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ABSTRACT 
 
The paper presents a systematic and physically reasoned way of deriving the equations of 
some simple triangular and quadrilateral plate elements. The derivation is performed for 
Mindlin elements and the corresponding Kirchhoff elements are obtained as a special case. 
The starting point of the derivation is cubic approximation of the deflection and constant 
approximation of the tangential shear on the element sides. The connection of the derived 
elements with some existing ones is discussed. A numerical example to demonstrate the 
behavior of different versions of the elements is given.  
 
MOTIVATION WITH BEAM ELEMENTS 
 
As an introduction to plate elements some aspects of beam elements are discussed shortly 
in the following. 1C − continuous, cubic finite element approximation  
 

1 1 2 1 3 2 4 2, ,x xv H v H v H v H v= + + +% ,                 (1) 
 
is typically used to for the deflection ( )v x  of an engineering beam element. Here iv  and 

,xiv  ( 1,2i = ) are the nodal deflections and the nodal derivatives of the deflection and iH  
( 1, , 4i = L ) are cubic Hermitean shape functions. Because in a Bernoulli-Euler beam 

,xv θ= , where θ  is the rotation of the beam, we can write ,xi iv θ=   ( 1, 2i = ) and the 
deflection approximation can be expressed as  
 

1 1 2 1 3 2 4 2v H v H H v Hθ θ= + + +% .                  (2) 
 
It is well known, that this element is nodally exact. This means that using it static finite 
element analysis of a uniform Bernoulli-Euler beam under any loading can produce exact 
nodal deflections and rotations. 
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The deflection approximation (1) can also be used to formulate a Timoshenko beam 
element as follows. In a Timoshenko beam ,xv θ γ= + , where θ  is the rotation and γ  is the 
shear1. Assuming the latter as constant within the element, we can write ,xi iv θ γ= +  
( 1, 2i = ). Consequently the deflection approximation of this Timoshenko beam element can 
be expressed as 
 

1 1 2 1 3 2 4 2 2 4( )v H v H H v H H Hθ θ γ= + + + + +% .                (3) 
 
An additional unknown, the shear γ  of the beam, is needed in this beam element. Because 
this parameter is separate within each element, it can be eliminated at the element level 
using static condensation. Thus final nodal parameters ,i iw θ  ( 1, 2i = ) of this element are 
the same as in the Bernoulli-Euler element. Also this element can be shown to be nodally 
exact.  
 
An alternative elegant way of formulating a Timoshenko beam element is to use separate 

0C − continuous linear approximations  
 

1 1 2 2 1 1 2 2,  v N v N v N Nθ θ θ= + = +%% ,                 (4) 
 
where iN  are linear shape functions, for both the deflection ( )v x  and the rotation ( )xθ . 
This Timoshenko beam element is not nodally exact but only approximate. 
  
The ‘nodally approximate’ representation (4) is easily generalized to a plate and an 
approximation for the deflection and rotations inside the element can be obtained. 
Generalization of the ‘nodally exact’ representation (3) to a plate is more difficult. Here this 
difficulty is avoided by not trying to present the deflection inside the element but making 
assumptions to the deflection and the rotations on the element boundaries. For computing 
the internal virtual work it suffices, that we have approximations for the curvatures κ  and 
the shears γ  inside the element. For computing the loading terms a suitable approximation 
for the virtual deflection is still needed. In the numerical example of this paper linear and 
bilinear expressions are used for triangular and quadrilateral elements, respectively.   
 
 
 
 
 
 
                                                 
1 The terms ‘rotation’ and ’shear’ are used to denote the longer terms ‘rotation of the 
normal’ and ‘transverse shear strain’ in the following.   
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Fig. 1: (a) A three node triangular and (b) a four node quadrilateral element. 
 
SOME NOTATION 
 
We consider in this paper triangular and quadrilateral elements (Fig. 1) with three and four 
corner nodes, respectively.  In the following we use the symbol n  ( 3 or 4)n n= =  for the 
number of corner nodes of the element. In order to perform the derivations in compact 
form, we consider a typical element side ij or a typical node j , which is connected to 
element sides ij  and jk . After an equation corresponding to a typical element side ij  or a 
typical node j  has been obtained, it can be applied for all the element sides or nodes using 
cyclic permutation 1,2,3 or 1,2,3,4 of the indices , ,  etc.i j . 
 
The length of a typical element side ij is 
 

2 2( ) ( )ij j i j ih x x y y= − + − .                (5) 

 
The cosine and sine of the direction angles of the element side ij are 
 

cos ,  sin .j i j i
ij ij ij ij

ij ij

x x y y
c s

h h
α α

− −
= = = =                                     (6) 

 
The nodal degrees of freedom of these elements are the nodal deflections jw  and rotations 

xjθ  and yjθ  1, ,j n= L . The tangential shears of the element sides ij
sγ  have also special role 

in the following.  The positive directions of these quantities are shown in Fig. 2. 
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Fig. 2: Nodal deflections and rotations and tangential shears of element sides (a) triangle 
(b) quadrilateral  
 
ELEMENT KINEMATICS 
 
Assumptions 
 
The starting point of the derivation of the plate elements of this paper is to (i) approximate 
the deflection and shear along the element sides as a cubic polynomial and a constant, 
respectively. Because such approximation is ideal in connection with both Bernoulli-Euler 
and Timoshenko beams, it is natural to use it along the sides of a plate element. Such plate 
elements suit well to practical structural analysis, because they can be easily and 
consistently combined with cubic beam elements.  
 
In addition to the former there are three additional basic assumptions: (ii) the degrees of 
freedom of the element are the nodal deflections and rotations of the corner nodes and 
additional parameters for expressing the shear approximation, (iii) the normal component of 
the rotation is assumed to be distributed linearly along the element sides and (iv) the 
curvatures are assumed to be linear and bilinear within the triangular and quadrilateral 
element, respectively. The derivation of plate elements, which follows, has recently been 
proposed by E.-M. Salonen in a slightly different context [1].    
 
The curvatures at the nodes in terms of the nodal degrees of freedom and the shear 
parameters 
 
The deflection ( )w s%  along the element side ij  is assumed to be cubic and of form (see (3)) 
 

1 2 3 4 2 4( ) ( ) ( )ij ij ij ij
i s i j s j sw H w H H w H H Hθ θ γ= + + + + +% ,              (7) 
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where iw  and jw  are the deflections at nodes i  and j , respectively, ( )ij
s iθ  and ( )ij

s jθ  are 
the tangential components of the rotation of side ij  at nodes i  and j , respectively, and 
parameter ij

sγ  is the tangential component of shear of side ij . With the help of the 
expression ,s s swθ γ= −  the tangential component of the rotation along an element side can 
also be expressed in terms of the same parameters and it can further be differentiated to get 
its tangential derivative ,s sθ . Thus it is possible to get such tangential derivatives on sides 

ij  and jk  and further their values ,( )ij
s s jθ  and ,( )jk

s s jθ  at node j . Using the linearity 

assumption of the normal component of the rotation nθ  along element sides, it is possible 

to express its derivatives ,( )ij
n s jθ  and ,( )jk

n s jθ  at node j  in terms of the nodal rotations. 

Thereafter it is possible to express the Cartesian derivatives ,( )x x jθ , ,( )x y jθ , ,( )y x jθ  and 

,( )y y jθ  of the rotation components at node j  in terms of the obtained derivatives ,( )ij
s s jθ , 

,( )jk
s s jθ , ,( )ij

n s jθ  and ,( )jk
n s jθ . Finally the curvatures2 at node j  can be evaluated using the 

expressions ,x x xκ θ= − , ,y y yκ θ= −  and , ,2 xy x y y xκ θ θ= − − . With the help of the 

described sequence of operations the nodal curvatures xjκ , yjκ  and 2 xyjκ  can be expressed 
as linear expressions of the nodal deflections, nodal rotations and the tangential shears of 
the element sides. Detailed derivation of the results is presented in appendix A. The 
resulting expression can be written as 
 

e e e e e= +A a B bk ,                   (8) 
 
where  
 

1 1

1 1

1 1

3 1 3 1

2

,  

2

x

y y

xy y
e e

n n
xn n

yn xn

ynxyn

w

w

κ
κ θ
κ θ

κ
κ θ

θκ

× ×

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪

⎪ ⎪⎪ ⎪ ⎩ ⎭⎩ ⎭

aM Mk                   (9) 

 

                                                 
2 The term ‘curvatures’ is used to denote the longer term ‘curvatures and twist’ in the 
following  
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are the column vectors of the nodal curvatures, and nodal deflections and rotations, 
respectively. There are two possibilities of choosing the parameters eb  for expressing the 
shear approximation within the element. In the first version the parameters are the 
(constant) tangential shears of the element sides ij

sγ . The number of these parameters is n  
( 3n =  triangle, 4n =  quadrilateral). This case is called here n − parameter shear 
approximation. In the second more constrained case the shears are assumed to be constants 

e
xγ  and e

yγ , within the element.  This case is called here 2 − parameter shear approximation. 
The parameters for the shear approximation are  
 

12

1
1

s
e

n
n
s

γ

γ
×

⎧ ⎫
⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎩ ⎭

b M , 
2 1

e
xe
e
y

γ

γ×

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

b                 (10) 

 
for the n −  and 2 − parameter shear approximations, respectively. The elements of matrices 

eA  and eB  are given in appendix A.  
  
The shears at the nodes in terms of the shear parameters 
 
It is possible to express nodal shears xjγ  and yjγ   at node j  as linear expressions of the 

tangential shears ij
sγ  and jk

sγ  of the element sides ij  and jk  (see Appendix B). This is the 
desired result for the n − parameter shear approximation. In the 2 − parameter shear 
approximation the nodal shears are simply e

xj xγ γ=  and e
yj yγ γ= . These results both for the 

n −  and 2 − parameter shear approximations can be written as 
 

e e e= C bg ,                  (11) 
 
where 
 

1

1

2 1

x

y
e

n
xn

yn

γ
γ

γ
γ

×

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

Mg                   (12) 

 
the corresponding matrices eC are given in appendix B. 
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Approximation of the curvatures 
 
The distribution of the curvatures within the element is now assumed to be linear for a 
triangular element and bilinear for a quadrilateral element. Thus we can write 
 

( , ) ( , ) ,ex y x yκ= N% kκ                             (13) 
 
where 
 

2

x

y

xy

κ
κ

κ

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

%

% %

%

κ = ,                  (14) 

 
[ ]1,  3 or 4,n n nκ κ κ= = =N N NL                (15) 

 
i iNκ κ=N I ,                  (16) 

 
κI  is a 3 3×  unit matrix and ,  1, ,iN i n= L  are the corresponding linear or bilinear shape 

functions. Using equations (13) and (8), the curvatures approximation ( , )x y%κ can finally be 
expressed in terms of the nodal parameters ea  and the shear parameters eb  by 
 

( , ) ( , ) ( , ) .e e e ex y x y x yκ κ= +N A a N B b%κ               (17) 
         
Approximation of the shears 
 
The distribution of the shears within the element is also assumed to be linear for a 
triangular element and bilinear for a quadrilateral element. Thus we can write 
 

( , ) ( , ) ,ex y x yγ= N% gγ                  (18) 
 
where 
 

x

y

γ
γ
⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

%
%

%
γ = .                  (19) 

 

1,  3 or 4,n n nγ γ γ⎡ ⎤= = =⎣ ⎦N N NL                (20) 
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i iNγ γ=N I ,                  (21) 
 
γI  is a 2 2×  unit matrix and ,  1, ,iN i n= L  are the corresponding linear or bilinear shape 

functions. Using equations (18) and (11), the shear approximation ( , )x y%γ can finally be 
expressed in terms of the element nodal parameters by 
 

( , ) ( , ) .e ex y x yγ= N C b%γ                 (22) 

 
ELEMENT EQUATIONS OF THE PLATE ELEMENT 
 
General case 
 
Internal virtual work of an elastic plate element is 
 

int ( )
e

e T T

A

W dAκ γδ δ δ= − +∫ D Dκ κ γ γ ,               (23) 

 
where 
 

11 12 13
11 12

21 22 23
21 22

31 32 33

,  

D D D
D D

D D D
D D

D D D

κ κ κ
γ γ

κ κ κ
κ γ γ γ

κ κ κ

⎡ ⎤
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

D D              (24) 

 
are the moment curvature matrix and the shear force shear matrix, which in the isotropic 
case are 
 

3

2

1 0
1 0

1 0 ,  
0 112(1 ) 0 0 (1 ) / 2

Et kGtκ γ

ν
ν

ν ν

⎡ ⎤
⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥− ⎣ ⎦⎢ ⎥−⎣ ⎦

D D ,                    (25) 

 
where E , ν , t  and G  are modulus of elasticity, Poisson’s ratio, thickness and shear 
modulus of the plate, respectively. Using the approximations (17) and (22) for both the 
virtual and actual curvatures and shears we get  
 

int ( ) ( )eT e e eT e eT e e e e
aa ab ab bbWδ δ δ= − + − +a K a K b b K a K b%             (26) 

 
where 
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,

,

,

e eT e e
aa

e eT e e
ab
e eT e e eT e e
bb

κ

κ

κ γ

=

=

= +

K A k A

K B k A

K B k B C k C

                (27) 

 
and 
 

e

e T

A

dAκ κ κ κ= ∫k N D N ,   
e

e T

A

dAγ γ γ γ= ∫k N D N .             (28) 

 
If κD  and γD  are assumed to be constants within the element, these matrices can further 
be written as 
 

11 1

3 3
1

n
e

n n
n nn

m m

m m

κ κ

κ

κ κ
×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
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D D
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M O M
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3 3
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n n
n nn

m m

m m

γ γ
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⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

D D

k
D D

L

M O M

L

           (29) 

 
where the coefficients ijm  are 
 

,  , 1, ,
e

ij i j
A

m N N dA i j n= =∫ L                           (30) 

 
and can be obtained using numerical integration. In connection with triangular and 
quadratic elements the 3 point rule and the 2 2×  Gauss quadratures are needed for 
integration, respectively. Because of symmetry ( ij jim m= ) only 6 or 10 integrations per 
element need to be performed in connection with triangular ( 3n = ) and quadrilateral 
elements ( 4)n = , respectively. Also analytical expressions for the coefficients ijm  for a 

triangular element can easily be written. Using equations (27) the matrices e
aaK , e

abK  and 
e
bbK  can be computed quite efficiently.  

 
Static condensation 
 
If the shear parameters eb  are distinct within each element, it is possible to eliminate them 
using static condensation on the element level. The finite element equations corresponding 
to virtual parameters eδb  are  
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e e e e e
ab bb b+ =K a K b R ,                 (31) 

 
where e

bR  is the corresponding element load vector. Because now the shear parameters eb  
belong only to the element under consideration, they can be solved resulting to 
 

1 1e e e e e e
bb ab bb b
− −= − +b K K a K R .                  (32) 

 
Substituting these and the corresponding virtual parameters 1e e e e

bb abδ δ−= −b K K a  into the 
expression (26) of the internal virtual work of the element gives  
 

int
eT e eWδ δ= − a K a% ,                      (33) 

 
where 
 

1e e eT e e
aa ab bb ab

−= −K K K K K .                (34) 
 
This is now the element stiffness matrix of the condensed problem and the element degrees 
of freedom are the nodal parameters ea .  
 
EXAMPLE PROBLEM 
 
In order to demonstrate the behavior of the different element types, which can be developed 
as special cases of the present formulation, a clamped circular plate of Fig. 3 under uniform 
load is used as a simple example problem in the following. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Clamped circular plate of radius a under uniform load 0q   
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Both Kirchhoff and Mindlin plates are considered. In the Kirchhoff case the bending 
stiffness of the plate is D and in the Mindlin case the bending and shear stiffnesses are Dκ  
and Dγ , respectively. A dimensionless ratio 2/( )D D aκ γε =  is used to control the relative 
sizes of the bending and shear stiffness. 
 
Because analytical solution of this problem both in the Kirchhoff and Mindlin cases is 
available, relative energy norm Eη  of the error of the finite element analysis [2] can be 
computed. Experimental convergence plots of the relative error in energy E  [%]η  in terms 
of the relative mesh size /h a  are used in the following to compare the behavior of the 
different formulations under consideration. Typical grids of triangular and quadrilateral 
elements used in the convergence study are shown in Fig. 4.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Typical grids ( / 1/ 4h a = ) of (a) triangular and (b) quadrilateral elements 
 
 
DIFFERENT ELEMENT TYPES AS SPECIAL CASES OF THE FORMULATION 
 
Kirchhoff plate elements 
 
Kirchhoff plate elements of the presented formulation can be easily obtained by assuming 
the shears to vanish. Substituting e =b 0  into the expression (26) of the internal virtual 
work of the element gives   
 

int
eT e e

aaWδ δ= − a K a% .                 (35) 
Thus the stiffness matrix of the element is simply 

a a
h h

(a) (b)
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e e

aa=K K .                  (36) 
 
The element degrees of freedom of the element are the nodal parameters ea , i.e. the nodal 
deflections and rotations of the corner nodes.   
 
The developed triangular element proves out to be the well-known discrete Kirchhoff 
triangular (DKT) element (see for example reference [3]). This is be seen as follows: In the 
DKT-element (i) the deflection is assumed to be cubic along the element sides, (ii) the 
degrees of freedom are the nodal deflections and rotations of the corner nodes, (iii) the 
normal rotations are assumed to be linear along the element sides and (iv) the 
approximation of the rotations, which is consistent with the nodal parameters, is quadratic. 
The first three assumptions hold also for this element. The approximation of the curvatures 
of the DKT-element is obtained simply by differentiating the rotations. Because the 
geometry of the triangular element is linear, this differentiation results to linear expressions 
of the curvatures. This assumption was also made in the presented formulation.  
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Experimental convergence plot of the error in energy of the Kirchhoff plate 
elements 
 
Comparison of the present quadrilateral element with the discrete Kirchhoff quadrilateral 
(DKQ) element [4] proceeds as follows: The first three assumptions hold for both elements. 
The fourth assumption of the DKQ-element states that the rotations are biquadratic. 
Because the geometry of the quadrilateral element is bilinear (not linear), differentiation of 
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the biquadratic rotations does not result to bilinear curvatures. Thus the present element is 
not equivalent to the DKQ-element. 
 
The derived equations (27a) and (29a) and (30) for computing the element stiffness matrix 
(36) are automatically in an efficient form. Similar form of the stiffness matrix of a 
triangular DKT element has been proposed in reference [5].  
 
Fig. 5 shows experimental convergence study of the present Kirchhoff triangular and 
quadrilateral elements. The corresponding results of the DKT and DKQ elements are also 
shown for comparison. The experimental rate of convergence, which is the slope of the 
curve, is approximately 1 for all the element types. 
 
Mindlin plate elements  
 
Continuous n − parameter shear approximation 
 
In this case the tangential shears on the element boundaries are common and system 
degrees of freedom b  of the problem. The system equations of the problem are 
 

,
,

T
aa ab a

ab bb b

+ =
+ =

K a K b R
K a K b R

                 (37) 

 
where aaK , abK , bbK  are the system matrices corresponding to the element matrices (27) 
and aR  and bR  are the system load vectors. The final unknowns of this formulation are 
both the nodal deflections and rotations a and the tangential shears of the element 
boundaries b . It is important to specify unique positive directions to the system degrees of 
freedom b . One choice is to keep the direction from lower to higher system node number 
as positive. This choice must be properly handled in the assembly process.  
 
The main idea behind this Mindlin element was first proposed by E.-M. Salonen in 
References [6] and [7] in connection with a special triangular plate bending element. The 
same idea has further been applied in a technique, by which existing Kirchhoff plate 
elements can be extended to handle Mindlin plates [8].  
 
Fig. 6 presents experimental convergence results obtained using the present quadrilateral 
Mindlin elements with continuous 4 − parameter shear approximation. The three values of 
the dimensionless stiffness ratio ε  cover the whole range of such values possible in 
practical applications. The values 10ε =  and 310ε −=  correspond to a sandwich plate and 
a very thin plate, respectively. Figs. 7 presents similar results obtained using the present 
triangular Mindlin elements with continuous 3− parameter shear approximation. It is  
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Fig. 6: Experimental convergence plot of the error in energy of the Mindlin plate elements: 
quadrilaterals, continuous 4 − parameter shear approximation  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Experimental convergence plot of the error in energy of the Mindlin plate elements: 
triangles, continuous 3− parameter shear approximation  

10
-1

10
0

10
1

/h a

E  [%]η  

310ε −=

110ε −=

10ε =

10
-1

10
1

/h a

E [%]η  

310ε −=

10ε =

110ε −=



 69

important to note that both elements behave well both in connection with shear flexible 
sandwich plates and in thin plates. 
 
Discontinuous n − parameter ( 3 or 4n = ) shear approximation  
 
In this case the tangential shears of neighboring elements are not constrained to be equal 
along opposite element sides. Thus the parameters eb , which describe the shear 
approximation, are distinct form element to element and can be eliminated by static 
condensation. The final unknowns are thus the nodal deflections and rotations a . The 
draw-back of this formulation is loss of continuity of the deflection on the element 
boundaries. The deflection is, however, point-wise continuous in addition to the end nodes 
also at the centers of the element sides3. A technique of generalizing the DKT and DKQ 
plate elements to Mindlin plates by using such discontinuous n − parameter shear 
approximations has bee presented in Reference [9] and [10]. In these papers the equations, 
which are used to eliminate the shear parameters in the element level, have been formulated 
differently.  
 
2 − parameter shear approximation  
 
Also in this case the tangential shears are discontinuous on the element boundaries, and the 
two shear parameters can be eliminated by static condensation. The final unknowns are thus 
the nodal deflections and rotations a . Techniques of generalizing the DKT plate element to 
Mindlin plates by using such 2 − parameter shear approximation has bee proposed in 
Reference [11] and [12]. Also in these papers the local elimination of the shear parameters 
has been formulated differently. 
 
Numerical comparison  
 
Figs. 8 and 9 present comparison of the three variations of the shear approximation in 
connection with quadrilateral and triangular elements, respectively. The continuous 
n − parameter shear approximation works well. The discontinuous n − parameter shear 
approximation seems to give almost identical results in the simple example problem 
considered. In connection with quadrilateral elements, the two parameter model does not 
converge, but in connection with triangular elements, it gives acceptable results.   
 
 
 
 

                                                 
3 The discontinuity is caused by the coefficient 2 4N N+  of  e

ijγ  in equation (7). It is easy to 
see using equation (A2) of appendix A, that this coefficient is zero, when 0,  1/ 2 and 1.ξ =   
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Fig 8: Experimental convergence plot of the error in energy of the Mindlin quadrilateral 
plate elements: Comparison of the three variations of the shear approximation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 9: Experimental convergence plot of the error in energy of the Mindlin triangular plate 
elements: Comparison of the three variations of the shear approximation 
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CONCLUSIONS 
 
A physically reasoned way of deriving special triangular and quadrilateral plate elements 
was presented. The starting point of the derivation is cubic approximation of the deflection 
and constant approximation of the tangential shear along the element sides. The curvatures 
inside the elements are linear and bilinear for triangles and quadrilaterals, respectively.  The 
degrees of freedom are the deflections and rotations at the corner nodes and additional 
shear parameters in the Mindlin case. In four of the six Mindlin elements presented, the 
shear parameters are eliminated at the element level. 
 
All the presented element types were implemented in this work. In order to get an idea, how 
they behave, a clamped circular plate under uniform load was used as a simple numerical 
example. Experimental convergence studies of the error in energy were performed. Main 
results of these studies show, that the all but one (quadrilateral Mindlin element with 2-
parameter shear approximation) of the element types seem to converge. The accuracy of the 
Kirchoff elements and the (converging) Mindlin elements is quite comparable. Because the 
Mindlin elements with distinct shear parameters are more effective and easier to implement 
than those with continuous shear, it can be concluded, that the Mindlin triangle with 2-
parameter shear approximation and the Mindlin quadrilateral with discontinuous 4-
parameter shear approximation seem to be most effective of the Mindlin elements studied 
in this paper.   
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Appendix A: The nodal curvatures in terms of the nodal deflections, nodal rotations and 
the parameters for expressing the shears  
 
Consider first a vector v , which can be the rotation vector θ , the shear vector γ  or the 
gradient of a scalar function. The Cartesian components and the tangential and normal 
components of an element side of this vector are xv , yv  and  sv , nv , respectively.  The 
relations between these components in connection with a typical element side ij  (see Fig. 
1) can be written as 
 

,

.

ij
s ij x ij y

ij
n ij x ij y

v c v s v

v s v c v

⎧ = +⎪
⎨

= −⎪⎩
                                                                       (A1)

    
We assume the deflection w  along the element side ij  to be cubic polynomial (7) and the 
shear component ij

sγ  to be a constant. The cubic Hermitean shape functions in this 
expression are 
 

2 3 2 3
1 2

2 3 2 3
3 4

1 3 2 ,  ( 2 ) ,  

3 2 ,  ( )

ij

ij

H H h

H H h

ξ ξ ξ ξ ξ

ξ ξ ξ ξ

= − + = − +

= − = − +
                       (A2) 

 
where ξ  is a natural co-ordinate such that 0ξ =  and 1ξ =  at nodes i and j, respectively. 
Using the expression ,s s swθ γ= −  of the tangential rotation sθ  of the plate, where 

, /sw dw ds≡ ,  the approximation of the tangential rotation of side ij  gets the form 
 

1 2 3 4 2 4( ) ( ) ( 1)ij ij ij ij
s i s i j s j sH w H H w H H Hθ θ θ γ′ ′ ′ ′ ′ ′= + + + + + −% ,                     (A3) 

 
where /k kH dH ds′ =  ( 1, , 4k = L ) . Differentiating this with respect to the tangential co-
ordinate s gives 
 

, 1 2 3 4 2 4( ) ( ) ( )ij ij ij ij
s s i s i j s j sH w H H w H H Hθ θ θ γ′′ ′′ ′′ ′′ ′′ ′′= + + + + +% ,           (A4) 

 
where 2 2/k kH d H ds′′ = . The values of this derivative at the element nodes i and j can now 
be obtained and they are 
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, , 2 2

, , 2 2

6 4 6 2 6( ) (0) ( ) ( ) ,

6 2 6 4 6( ) (1) ( ) ( ) .

ij ij ij ij ij
s s i s s i s i j s j s

ij ij ijij ij

ij ij ij ij ij
s s j s s i s i j s j s

ij ij ijij ij

w w
h h hh h

w w
h h hh h

θ θ θ θ γ

θ θ θ θ γ

≡ = − − + − −

≡ = + + − + +
                 (A5) 

 
Expressing further the tangential rotations ( )ij

s iθ , ( )ij
s jθ  of the nodes i  and j  in terms of 

the nodal rotations xiθ , yiθ , xjθ , xjθ , using the first equation (A1), equations (A5) reduce 
to 
 

, 2 2
12

, 2 2
121

4 4 2 26 6 6( ) ,

2 2 4 46 6 6( ) .

ij ij ij ijij ij
s s i i xi yi j xj yj s

ij ij ij ijij ij

ij ij ij ijij ij
s s j i xi yi j xj yj s

ij ij ij ijij ij

c s c s
w w

h h h h hh h

c s c s
w w

h h h h hh h

θ θ θ θ θ γ

θ θ θ θ θ γ

= − − − + − − −

= + + + − + + +

                         (A6) 

 
These equations express the nodal derivatives of the tangential rotations in terms of the 
nodal deflections, rotations and tangential shears of the n − parameter shear approximation. 
In the 2 − parameter shear approximation we still have to express the shear of the element 
side ij

sγ  in terms of the element shears e
xγ  and e

yγ , using the first equation (A1). The result 
is slightly different and of form 
 

, 2 2
12

, 2 2
121

4 4 2 2 6 66 6( ) .

2 2 4 4 6 66 6( ) .

ij ij ij ij ij ijij e e
s s i i xi yi j xj yj x y

ij ij ij ij ijij ij

ij ij ij ij ij ijij e e
s s j i xi yi j xj yj x y

ij ij ij ij ijij ij

c s c s c s
w w

h h h h h hh h

c s c s c s
w w

h h h h h hh h

θ θ θ θ θ γ γ

θ θ θ θ θ γ γ

= − − − + − − − −

= + + + − + + + +

           (A7) 

 
Consider next normal component of the rotation nθ  and assume, that it is distributed 
linearly along the element sides. Thus with the help of the second equation (A1) the 
derivatives of nθ  along side ij  at both ends i  and j  of the side get the form  
 

, ,
c1( ) ( ) [ ( ) ( ) ] ij ij ij ijij ij ij ij

n s i n s j n i n j xi yi xj yj
ij ij ij ij ij

s s c
h h h h h

θ θ θ θ θ θ θ θ= = − + = − + + − .                 (A8) 

 
Next we start to consider a typical side ij  of the element and with the help of first equation 
(A1) get for the tangential derivatives of the rotation components sθ  and nθ  on this side 
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, , , ,

, ,

( ) ( ) ( )

          

( ) ( )
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ij ij ij ij ij ijs
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θ
θ θ θ θ θ θ
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∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂
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ij ij
ij x ij y

ij ij ij ij
ij ij x x ij ij x y ij ij y x ij ij y y

s c
y

c s s s c c s c

θ θ

θ θ θ θ

−

= + − −

                    (A.9) 

 
Writing these equations at node j  corresponding to both side ij  and side jk  we further get 
 

, , , , ,

, , , , ,

, , , , ,

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ,

(

ij
s s j ij ij x x j ij ij x y j ij ij y x j ij ij y y j

ij
n s j ij ij x x j ij ij x y j ij ij y x j ij ij y y j

jk
s s j jk jk x x j jk jk x y j jk jk y x j jk jk y y j

c c s c c s s s

c s s s c c s c

c c s c c s s s

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

θ

= + + +

= + − −

= + + +

, , , , ,) ( ) ( ) ( ) ( ) .jk
n s j jk jk x x j jk jk x y j jk jk y x j jk jk y y jc s s s c c s cθ θ θ θ= + − −

      (A.10) 

 
This linear set of equations can be solved for the nodal derivatives of the rotations xθ  and 

yθ  at node j resulting to 
 

, , , , ,

, , , , ,

, , ,

( ) 1/ [ ( ) ( ) ( ) ( ) ],

( ) 1/ [ ( ) ( ) ( ) ( ) ],

( ) 1/ [ ( ) (

ij ij jk jk
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, , , , ,
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j jk jk
j ij jk s s j ij jk n s j

ij ij jk jk
y y j j ij jk s s j ij jk n s j ij jk s s j ij jk n s j

s s s c

d s c c c c s c c

θ θ

θ θ θ θ θ
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                (A11) 

 
where  
 

j ij jk ij jkd c s s c= − .              (A12)  
 
Substituting these into the expressions  
 

, , , ,( ) ,  ( ) ,  2 ( ) ( )xj x x j yj y y j xyj x y j y x jκ θ κ θ κ θ θ= − = − = − −                     (A13)  
 
of the nodal curvatures at node j we first get  
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ij ij jk jk
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d
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, ,
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               ( )( ) ( )( ) ].

ij
n s j

jk jk
ij jk ij jk s s j ij jk ij jk n s jc c s s c s s cθ θ− − − +

            (A14) 

 
Our final task is to substitute the expressions (A6) or (A7) of the derivatives of the 
tangential rotations and the expressions (A8) of the derivatives of the normal rotations into 
equations (A14). As the result of this operation, the nodal curvatures have been expressed 
in terms of the nodal deflections and rotations and the shear parameters.   
 
The result is expressed in matrix form in equation (8), where the column vectors of the 
nodal curvatures and the column vector of the nodal deflections and rotations are given in 
equations (9) and the column vector of the shear parameters in equations (10). The 
elements of matrix A can be obtained using equations 
 

3 2,3 2 2
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and cyclic permutation. The nonzero elements of matrix eB  are obtained using equations   
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6 6
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for the n − parameter shear approximation and using equations 
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for the 2 − parameter shear approximation, respectively, and cyclic permutation. 
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Appendix B: The nodal shears in terms of the shear parameters  
 
We consider both the n − parameter shear approximation and the 2 − parameter shear 
approximation. Based on equations (A.1) the tangential shears of sides ij  and jk  in terms 
of the nodal shears of node j  are  
 

,

.

ij
s ij xj ij yj

jk
s jk xj jk yj

c s

c s

γ γ γ

γ γ γ

= +

= +
                           (B1) 

 
Inversely the nodal shears of node j  in terms of the tangential shears of element sides ij  
and jk  are  
 

1 ( ),

1 ( ).

ij jk
xj jk s ij s

j

ij jk
yj jk s ij s

j

s s
d

c c
d

γ γ γ
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                         (B2) 

 
Using equations (B2) and cyclic permutation, the result of the n − parameter shear 
approximation is obtained. For the 2 − parameter shear approximation case we get directly 
 

 1, , .
e

xj x

e
yj y

i n
γ γ

γ γ

⎫= ⎪ =⎬
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L                 (B3) 

 
The obtained results can be written in matrix form (11).  The nonzero element of matrix eC  
in the n − parameter shear approximation are obtained using equations 
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and cyclic permutation. Matrix eC  in the 2 − parameter shear approximation is simply 
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