
Rakenteiden Mekaniikka (Journal of Structural Mechanics) 
Vol. 41, No. 3, 2008, pp. 137-151 

Engineering oriented formulation for laminate lay-up 
optimization  

André Mönicke, Harri Katajisto, Petri Kere, Markku Palanterä, and Marco Perillo 

Summary. The concept of elementary laminates is used to formulate the design problem for a 
laminated composite structure. A parameterized laminate is divided into stacks with periodic 
patterns of elementary laminates. With elementary laminates desired regularity for the laminate 
lay-ups is achieved, which is practical for multi-layer laminates. Due to the reduced design 
space solution time can be considerably reduced. Two laminate lay-up formulation concepts are 
presented and their performance is evaluated. The design problem used as a reference case in-
volved the optimization of the stacking sequences to maximize plate buckling loads using a ge-
netic algorithm. 
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Introduction 

The design of composite structures is challenging due to the complex mechanical be-
havior of the structures and the number of design variables involved. A composite lami-
nate is typically formed from a number of fiber-reinforced layers having directional 
properties. Basically, for each layer of the laminate, design variables are the choice of 
material system, thickness of the layer, and orientation of the layer. In practice, laminate 
design is more constrained. The choice of material systems is almost limitless, but as a 
result of the conceptual design phase, a few possible candidates are usually left. For so-
lid laminates the use of multiple material systems is beneficial in several applications, 
though the use of a single material system is more common. Sandwich structures consist 
of two material systems in minimum. The thickness of reinforced layers is usually de-
termined by the choice of material system and processing. However, in sandwich panels 
the thickness of the core material can be chosen quite freely. The choice of layer orien-
tations is often constrained to 0, 90, +45, and -45 deg. Other off-axis directions may 
substitute ±45 deg. To avoid undesirable anisotropy of the structure, various constraints 
are often set for the lay-up. For instance, symmetry with respect to the laminate mid-
plane may be required and an equal number of off-axis layers with minus and plus ori-
entation is usually preferred, i.e., a balanced lay-up. Due to manufacturing, some regu-
larity may be desired in the laminate lay-up. This can be achieved, for instance, by re-
peating the same elementary laminate a number of times. Some stacking sequences may 
be preferred against others. For example, off-axis layers on the surface may provide bet-
ter impact tolerance for the laminate and thick sections of unidirectional layers may be 
undesirable. 

The formulation of a structural optimization problem for a laminated composite 
structure is not trivial since the aspects described above should be taken into account. 
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The size of the design space needs to be constrained in a practical manner so that the 
problem can be solved in a reasonable time. On the other hand, too severe constraining 
of designs leads to a limited objective space and the possible loss of the optimum de-
sign. Different concepts for the formulation of the laminate design optimization can be 
found in the literature depending on the optimization strategy used. These concepts tend 
to produce laminate solutions that are impractical to manufacture, however. 

For a laminate lay-up design, values of the design variable vector are typically re-
stricted integers. Stochastic population-based search methods have been successfully 
used to solve complex discrete structural optimization problems. Population-based 
search methods like genetic algorithms [1, 2, 4, 7] and particle swarm optimization 
(PSO) techniques [5, 6] maintain and manipulate a population of solutions in the search 
for better solutions. 

Laminate lay-up formulations for optimization problems 

Frequently, for a fixed number of layers k = 1, 2,…, N and a fixed set Θ = {θ1, θ2,…, θl} 
of l allowed layer orientations, a standard laminate code is encoded with a representing 
layer orientation identity string. For instance, the standard laminate code [0/±45/90]SE 
can be encoded as (1, 3, 4, 2, 2, 4, 3, 1), where the layer orientation identity design vari-
ables 1, 2, 3, and 4 refer to the layer orientations 0, 90, +45, and -45 deg, correspond-
ingly, and SE stands for the symmetric even laminate structure. 

For many applications with in-plane loading, the stacking sequence is not as impor-
tant as the number of layers in each orientation. Fixed layer thicknesses can be assumed, 
as it is often the case with predetermined ply selection. A laminate with layer orienta-
tions θ1, θ2,…, θl  is simply stacked, i.e., all layers of the same orientation are consecu-
tive like in [ (θ1)N1, (θ2)N2,…, (θl)Nl ] where Nl are multipliers for each layer orienta-
tion. For a 12-layer laminate using three layer orientations a representation would be 
( N1, N2, N3 ) with the constraint N1+N2+N3 = 12. Gürdal et al. [2] remark that for a ge-
netic search, a formulation of a string ( N1, N2 ) with N3 = 12-N1-N2 and the constraint N3 
≥ 0 is much more efficient than the first one. It is obvious since the design space of the 
second formulation is thirteen times smaller than the first one, while the number of fea-
sible designs remains the same for both variants. 

When the laminate is loaded with bending or out-of-plane shear forces, the stacking 
sequence plays a vital role. One way of considering this aspect is to introduce a stacking 
sequence vector Σ, which determines the locations of the specific layer orientations in 
the laminate. For a laminate with l allowed layer orientations, the stacking sequence 
vector includes l! permutations. For example, for a [θ1/θ2/θ3] laminate Σ = {(1, 2, 3), 
(1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}, where 1, 2, and 3 refer to the layer orien-
tations θ1, θ2, and θ3, respectively. 

 

Laminate lay-up formulation concepts 

In this work the design study involved a 48-layer laminate with symmetric even lay-up. 
Allowed layer orientations were restricted to 0, 90, and ±45 deg. Furthermore, it was 
assumed that the laminate is constructed of bunches of two plies with the same orienta-
tion. Therefore, allowed layer orientation pairs were 02, 902, and ±45. As a result, the 
number of layer pairs s = 12, and the number of layer orientations l = 3.  
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The basic ply angle alphabet system was utilized in the benchmark case and there-
fore, it is introduced here as well. The symmetric even laminate lay-up using the refer-
ence concept is formulated in the following: 

 
A: 
s = 12, p = 1, q = 12, r = 1, l = 3 
[x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 , x10 , x11 , x12]SE
 
where the design variables xi ∈ {1, 2, 3}, i = 1, 2, …, 12, correspond to the layer pairs 
02, 902, and ±45 deg, respectively. The number of regular stacks in a laminate, the num-
ber of layer pairs in the elementary laminate, and the number of elementary laminates 
are denoted by p, q, and r, respectively. The reference concept is herein referred as the 
concept A. 

Concept B utilizes elementary laminates and it is based on the ply angle alphabet 
system. The laminate structure consists of two elementary laminates, which may have 
different lay-ups. The additional information required to build a lay-up is how many 
times the specific elementary laminate occurs in a row. This is specified by the elemen-
tary laminate multipliers M1 and M2. The sum of multiplier values indicates the number 
of regular stacks p in the laminate. When the formulation is applied to the above de-
scribed design study, and when it is assumed that the number of layers in both elemen-
tary laminates is the same, it is reasonable to construct two different sub-concepts B1 
and B2: 
 
B1:  
s = 12, p = 3, q = 4, r = 2, l = 3 
[(x1 , x2 , x3 , x4) x5 , (x6 , x7 , x8 , x9) x10 ]SE

0 ≤ x5 ≤ 3, x10 = 3 - x5
 
where the design variables xi ∈{1, 2, 3}, i = 1, 2, 3, 4, 6, 7, 8, 9 correspond to the layer 
pairs 02, 902, ±45 deg, respectively, and the variables xi ∈ I, i = 5, 10, I = 1, 2,…, K, cor-
respond to the elementary laminate multipliers. 
 
B2:  
s = 12, p = 4, q = 3, r = 2, l = 3 
[(x1 , x2 , x3) x4 , (x5 , x6 , x7) x8 ]SE

0 ≤ x4 ≤ 4, x8 = 4 - x4
 
where the design variables xi ∈ {1, 2, 3}, i = 1, 2, 3, 5, 6, 7 correspond to the layer pairs 
02, 902, ±45 deg, respectively, and the variables xi ∈ I, i = 4, 8, correspond to the ele-
mentary laminate multipliers. 

All parameters are summed up in Table 1. In the elementary laminate concepts, the 
M1 multiplier is the independent variable and the support variable M2 is solved from the 
equation M1+M2 = p. In case M1 or M2 equals to zero, only a single elementary laminate 
is applied. The number of allowed elementary laminates r must be specified so that r < 
p is valid. With equality condition the design space is not reduced compared to the con-
cept A. 
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Table 1. Support parameters used in the laminate parameterization. 

 

 
 

Concept C couples the stacking sequence vectors S1∈Σ and S2∈Σ into the elemen-
tary laminate concept. The two stacking sequence vectors can independently have the 
six permutations presented above while 1, 2, and 3 refer to the layer pairs 02, 902, and 
±45 deg, respectively. Layer pairs of the elementary laminate can have different multi-
pliers. The formulation of the concept is presented as: 
 
C: 
s = 12, p = 4, q = 3, r = 2, l = 3 
[((ζ1) xζ1 , (η1) xη1 , (ξ1) xξ1) x1 , ((ζ2) xζ2 , (η2) xη2 , (ξ2) xξ2) x2 ]SE

(ζi , ηi , ξi)=Si, i = 1, 2 
xζ1 + xη1 ≤ 3, xξ1 = 3 - xζ1 - xη1 

xζ2 + xη2 ≤ 3, xξ2 = 3 - xζ2 - xη2 

0 ≤ x1 ≤ 4, x2 = 4 - x1
 
where ζi, ηi, and ξi, ζi ≠ ηi ≠ ξi define the locations of the layer pairs 02, 902, ±45 deg, 
respectively, in S1 and S2. Variables xζ1, xη1, xξ1, xζ2, xη2, and xξ2 are layer pair multipli-
ers and they correspond to the associated layer pair orientations. Variables xi ∈ I, i = 1, 
2, correspond to the elementary laminate multipliers. 

The design problem 

The design problem is described in detail in [3] and [8] where the stacking sequence of 
a laminated plate is optimized considering various constraints. Compressive in-plane 
forces λNx and λNy, where λ denotes the load factor, are applied to a simply supported 
plate of the dimensions a × b, with a = 20 in (a = 508 mm) and an aspect ratio of a/b = 4 
(see Figure 1). Material properties are shown in Figure 2. 
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Figure 1. Plate geometry and load components for the design problem. 

 
The critical buckling load factor is calculated using the analytical formula 
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where the elements of the bending stiffness matrix D were solved using classical lami-
nation theory CLT [2]. In the minimization of λcr, all values of m and n between 1 and 3 
were checked. It was expected that these numbers cover the number of half-waves for 
the lowest buckling mode. The loading ratios Ny/Nx = 0.125, 0.25, 0.5, were applied to 
the plate. 

A consecutive ply constraint was introduced because laminates with a large number 
of consecutive layers with the same orientation tend to failure due to matrix cracking. 
Here, the number of consecutive plies was limited to 4=o  for certain loading cases. 
Applied loads were used in the failure analysis and a reserve factor RF ≥ 1.5 was re-
quired. Maximum strain failure criterion was used in the failure analysis, i.e., layer prin-
cipal strain components are compared to the material allowables when determining the 
RF. 
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Figure 2. Material properties used in the design study. 

The basic optimization formulation was the same for all concepts. However, each 
concept had its own formulations for the consecutive ply constraint and a different 
range of design variables x = (x1 , x2 ,…, xI). Depending on the case, the consecutive ply 
constraint and the strain constraint were active or not. The optimization problem is de-
scribed as follows. 
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where Ω refers to a set of the feasible design variable vectors of each concept. 

Software implementation 

The project has been realized using ESAComp [9] and modeFRONTIER [10] simula-
tion tools. ESAComp is software for analysis and design of composite structures. Re-
spectively, modeFRONTIER is a design optimization and process integration software 
package. The optimization process workflow is defined in modeFRONTIER. Basically 
it is divided into two parts where the laminate creation forms the first part. Parameter-
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ized elementary laminates are defined and constraints such as consecutive plies and 
symmetry conditions are implemented. For each laminate design modeFRONTIER cre-
ates a layer list, which is directed to ESAComp. Material data is stored in ESAComp. 
Based on the imported layer list, a laminate is created. The second part consists of the 
calculation of the bending matrix, the buckling load factor, and RF for the strain con-
straint. ESAComp stiffness analysis determines the elements of the bending matrix, 
which are then used to calculate the buckling load factor with different values of m and 
n. ESAComp failure analysis determines if the laminate is feasible with respect to the 
strain constraint when the load condition is determined by the critical buckling load. All 
designs and their results are sent to the modeFRONTIER optimizer, where their fitness 
is evaluated and all genetic operators are applied to achieve improved designs. 

Results 

Before optimization, the Design of Experiment (DOE) is run. In this part, initial design 
configurations are created and analyzed. DOE results are used by the optimization algo-
rithm. In this study, the DOE design space was created with a random sequence method. 
The genetic algorithm MOGA II was used in the optimization. Parameters that were 
used in the optimization cycle are presented in Table 2.  
 

Table 2. Basic parameters used in the modeFRONTIER optimization cycle. 
 

 
 

A typical distribution of designs showing the critical buckling load factor and RF for 
the strain constraint is presented in Figure 3. Also, the design variable vector for the op-
timal solution is shown in the figure. During the process a constraint does not need to be 
treated as absolute limit. Instead, a tolerance value can be given. The more the design 
violates a constraint, the more its fitness value is penalized. In this study, a tolerance 
value of 0.2 was used, which explains the big number of designs in the region 1.3 ≤ RF 
≤ 1.5. Fitness is considered when designs are selected for the next generation. Designs 
with almost satisfactory RF are more likely to stay in the population for reproduction. 

The optimum laminate lay-ups for the different loading conditions were determined 
using the concept A. Basically the same lay-ups that were derived in the reference [3] 
were found. The solutions derived with the concept A are denoted as the global opti-
mum.  

For some loading cases, many near optimal solutions occur. In such cases the ge-
netic algorithm may converge prematurely. The loading cases for which the global op-
timum was not reached were partly rerun with other parameters. For example, the ge-
netic search process could be replaced by the full factorial method in which all possible 

 143 



solutions are surveyed. With this approach, the best attainable solution for the specific 
elementary laminate concept and the loading case combination could be determined. 
These solutions are denoted as local optima. 

 

 
 

Figure 3. Distribution of designs with respect to the critical buckling load factor and RF for 
strains. The design corresponds to the concept B2 with the constraints B, C, and S and the load 
ratio of 0.125. 

Local optima derived using the different elementary laminate concepts are compared 
with respect to the global optimum in Figure 4 and Table 3. The applied constraints are 
denoted by B, C, and S referring to the buckling, consecutive ply, and strain constraints, 
respectively. In the majority of optimization runs the initial population had 100 designs 
and 30 generations were calculated altogether. The elementary laminate concepts do 
constrain the design space. However, for more than two thirds of the loading cases, the 
laminate lay-ups derived represent the optimal solution and for all loading cases a per-
formance of 96 % minimum is achieved. In the reference [3] laminates with less than 10 
% loss of performance are considered practical and with this respect the developed con-
cepts work well. 
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Figure 4. Global performance of the different elementary laminate concepts. 

Another performance indicator is the number of designs required to reach the local 
optimum. Taking into account the 12 loading cases presented in Figure 4 and comparing 
the average number of designs per concept required to obtain the converged solution, 
the following can be concluded. Due to the large design space of concept A, the number 
of required designs, which is approximately 800, is considerably higher than for the 
other concepts. Concepts B1 and B2 required about 530 and 350 designs, whereas for 
the concept C the number of required designs was smallest, around 260. In practice 
these figures are smaller. For a new generation, genetic operations might create a design 
variable vector already used in previous generations. As a result, duplicate designs are 
produced. The optimization process is able to identify these designs and use the already 
computed information. Without duplicated designs, the average number of required de-
signs were 600 (Concept A), 400 (Concept B1), 230 (Concept B2), and 220 (Concept 
C). With this respect, concepts B2 and C perform equally well. 

The third remarkable performance indicator is how reliably the local optimum is ob-
tained. This is presented in Figure 5. Here the performance is determined by the first 
performed optimization run. To increase the confidence level, more analyses would be 
required. The number of studied loading cases is 12 and the number of elementary 
laminate concepts is 3. Thus, the total number of cases examined is 36, which already 
provides some statistical confidence. The results are very satisfactory since only for a 
single combination of the elementary laminate and loading condition near optimal solu-
tion is not reached. Still, this specific laminate meets the limit of the practical solution. 
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Figure 5. Local performance determined by the first optimization run. 
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Table 3(a). Global performance of the elementary laminate concepts A and B1. 
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Table 3(b). Global performance of the elementary laminate concepts B2 and C. 

 
Results for a specific loading case are shown in Figure 6 including the critical buck-

ling load factor λcr and the reserve factor RF for each elementary laminate concept. Op-
timal lay-ups with the indication of the repeated stacks are illustrated in the figure as 
well. Performance for the concepts A, B1, and B2 can be regarded as optimal since the 
worst solution deviates less than 0.05 % from the global optimum. In fact, the laminate 
found with the concept A is even slightly better than the optimal solution presented in 
reference papers. The laminate obtained with the concept C with its 4 % lack of per-
formance is still near optimal and thus practical. On the other hand, RF for the strain 
constraint is 16 % higher for this laminate compared to the limit value. 
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Figure 6(a). Optimal lay-ups with the indication of the repeated stacks for the loading case with 
the constrains B, C, and S and the load ratio of 0.125 for the elementary laminate concepts A 
and B1. 
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Figure 6(b). Optimal lay-ups with the indication of the repeated stacks for the loading case with 
the constrains B, C, and S and the load ratio of 0.125 for the elementary laminate concepts B2 
and C. 

Conclusions 

Two elementary laminate concepts have been introduced and reviewed with respect to 
the reference case. In these concepts, the laminate lay-up is divided into two elementary 
laminates, which are then repeated a number of times. In this work, the approach has 
been applied to a design study with fixed number of layers. Nevertheless, the approach 
can be adapted to problems where the mass of the structure is minimized. Consequently, 
optimal number of layers is determined. In such cases, the first elementary laminate can 
represent a variable part in which the number of layers is varying. The second part 
would form the regular elementary laminate. 

The aim of the concept is to provide regular laminates, which are practical in the 
manufacturing point of view. Still, the concepts provide flexibility and, for example, 
they are able to take into account multi-axial load state by means of the optimal stacking 
sequence. 

Using different performance criteria, quality of the concepts has been demonstrated. 
Both solution time and the ability to reach global optimum are very competitive with 
respect to traditional concepts. Performance can further be enhanced. For parameterized 
laminates it is typical that different design variable vectors generate identical laminate 
lay-ups. Overlapping designs can be filtered out without disturbing the optimization 
process. 
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