary. The article provides a review of the quadrilateral fully-parametrized plate elements
based on absolute nodal coordinate formulation that can be used in the dynamic analysis of large
deformations in multibody applications. The absolute nodal coordinate formulation is a recently
proposed approach to the analysis of multibody systems that can take into account nonlinearities,
including large deflections and plasticity. In the absolute nodal coordinate formulation, finite
elements are defined in the global coordinate system using position coordinates together with
independent global gradient vectors that are, in fact, partial derivatives of the position vector
with respect to the element coordinates. This leads to a constant mass matrix in two and three-
dimensional applications and is a unique feature among the beam and plate elements based on
the absolute nodal coordinate formulation.
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Introduction

Nonlinear continuum plate and shell elements have been under active research for more
than four decades. Usually, these conventional continuum plate and shell elements utilize
rotation parameters instead of gradient vectors. It has been previously proposed that con-
tinuum elements with fully three-dimensional stresses and strains can be degenerated to
shell elements behavior so that the kinematics and constitutive assumptions of shells are
acceptable; see for example [1]. The isoparametric continuum shell element introduced
in [1] (known as the A-I-Z shell element) is based on the Reissner-Mindlin hypothesis.
However, it is known that the A-I-Z shell element suffers from shear locking, which can be
alleviated by introducing independent linear interpolations for transverse shear deforma-
tions in a four node shell element (known as the MITCH4 shell element) [2]. The original
MITCH4 element is derived from the A-I-Z shell element using five nodal parameters; the
only difference is that shear locking is avoided by using mixed interpolation.

A number of nonlinear finite element formulations for analyzing beam and plate type of
flexible bodies in multibody dynamics have been presented. For example, in the study by
Avello et al. [3], rotations and deformations of the cross-section are described by using nine
parameters at a nodal location. In the study, the cross-section is forced to be rigid using
constraint equations. In the dissertation by Rhim [4], the absolute motion of a spatial
beam element is described using global shape functions. In the study, rotation at the
nodal location is defined with two basis vectors along the cross-section as a consequence of
which the beam element have nine degrees of freedom at the node. In addition, continuum
based beam and plate elements in two and three-dimensional applications are proposed.
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These elements are often derived from solid elements in order to account the kinematic
assumptions associated to beams or shells. For these elements, any of the continuum
material laws can be used, provided that the plane stress condition is valid. In order to
avoid the singularity due to use of Euler rotation angles in the case of finite rotations,
quaternions should be employed [5] in the formulation.

The absolute nodal coordinate formulation (ANCF) is a finite element approach in
which beam and plate elements are described with an absolute position and its gradi-
ents. The formulation is designed for analysis of large deformations in multibody ap-
plications [6]. The absolute nodal coordinate formulation can be used for two or three-
dimensional beams, plates and shells [7, 8, 9, 10]. Using the components of the deforma-
tion gradient instead of conventional rotational coordinates, the absolute nodal coordinate
formulation leads to an exact description of inertia for the rigid body with a constant mass
matrix. Therefore, the use of quaternions to avoid the singularity problem of finite ro-
tations under three-dimensional rotations is not needed. Transverse deformations can be
accounted by introducing the transverse gradient vectors. Elements based on the absolute
nodal coordinate formulation can be considered as more advanced than classical beam and
plate elements. In this approach, all nodal coordinates are described in an inertial frame
allowing for the usage of the total Lagrangian approach, such as in the case of large rota-
tion vector formulations and conventional solid elements. When using fully-parameterized
elements, different types of locking phenomena may occur due to low order displacement
interpolation in the transverse direction. In order to overcome this problem, alternative
approaches are introduced to define the elastic forces, see for example [11, 12]. To clarify
the absolute nodal coordinate formulation, an original fully-parameterized plate element
is described in this study.

In order to define an element into the framework of the absolute nodal coordinate
formulation, the element should meet several requirements. All of these requirements
should also be valid in three-dimensional cases and can be expressed as follows:

• ANCF elements can be used for dynamic problems, such that the inertial forces are
exactly described.

• The mass matrix should be consistent and, as a trademark of the ANCF, it should
be constant. It is important to reiterate that the mass matrix is also constant for
three-dimensional beam and plate elements.

• The element discretization is performed by using spatial shape functions with abso-
lute positions and their gradients. Therefore, the Hermite base functions are usually
employed in the formulation.

• ANCF elements can be considered as geometrically exact because geometrical sim-
plifications associated to angles are not necessary to use. This leads to possibility
for usage of Total Lagrangian updating formulation.

The ANCF elements can be categorized into conventional non-shear deformable el-
ements [13] or shear deformable elements. In the formulation, shear deformation can
be captured by introducing gradient coordinates in the element transverse direction. Ele-
ments that include transverse gradient vectors are often referred to as fully-parameterized
elements. In this case, the elastic forces of the element can be defined by using three-
dimensional elasticity or the elastic line or plane approach. In case of three-dimensional
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elasticity, the strains and stresses are defined using general continuum mechanics. The
elements based on three-dimensional elasticity relax some of the assumptions used in
the conventional elements and they can account for the nonlinear material models in a
straightforward manner. It is important to note that the use of fully-parameterized ele-
ments allows cross-sectional or fiber deformation to be described. The transverse fibers
of existing plate elements based on the absolute nodal coordinate formulation remain
straight, but are extensible. This implies that plate elements can be used to account for
shear deformation and deformation in the thickness direction. In some elements, the trans-
verse Poisson contraction effect can also be taken into account. It is possible to describe
geometrical and material nonlinearities in the element based on three-dimensional elas-
ticity [7, 14]. Conventional elements based on the absolute nodal coordinate formulation
are discretized using global positions and gradient coordinates in the element longitudinal
direction. In the elements based on this approach, strains and stresses are described on
the middle line or middle plane.

Plate elements based on absolute nodal coordinate formulation

The first plate element based on the absolute nodal coordinate formulation was devel-
oped by Shabana and Christensen [15]. This plate element was based on the classical
Kirchhoff-Love plate theory in which in-plane gradient vectors were used to describe
bending deformation. Other Kirchhoff-Love type ANCF plates and their numerical im-
plementations are shown in [10, 16, 17]. In order to account for the shear deformation and
thickness deformation in the case of thick plates, a fully-parameterized quadrilateral plate
element was developed [9]. However, this plate element suffers from slow convergence due
to different locking phenomena. The plate element especially suffers from shear locking
because the transverse gradient vector and in-plane gradient vectors contain different or-
ders of polynomials. This means that in case of fully-parameterized plates, the rotation
of a transverse fiber is described with linear interpolation using in-plane coordinates, and
the rotation of the mid-plane is described using quadratic interpolation. The unbalance
of the base functions leads to overly large shear strain, which can be alleviated by linear
interpolation for transverse shear deformations [2]. The main motivation for developing
the plate element in [18] was to overcome shear locking by employing linearized shear de-
formations. Additionally, due to the kinematic description, curvature locking (shrinking
effect) can also be avoided. In this study, the original fully-parameterized plate element by
Mikkola and Shabana [9] is denoted as ANCF-P48, and the improved fully-parameterized
plate element [18] as ANCF-P48lsa.

Kinematics of the quadrilateral plate element

In elements based on the absolute nodal coordinate formulation, kinematics can be ex-
pressed using spatial shape functions and global coordinates. In this section, the fully-
parameterized plate element by Mikkola and Shabana [9] will be shortly revisited. In Fig-
ure 1, the kinematics of the fully-parameterized plate element is shown. This four-node
quadrilateral plate element consists of 48 degrees of freedom. Three degrees of freedom
are for position and nine are for gradients at each node. The position of an arbitrary
particle p in the fully-parameterized plate element can be defined in the inertial frame as
follows:

r = Sm(x )e = Sm(ξ(x))e , (1)
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Figure 1. Description of the position of an arbitrary particle in the fully-parameterized plate element.
Points p and p refer to the same particle at different configurations after displacement. The gradient
vectors at nodes are shown by dashed arrows.

where Sm is a shape function matrix, e = e(t) is the vector of nodal coordinates and
vector x = xe1 +ye2 +ze3 includes physical coordinates. For the isoparametric elements,
the shape functions can be expressed using physical coordinates x or local coordinates ξ
in the range -1 . . . +1. The kinematics of the element in the reference configuration at
time t = 0 can be described as r = Sm(x )e, where e = e(0). The vector e contains both
translational and rotational coordinates of the element, and it can be written at node i
of the three-dimensional fully-parameterized element as follows:

e (i) =
[

r (i)T
r (i)T

,x r (i)T

,y r (i)T

,z

]T

, (2)

where the following notations for gradients are used:

r (i)
,α =

⎡
⎢⎣

r
(i)
1,α

r
(i)
2,α

r
(i)
3,α

⎤
⎥⎦ =

∂r (i)

∂α
; α = x, y, z .

The interpolation functions for position can be obtained using the following set of
basis polynomials

[1, x, y, z, xz, yz, yx, x2, y2, x3, y3, x2y, y2x, xyz, x3y, xy3] . (3)

Note that the basis polynomials in Eq. (3) are incomplete, and for this reason, the element
has linear terms only in transverse coordinate z. Accordingly, the displacement distribu-
tion is linear in the element’s transverse direction. The interpolation for position is cubic
in the in-plane coordinates x and y. The shape functions can be presented through use
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of local normalized coordinates, such as ξ, η, ζ ∈ [−1 . . . 1], and are listed below:

S1 = 1
8 (−1 + ξ) (1 − η)

(
ξ2 + ξ + η2 + η − 2

)
, S2 = 1

16 lx (1 − η) (1 + ξ) (−1 + ξ)2 ,

S3 = 1
16 ly (1 − ξ) (η + 1) (−1 + η)2 , S4 = 1

8 lzζ (−1 + ξ) (−1 + η) ,

S5 = 1
8 (1 + ξ) (−1 + η)

(
ξ2 − ξ + η2 + η − 2

)
, S6 = 1

16 lx (1 − ξ) (−1 + η) (1 + ξ)2 ,

S7 = 1
16 ly (1 + ξ) (η + 1) (−1 + η)2 , S8 = 1

8 lzζ (1 + ξ) (1 − η) ,

S9 = 1
8 (1 + ξ) (−η − 1)

(
ξ2 − ξ + η2 − η − 2

)
, S10 = 1

16 lx (−1 + ξ) (η + 1) (1 + ξ)2 ,

S11 = 1
16 ly (1 + ξ) (−1 + η) (η + 1)2 , S12 = 1

8 lzζ (1 + ξ) (η + 1) ,

S13 = 1
8 (−1 + ξ) (η + 1)

(
ξ2 + ξ + η2 − η − 2

)
, S14 = 1

16 lx (1 + ξ) (η + 1) (−1 + ξ)2 ,

S15 = 1
16 ly (−1 + ξ) (1 − η) (η + 1)2 , S16 = 1

8 lzζ (η + 1) (1 − ξ)

(4)

where relations ξ = 2x/lx, η = 2y/ly and ζ = 2z/lz when the physical coordinate system
x, y, x is placed along the middle of the element. These shape-functions can be represented
in matrix form as:

Sm =
[

S1I S2I S3I . . . S16I ,
]

(5)

where I is a 3 × 3 identity matrix. Due to the isoparametric property of the ele-
ment, the kinematics can also be expressed in terms of local normalized coordinates
r = Sm(ξ, η, ζ)e. The plate element with linearized transverse shear deformations is
based on the same in-plane interpolation functions as the original fully parameterized
plate element [9] but a slightly different approach for the interpolation of shear deforma-
tion is employed. To guarantee that parasitic strain distribution is zero, the nodal values
are used instead of sampling points in [19].

Equations of motion for the element

The variational form of the equations of motion in the Lagrangian (material) description
can be derived from the functional I, see for example [20], which can be written as

I =

∫ t2

t1

(Wkin − Wpot) dt , (6)

where t1 and t2 are integration limits with respect to time t, Wkin is the kinetic energy
of the element and Wpot is the potential energy which includes the internal strain energy
Wint and the potential energy Wext due to conservative external forces. The potential
energy can be written as follows:

Wpot = Wint − Wext . (7)

In this study, non-conservative forces are not taken into account. The variation of the
functional leads to

δI = δ

∫ t2

t1

(Wkin − Wint + Wext) dt = 0 . (8)

The variations of the energies can be written as

δWkin =

∫
V

ρṙ · δṙ dV, (9)

δWint =

∫
V

S : δE dV, (10)

δWext =

∫
V

b · δr dV, (11)
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where : denotes the double dot product, ρ is the mass density, S is the second Piola-
Kirchhoff stress tensor, E is the Green strain tensor and b is the vector of body forces.
In the special case of gravity, the body forces can be written as b = ρg , where g is the
field of gravity. The Green strain tensor can be written as

E =
1

2
(F TF − I) , (12)

where I is the identity tensor and F is the deformation gradient tensor, which can be
presented in terms of the initial and current configurations r and r as follows:

F =
∂r

∂r
=

∂r

∂x

(
∂r

∂x

)−1

. (13)

Integrating the variation of the kinetic energy in Equation (6) by parts within the time
interval t1 and t2 yields

t2/
t1

∫
V

ρṙ · δr dV +

∫ t2

t1

(
−

∫
V

ρr̈ · δr dV −
∫

V

S : δE dV +

∫
V

b · δr dV
)

dt = 0 ,

(14)

where the boundary condition term vanishes because the position vector is specified at
the endpoints t1 and t2. The weak form of the equations of motion for an element can be
written as follows: ∫

V

ρr̈ · δr dV +

∫
V

S : δE dV −
∫

V

b · δr dV = 0 . (15)

Using interpolation for the position vector r , the variations of energy with respect to the
nodal coordinates can be expressed. The variation of the kinetic energy can be represented
as

δWkin =

∫
V

ρr̈ · δr dV = ëT

∫
V

ρST
mSm dV · δe , (16)

from which the mass matrix of the element can be identified as follows:

M =

∫
V

ρST
mSm dV . (17)

As can be concluded from Equation (17), the mass matrix is constant as it is not a
function of the nodal coordinates. This will save time on computation, especially when
an explicit time integration method is needed. However, this advantage may be marginal
when the tangential stiffness matrix is needed which is the case in implicit time integration
procedures. The virtual work for the externally applied forces can be written as

δWext =

∫
V

bT δr dV =

∫
V

bTSm dV · δe , (18)

where b is the vector of body forces. The vector of externally applied forces can be
identified from Equation (18) as follows:

F ext =

∫
V

bTSm dV . (19)
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Figure 2. Some eigenmodes of a one fully-parametrized plate element.

The variation of the strain energy with respect to the nodal coordinates can be written
as

δWint =

∫
V

S : δE dV =

∫
V

S :
∂E

∂e
dV · δe , (20)

The vector of elastic forces can be identified from Equation (20) as follows:

F e =

∫
V

S :
∂E

∂e
dV . (21)

The equations of motion can be present in explicit form as follows

Më + F e(e) = F ext , (22)

where e can be solved by using explicit or implicit integrator. In case of Newton’s itera-
tion, the tangential stiffness matrix is often found by using finite differences.

Numerical examples

In this section, static and linearized dynamic problems are solved to demonstrate possible
problems in the fully-parametrized plate elements. In order to emphasize the capacity of
fully-parametrized plate element, eigenmodes for one element are presented in Figure 2.
Special feature in the fully-parametrized plate elements are in-plane modes, see for ex-
ample modes 28, 31 and 42 in Figure 2, where modes 31 and 42 are clearly shear and
thickness modes. As can seen, first lowest modes are similar to the thin plate theory, see
for example [21, 22]. The convergence of the first mode (see top left mode in Figure 2 is
considered, in which the relative plate thickness is assumed to be H/L =0.001.

As can be seen from the Figure 3, the convergence of the first mode of ANCF-P48lsa
is considerably faster than in the case of ANCF-P48. Furthermore, figure 3 shows that
ANCF-P48lsa is not sensitive in terms of the convergence of the first mode of the thin
plate. Accordingly, in the case of a thin plate, the convergence of the first mode does not
depend on a relative plate thickness of H/L, as such is the case for ANCF-P48. This type
of locking phenomenon is known as shear locking. However, it is shown in [22] that under
pure bending, the plate elements do not show any locking phenomena.

It shall be noted that fully-parametrized plate element does not suffer from Poisson
locking because it includes the trapezoidal deformation mode of the cross-section. Al-
though, it still suffers from thickness locking which is a problem when three-dimensional
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ANCF−P48: H/L=0.01
ANCF−P48: H/L=0.001
ANCF−P48lsa: H/L=0.01
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Figure 3. Convergences of the first mode normalized by analytical solution for free (ffff) square plate as
calculated by the ANCF-P48 and ANCF-P48lsa with Poisson factor ν=0.3.Two different relative plate
thickness of H/L=0.01 and H/L=0.001 were used.

elasticity is used. Therefore, in order to show the effect of shear and thickness locking, a
simple static problem is considered. In this example, a plate is constrained with a simply
supported condition and is loaded by the normal uniform force in the transverse direction
as shown in Fig. 4.

The parameters used in the plate example are as follows: length L = 1 m, Young’s
modulus E = 210 · 109N/m2, shear modulus G = E/2(1 + ν), shear correction factor
ks = 1, Poisson’s ratio ν = 0.3 and the uniformly distributed load is expressed as q =
−5 · 106H3 N/m3. The computed displacements for elements ANCF-P48 and ANCF-
P48lsa are normalized by the analytical solution. This example is also used in [22], where
analytical solutions based on the Reissner-Mindlin theory are presented. In the case of a
finite element solution, a uniformly distributed load is defined as a consistent load vector

Figure 4. Simply supported plate, its sub domain Ω and the coordinate system.
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as follows:

Fext =

∫
V

bTS dV (23)

where the body force is b = [0, q/H, 0]T . In order to minimize the number of degrees
of freedom, double symmetry for the plate under constant loading is used. In double
symmetry, the boundary conditions of sub domain are Ω boundary Γ3 are as: r1 = 0,
r3,x = 0 and r1,z = 0 and for boundary as Γ4: r2 = 0, r2,z = 0 and r3,y = 0. The
boundaries Γ1 and Γ2 are simply supported, therefore r1 and r2 are fixed for boundary Γ1

and r2 and r3 for Γ2. The deflection at the middle of the plate in Table 1 is normalized by
the analytical result. In Table, results of the plate element with plane stress assumption,
denoted by ANCF-P48ps, are presented.

Table 1. Normalized transverse displacement at center of the plate loaded by a uniform loading. A
relative plate thickness of H/L = 0.01 was used.

Mesh ANCF-P48 ANCF-P48lsa ANCF-P48 ANCF-P48lsa ANCF-P48ps
(ν = 0.3) (ν = 0.3) (ν = 0) (ν = 0) (ν = 0.3)

2x2 0.02388 0.6669 0.01879 0.8702 0.02411
4x4 0.3134 0.7465 0.3015 0.9841 0.3428
8x8 0.6868 0.7463 0.8860 0.9994 0.8304

16x16 0.7377 0.7447 0.9908 1.002 0.9030
32x32 0.7435 0.7447 1.002 1.003 0.9110
64x64 0.7454 0.7456 1.006 1.006 0.9137

128x128 0.7467 0.7468 1.009 1.009 0.9157

It can be seen from results in Table 1 that using the special case ν=0 in three-
dimensional elasticity, thickness locking can be avoided. Therefore, both plate elements
converge to the analytic solution in thin plate cases since coupling between bending and
shear deformation is neglected. To account for three-dimensional elasticity in the plate
and shell formulations without thickness locking when ν �=0, the transverse normal strain
has to be interpolated at least linearly over the thickness direction [23]. The ANCF-P48ps
shows that the inaccurate solution is not only due to low order interpolation for transverse
deformations but , in part, due to in-plane shear deformations. Also results of cantilever
plate analyzed by ANCF-P48ps [22] support to this claim because cantilever plate with
correct boundary conditions does not include in-plane shear deformations and therefore,
the solution corresponded with analytical solution. In case of ANCF plate elements, the
transverse normal strain is interpolated by using constant distribution in the thickness
direction.

Conclusions

In this study, the fully-parametrized ANCF plate element is described. An original fully-
parametrized plate element suffers from different locking phenomena and therefore, the
numerical example is solved by using fully-parametrized plate element where shear lock-
ing is avoided similarity to the MITCH-plate elements. It can be concluded that the
fully-parameterized ANCF plate elements are promising elements due to the possibility
for the usage of three-dimensional elasticity. However, the formulation still suffers from
lockings, mainly due to the assumptions for kinematics, such as the assumption according
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to which the fiber remains straight during deformation. The main problem in these fully-
parametrized ANCF plate elements is the thickness locking which is typical problem in
continuum plate elements where three-dimensional elasticity is adopted. Therefore, both
introduced plate elements based on the absolute nodal coordinate formulation converged
to the same incorrect solution in used numerical examples. In future work, in order to use
known material models from general continuum mechanics, the thickness locking have to
overcome in case of fully-parametrized plate elements. Furthermore, there is a number of
interesting research topics where ANCF plate elements may be useful. For example, the
derivation of composite ANCF plate is still not shown. In addition, in order to clarify the
efficiency of ANCF plate elements, the comparison study to the other continuum plate
element is needed.
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[3] A. Avello, J. Garćıa de Jalón and E. Bayo. Dynamic analysis of flexible multibody sys-
tems using cartesian co-ordinates and large displacement theory. International Journal for
Numerical Methods in Engineering, 32(8):1543–1563, 1991.

[4] J. Rhim. A vectorial approach to finite rotation beams. PhD thesis, University of Maryland,
1996.

[5] T. Belytschko, W. K. Liu and B. Moran. Nonlinear Finite Elements for Continua and Struc-
tures. Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester, 2000.
Repr. 2001.

[6] A. A. Shabana. Flexible multibody dynamics: Review of past and recent developments.
Multibody System Dynamics, 1(2):189–222, 1997.

[7] M. A. Omar and A. A. Shabana. A two-dimensional shear deformable beam for large rota-
tion and deformation problems. Journal of Sound and Vibration, 243(3):565–576, 2001.

[8] A. A. Shabana and Y. R. Yakoub. Three dimensional absolute nodal coordinate formulation
for beam elements: theory. Journal of Mechanical Design, 123(4):606–613, 2001.

[9] A. M. Mikkola and A. A. Shabana. A non-incremental finite element procedure for the anal-
ysis of large deformations of plates and shells in mechanical system applications. Multibody
System Dynamics, 9(3):283–309, 2003.

[10] O. N. Dmitrochenko and D. YU. Pogorelov. Generalization of plate finite elements for
absolute nodal coordinate formulation. Multibody System Dynamics, 10(1):17–43, 2003.

[11] A. L. Schwab and J. P. Meijaard. Comparison of three-dimensional flexible beam elements
for dynamic analysis: Finite element method and absolute nodal coordinate formulation.
Proceedings of the IDEC/CIE 2005, ASME 2005 International Design Engineering Tech-
nical Conferences, Paper Number DETC2005-85104, Long Beach, USA, 24 - 28 September
2005.

147



[12] J. Gerstmayr and A. A. Shabana. Analysis of thin beams and cables using the absolute
nodal co-ordinate formulation. Nonlinear Dynamics, 45(1–2):109–130, 2006.

[13] S. von Dombrowski. Analysis of Large Flexible Body Deformation in Multibody Systems
Using Absolute Coordinates. Multibody System Dynamics, 8(4):409–432, 2002.

[14] H. Sugiyama and A. A. Shabana. On the Use of Implicit Integration Methods and the Abso-
lute Nodal Coordinate Formulation in the Analysis of Elasto-Plastic Deformation Problems.
Nonlinear Dynamics, 37(3):245–270, 2004.

[15] A. A. Shabana and A. P. Christensen. Three-dimensional absolute nodal co-ordinate for-
mulation: plate problem. International journal for numerical methods in engineering,
40(15):2775–2790, 1997.

[16] O. Dmitrochenko and A. Mikkola. Two simple triangular plate elements based on the
absolute nodal coordinate formulation. Journal of Computational and Nonlinear Dynamics,
3(041012):1–8, 2008.

[17] K. Dufva and A. A. Shabana. Analysis of Thin Plate Structures Using the Absolute Nodal
Coordinate Formulation. Journal of Multi-body Dynamics, 219(4):345–355, 2006.

[18] A. M. Mikkola and M. K. Matikainen. Development of elastic forces for a large deformation
plate element based on the absolute nodal coordinate formulation. Journal of Computational
and Nonlinear Dynamics, 1(2), 103–108, 2006.

[19] M. Bischoff and E. Ramm. Shear deformable shell elements for large strains and rotations.
International Journal for Numerical Methods in Engineering, 40(23):4427–4449, 1997.

[20] H. Goldstein. Classical mechanics. Addison-Wesley, Reading (MA), Second edition, 1980.

[21] A. L. Schwab, J. Gerstmayr and J. P. Meijaard. Comparison of Three-Dimensional Flex-
ible Thin Plate Elements for Multibody Dynamic Analysis: Finite Element Formulation
and Absolute Nodal Coordinate Formulation. Proceedings of the ASME 2007 Int. Design
engineering technical conferences & Computers and information in engineering conference,
Las Vegas, USA, 4–7 September 2007.

[22] M. K. Matikainen and A. L. Schwab and A. Mikkola. Comparison of Two Moderately
Thick Plate Elements Based on the Absolute Nodal Coordinate Formulation. Multibody
Dynamics 2009, ECCOMAS Thematic Conference, Warsaw, Poland, 29 June - 2 July 2009.

[23] E. Carrera, S. Brischetto. Analysis of thickness locking in classical, refined and mixed
multilayered plate theories. Composite Structures, 82(4):549–562, 2008.

Marko K. Matikainen, Aki M. Mikkola
Depertment of Mechanical Engineering
Lappeenranta University of Technology
Skinnarilankatu 34, FI-53850 Lappeenranta, Finland
e-mail: marko.matikainen@lut.fi, aki.mikkola@lut.fi

A. L. Schwab
Laboratory of Engineering Mechanics
Delft University of Technology
Megelweg 2, NL 2628 CD Delft, The Netherlands
e-mail: a.l.schwab@tudelft.nl

148



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


