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Abstract. Aircraft impact is considered as a relevant loading case in designing modern nuclear
power plants. Numerical methods and models need to be verified against experimental data in
order to guarantee the reliability of results when simulating full scale applications. The
IMPACT test facility has been developed starting in 2003 and is has reached a mature phase
where well repeatable tests can be conducted and broad range of dynamic data acquired reliably.
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Introduction

In order to obtain reliable numerical results the used methods and models should be
verified against experimental data. The objective of this paper is to study the accuracy
and capability of numerical methods in analysing reinforced concrete structures under
soft missile impacts.

Numerical studies are carried out by a multi purpose code Abaqus [1] using shell
element models for both the target and the missile. Simplified two degree of freedom
models can be used in preliminary design of real protective structures and also in
designing experiment. Due to uncertainties in measuring the force-time functions for
impacting missiles load functions needed in analyses were calculated by using the Riera
method [2] and adjusted according to the experimental findings. Parameters for material
models used in the analyses are based on the available material test data.

Impact test facility and measurements

A flexible experimental platform has been created at VTT for intermediate scale impact
tests. The test apparatus consists of two main parts. First, a 13.5 m long pressure
accumulator is used to provide the required initial energy for the test. Second, a 12 m
long acceleration tube is used to accelerate test missiles to a final velocity of 100 m/s to
200 m/s. The test facility is shown in Figure 1. The mass of the missile can be up to 100
kg. In the tests, missile impacts on a concrete wall or on a steel force measurement
plate. The test facility has been further developed and improved since the first version
was taken in use in 2003.
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Figure 1. Impact test facility (pressure pipe, acceleration tube, piston catcher and force plate or
impact wall)

Two versions of the force plate system are shown in Figure 2. The force plates have
been supported directly to bedrock using only the back pipes. The 3D missile tests were
performed by using a heavy steel frame, horizontal beams and three force plates
installed in front of the frame, depicted in Figure 2 on the right.

Figure 2. The second model (left) and third model of force plate construction.
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Figure 3. Dry (empty) aluminium (Al) pipe missile and wet (water filled) missile.

Tests have been done accelerating a steel piston inside the acceleration tube with the
missile installed on the rails at the top of the acceleration tube. An aluminium pipe
missile with a diameter of 0.25 m and wall thickness of 5 mm, shown in Figure 3, was
used in impact tests of slabs with a thickness of 0.15 m. Tests with 3D missiles on force
plate have been done using a smaller aluminium pipe, with a diameter of 200 mm and
wall thickness of 4 mm. At the end of the test series wings and engines were included in
the model, depicted in Figure 4, and also in some tests wings were filled with water in
order to study the spreading of liquid [3].

Pre-stressed concrete slabs with a thickness of 250 mm were tested using rigid hard
steel missiles with a diameter of 150 mm, wall thickness of 10 mm and filled with
concrete, shown in Figure 4 on the left.

Figure 4. The rigid steel pipe missile with a diameter of 170 mm (left) and a 3D missile with
wings (right).

The dimensions of the concrete slab in the soft missile tests were: width 2 m, length
2.3 m, support length 2.2 m and thickness 0.15 m. Bending and in some cases also shear
reinforcement was applied. The slabs were supported on the vertical edges by the test
frame, shown in Figure 5 on the left.
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The pre-stressed concrete slabs were of the same size except the thickness was 0.25
m. In the new test frame the slabs are simply supported on all the four edges. The new
test frame is shown in Figure 5 on the right.

Figure 5. Support system and one-way test slab in a soft missile test (left). A pre-stressed test
slab with a thickness of 0.25 m and support system 2 in hard missile tests (right).

The data from sensors have been gathered using a sampling frequency of 100 kHz.
In measuring anti-aliasing filtering and simultaneous sampling was applied. The
maximum number of channels used in the tests has been 32. The following sensors have
been used in the impact tests:

• Force transducers behind the force plate (used also in measuring the post-
tension force of Dywidag bars).

• Strain gauges on the back pipes to measure reaction forces.
• Strain gauges on the supporting frame to control the bending stresses of

beams.
• High speed cameras to video collision.
• Strain gauges in rebars inside concrete to measure strains of rebars.
• Strain  gauges  on  the  surface  of  the  concrete  slab  to  measure  strains  of

concrete.
• Deflection transducers to measure horizontal deflections of the slab.
• Laser sensors to measure the speed of missile.
• Accelerometer at the back of the missile (wired measurements).
• Accelerometers at the back of the concrete wall.
• Pressure sensors to measure the air pressure inside the acceleration tube

or near the concrete slab.
The measuring device and deflection transducers are shown in Figure 6. The

transducer is a mechanical sensor, which is fixed on the surface of the slab and it is also
working during the test.
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Figure 6. Measuring data collection device (left) and deflection transducers in front of
the slab (right).

Load function of soft missile

One of the earliest studies on the calculation of load-time function of a deforming
projectile was published in Reference [2], and the subject has been considered in several
articles since, e.g. in [4].

The impact force F(t)  of a deforming or crushing projectile can be obtained from
the change of momentum equation

( ) ( ),r m
dF t M v
dt

= (1)

in which Mr  is  the  remaining  mass  of  the  missile  and vm  is  the  velocity.  By
differentiation

( ) .m r
r m

dv dMF t M v
dt dt

= + (2)

As in Reference [2] crushing is assumed to take place at the missile/target interface and
the crushing force is in equilibrium with the inertial force of the remaining mass Mr  of
the projectile

.m
c r

dv
P M

dt
= (3)
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In the second term of (2)

( ),r
m

dM v m x
dt

= − (4)

where m(x)   is  the  mass  per  unit  length  of  the  missile  and x  is  the  distance  to  the
contact cross section measured from the nose of projectile. The impact force (2)
becomes

2( ) ( ( )) ( ( )) ( ).c mF t P x t m x t v t= − (5)

Assuming that the mass of the crushed part of the missile moves with the target
structure an equation for the conservation of momentum for the system of missile and
target yields

( ) ( ),r m c t
dF t M v M v
dt

= + (6)

where Mr  is the mass of the rigid (uncrushed part), Mc  is the mass of the crushed part,
vm  is the velocity of the rigid part of the missile at time t, vt  is  the  velocity  of  the
target at time t.

Figure 7. Impact of deforming missile.

The impact force formula in the case of deforming target becomes

2( ) ( ( )) ( ( ))( ) t
c m t c

dv
F t P x t m x t v v M

dt
= − − + . (7)

The area on which the load resultant is distributed must be estimated separately based
on the cross sectional area of the missile.
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Given as initial values the mass distribution and the crushing strength (force)
distribution as functions of the distance measured from the missile nose, the resultant
load function can be calculated by time integration using the above equations.

In a simple way, the movement of the target can be given by an equation [5]

( ) (1 cos ),
2tm

m

x t u t
t
π

= − (8)

where utm  is the amplitude of target movement at the end of the impact at time tm.

Crushing force

Various crushing force formulae for tubes with different cross sections under static,
quasi-static and slow dynamic loading for different applications, e.g. in automotive
industry, have been derived and given in literature. Alexander [6] has derived by a
plastic mechanism method an approximate solution for the crushing force of a thin-
walled circular tube by assuming an axisymmetric mode of deformation, depicted in
Figure 8, [7]. It is assumed that the tube is made of a rigid plastic material. The assumed
mode of deformation or collapse mode is an idealisation because in reality the wrinkles
are curved.

Figure 8. Folding mechanism.

The external work needed to develop and flatten one axisymmetric wrinkle is
equated with the internal energy dissipated in plastic deformation in the tube. The
plastic internal work is generated at hinge lines a and c and at the moving hinge line b.
Third portion of the internal work comes from the stretching of tube portions ab and bc.
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The work equation yields the crushing force

,]3/)1/([ mc llrhhP σππ ++=  (9)

where r and h are  the  radius  and  the  wall  thickness  of  the  tube,  respectively,  and  the
length parameter l is shown in Figure 8.

Minimising the axial crushing force Pc  with respect to the length parameter l  gives

1.347 ,
3
rhl rhπ

= ≈ (10)

and the minimum value for Pc  becomes

1 4 3 24(3) 2c

p

P r
m h

π π/ /= + , (11)

which is the same as Alexander’s solution, [7]. In equation (11) the plastic bending
moment capacity of the tube wall with a thickness h  and a yield stress σy  is

22
43p y
hm σ= , (12)

assuming the von Mises yield condition and a state of plane strain.

The Cowper-Symonds constitutive equation for uniaxial tension or compression is
[7] 1

1
q

yd y D
εσ σ

/  = + ,  
   

& (13)

where σy  and σyd  are the static and the dynamic flow stress, respectively, and D  and
q  are material parameters.

The average strain rate in the circumferential direction becomes, [7],
0

4
v
rθε =& , where

v0 is the axial velocity of projectile. Substituting this into the dynamic yield stress
formula (12) and the crushing force formula gives

1
3 2 1 402( ) 1 3

4

q

c y
vP h r
rD

π σ
/

/ /
  = + .  

   
(14)

A more refined solution for the crushing force is given in [7] in which the actual
deformed shape of the tube is approximated more closely. Also the actual
circumferential strain variation is used, instead of the average value, assumed in
Alexander’s solution, in calculating the stretching energy. In this solution approximately
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1 76 1.245
2
rhl rh≈ . ≈    (15)

in the range 10 2 60r h≤ / ≤ , and the mean axial crushing load becomes

29 4 11 9

0.86 0.37

c

p

r
P h
m h

r

. + .
= .

−
   (16)

Soft missile impact tests

Some soft missile impact tests, reported in literature, are reviewed in the following.
Impact force histories are calculated by the Riera method, and the portion of the
crushing force is identified.

Phantom impact test at Sandia

In a full scale test, reported in [8], a Phantom fighter, supported by a sledge and
powered by rockets, was run onto a concrete block, with an impact velocity of 215 m/s.
The fighter was completely destroyed into pieces only with a small reduction of
velocity. The weight of the concrete block was 25 times the weight of the fighter. The
concrete block was supported on the ground nearly without friction. The impact force
could be evaluated from the formula

( ) ( ),b bF t M a t=          (17)

where Mb  is the mass of the concrete block and ab(t)  is its acceleration as measured in
the test at time t. The impact force was also measured directly with equipments
installed in the fuselage. The impact force measured from the aeroplane is obtained
from the formula

2( ) ( ( ))( ) ,r b
dvF t M m x t v v
dt

α= + −         (18)

where Mr  is  again  the  mass  of  the  still  uncrushed  part  of  the  aircraft  and v is  its
velocity, m(x(t))  is the value of the mass distribution at time t in the cross section x=xc

in contact with the target, vb  is the velocity of the concrete block and α is a coefficient
of effective mass. Based on the measurements in [8] for the case of Phantom a value
α = 0.9  is adopted.
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Figure 9. Mass distribution of Phantom.

Distributions for m(x) and Pc(x), with slight simplifications, based on figures shown
in [8] are used in the present calculations. The resultant load function for Phantom is
shown in Figure 10 with the crushing force distribution, Pc, of [8].

The effect of target deflection is studied by assuming a deflection value utm = 0.4 m
at time tm = 0.088 s.
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Figure 11. Velocity reduction curve of engine GE-J79.

Phantom engine impact tests

In Reference [9] experiments by using different projectiles, both rigid and deformable
with different masses, have been made. Large scale missile (LED) had a mass of 1500
kg and a diameter of 0.76 m. Also the full scale engine GE-J79 of Phantom was used as
projectile. The mass of the engine was evaluated by immersing it gradually in water.
Also the crushing force of GE-J79 was determined experimentally in [10]. The impact
force calculated by using the data of [9] is shown in Figure 12. The result is quite
similar to the impact force distribution determined in [10] based on the measured
velocity reduction curve and the mass distribution of the engine. A smoothed velocity
reduction curve of Reference [10] together with the corresponding calculated curve is
shown in Figure 11. The peak force in [10] was 52 MN and the impact duration was 17
ms.
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Figure 12. Impact force of engine GE-J79.

Steel pipe projectile

Consider a circular cylindrical steel pipe missile with the following dimensions:
diameter d=0.268  m (measured from axis to wall centre), wall thickness h=0.005  m
or 5 mm and length L=0.91  m.

The front end of the missile was closed with a circular plate having a thickness of 5
mm and with a mass of about 2.21 kg. In the following calculations by the Riera method
[2] the plate of the front end is not taken into account. The discrete longitudinal stiffener
is smeared symmetrically to the pipe.

In the finite element analyses by axisymmetric shell elements the stress-strain curve
consists of four linear parts. After attaining the strain value of 0.24 the uniaxial stress is
assumed to remain constant at 340 MPa.

In a test the steel pipe missile of about 41 kg obtained an impact velocity of 121 m/s.
The calculated impact force history is shown in Figure 16. The impact force is
calculated by a visco-plastic folding mechanism model. The yield stress of missile
material is assumed as 235 MPa. The viscoplastic parameters are D = 40.4 1/s and q =
5.
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Figure 13. Deformed steel projectile with plastic strain.
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Figure 15. Crushed length of the steel missile.
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Figure 16. Impact force of the steel missile.

The deformed axisymmetric shape of a FE-model for the missile with a mass of 41
kg is shown in Figure 13 with the equivalent plastic strain contours at the inner surface
of the pipe. This numerically simulated deformed shape corresponds well to the shape
of the missile after the test, shown in Figure 17. The measured increase of the missile
radius  was  about  24  mm.  The  radial  displacements  at  the  inner  and  outer  bends  of  a
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wrinkle are shown in Figure 14. The displacement recorded at the outer bend
corresponds well to the measured value. The inner bend of a wrinkle deforms inwards
about 10 mm and a value of 35 mm can be obtained for the wrinkle width. The same
value can be obtained also using the analytic formula (10).

The missile crushed length and the impact force calculated by FEM and by the Riera
method are shown in Figures 15 and 16. The measured crushed length of the deformed
missile after the test was about 17 cm.

Figure 17. Steel missile after impact test.

Structural integrity analyses

Simplified methods

In order to study both bending and shear failure of a plate or shell impacted by a missile
at least a two degree of freedom model (TDOF model) is needed, such as e.g. the CEB
model of Reference [11]. In Figure 18 spring 1 and mass 1 are connected to the global
bending deformation of the plate while spring 2 and mass 2 are used in modelling the
local shear behaviour in the neighbourhood of missile impact area.

The behaviour of element 1 (bending spring) is shown in Figure 18 and the local
behaviour connected with the possible formation of a shear cone (shear spring) is shown
in Figure 19. The internal force in spring 2 is composed of the contributions due to
concrete, rc, stirrups, rs, and bending reinforcement, rb. Concrete behaves elastically
until the displacement difference u21=u2-u1 reaches the value ucu. Stirrups are assumed
to break when the difference is u21=usu. The ultimate displacement connected to
concrete deformation ucu is very small but usually a large displacement difference is
needed to activate a significant bending reinforcement contribution to the shear spring
force. The bending reinforcement breaks when u21=ubu.
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Figure18. A two degree of freedom (TDOF) impact model [11].

Figure 19. Local shear strength of slab model [11] showing the contributions of concrete,
stirrups and bending reinforcement.

Stiffness, strength and effective mass of bending mode

In cracked state when concrete (in compression) and reinforcing steel still behave
elastically a bending rigidity coefficient can be determined by assuming a triangular
concrete stress distribution over a top compressed zone with a depth of x. If d  is the
effective slab depth (from top) and the distance from the neutral axis to the bending
reinforcement is xd − , then one obtains
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cs EAxdxdD )(
3

−





 −= (19)

for the bending stiffness per unit width of cross section, where As  is the reinforcement
area and Es  is the modulus of elasticity of steel.

Denoting  the  ratio n  =  Es/Ec, where Ec is the modulus of elasticity of concrete,
horizontal equilibrium equation in the absence of axial load gives

dnAAnnAx sss 222 +±−= (20)

The reinforcement ratio is defined as

.
d
As

s =ρ (21)

If  the  top  (t)  and  bottom  (b) bending reinforcements are different, then the above
values for x and D are determined for the loading direction, xb and Db, and for the
opposite direction, xt and Dt.

Also the limit load and effective mass are needed for the equations of motion of the
TDOF system.

For  a  simply  supported  one-way  slab  with  a  width  of B and  with  a  span  of L the
bending spring stiffness becomes

.48
3L
DBkb = (22)

The limit load obtained with a central yield line is for this slab

.
4

L
Bm

R p
p = (23)

Denoting  in  the  plate  cross  section  the  depth  of  the  compressed  zone  a  the
equilibrium equations 0.85afc = Asfy and mp = Asfy(d-a/2) yield for the plastic bending
moment









−=

c

ys
ysp f

f
fdm

7.1
12 ρ

ρ , (24)

where fy  is the yield stress of steel, fc  is the compression strength of concrete and ρs
is the reinforcement ratio.

The effective mass calculated with a piecewise linear deflection profile becomes

.
3
1 hlbme ρ= (25)
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Local behaviour

Figure 20. Assumed shear punching cone.

The local resistance of the slab to impact load is due to concrete, stirrups and bending
reinforcement. The resistive force of concrete alone can be determined by assuming a
shear cone with an angle of inclination of α measured from horizontal plane. If tf  is the
tension strength of concrete, then

.
tan

2
2

t
u

c frhrr











−






 +=

α
π (26)

The ultimate cone displacement in the concrete deformation mode can be assumed as
[11]

,
3
1 h

E
fu

c

t
cu = (27)

where h  is the plate thickness. The ultimate resistive force and cone displacement due
to stirrups is determined in a similar way, and it yields

,
tan

2
2

syss
u

s fArhrr











−






 +=

α
π (28)

where Ass is  the  amount  of  stirrups  [m2/m2] and fsy is  the  yield  stress  of  stirrups.  The
ultimate elastic displacement due to stirrup deformation is assumed as

h
E
f

u
s

sy
se 3

1
= . (29)
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The ultimate cone displacement due to the deformation of stirrups is assumed as [11]

hu susu ε9.0= , (30)

where suε  is the ultimate stirrup strain.
The contribution of the bending reinforcement to the shear resistance of the

punching cone can be assessed by assuming a parabolic local deflection mode [11]


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−=

2

1)(
a
xuxw , (31)

where 21uu =  and [ ]ax ,0∈ , αtan/hra += , for the bending reinforcement net. An
average strain in the reinforcement bar due to bending is

1−=
−

=
a
s

a
as

ε , (32)

where s  is the length of reinforcement bar in the deformed state. The arc length is
calculated from

.212ln
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The average strain in reinforcement bar becomes

1414ln
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(34)

where l=2a is the bottom diameter of the shear cone, i.e. the diameter of area where the
parabolic deflection mode is assumed.

In an isotropically reinforced plate the membrane force per unit length would be

)(εσsAt = , (35)

where As  is the amount of bending reinforcement.
The total vertical component of this inclined membrane force calculated from a

circular line with a radius of a is

)(sinsin2 εσϕπϕπ sb lAatr == , (36)



20

where ϕ is the angle of inclination of the bent reinforcement bar at a distance of a from
the centre point, i.e.

a
ua

dx
dw 2arctan)( =≈ ϕ . (37)

In the Reference [11] a slightly different formula for the resistive force due to
bending reinforcement is

)(4arctansin2 εσsb lA
l
ur 






= . (38)

The mass of the assumed punching cone is

,
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1
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2

2
2


















++=

αα
πρ hahahm (39)

where ρ~  is the equivalent density of reinforced concrete, α is the angle of the punching
cone (measured from horizontal plane) and h  is the plate thickness.

The mass number 1 in the TDOF model is

.21 mmm e −= (40)

Damping

The critical damping for a single degree of freedom (SDOF) model is

,2 kmccr = (41)

where k and m are the stiffness coefficient and the mass of the model. Damping
coefficients for the TDOF model are defined in [11] as

,211 bekmc ς= (42)

,2 222 sckmc ς= (43)

where ksc=rcu/ucu and the coefficients are in the ranges, [ ]1.0,02.01 ∈ς  and
[ ]01.0,005.02 ∈ς . However, this definition of damping does not usually lead to the

classical, proportional Rayleigh damping.
In this case the equations of motion are
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0121111 =+−+ rrucum &&& , (44)

frucum =++ 22222 &&& , (45)

where f  is the load, r1  and r2 are the internal forces and the damping forces are

1 1 2 2 2,    .ig c u g c u= =& & (46)

In classical Rayleigh damping the damping matrix is assumed to be proportional to
the mass matrix and the stiffness matrix in the form

,α β= +C M K (47)

where α and β are constants used to control damping.
For an elastic structure, by modal decomposition, n independent equations are

obtained in the form

,    1,..., ,i i i i i i im u c u k u f i n+ + = =&& & (48)

where mi, ci and ki are the modal mass, damping and stiffness coefficients and n is the
number of degrees of freedom in the system. The damping coefficient for equation i in
the case of mass and stiffness proportional damping is

.i i ic m kα β= + (49)

Taking 2 2 ,crc c km mζ ζ ζω= = =  where /k mω = is the frequency, gives for
mode i from (49)

22 i i iζ ω α βω= + (50)

and the modal damping ratio is obtained as

.
2 2

i
i

i

ωαζ β
ω

= + (51)

Requiring that at two frequencies, ω = ωa and ω = ωb, the damping ratios are ζa  and
ζb gives for the constants α  and β

2( )a b b a

b a

a b

ζ ω ζ ω
α

ω ω
ω ω

−
=

−
(52)
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and

2 2
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ω ω
−

=
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(53)

In damped vibration

21 .Dω ω ζ= − (54)

For the TDOF system the Rayleigh damping matrix is
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(55)

The equations of motion become

,012111 =+−+ rrgum && (56)

frgum =++ 2222 && . (57)

In this case the damping forces are

1 11 1 12 2g c u c u= +& & (58)

and

2 21 1 22 2.g c u c u= +& & (59)

Due to mass me in (42) the mechanical model is not exactly the same as in Figure 18.
The damping factor ς  may be estimated from

22)2( δπ

δ
ς

+
= . (60)

The logarithmic decrement δ  is

ni

i

u
u

n +

= ln1δ , (61)
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in which iu  and niu + are two nonconsecutive amplitudes n cycles away.
For small values of ς , approximately

πςδ 2= . (62)

From the plot of a deflection-time recording from Test 642, considering vibration
around the permanent deflection value, approximately 3/5/ 32 ≈uu  and 08.0≈ς  or
using amplitudes 1u  and 2u  yields 11.0≈ς .  A damping  ratio  value  of  0.1  for  lowest
(bending) mode seems appropriate for the present application.

Figure 21. Reinforced concrete one-way slab impacted by a missile.

Aluminium missile with impact velocity 109 m/s

In  the  present  series  of  projectile  impact  tests  starting  with  Test  642  dry  and  wet
aluminium missiles were shot on a reinforced concrete one-way target plate.

The dimensions of the slabs in the test series were: width 2 m, length 2.3 m, support
length 2.2 m and thickness 0.15 m. The slab was simply supported on two opposite
sides and free on the two other sides, as depicted in Figure 21.

The slabs were reinforced using bars with a diameter of 8 mm and a spacing of 50
mm, in each way and on each face. In the following calculation models it is assumed
that the distance of the centre of rebars from the plate face is 19 mm. The effective plate
thickness d becomes then 0.15 m - 0.019 m = 0.131 m. The reinforcement ratio is in this
case ρs = As/h=0.0067.

Assuming fc = 58 MPa, fy = 560 MPa (a stress value obtained at 5 % strain value in
the stress strain curve) the plastic moment capacity becomes 0705.0=pm  MNm/m.

Assuming a shear cone angle of 035  the masses of the TDOF model become
691 =m  kg  and 4912 =m  kg when the effective mass is 560 kg. The stiffness
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coefficients of the shear and bending springs are 121022.0 ⋅=sk  N/m  and
81022.0 ⋅=bk  N/m, respectively.

The plastic limit load by the mechanism with one yield line crossing the plate, in
Figure 21, is

256.0636.34 === ppp m
L
BmF  MN. (63)
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Figure 22. Load function due to dry aluminium missile in Test 642.

The internal plastic force of the bending spring is thus also 256.0=pR  MN.
In calculating the equivalent mass of the SDOF and TDOF models an effective

density of the slab is defined as

254678500268.02400)0268.01(4)41( =⋅+−=+−= stscse ρρρρρ  kg/m3 (64)

where ρs = 0.67%=0.0067 is the reinforcement ratio, ρc = 2400 kg/m3 and ρst = 7850
kg/m3 are the assumed densities of concrete and steel, respectively. The equivalent mass
becomes

560
3

25460.22.215.0
3

=
⋅⋅⋅

==
Mm kg, (65)

where M is the mass of the slab.
The impact load due to an aluminium pipe missile is shown in Figure 22. Curve

labelled Ffvp is calculated with the Riera method  assuming a folding visco-plastic
mechanism in calculating the crushing force Pc, [6]. The Cowper-Symonds visco-plastic
power law type strain rate dependency is assumed for aluminium with parameter values
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q =  4  and D = 6500. Curve F is a linear 9 point approximation of the actual force
function to be used in calculations. The approximate force is diminishing from 0.645
MN to 0.408 MN during a time interval of 0.0106 s. The simplified load function
corresponds to that obtained in Test 642 with a dry aluminium missile. The impulse of
the load function is I = 5629 Ns.

A tentative finite element model solution curve DME is computed with
Abaqus/Explicit [1] using the damaged plasticity model for concrete and an elastic
visco-plastic strain hardening model for reinforcement assuming parameter values q = 5
and D = 40.4 1/s. The used plate element mesh is depicted in Figure 21. A layered plate
model with an 11 point Simpson integration rule is used in the thickness direction. The
modelling of concrete and reinforcing steel is described later in more detailed.

In Figure 23 the curve TDOF-D100 is calculated with damping coefficients ζ1 =0.1
and ζ2 =0. In this case shear deformation does not become active.

Force histories of TDOF plate model of test 642 with an impact velocity of v0 = 109
m/s and angle of shear cone α=35o are depicted in Figure 24.
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Figure 23.Deflection of plate in test 642. In case DME-FR1 the support frame (FR1) is
modelled with beam elements.
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Figure 24. Forces of TDOF plate model of test 642, v0=109 m/s, α=35o.

Further finite element analyses

More detailed finite element analyses for the previous impact plate were carried out
with Abaqus/Explicit. The finite element model for one quarter of the wall is shown in
Figure 25. The reinforcement is modelled as layers in the four-noded shell elements.
The loaded area is determined by assuming a load spreading angle of 45o in the slab
thickness direction to the shell mid surface. The load area is indicated by red colour.

Figure25. One quarter finite element model of impact test walls.
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Figure 26. Uniaxial damage model of concrete in ABAQUS.

Damage plasticity material model for reinforced concrete

In a material model called concrete damaged plasticity in  ABAQUS  material
degradation is taken into account in compression and tension. Damage is associated
with cracking and crushing. In scalar damage theory the stiffness degradation is
isotropic. Under uniaxial tension the stress-strain relationship is

0(1 ) ( ),p
t t t td Eσ ε ε= − − (66)

where Eo is the undamaged modulus of elasticity, td  is tension damage scalar variable,
p
tε  is the equivalent plastic strain in tension. In compression, correspondingly,

0(1 ) ( ),p
c c c cd Eσ ε ε= − − (67)

where cd  is compression damage scalar variable.
Compressive stiffness is recovered upon crack closure as the load changes from

tension to compression, but the tensile stiffness is not recovered when the load changes
from compression to tension. In Figure 26 wt = 0 corresponds to no recovery as load
changes from compression to tension and wt = 1 corresponds to complete recovery as
the load changes from tension to compression.
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Figure 27. Yield surface in plane.

The biaxial yield function is combined of two Drucker-Prager type functions. In
Figure 27 α is a coefficient

0 0

0 0
,    0 0.5,

2
b c

b c

f f
f f

α α
−

= ≤ ≤
−

(68)

where fc0 is the initial uniaxial compressive yield stress, fb0 is the initial equibiaxial
compressive yield stress, ft0 is the uniaxial tensile stress at failure, p is the hydrostatic
pressure stress,

11 22 331 ,
3 3
Ip

σ σ σ+ +
= − = − (69)

q is the effective von Mises stress

23 ,q J= (70)

J2 is the second deviatoric stress invariant

2
1   ,
2 ij ijJ S S= (71)
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where the deviatoric stress is

1   if, i = j
,     ,

0   if, i j3
kk

ij ij ij ijS
σ

σ δ δ
 

= − =  ≠ 
(72)

in biaxial loading

2 2
2 11 22 11 22 ,J σ σ σ σ= + − (73)

β is a dimensionless coefficient

( ) ( 1) ( 1),
( )

p
c c

p
t t

σ ε
β α α

σ ε
= − − + (74)

cσ  is the effective compressive cohesion stress, tσ  is the effective tensile cohesion
stress.

The Drucker-Prager plastic potential function is shown in Figure 28.

( )2 2
0 tan tan ,tG f q pε ψ ψ= + − (75)

where ε is an eccentricity coefficient and ψ is the dilatation angle, in (p,q)-plane, at high
confining pressure. In the present calculation ψ = 36.3o is assumed and usually 1.0=ε .

The plastic strain is according the normality principle

 ,p
ij

ij

Gdε λ
σ
∂

=
∂

(76)

where λ is a proportionally coefficient, see Figure 28.
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Figure 28. Potential function.

The measured ultimate compression crushing strength of the concrete material is 58
MPa. The assumed compression stress as a function of strain is shown in Figure 29. In
the following analyses, if not otherwise mentioned, this compression crushing curve is
applied.

The smeared stress-strain curve of concrete in tension can be defined as

11 εσ cE= , crεε ≤1 (77)
and

4.0

1
1 








=

ε
ε

σ cr
crf , crεε >1 , (78)

where Ec is the modulus of elasticity of concrete, fcr  is the cracking stress of concrete
and εcr is the cracking strain of concrete [12].
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Figure 29. Uniaxial stress-strain curve for concrete.

Nonlinear tensile stress-strain curves predicted according to the method in Reference
[12] using the measured tensile splitting strength values are presented in Figure 30.
These curves were further modified by setting the tensile strength to zero, when the
tensile strain reaches the value of 0.67%. Results calculated with this assumption are
referred to as fctk_zero.
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Figure 30. Tensile stress-strain behavior of concrete material model.

The use of the average (smeared) steel stresses in combination with the
corresponding concrete stresses allows the tension stiffening effect (of steel bars by
concrete) to be considered and deformations of the steel concrete composites to be
correctly evaluated [12]. The stress in reinforcement is

,s s s s yEσ ε ε ε= ≤  (79)
and

[(0.91 2 ) (0.02 0.25 )] ,s
s y s y

y

f B B ε
σ ε ε

ε
= − + + >  (80)
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where σs and εs are the average (smeared) stress and strain of mild steel bars in
concrete, fy and εy are the yield stress and strain of mild steel bars in concrete, Es is the
modulus of elasticity of reinforcement. The parameter B is defined by the formula

1.5
1 ,cr

y
B

σ
ρ σ

 
=   

 
 (81)

where the reinforcement ratio ρ  is greater than 0.5 %.
The stress-strain curves for reinforcement used in the nonlinear analyses are

presented in Figure 31.
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Figure 31. Stress-strain dependency for reinforcement steel.

The yield strength of reinforcement steel is highly strain rate dependent and
increases  with  the  strain  rate.  This  dynamic  yield  strength  of  steel  was  taken  into
consideration by the Cowper-Symonds formula for uniaxial tension or compression.

Deflections calculated with tensile stress–strain dependency, presented in Figures 30
and 31, are shown with the corresponding measured data in Figure 32. The calculated
deflections (dotted lines) are still quite close to the measured values, though they are
somewhat larger than the displacements presented above.
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Figure 33. Typical liquid plash pattern from a cylindrical (left) and a prototypical 3D missile
(right).
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Liquid spreading

The main aim of the liquid spreading studies was to get quantitative data detailed
enough to be utilised in the validation of the simulation methods (FDS code) that are to
be used for determination of fuel spread and fire risk following an airplane crash.

The speed and direction of liquid spray coming out from a ruptured missile is
measured using a high-speed video camera (1000 fps). Figure 33 shows a typical splash
pattern around a cylindrical (left) missile. The deceleration of the missile is very rapid
in impact, and consequently, liquid spurts out from the missile when the liquid container
fails resulting in dispersal around the target. In case of cylindrical missile, the liquid
release starts along the surface quite perpendicularly to the missile direction, and forms
a fairly “flat” and uniform circular splash pattern. The pattern becomes thicker as the
breakup of the liquid core begins. According to the measurements, the initial discharge
speed of the liquid is in some cases even as high as 2.5 times the impact velocity of the
missile, but the propagation speed of the spray front decreases rapidly when the distance
from the impact target increases. The furthest splashes found on the floor were located
about 15 meters sidewards from the impact target.

A typical propagation speed of a liquid (spray) front coming out from the cylindrical
missile with associated deceleration can be seen in Figure 35. Also two simulation
results  of  the  FDS  program  with  different  droplet  initial  median  diameter  are  shown.
The impact velocity in the test was 125 m/s and the initial discharge velocity of liquid
was about 250 m/s. The x-axis of the Figure 34 indicates the distance from the missile
meanwhile the y-axis shows the ratio of liquid velocity to its initial velocity. Within 1.5
meters distance from the impact target, the speed of the liquid front decreases to a value
which is about half of the initial speed. The FDS simulation with a 300 µm median
droplet diameter yields good results comparing to the experimental data.

Figure 34. Measured and simulated speed of liquid front in an IMPACT test.
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Fire dynamic simulations

Feasibility of the FDS for the simulation of fire due to an impact was studied by
modifying the previously studied scenario. The purpose of the work was to find out
whether FDS can be used for the simulation of such a rapid fire resulting from a sudden
release of small, fast moving fuel droplets. The simulations were made in the scale of
Impact tests, Figure 35. The results of the simulation included the qualitative behaviour,
heat fluxes to the surrounding surfaces and the mass of the non-burned fuel droplets
forming a pool fire.

Figure 35. Development of the flame.

The  results  of  the  preliminary  simulations  with  FDS  code  show  that  it  is  a  usable
tool in simulating the two-phase flows involving high-speed droplets provided that
initial conditions (angle and velocity of liquid release, droplet size distribution and air
speed) can be specified satisfactory.  Given that, the formation of the water cloud and
final water distribution is predicted by FDS reasonably well.

Also, the simulation results of liquid fuel dispersal and burning were both
qualitatively and quantitatively plausible, although the actual uncertainties are difficult
to estimate.
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Discussion and Conclusions

Many tests have been done successfully with the Impact test facility and the test
campaign is now moving towards more complex and more elaborate, 3D missile
designs. Some 15 tests are conducted with fluid filled missiles giving valuable
information on liquid speed, drop size, and dispersal phenomena under impact
conditions. Also the simulation capabilities (Fire Dynamics Simulator (FDS) software)
for liquid spreading and fire studies have been taken in use and developed.

Bending  or  shear  failure  of  a  reinforced  concrete  slab  subjected  to  a  projectile
impact can be simply modelled with a two mass system. The two mass system is,
however, sensitive to the assumed angle of shear failure cone. Before developing a
simplified method capable of predicting the shear fracture angle parametric 3D-finite
element analyses can be used for estimating a plausible value for shear cone angle. Also
experimental findings can be used in defining the shear angle for different kind of slabs
and load cases. The determination of proper damping parameters requires carefully
conducted experiments.

Based on these studies it can be concluded that the used shell element models with
simple four noded element where the transverse nonlinear shear deformation is not
considered are capable for calculating the deflection behaviour of a reinforced concrete
wall representing a full scale model loaded by a deformable missile. Nonlinear analyses
of reinforced structures are quite sensitive for material parameters, however. Especially,
in the case where the wall is rather weakly reinforced the tensile cracking properties of
concrete dominate the nonlinear bending behaviour of the wall.

The experimental findings indicate that the liquid release starts along the surface
quite perpendicularly to the incoming direction of the missile and forms a fairly flat
splash pattern. The initial discharge speed of the liquid front coming out of the ruptured
missile may be much higher than the impact velocity of the missile, but the propagation
speed of the spray front decreases rapidly when the distance from the source increases.

The  results  of  the  preliminary  simulations  with  FDS  code  show  that  it  is  a  usable
tool in simulating the two-phase flows involving high-speed droplets provided that
initial conditions (angle and velocity of liquid release, droplet size distribution and air
speed) can be specified satisfactory.  Given that, the formation of the water cloud and
final water distribution is predicted by FDS reasonably well.

Also, the simulation results of liquid fuel dispersal and burning were both
qualitatively and quantitatively plausible, although the actual uncertainties are difficult
to estimate.
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