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Geometric return algorithm for non-associated
plasticity with multiple yield planes extended to linear
softening/hardening models

Timo Saksala

Summary. In this article the recent efficient stress return algorithm for non-associated
plasticity with multiple yield planes by Clausen is extended to linear softening/hardening
models. The idea of the original method is to define special boundary planes in the principal
stress sEace using constant gradients of the linear yield planes. Thereby, a closed form stress
update based on purely geometric arguments is obtained. If hardening/softening of the material
is included, the yield plane(s) move during the return mapping. Therefore, the new location of
the yield planes contributing to the return mapping must be solved first. In this paper only
isotropic hardening/softening is considered. The modified Mohr-Coulomb criterion is chosen
for the demonstration of the method.
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Introduction

Numerical analysis of elasto-plastic materials involves stress integration of the
constitutive model to obtain the unknown stress increment. As this is performed many
times within each loading step a key issue is the computational efficiency of the return
mapping. Many classical yield criteria, such as Tresca criterion in metal plasticity and
Mohr-Coulomb criterion in geomechanics, consist of several yield planes in principal
stress space. With these yield criteria the stress integration is simple due the existence of
the closed form or explicit solution for the desired stress increment. However, a
complicating issue is the return on the intersection of the yield planes since the gradient
of the yield criteria is not unique at the intersection. The solution for this problem was
first presented by Koiter [1]. A thorough treatment of computational inelasticity with
single and multiple yield surfaces is given, e.g. by Simo & Hughes [2].

The multisurface techniques by Koiter and others may not, however, be the most
efficient ones in special cases. For this reason Clausen et al. [3-5] developed an efficient
return algorithm for non-associated plasticity with multiple yield planes. They also
presented simple formulae for the consistent tangent stiffness matrix. The method is
based on geometric arguments using special boundary planes and stress regions defined
in the principal stress space for deciding the correct return type (return to an apex point,
to an intersection line, or to a plane). The method is elaborated in detail later in this
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paper. The speed up obtained with this return mapping in perfect MC plasticity
compared with the classical implementation (MC criterion expressed in stress
invariants) was 24 %, 91 % and 51 % in cases of 10000 returns to plane, line and point,
respectively [5].
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Figure 1. Modified Mohr-Coulomb criterion in 3D and 2D stress spaces

The original developments by Clausen et al. [3-5] considered only perfect plasticity.
In many applications this is, however, a too restricting assumption concerning the
behaviour of the material. Metals, for example, display strain hardening while
geomaterials (rocks, soil and concrete) exhibit considerable softening. For this reason,
the original algorithm by Clausen et al. is extended here to include linear isotropic
softening/hardening. Thus, the applicability of the method is considerably enlarged. The
modified Mohr-Coulomb (MC) criterion depicted in Figure 1 is chosen as a particular
yield criterion with which the method is exemplified. As a numerical example, the
constitutive behaviour of rock like material is simulated using a single element mesh
while the method is implemented with the explicit dynamics FEM.

Fundamentals of computational plasticity

The essential parts of a plasticity model are the yield function, the flow rule, the
hardening/softening law, and the loading-unloading conditions, respectively,

oo ;09,(0.0)
0o
k=4Kk(6.k), q=h(x) O]
f<0, i>0, Af=0
where £° is the rate plastic strain tensor £°, 6 is the stress tensor, f = f(6,q) is the yield
function which defines the admissible (elastic) stress states, A is the plastic multiplier,

g,1s the plastic potential (taken as f in associative plasticity), k is a vector of functions
that defines the relation between the hardening/softening variables k and variables
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which, in the thermodynamic formulation of plasticity, appear as the conjugate forces to
variables k, and h is a vector of functions that define q as a function of k. The
underlying assumption in small strain plasticity is that the total strain can be
decomposed to elastic and plastic parts:

E=4 +8°. )

The elastic stress increment, which is used in computing the trial state in computational
plasticity, is obtained from (2) by Hooke’s law (in matrix notation):
v wre [ ; 09 j
6=E&*=E(¢-¢")=E|¢-1—" 3)
0o
where E is the elasticity matrix. In the computational plasticity the task is to integrate
(2) and obtain an updated stress state in order to fulfil the conditions given in (1).
Most of the stress return algorithms are based on the elastic prediction-plastic
correction setting. That is, given a total straing ,, =€ + Aga trial elastic stress state is
computed as

ctrial = Ese = E(8n+1 _sr?) (4)

whereg! is the plastic strain vector obtained in the previous step of the analysis. If the
yield function satisfies the condition given in (1), i.e. f(o,,,q) <0, then the elastic
stress state is correct. If the condition is violated then a plastic correction is needed in
order to return the stress state to the yield surface. The idea of return mapping is
illustrated in Figure 2.

A trial
o i

Figure 2. Principle of return mapping

During the return mapping algorithm the trial state is iteratively returned to the yield
surface so that f (e ,,)=0 with

6., =6, +Ac=6""-Ac" ®)

85



where Ac’ is the plastic algorithmic cumulative stress increment consisting of number
of smaller steps 56 ” depending on the particular scheme used.

In order to compute the plastic strain increment in Equation (1) the increment of
plastic multiplier A is required. It can be solved by first developing the consistency
condition by the chain rule: f =0, f "6 + o,f 'q =0. Then, substitution from (1) and (3)
yields (in matrix form), after some algebra,

_ 0,f E&
0,f"Ed,g9, -0, f Hk

(6)

where symbol 0y denotes derivation with respect to x and H =0 _h . Finally, substitution
of (6) into (3) gives the rate form of the elastoplastic stress-strain law:

. E0,9,0,f'E ) .
6=|E- - - e =E"¢ (7)
o,f Ed,9,-0,f Hk

where E? is the elastoplastic or material stiffness matrix. With linear yield functions it
represents also the algorithmic or consistent tangent stiffness matrix (in the principal
stress space). Next, the return mapping with multiple yield planes is considered.

Return mapping with linear yield criteria

A linear yield surface consisting of intersecting planes involves a return to a yield plane,
to a line, and to a point as illustrated in Figure 3. In all the return cases the task is to find
the updated stress

6“ =6" - Ac” =¢" —AIED,Q, (8)

where 6 ” is the trial stress in the previously used nomenclature.

%1 pi-1 =0~/
un to pOlHt [

Return to plane

(a) (b)
Figure 3. Return types involving three intersecting yield planes in principal space (a) and a
boundary plane py; that separates different stress regions in the case of return to a line | (b)
(from [4])
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Return cases illustrated in Figure 3 are elaborated next in detail in the principal
stress space. Return mapping is much simpler in the principal stress space with only
three unknown stress components and can be performed since the return mapping
preserves principal directions. The price is that an eigenvalue problem must be solved
before and a co-ordinate transformation must be performed after the return mapping.

With linear yield surfaces the Equation (6) for the plastic increment A is not the most
convenient since the rate of total strain appears in this equation. A well established
exact solution in case of linear hardening/softening law is given by

f
A= 9
0,f"Ed,9, -0, f Hk )

which is obtained by using the first term of the Taylor series expansion on AA, (see
Appendix B).

Stress return to a plane

This is a trivial case and the plastic stress increment is computed using (9) and the flow
rule:

p _ p _ f(GBaq) _ B p
Ac® = EAg TEb_H Eb=f(c",q)r (10)
In (10) gradients of the yield plane and plastic potential are a=0,f.,b=0,9,,
respectively, andH =0, f "Hk is the generalized hardening/softening modulus. In the
original method by Clausen [3] H is zero (perfectly plastic case). The variables q are
updated according to the softening/hardening law. The corrector stress is exact if the
hardening/softening law is linear.

Stress return to a line

A line formed by two intersecting yield planes (see Figure 3) in the principal stress
space can be presented as

l:6=tr'+¢' (11)

where t is a parameter, ¢'is a point on the line, and r' is the direction vector. The
direction vectors of the intersection line | and the plastic potential line can be computed
as cross products of the normal vectors a;, a, of the intersecting yield planes and the
flow directions by, b,, respectively (see Figure 4 below). The parameter t is solved from
the condition that the plastic strain increment is perpendicular to the plastic potential
line:

(Ae?)'ry =0 (6" —6°)'E'ry =0 (12)

The corrected stress must be on the line I. Hence, after substituting for ¢, one obtains
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(13)

The return point on the line | is then determined by substituting t from (13) into (11).
When hardening/softening is included the point o' on the line | depends on location of
the intersecting yield planes. This location in turn depends on the present values of the
variables q which must be solved first. This is elaborated in detail later with the
Modified Mohr-Coulomb criterion.

Figure 4. Return to intersection line (redrawn from [5])

Stress return to a point

In the original method for perfectly plastic model the corrector stress is simply

¢ =¢° (14)
where 6° is the singularity or an apex point. Then the plastic strain is

Ag? =E 7' (6" —6°) (15)

If hardening/softening is included the movement of the apex point must be first solved.
This is because the apex point generally depends on the variables q of the intersecting
yield criteria:6® = 6°(q). This will be illustrated with the Modified Mohr-Coulomb
criterion later.

Determination of the correct return type

It remains to be determined which type of return should be performed. For this end the
concept of stress regions is introduced in [3-5]. Illustration is given in Figure 3 (b)
where two stress regions I and II are separated by a plane priy = 0. The orientation of
this plane is defined by the plastic corrector rP and the direction vector r, as

pH_I(G):(rper)T(c—cl):nITI_I(s—cl):O (16)
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where the indices are chosen so that the order II — I means that the normal ny; points
towards region II from region I. The pointe' on the plane can be any point, also a point
that belongs to the line |. Now the location of a given predictor stressos”and,
consequently, the type of return can be determined as follows.

P (6°)<0 < " belongstoRegion] <> Return toplane f =0 a7

P (6°)>0 < " belongstoRegionIl <« Return to linel

If hardening/softening is included, once again, the point on the plane ' depends on the
variables q and must be dealt with accordingly (i.e. to determine the movement of that
point). The method is applied next to the Modified Mohr-Coulomb criterion with linear
isotropic hardening/softening.

Application to Modified Mohr-Coulomb criterion

The method explained above is now applied to the Modified MC plasticity. For this end
the principal stresses are ordered according to

0,20, 20, (18)
The MC criterion and the plastic potential are written in a convenient form as

fuc(o, ) :aMcT(G_GC): ko, —o; - f,

(19)
Oy (o) = bMCTG =mMmo, —o,
with
k m ¢ 1
Ay = , byc=| 0], GC:k—cll
-1 -1 1 (20)

K = 1+s%n(p’ M= 1+S¥1’1l//
l-sing l—siny
where ¢, y, f. are the friction and dilatation angle, and the uniaxial compressive
strength of the material, respectively. Moreover, 6 is the apex of the MC criterion (i.e.
the point where the MC planes intersect with the hydrostatic axis). The Rankine part of
the Modified MC criterion is represented by
f.(0,f)=2a, (6-6,)=0, -, @)

Jg (0) = bRTG =0,

with

1
=f|1 (22)
1
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where f; is the uniaxial tensile strength. Associated flow rule in tension is chosen, i.e.
b, =a, . With the ordering of principal stresses the Modified MC criterion reduces into
two planes shown in Figure 5a (f = 0).

(a) (b)
Figure 5. The Modified MC criterion in principal stress space (a) and a detail (b) (from [4])

The lines defining the MC plane are
M o D=t +o, 23)
M= 1 k], KM= k k]"

c=tr' +o

The lines defining the triangular Rankine plane are

Ifio=trf +06,, 1J:6=tr; +6,, IJ:0=tr +0} 24
rf=001]", rf=[011]", rfF=[010]"
The other 2 corner points of the Rankine plane are
f, f,
¢ = f. |, oy =|kf —f (25)
kf, — f. kf, — f.

These points depend on the uniaxial strengths which in turn depend on the
hardening/softening variables. Finally, the direction vectors of the plastic potential lines
for MC plasticity are defined as

v =11 m]", r2 =1 m m] (26)

The equations of the 11 boundary planes and the conditions according which the correct
return type is determined are given in Appendix A.

The wvariables q= [qMC dgr ]T are identified with the wuniaxial strengths:
Oue = f., Qg = f,. The hardening/softening variables «k = [K‘MC Ky ]T are specified via
their rates by
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MC _

‘cqv %sp ) ép cqv V (27)

Kyc =€

where McAuley brackets (i.e. the positive part operator) have been used. Now,
substituting the flow rules in (27) functions k = [ko kg |' can be identified:

\/% MC % _AMC 3(1+m2)
<€"> <8" >T<bR>

Thus, Ky =+2(1+m?) and kgis identity by (22). Finally, the linear relation h
between the hardening/softening variables and the uniaxial strengths (q) are defined as

Uue = My (ue) = foo + Keyes A = hp (i) = g + Ko (29)

(28)

where K. and K; are the constant softening moduli in compression and tension,
respectively.

Return mapping with linear hardening/softening

Now, the influence of linear isotropic hardening/softening in the different return types is
elaborated. The key idea is to update the movement of the Rankine vertex 6, =0 ,(f,)
and the MC apex o, =06 _(f ) when hardening/softening is in process. When the
location of these points in the principal stress space is updated all the other formulas
remain the same as in perfectly plastic case.

Return to MC or Rankine plane

This return type is handled in a standard manner. First, the corrector stress increment is
solved according to

fMC (Gtrlal’ c)
aMCTEbMC + K hye
or (30)
— fR (Gtrial’ ft) E

a, Eb, +K,

A6, =EAe” =EAA, b, =

Eby = fyc (6, fOrc

Ao, =EAg®? = EALb, by = fr (64> FOIR

These formulas are obtained using (9). The plastic strain increment is then computed.
Finally, the uniaxial strengths are updated, depending on which plane the return took
place, as

fro = £ L ALK, or £ = £ 4 ALK hye €2y

which are, in view of Equation (28), the algorithmic counterparts of Equation (29).
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Return to MC or Rankine line

When returning to the lines I or 1)'“the location of the point 6, =o_(f,) is updated
based on a contribution from the MC part only as follows.

1d
fMC (ctrial’ fco )

ag/ICEb e + K Nye (32)

fcnew — fcold +A/1McKchMca 6new IGC(fneW)

C C

Adye =

Then the return point on the line is solved as in perfectly plastic case, e.g. in case 1,"“:
— (rlgMC )T E_l (Gtrial B Gcr:lew )

() E7r (33)

new
C

_ 4..MC
6, =lr +o

Ci

The return procedure for the lines 1"“and I is similar. However, when returning to line
| both the Rankine and the MC parts contribute to the location of the line via the
softening/hardening process as seen in Equation (25) where both f; and f. appear in the
definition of the endpoints. Consequently, this contribution must be solved as a coupled
bi-surface plasticity problem. This problem is solved in Appendix B. Applying the
general formula therein to the present modified MC plasticity with linear softening
yields

AL =G'F with
G = aK/ICEbMC + KchMC ag/ICEbR F = fMC (Gtrial’ fCOId) (34)
a;Ech a;EbR +K, ’ fe (6 iars ftOId)

The strengths are then updated and the new locations of the points6', 65 are computed:
F1 00 AL KR, F = £ ALK,

Ronew _ _R new new Ronew _ _R new new
61 _Gl (fc aft )5 02 _GZ(fc 5ft )

(35)

Finally, the return point on the line I} is computed as

T R,
t— (rg x1rye) (6, —6,"")

(er x rI\F/JIC )T rsR (36)

R,new

_ +..R
6. =Ir; +o,

where the definitions of r},r) . are evident from (30).

Return to the Rankine apex and corner points
Returning to the Rankine apex ¢, requires updating its location similarly as in Equation

(32). The corrected stress is then this updated apex pointe . =6, . In cases of return
to pointse; ande} the location of these points is updated using Equations (34) and (35)
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and the corrected stress is either of these points. The plastic strain increment is
computed according to (15).

Summary of geometric stress update for modified MC plasticity

The stress update method based on the return mapping presented here is summarised in
Table 1.

Table 1. Main steps of geometric stress update

Given: g, =g, +Ag”, o4 f° gP

1. Calculate: 6, = E(g,,, —€") . Solve the eigenvalue problem for o™, o™ and
evaluate: f]\t[r(i:al — fMC Gltria] ,O_3trial, fcold )’ thrial — fR (Gltria] , ftold) )

2. If max(f', ") > 0 Go to 3. Otherwise set 6,,, =, and Exit.

Compute the boundary planes using Equation (Al).

4. Determine the correct return type according to Table A1 and perform the updates
accordingly, using Egs. (15), (30)-(36), for ¢ =¢a_,,&",, /", f .

5. Perform the co-ordinate transformation from the principal stress space to the
original stress space: ¢, = ®"diag(¢”" )® (® is the modal matrix).

n+1 n+l

(O8]

Final remark is that in case of isotropic hardening/softening the normal vectors of
the yield planes remain the same; only the stress regions and the boundary planes
defining them change according to Equations (Al).

Numerical example

Rock like material under uniaxial and triaxial tests at the material point level is
simulated as a numerical example. A computational mesh consisting of single
hexahedral element shown in Figure 6 is used. The return mapping method presented is
implemented with explicit dynamics approach, i.e. the field equations governing the
problem are discretised in time as well and then solved with an explicit time integrator.
Therefore, no tangent stiffness matrix computations are needed here. The Modified
Euler time integrator is chosen for which the response is computed according to

it = M—l( o Cat —f! )’ e =it ALY, ut = ut 4 At (37)

ext nt

where M is the mass matrix, C is the damping matrix (set zero in the present example)
and f. ,f; are the external and internal force vectors, respectively. The latter is
computed using 8-point Gaussian numerical integration. The trial stress calculation in
Equation (4) and the stress return mapping are, however, performed only at the center

(at the origin of the parent co-ordinate system) of the mesh in Figure 6.
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v and u BCs

E = 60GPa, v=0.2, f.= 130MPa,
fi=13MPa, o= 30°, = 5°,
p=2600kg/m, K. =K;=-0.1E

Figure 6. Single hexahedral element mesh and material properties.

In the first simulation the load reversal programme shown in Figure 7a is imposed on
the mesh as a displacement BC in z-direction. Residual values of uniaxial strengths are
se fest = 1MPa and f,ic = 10MPa. Upon reaching these values the softening moduli are
set to zero. The response computed with the present model is presented in Figure 7b.

20

0
< -20
o
=, -40
—_ [}
E g -60
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-120
-140
Axial strain x10°
(a) (b)

Figure 7. Load reversal programme imposed on the mesh in z-drection (a) and the computed
stress-strain response in z-direction (b).

The return type realised during the Rankine plasticity process in Figure 7b is fr = 0
(return to Rankine plane). Then, upon compressive yielding the return type is MC line
1, i.e. I"“(see Figure 5a). Generally, the return types realised cannot be inferred from
the stress-strain responses. Here the return type determined on the basis of Table Al is
simply printed during the simulation.

In the second simulation boundary velocities are applied as follows: v, = vy, = 0.25
m/s (tension) and v, = -0.5 m/s (compression). These input velocities produce triaxial
mixed tension/compression loading. The response computed with the present model is
shown in Figure 8.
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Figure 8. Response in triaxial tension/compression test in X and y directions (a) and in z
direction (b).

In the triaxial test, as the Rankine plasticity commences, return on linel prevails. Then,
upon reaching the compressive strength, the return is to point ¢} which required
solving the coupled Rankine-MC plasticity problem. As the plasticity processes are
fully developed, i.e. the residual strengths are reached in all directions, the response is
perfectly plastic.

Conclusions

In this paper the recent geometric stress return mapping by Clausen for non-associated
plasticity with multiple yield planes was extended to linear softening/hardening models.
Thus, the applicability of the method is considerably enlarged as many materials exhibit
either hardening of softening (or both). This extension does not disturb the original
structure of the method if isotropic hardening/softening is assumed. In this case, the
return types, i.e. the return to a yield plane, to an intersection line or to an apex point of
the yield planes, remain the same as the isotropic softening only translates the yield
planes in the stress space.

The general method was applied to the modified MC yield criterion which is
typically used for geomaterials. The algorithm was implemented with explicit dynamics
based FEM and a simple numerical problem demonstrated how different return types
realise in computations.
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Appendix A. Stress regions and conditions for correct stress return

The equations of the 11 boundary planes (shown in Figure A1) that separate the stress
regions are listed as

PLi(0) = (e X1 ) (6 -6,),  Pry(0)= (1" xri.) (6-0,)
Py (0) = (1 x1jc) (6-6)), Py (6) = (ryjc xrg,)" (6-6))
P (0) = (Fp,o X 1) ' (6-63), Py (6) = (F x1c) ' (6—6))
Prvovi(6) = (e X)) (6-65), Py (6) = (g x15) (6 —0))
Py (0) = (g xrd) (6-61),  Pypyu(0) = (¢ x1") (6 -0,)

PyiLix (6) = (er X T, )T (6-0,)

(A1)

where

ro, =E[m m -2]", r,,=EP2m -1 -1]", r,=E[l 1 0]' (A2)

Figure A1. The stress regions for the Modified MC criterion (from [4])

The conditions for the correct return type are given in Table Al below.

Table A1l. Conditions for return types

Conditions Region Return to
Puz0 A P20 A pPav<0 I fuc =0
Pu<0 A Puv<O 11 |MC
Pi<0 A Prvm<0 I 1)
Piv<0 A pvav<0 A pviv<0 A Pviav<0 v I
Pvi=20 A Ppvav20 A Pyym=0 \4 G
Pvim=20 A Pviv =0 V1 G
Pvieiv =20 A Pyivm = 0 Vil fo =
Pvvin<0 A Pvivin<0 A Pxvin<0 VI I
Prx-vir = 0 IX o,
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Appendix B. Plastic increment vector in bisurface plasticity

The relation for solving the plastic increment vector in bisurface plasticity with linear
yield functions is derived. Following simplified notations are used.

f =( fl(c’ql)], 6=E(s-¢"), q=h() =(hl(Kl)], K =[/11k1(6”(1)j
f,(0.9,) h, (x,) 2K, (0,5,) (B1)
£" =40,9, +4,0,0,,
Next, f is expanded using the first term of vector valued Taylor series:
f(h+AL) =f(X)+V, (L)AL (B2)

On computing the gradient Vf with the chain rule for f; one obtains (derivation for f; is
identical)

v - (%]Ta_ui%, [@fa_sﬂ%
o6 ) 04, 09,04, \do) 04, g, o4,

| (et TEasp Lo oy ok (o, TEasp , ot og, ox,
66 ) 04, o, ok, 04, 66 ) 04, &, Ok, 04,
- (B3)

! 0 0
_|-[d) g2 A, Jo +4, 9oz || S 40, K, s
oA, 0o 0o aq, Ok,

— @T E 0 ﬂlagpl_’_ﬂzaglﬂ +8f1 aq, Ok,
o4, \"" oo o6 )| oq, oK, 04,

which is the first row of the gradient V,f . It is assumed that gy is independent of 4; and
Kk 1s independent of A,. Thus

T o T d
folz _(6_1:1] E gpl+af1 aql k], _(i} E gp2 (B4)
oo 0o  0q, Ok, 6l ol

Now, on solving for AA and denoting the gradient with G the desired relation is obtained
as

f() +V,f()AL =0 < Ak =V, (1) f(h) = G'T (M) (B5)

where G 1s
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(a_fl}TEagpl _ afl aql kl (ﬁjTE(’agpz
G- 0o 0o  0(, Ok, 0o 0o
(iJTEag” (ijTEagpz oty g,

o oo o6 6 0q, Ok, -

(B6)
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