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Geometric return algorithm for non-associated 
plasticity with multiple yield planes extended to linear 
softening/hardening models      

Timo Saksala  

Summary. In this article the recent efficient stress return algorithm for non-associated 
plasticity with multiple yield planes by Clausen is extended to linear softening/hardening 
models. The idea of the original method is to define special boundary planes in the principal 
stress space using constant gradients of the linear yield planes. Thereby, a closed form stress 
update based on purely geometric arguments is obtained. If hardening/softening of the material 
is included, the yield plane(s) move during the return mapping. Therefore, the new location of 
the yield planes contributing to the return mapping must be solved first. In this paper only 
isotropic hardening/softening is considered. The modified Mohr-Coulomb criterion is chosen 
for the demonstration of the method.     

Key words: geometric return mapping, Mohr-Coulomb criterion, Rankine criterion, isotropic 
strain softening 

Introduction  

Numerical analysis of elasto-plastic materials involves stress integration of the 
constitutive model to obtain the unknown stress increment. As this is performed many 
times within each loading step a key issue is the computational efficiency of the return 
mapping. Many classical yield criteria, such as Tresca criterion in metal plasticity and 
Mohr-Coulomb criterion in geomechanics, consist of several yield planes in principal 
stress space. With these yield criteria the stress integration is simple due the existence of 
the closed form or explicit solution for the desired stress increment. However, a 
complicating issue is the return on the intersection of the yield planes since the gradient 
of the yield criteria is not unique at the intersection. The solution for this problem was 
first presented by Koiter [1]. A thorough treatment of computational inelasticity with 
single and multiple yield surfaces is given, e.g. by Simo & Hughes [2].   

The multisurface techniques by Koiter and others may not, however, be the most 
efficient ones in special cases. For this reason Clausen et al. [3-5] developed an efficient 
return algorithm for non-associated plasticity with multiple yield planes. They also 
presented simple formulae for the consistent tangent stiffness matrix. The method is 
based on geometric arguments using special boundary planes and stress regions defined 
in the principal stress space for deciding the correct return type (return to an apex point, 
to an intersection line, or to a plane). The method is elaborated in detail later in this 
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paper. The speed up obtained with this return mapping in perfect MC plasticity 
compared with the classical implementation (MC criterion expressed in stress 
invariants) was 24 %, 91 % and 51 % in cases of 10000 returns to plane, line and point, 
respectively [5].    

 

Figure 1. Modified Mohr-Coulomb criterion in 3D and 2D stress spaces 

The original developments by Clausen et al. [3-5] considered only perfect plasticity. 
In many applications this is, however, a too restricting assumption concerning the 
behaviour of the material. Metals, for example, display strain hardening while 
geomaterials (rocks, soil and concrete) exhibit considerable softening. For this reason, 
the original algorithm by Clausen et al. is extended here to include linear isotropic 
softening/hardening. Thus, the applicability of the method is considerably enlarged. The 
modified Mohr-Coulomb (MC) criterion depicted in Figure 1 is chosen as a particular 
yield criterion with which the method is exemplified. As a numerical example, the 
constitutive behaviour of rock like material is simulated using a single element mesh 
while the method is implemented with the explicit dynamics FEM. 

Fundamentals of computational plasticity 

The essential parts of a plasticity model are the yield function, the flow rule, the 
hardening/softening law, and the loading-unloading conditions, respectively, 
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where pε& is the rate plastic strain tensor pε ,σ is the stress tensor, ),( qσff =  is the yield 
function which defines the admissible (elastic) stress states, λ is the plastic multiplier, 

pg is the plastic potential (taken as f in associative plasticity), k is a vector of functions 
that defines the relation between the hardening/softening variables κ and variables q 
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which, in the thermodynamic formulation of plasticity, appear as the conjugate forces to 
variables κ, and h is a vector of functions that define q as a function of κ. The 
underlying assumption in small strain plasticity is that the total strain can be 
decomposed to elastic and plastic parts: 

 pe εεε &&& += . (2) 

The elastic stress increment, which is used in computing the trial state in computational 
plasticity, is obtained from (2) by Hooke’s law (in matrix notation): 
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where E is the elasticity matrix. In the computational plasticity the task is to integrate 
(2) and obtain an updated stress state in order to fulfil the conditions given in (1). 

Most of the stress return algorithms are based on the elastic prediction-plastic 
correction setting. That is, given a total strain εεε Δ+=+ nn 1 a trial elastic stress state is 
computed as  

 )( 1trial
p
nn

e εεEEεσ −== +  (4) 

where p
nε  is the plastic strain vector obtained in the previous step of the analysis. If the 

yield function satisfies the condition given in (1), i.e. 0),( trial ≤qσf , then the elastic 
stress state is correct. If the condition is violated then a plastic correction is needed in 
order to return the stress state to the yield surface. The idea of return mapping is 
illustrated in Figure 2.           

 

Figure 2. Principle of return mapping 

During the return mapping algorithm the trial state is iteratively returned to the yield 
surface so that 0)( 1 =+nf σ  with  
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where 
pσΔ is the plastic algorithmic cumulative stress increment consisting of number 

of smaller steps pσδ depending on the particular scheme used.  
In order to compute the plastic strain increment in Equation (1) the increment of 

plastic multiplierλ& is required. It can be solved by first developing the consistency 
condition by the chain rule: 0TT =∂+∂= qσ qσ &&& fff . Then, substitution from (1) and (3) 
yields (in matrix form), after some algebra,   
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where symbol ∂x denotes derivation with respect to x and hH κ∂= . Finally, substitution 
of (6) into (3) gives the rate form of the elastoplastic stress-strain law: 
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where Eep is the elastoplastic or material stiffness matrix. With linear yield functions it 
represents also the algorithmic or consistent tangent stiffness matrix (in the principal 
stress space). Next, the return mapping with multiple yield planes is considered. 

Return mapping with linear yield criteria 

A linear yield surface consisting of intersecting planes involves a return to a yield plane, 
to a line, and to a point as illustrated in Figure 3. In all the return cases the task is to find 
the updated stress  

 p
p gσEσσσσ ∂Δ−=Δ−= λBBC   (8) 

where Bσ is the trial stress in the previously used nomenclature.  

 

            (a)                          (b) 
Figure 3. Return types involving three intersecting yield planes in principal space (a) and a 
boundary plane pII-I  that separates different stress regions in the case of return to a line l (b) 

(from [4]) 
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Return cases illustrated in Figure 3 are elaborated next in detail in the principal 
stress space. Return mapping is much simpler in the principal stress space with only 
three unknown stress components and can be performed since the return mapping 
preserves principal directions. The price is that an eigenvalue problem must be solved 
before and a co-ordinate transformation must be performed after the return mapping. 

With linear yield surfaces the Equation (6) for the plastic incrementλ& is not the most 
convenient since the rate of total strain appears in this equation. A well established 
exact solution in case of linear hardening/softening law is given by  

 
HkE qσσ

TT fgf
f
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which is obtained by using the first term of the Taylor series expansion on Δλ, (see 
Appendix B).  

 
Stress return to a plane 

This is a trivial case and the plastic stress increment is computed using (9) and the flow 
rule:  

 ppp f
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In (10) gradients of the yield plane and plastic potential are fσa ∂= , pgσb ∂= , 
respectively, and Hkq

TfH ∂=  is the generalized hardening/softening modulus. In the 
original method by Clausen [3] H is zero (perfectly plastic case). The variables q are 
updated according to the softening/hardening law. The corrector stress is exact if the 
hardening/softening law is linear.   
 
Stress return to a line 

A line formed by two intersecting yield planes (see Figure 3) in the principal stress 
space can be presented as  

 lltl σrσ +=:  (11) 

where t is a parameter, lσ is a point on the line, and rl is the direction vector. The 
direction vectors of the intersection line l and the plastic potential line can be computed 
as cross products of the normal vectors a1, a2 of the intersecting yield planes and the 
flow directions b1, b2, respectively (see Figure 4 below). The parameter t is solved from 
the condition that the plastic strain increment is perpendicular to the plastic potential 
line: 

 0)(0)( 1TCBT =−⇔=Δ − l
g

l
g

p rEσσrε  (12) 

The corrected stress must be on the line l. Hence, after substituting for Cσ , one obtains 
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The return point on the line l is then determined by substituting t from (13) into (11). 
When hardening/softening is included the point lσ on the line l depends on location of 
the intersecting yield planes. This location in turn depends on the present values of the 
variables q which must be solved first. This is elaborated in detail later with the 
Modified Mohr-Coulomb criterion. 

 

 Figure 4. Return to intersection line (redrawn from [5]) 

Stress return to a point 

In the original method for perfectly plastic model the corrector stress is simply 

 aσσ =C  (14) 

where aσ is the singularity or an apex point. Then the plastic strain is  

 )( CB1 σσEε −=Δ −p  (15) 

If hardening/softening is included the movement of the apex point must be first solved. 
This is because the apex point generally depends on the variables q of the intersecting 
yield criteria: )(qσσ aa = . This will be illustrated with the Modified Mohr-Coulomb 
criterion later. 

 
Determination of the correct return type 

It remains to be determined which type of return should be performed. For this end the 
concept of stress regions is introduced in [3-5]. Illustration is given in Figure 3 (b) 
where two stress regions I and II are separated by a plane pI-II = 0. The orientation of 
this plane is defined by the plastic corrector pr and the direction vector lr as  
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where the indices are chosen so that the order II – I means that the normal nII-I points 
towards region II from region I. The point lσ on the plane can be any point, also a point 
that belongs to the line l. Now the location of a given predictor stress Bσ and, 
consequently, the type of return can be determined as follows. 
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If hardening/softening is included, once again, the point on the plane lσ depends on the 
variables q and must be dealt with accordingly (i.e. to determine the movement of that 
point). The method is applied next to the Modified Mohr-Coulomb criterion with linear 
isotropic hardening/softening. 

Application to Modified Mohr-Coulomb criterion 

The method explained above is now applied to the Modified MC plasticity. For this end 
the principal stresses are ordered according to 

 321 σσσ ≥≥  (18) 

The MC criterion and the plastic potential are written in a convenient form as 
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where ϕ, ψ, fc are the friction and dilatation angle, and the uniaxial compressive 
strength of the material, respectively. Moreover, cσ is the apex of the MC criterion (i.e. 
the point where the MC planes intersect with the hydrostatic axis). The Rankine part of 
the Modified MC criterion is represented by  
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with 
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where ft is the uniaxial tensile strength. Associated flow rule in tension is chosen, i.e. 
RR ab = . With the ordering of principal stresses the Modified MC criterion reduces into 

two planes shown in Figure 5a (f = 0).   

 

                               (a)                                               (b) 
Figure 5. The Modified MC criterion in principal stress space (a) and a detail (b) (from [4]) 

The lines defining the MC plane are  
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The lines defining the triangular Rankine plane are 
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The other 2 corner points of the Rankine plane are  
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These points depend on the uniaxial strengths which in turn depend on the 
hardening/softening variables.  Finally, the direction vectors of the plastic potential lines 
for MC plasticity are defined as 

 [ ] [ ]T
2

T
1 1,11 MCMC mmm gg == rr  (26) 

The equations of the 11 boundary planes and the conditions according which the correct 
return type is determined are given in Appendix A.  

The variables [ ]TRMC qq=q are identified with the uniaxial strengths: 
tRcMC , fqfq == . The hardening/softening variables [ ]TRMC κκ=κ are specified via 

their rates by 
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where McAuley brackets (i.e. the positive part operator) have been used. Now, 
substituting the flow rules in (27) functions [ ]TRMC kk=k can be identified: 
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Thus, )1( 2
3
2

MC mk +=  and Rk is identity by (22). Finally, the linear relation h 
between the hardening/softening variables and the uniaxial strengths (q) are defined as 

   Rtt0RRRMCcc0MCMCMC )(,)( κκκκ KfhqKfhq +==+==  (29) 

where Kc and Kt are the constant softening moduli in compression and tension, 
respectively. 

Return mapping with linear hardening/softening  

Now, the influence of linear isotropic hardening/softening in the different return types is 
elaborated. The key idea is to update the movement of the Rankine vertex )( tfaa σσ =  
and the MC apex )( ccc fσσ =  when hardening/softening is in process. When the 
location of these points in the principal stress space is updated all the other formulas 
remain the same as in perfectly plastic case. 

 
Return to MC or Rankine plane 

This return type is handled in a standard manner. First, the corrector stress increment is 
solved according to   
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These formulas are obtained using (9). The plastic strain increment is then computed. 
Finally, the uniaxial strengths are updated, depending on which plane the return took 
place, as  
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which are, in view of Equation (28), the algorithmic counterparts of Equation (29).  
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Return to MC or Rankine line  

When returning to the lines MC
1l or MC

2l the location of the point )( ccc fσσ =  is updated 
based on a contribution from the MC part only as follows. 

 
)(,

   
),(

new
cc

new
cMCcMC

old
c

new
c

MCcMC
T
MC

old
ctrialMC

MC

fhKff

hK
ff

σσ

Eba
σ

=Δ+=

+
=Δ

λ

λ
 (32) 

Then the return point on the line is solved as in perfectly plastic case, e.g. in case MC
1l :  
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The return procedure for the lines MC
2l and R

1l is similar. However, when returning to line 
R
3l both the Rankine and the MC parts contribute to the location of the line via the 

softening/hardening process as seen in Equation (25) where both ft and fc appear in the 
definition of the endpoints. Consequently, this contribution must be solved as a coupled 
bi-surface plasticity problem. This problem is solved in Appendix B. Applying the 
general formula therein to the present modified MC plasticity with linear softening 
yields 
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The strengths are then updated and the new locations of the points R
2

R
1 ,σσ are computed: 
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Finally, the return point on the line R
3l  is computed as 
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where the definitions of pp
MCR ,rr are evident from (30). 

 
Return to the Rankine apex and corner points  

Returning to the Rankine apex aσ requires updating its location similarly as in Equation 
(32). The corrected stress is then this updated apex point new

cor aσσ = . In cases of return 
to points R

1σ and R
2σ the location of these points is updated using Equations (34) and (35) 
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and the corrected stress is either of these points. The plastic strain increment is 
computed according to (15).  

 
Summary of geometric stress update for modified MC plasticity   

The stress update method based on the return mapping presented here is summarised in 
Table 1. 

 
Table 1. Main steps of geometric stress update 
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3.  Compute the boundary planes using Equation (A1). 
4.  Determine the correct return type according to Table A1 and perform the updates 
     accordingly, using Eqs. (15), (30)-(36), for new

t
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5.  Perform the co-ordinate transformation from the principal stress space to the    
     original stress space: ΦσΦσ )(diag prin

1
Txy

1 ++ = nn  (Φ is the modal matrix).  
 
Final remark is that in case of isotropic hardening/softening the normal vectors of 

the yield planes remain the same; only the stress regions and the boundary planes 
defining them change according to Equations (A1).  

Numerical example 

Rock like material under uniaxial and triaxial tests at the material point level is 
simulated as a numerical example. A computational mesh consisting of single 
hexahedral element shown in Figure 6 is used. The return mapping method presented is 
implemented with explicit dynamics approach, i.e. the field equations governing the 
problem are discretised in time as well and then solved with an explicit time integrator.   
Therefore, no tangent stiffness matrix computations are needed here. The Modified 
Euler time integrator is chosen for which the response is computed according to  

 ( ) ttttttttttttt tt Δ+Δ+Δ+− Δ+=Δ+=−−= uuuuuufuCfMu &&&&&&&& ,,intext
1  (37) 

where M is the mass matrix, C is the damping matrix (set zero in the present example) 
and tt

intext ,ff  are the external and internal force vectors, respectively. The latter is 
computed using 8-point Gaussian numerical integration. The trial stress calculation in 
Equation (4) and the stress return mapping are, however, performed only at the center 
(at the origin of the parent co-ordinate system) of the mesh in Figure 6.      
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Figure 6. Single hexahedral element mesh and material properties. 

In the first simulation the load reversal programme shown in Figure 7a is imposed on 
the mesh as a displacement BC in z-direction. Residual values of uniaxial strengths are 
se frest = 1MPa and fresc = 10MPa. Upon reaching these values the softening moduli are 
set to zero. The response computed with the present model is presented in Figure 7b. 
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   (a)              (b) 
Figure 7. Load reversal programme imposed on the mesh in z-drection (a) and the computed 

stress-strain response in z-direction (b). 

The return type realised during the Rankine plasticity process in Figure 7b is fR = 0 
(return to Rankine plane). Then, upon compressive yielding the return type is MC line 
1, i.e. MC

1l (see Figure 5a). Generally, the return types realised cannot be inferred from 
the stress-strain responses. Here the return type determined on the basis of Table A1 is 
simply printed during the simulation. 

In the second simulation boundary velocities are applied as follows: vx = vy = 0.25 
m/s (tension) and vz = -0.5 m/s (compression). These input velocities produce triaxial 
mixed tension/compression loading. The response computed with the present model is 
shown in Figure 8.  
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          (a)            (b) 
Figure 8. Response in triaxial tension/compression test in x and y directions (a) and in z 

direction (b). 

In the triaxial test, as the Rankine plasticity commences, return on line R
1l prevails. Then, 

upon reaching the compressive strength, the return is to point R
1σ  which required 

solving the coupled Rankine-MC plasticity problem. As the plasticity processes are 
fully developed, i.e. the residual strengths are reached in all directions, the response is 
perfectly plastic. 

Conclusions 

In this paper the recent geometric stress return mapping by Clausen for non-associated 
plasticity with multiple yield planes was extended to linear softening/hardening models. 
Thus, the applicability of the method is considerably enlarged as many materials exhibit 
either hardening of softening (or both). This extension does not disturb the original 
structure of the method if isotropic hardening/softening is assumed. In this case, the 
return types, i.e. the return to a yield plane, to an intersection line or to an apex point of 
the yield planes, remain the same as the isotropic softening only translates the yield 
planes in the stress space.  

The general method was applied to the modified MC yield criterion which is 
typically used for geomaterials. The algorithm was implemented with explicit dynamics 
based FEM and a simple numerical problem demonstrated how different return types 
realise in computations.  
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Appendix A. Stress regions and conditions for correct stress return  

The equations of the 11 boundary planes (shown in Figure A1) that separate the stress 
regions are listed as  
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where 
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Figure A1. The stress regions for the Modified MC criterion (from [4]) 

The conditions for the correct return type are given in Table A1 below.  
 

Table A1. Conditions for return types 
Conditions Region Return to 

pI-II ≥ 0   ∧   pI-II ≥ 0    ∧   pI-IV ≤ 0 I 0MC =f  
pI-II < 0   ∧   pII-V < 0 II MC

1l  
pI-III < 0   ∧   pIV-III < 0 III MC

2l  
pI-IV < 0   ∧   pV-IV < 0    ∧   pVI-IV < 0   ∧   pVII-IV < 0     IV R

3l  
pV-II ≥ 0   ∧   pV-IV ≥ 0    ∧   pV-VIII ≥ 0    V R

1σ  
pVI-III ≥ 0   ∧   pVI-IV ≥ 0 VI R

2σ  
pVII-IV ≥ 0   ∧   pVII-VIII ≥ 0 VII 0R =f  
pV-VIII < 0   ∧   pVII-VIII < 0    ∧   pIX-VIII < 0    VIII R

1l  
pIX-VIII ≥ 0    IX aσ  
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Appendix B. Plastic increment vector in bisurface plasticity 
 
The relation for solving the plastic increment vector in bisurface plasticity with linear 
yield functions is derived. Following simplified notations are used. 
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Next, f is expanded using the first term of vector valued Taylor series: 

 λλfλfλλf λ Δ∇+=Δ+ )()()(   (B2) 

On computing the gradient ∇f with the chain rule for f1 one obtains (derivation for f2 is 
identical) 
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which is the first row of the gradient fλ∇ . It is assumed that gpi is independent of λi and 
κ1 is independent of λ2. Thus  
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Now, on solving for λΔ and denoting the gradient with G the desired relation is obtained 
as 

 )()()()()( 11 λfGλfλfλ0λλfλf λλ
−− =−∇=Δ⇔=Δ∇+  (B5) 

where G is 



 98

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

−
∂

∂
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂

∂
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂

∂
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

∂
∂

−
∂

∂
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=

2
2

2

2

22
T

21
T

2

2
T

1
1

1

1

1

11
T

1

k
q

q
fgfgf

gf
k

q
q
fgf

pp

pp

κ

κ

σ
E

σσ
E

σ

σ
E

σσ
E

σG  (B6) 

References 

[1] W.T. Koiter, Stress–strain relations, uniqueness and variational theorems for 
elastic–plastic materials with a singular yield surface, Quart. Appl. Math., 11: 350–
354, 1953. 

[2]  J.C. Simo, T.J.R. Hughes, Computational Inelasticity, Springer, 1998.    
[3] J. Clausen, Efficient Non-Linear Finite Element Implementation of Elasto-

Plasticity for Geotechnical Problems, PhD Thesis, Aalborg University, Denmark, 
2007. 

[4] Clausen J., Damkilde L. A simple and efficient FEM-implementation of the  
 Modified Mohr-Coulomb criterion, In: Proceedings of the 19th Nordic Seminar on 

Computational Mechanics, Lund, Sweden, 2006. 
[5] J. Clausen, L. Damkilde, L. Andersen, An efficient return algorithm for non-

associated plasticity with linear yield criteria in principal stress space, Computers 
and Structures 85: 1795-1807, 2007. 

Timo Saksala 
Tampere University of Technology          
Department of mechanics and design 
P.O. Box 589, FI-33101, Tampere, FINLAND 
timo.saksala@tut.fi 

 

 


