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Reliability of ice-strengthened shell structures of 
ships navigating in the Baltic Sea  

Pentti Kujala  

Abstract. The aim of this paper is to determine the probability of ice damage on a hull for a 
ship operating in the Baltic ice conditions. Limit state equations for the permanent deflection of 
the plating and for the development of the three plastic hinge mechanism in the frame are pre-
sented. These equations are used for the safety index analysis, which is applied for transversely 
framed plating and transverse frames at the bow part of a typical ice-strengthened vessel. Long 
term ice load distributions are based on the full scale measurements.  
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Introduction  

Extreme consequences, such as loss of life, environmental damage and ship losses, that 
can be the result of severe structural damages in ice, are almost non-existent in the Bal-
tic Sea. These problems have been practically overcome e.g. by the development of the 
winter navigation system, composed of reasonable ice class rules (regarding the 
strengthening of the ship hull structure against ice loads), traffic restrictions and effi-
cient icebreaker assistance.  

The typical damage case in ice is a permanent dent of the plating or frames on the 
ice-strengthened region. The main challenge for reliable risk based analysis is the de-
termination of long term ice loads. The ice loads have a strong statistical natures with a 
lot of affecting parameters such as: time in ice, variation in ice conditions and variations 
in the operations principles of the ship in ice.  In this paper ice loads are based on the 
long term full scale measurements onboard a typical ice-strengthened vessel navigating 
in the Baltic Sea. 

The character and magnitude of the deformation of a structure depends on the load 
level. When the load level is low enough the structural deformation will remain elastic, 
i.e. with no permanent changes. However, when the load level is increasing, exceeding a 
certain limit, some element of the structure starts to yield and so the deformation be-
comes permanent causing ice induced damage. The higher the load the deeper the per-
manent deflection will be. Therefore the depth of the permanent deflection is used here 
as the studied limit state on the reliability analysis. 
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The basic principle of level 2 reliability analyses 

As also described in [1], there are three various levels of reliability analysis. Level 2 is 
the so called safety index approach and it is used in the following. The principle of reli-
ability analysis is to find a proper level for the failure probability Pf: 
 

LPXgP

LPSRP

f

f

−=≤≤

−=≤≤−

1)0)((

1)0(
    (1) 

 
where Pf is the failure probability, L=1-Pf is the reliability, R is the capacity of struc-
tures, S is the load on the structure,  g (X) is the limit state function,  X is a vector in-
cluding all the statistical variables affecting the limit state such as: load, material prop-
erties, dimensions of the structure etc.  

Assuming that the load fS(s) and strength distributions  fR( r) are statistically inde-
pendent, the probability of the event R-S<=0 can be formulated as: 
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Equation (2) is graphically illustrated in Fig. 1. The failure probability increases 

when the overlap between the distributions increases. The failure probability approaches 
zero, when there is no overlap between the distributions. 
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Figure 1. Illustration of the load, strength and failure probability distributions 
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In a special case of assuming that both R and S are normally distributed, the equa-
tion (2) can be somewhat simplified. We assume that the mean value of the strength and 
load are known: μR, μS , as well the standard deviations: σR , σS.  In this case also the 
safety margin Z=R-S is normally distributed with the following mean value and stan-
dard deviation: 
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The probability function for the safety margin Z can now be presented as normalised 

(0,1): 
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where Φ is the cumulative normal distribution. Failure probability Pf can now be deter-
mined from:  
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This means that the failure probabilities can be determined using the standard tables 
of the cumulative normal distributions, Φ. Equation (5) can also be formulated: 
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where β is the so called safety index. Fig. 2 shows the meaning of the equation (6) 
graphically. The safety index β describes the distance of the mean value of the safety 
margin from the origin and this distance is presented relative to the standard deviation. 
Typical values for safety index β vary between 2 to 3. This means that the failure prob-
ability varies roughly between 10-2 to 10-3.  

Definition of the limit state function for ice damage 

Figure 3 illustrates a typical ice damage observed frequently on ships navigating in the 
Baltic ice conditions. As can be seen from Fig.3, ice induced loads typically cause some 
permanent deflections on the ice-strengthened plating and frames, the depth of the dents 
are typically 30-100 mm [3]. 
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Figure 2. Illustration of the safety index approach [2]              Figure 3. A typical ice damage [3] 

In estimation of the load causing permanent deflections in the side plating, an ap-
proach developed by Hayward [4] is used.  The approach is based on extensive finite 
element calculations to find out a correction fDT, which takes into account the effect of 
the load height on the permanent deflection. The starting point for the analytical expres-
sions is the formulations developed by Jones [5] considering yield line theory for uni-
form pressure on plating. So the Hayward [4] approach for the required line load, q,  has 
the following form when wp/t  ≤ 1: 
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and when wp/t > 1: 
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where t is the plate thickness, hc is the load height, wp is the permanent deflection in the 
plating, σy is the yield strength of the plate material. The threshold pressure pc causing 
double Y-shaped yield line is [5]: 
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where s is frame spacing, l is the frame span, Mp is the plastic moment of the plating: 
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the shape parameter, ζ0,  has the following form: 
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The correction factor fDT is equations (7) and (8) has the following form: 
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For the frames, Varsta et al. [6] has presented an equation to estimate line load on 

frame, q,  causing the three plastic hinge mechanism in the frame: 
 

     
sl

MM
q psp +

= 4     (14) 

 
where Mp is the moment required to cause the plastic hinge at the midspan (no shear) 

 
     pyp WM σ=      (15) 

 
where Wp is the plastic section modulus of the frame. The moment required to cause the 
plastic hinge at the end of the frames (at support) should also include the effect of shear. 
This means that the line load should be solved by an iterative approach complicating 
remarkably the reliability analysis and therefore to simplify the calculations it is as-
sumed that the plastic section modulus at the end is 50 % of the plastic section at 
midspan Wps = 0.5 Wp.  

Definition of the long term ice load 

The long term loads used in the analysis is based on the long term measurements on-
board MT Kemira [7]. It is assumed that the line load follows the Gumbel I distribution. 
Cumulative distribution function, CDF, of the Gumbel I distribution G(yn) is [11]: 
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where c is the inverse measure of dispersion of the measured maxima, u is the character-
istic largest value and yn is the extreme value at the measured 12 hour intervals. The pa-
rameters c and u and can be determined once the mean, μyn, and standard deviation, σyn,  
of the measured 12 hour maximum values are known: 
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where γ is the so called Euler constant and has the numerical value of 0,577.  
 

The long term extreme value distributions after N events can now be determined 
from the relationship: 
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Usually the long term loads are presented as a function of the so called return period,    

T (yn), which defines the required time in ice [days] to achieve the estimated long term 
load level and it can be solved from the relationship: 
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when the 12 hour maximum values form the basic measured data base. Figure 4 shows a 
typical long ice load distribution, which is based on the long term measurements on-
board MT Kemira during winters1985-1991. Figure 4 gives the measured load at the 
bow frame of the ship and the load is divided by the frame spacing of the ship, 0,35 m, 
to get the line load/m. The Gumbel parameters are in this case u=97,87 kN/m and 
c=0.01256 [9]. As can be sent he Gumbel fits very well on the measured data up to the 
return period level of 20-30 days. There is higher scatter with the high load values and 
longer return periods and this due to the fact the highest load typically takes place in an 
extreme ice condition e.g. when we have heavy ridges or moving thick ice. These occur 
seldom and therefore the distribution fitted on the long term data can underestimate 
these rare events. It is believed, however, that the fitted distribution estimate well the 
basic load events during ship’s lifetime and also the measured distribution gets closer 
the fitted distribution if there have been longer measuring period. 

 113



 

Calculation of the safety index 

Based on the approach described above, the safety index is determined for MT Kemira 
operating frequently in ice. The ship life time of 25 years is used to determine the long 
term loads distributions. The ship is sailing between Kokkola and some European ports. 
In this period the ship will be about 980 days in ice from which about 200 days on the 
Gulf of Finland. The basic equations (4-6) to determine the safety index require that the 
distributions are normally distributed. In the case of non-normal distributions such as 
Gumbel 1, the distributions are presented as the so called equivalent normal distribu-
tions at the failure point., see e.g. [10,11,12] for further details. 

When looking at the used equations for the strength part (eq. 7-15), we can see that 
the equations include load height, structural dimensions and material yield strength as 
variables. As analysed by Kujala [10], the statistical variation for the structural dimen-
sions are small compared to the loads and material yield strength, therefore these are 
taken here as deterministic variables. The actual height of the ice load during the ice-
breaking is naturally varying a lot, unfortunately there are not many measured observa-
tions of the load height to determine the statistical characteristics of it. However, it is 
known that the load height is typically small and the assumption to take the ice load as a 
line like loading is widely accepted [12].  

Consequently, the main statistical variables in this study are the yield strength and 
the ice load. The used ice load distribution is shown in Figure 4 for the Bay of Bothnia. 
The mean value of the yield strength is assumed to be 290 MPa and the standard devia-
tion is 22,40 MPa [10]. These values are based on the measured data by the steel manu-
facturer Ruukki. The strength is assumed to be normally distributed as the normal dis-
tribution gave the best statistical fit on the measured yield strength database [10]. The 
plate thickness used for the bow of MT Kemira has been 20 mm and the transverse 
frames at the bow are assumed to be HP 260*10 profiles with a frame spacing of 350 
mm. The span of the frames is assumed to be 3.2 m. These are the minimum require-
ments for 1A Super class ship. The ice load is assumed to be line like with the load 
height of 0.075 m [12]. With these parameters, the limit state equations (7-8) get the fol-
lowing forms as a function of the relative permanent deflection wp/t: 

 
a) plating with wp/t  ≤ 1: 
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b) plating wp/t > 1 
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Figure 4. Measured long term ice loads onboard MT Kemira and Gumbel 1 distribution fitted on 

the data [8]. 

 

                 
Figure 5. Obtained distributions for the strength and ice induced load. 
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where qice is the ice-induced line load (see e.g. Figure 4). For the frames (eq. 14-15) we 
obtain as the limit state function: 
 

000646.0 =− icey qσ      (22)     
 
An example of the obtained distributions for the strength and load is shown in Fig-

ure 5 for the plating.  
In the case of Figure 5, the permanent deflection of 30 mm is used as the limit state 

of the plating. Once the permanent deflection is used as a parameter, the obtained safety 
indexes are shown in Figure 6. The safety  index are calculated using the whole meas-
ured data up to the Bay of Bothnia as one case and only the measured data on the Gulf 
of Finland as the second case. In the Gulf of Finland case, Gumbel parameters are 
u=92,8 kN/m and c=0.0187  for the bow frame [9].  For the bow frames the safety index 
for the Bay of Bothnia is -0,98 and for the Gulf of Finland it is 2,56.  
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Figure 6. Obtained safety index as a function of the permanent deflection of the plating [12].  

Figure 6 clearly indicates that small dents on the plating take place frequently when 
ships navigate in ice, especially when navigating in the northern Baltic Sea. If safety 
index 2 is considered as a good level, this is achieved by using permanent deflection of 
25 mm as the limit state. This means wp/t relation getting the value of 1.25 which seems 
to be a fairly reasonable level. 

For frames, the obtained value of -0.98 for the safety index when navigating in the 
northern Baltic Sea seems to be fairly low. This means that the ultimate strength of the 
transverse frames at the bow is frequently reached when navigating in ice. However, the 
gathered damage statistics do not support this finding [3,13]. One reason for the some-
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what too low value can be the fact that the brackets usually fitted at the upper and lower 
end of the frame are not included in the theoretical model. 

Conclusions 

Level 2 reliability analysis is conducted to study the probability of ice induced damages 
on a typical ice-strengthened vessel navigating in ice in the Baltic Sea. Dents on the 
plating with varying depth are used as limit states for the plating and formation of the  
three plastic hinge mechanism is used as the limit state for the frames. The measured 
long term ice loads onboard MT Kemira is used to represent the statistical distribution 
of ice induced loads. 

The results show that small dents take frequently place on the plating when navigat-
ing in ice, especially in the northern part of the Baltic Sea. However, the level of safety 
seems to be adequate as the level 2 of the safety index β is achieved with permanent de-
flection wp/t getting the value of 1.25. The strength model for the frames seems to under 
estimate the real strength as the obtained low values for the safety index β are not sup-
ported by the gathered damage statistics. 

The level 2 approach gives a good basis to study the proper level of ice-
strengthening for ships on the various sea areas of the Baltic Sea. The design rules for 
ice strengthening is today based mainly on a deterministic approach. The statistical ap-
proach gives much more reliable basis to determine proper scantlings for the shell struc-
tures of ice-strengthened vessels so that the adequate safety is achieved. 
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