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SUMMARY

As a part of a wave maker renewal project unstructured, time accurate, finite volume
method has been verified and used for a wave maker design problem. The method of
manufactured solutions has been used for the verification of the code both for simulation
of steady flows without free surface as well as time accurate free surface flows. The results
show expected order of convergence in both cases. In the design problem three wedges
with angles 25, 35 and 45 degrees have been considered. The performance of different
wedge angles for a plunger type wave maker have been compared in terms of the height
and quality of the generated wave. The results show that the wedge angle has a consider-
able influence on the wave height as well as on the wave quality. Increasing wedge angle
increases the wave height, but at the same time the fluctuations of the asymmetries of the
wave profile increase. The motion frequency has also a significant influence on the wave
quality. Due to its overall performance the 35 degree wedge has been chosen for the new
wave maker and a further analysis to estimate the requirements for the driving mechanism
has been performed.

INTRODUCTION

The work presented here is part of an ongoing wave maker renewal project at the Ship
Laboratory of Helsinki University of Technology. The original wave maker in the long
towing tank of the laboratory was built nearly thirty years ago. Since then ship size has
increased constantly especially for cruise ships. However, the length of a ship model is
limited by the model test facility. Therefore, as the ship size increases larger model scales
have to be used. On the other hand, as the model scale increases the wave lengths in model
scale for sea-keeping tests decrease.

In this regard the limits of the existing wave maker in the towing tank had been
reached. This was partly due to the wear and tear of the wave maker, but also due to
its construction and design. It was therefore decided that the old wave maker is replaced
with a modernised version based on the design of the wave maker at the multi-purpose
basin of the Ship Laboratory. Similarly to the old wave maker this is a plunger type wave

∗Based on papers originally presented at 26th Symposium on Naval Hydrodynamics (Mikkola, 2006)
and at 10th Numerical Towing Tank Symposium (Mikkola, 2007).
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maker, but with linear motion instead of the motion along a circular arc of the old wave
maker.

It was decided already at an early stage of the renewal project that for the new wave
maker only triangular cross sections are considered. Certain advantages are associated
with the triangular shape. In addition to the simple construction, in case of triangular
shape a change in the immersion depth does not change the geometry of the wave maker
cross section. A controlled fine tuning of the wave maker performance is thus possible
simply through adjustment of the mean position and scaling of the wave making charac-
teristics.

The wave maker at the multi-purpose basin was designed in the early nineties using
model testing and wave maker theory based on linear wave theory (Granholm, 1990). The
computational method used was based on the boundary collocation method (Wu, 1988).
Since then other methods applicable for simulation of wave generated by oscillating bod-
ies have been developed. One of these methods is an unstructured finite volume solver
(Yet Another Fine Flow Analyser - YAFFA) for time accurate inviscid and viscous flows
developed by the author.

The work presented here consists of two parts. In the first part the method of manu-
factured solutions has been used to check the numerical implementation of the developed
method. In the second part the solution method has been used for the wave maker design
problem by comparing the performance of different wedge angles in terms of the height
and quality of the generated wave. Based on these results one angle has been selected for
the wave maker, and the requirements for the driving mechanism have been estimated.

The paper is organised as follows. First the numerical method used is described. Then
the verification of the code is discussed followed by the design problem. The paper ends
with the conclusions.

NUMERICAL METHOD

The numerical method is based on 2D unstructured Finite Volume Method (FVM). A col-
located SIMPLE-type pressure correction scheme is used for the solution of the bulk flow,
with velocities and pressures stored at the cell centres. Boundary conditions are imple-
mented with a layer of ghost cells outside the computational domain. Free surface flows
are simulated using a surface tracking approach. Free surface deformation is solved from
the kinematic boundary condition using a semi-implicit scheme, and dynamic boundary
condition is coupled to the pressure correction equation. Grid updating is performed with
a linear/torsional spring analogy (Batina, 1991; Farhat et al., 1998), with a Laplacian
smoothing or with a combination of these two. Solution of time accurate flows is based
on a dual time step approach, in which pseudo time derivatives are added into the un-
steady flow equations and solution is iterated in pseudo time for each physical time step
until these additional terms vanish. Momentum equations are solved with conjugate gra-
dient squared stabilised (CGSTAB) (van den Vorst and Sonneveld, 1990) method and the
pressure correction equation with conjugate gradient (CG) (Golub and van Loan, 1990)
method. In both cases incomplete Cholesky preconditioning is used.

In the following sections a more detailed description of selected parts of the method
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is given. For additional details the reader is referred to (Mikkola, 2006).

Governing equations

In this work the flow is assumed to be incompressible and isothermal in 2D. Since it
is assumed that viscosity does not have significant influence in the problem at hand its
influence ha been neglected. The governing equations for the flow are the incompressible
continuity and Euler equations. In conservation form these are∫

∂Ω
ρvinidS = 0 and (1)

∂

∂t

∫
Ω

ρvidV+
∫

∂Ω
ρvi (vjnj − vg) dS = −

∫
∂Ω
pnidS

respectively. Here ρ is the density, vi are the velocity components, vg is the grid velocity
normal to ∂Ω and ni are the components of the outer normal for domain Ω. The piezo-
metric pressure p includes the effect of gravity and is given by

p = ptot + ρgx2 , (2)

where ptot is the total physical pressure and gravity with acceleration g points in the
negative x2-direction.

Two boundary conditions have to be satisfied on the deforming free surface. The
kinematic boundary condition states that there is no flow through the interface, such that(

vi − vfs
i

)
ni = 0 , (3)

where vfs
i is the velocity of the free surface.

The second condition to be satisfied on the free surface is the dynamic boundary con-
dition. This states that stresses are continuous across the free surface. In this work, the
inviscid approximation of this without surface tension effects is used. By assuming zero
atmospheric pressure and taking into account Eq. (2) the dynamic boundary condition is
simplified into

p = ρgh (4)

for the piezometric pressure on the free surface, where h is the wave height.

Unstructured finite volume method

In finite volume methods the computational domain is divided into non-overlapping sub-
domains – the finite volume grid – and Eqs. (1) are applied for each element of the grid
separately. If unstructured grids are used, the volumes may be ordered arbitrarily and –
regarding the ordering – only the connections between neighbours are required.

The surface integrals in the continuity and momentum balance equations for a finite
volume l of the grid are written as sums over the sides lm connecting volume l to its
neighbours m leading to ∑

m

ṁlm = 0 and (5)
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ρVl
∂vi,l

∂t
= −

∑
m

Fi,lm (6)

respectively. Here
ṁlm = ρv̄(lm)S(lm) (7)

is the mass flux through face lm and v̄lm is the convection velocity normal to the face.
The inviscid flux in the momentum balance equations (6) is given by

Fi,lm = ρvi,(lm)

(
v̄(lm) − vg,(lm)

)
S(lm) +

+ p(lm)ni,(lm)S(lm) . (8)

Bulk flow solution

The bulk flow solution process is based on a velocity-pressure decoupling, in which the
velocities and pressures are solved separately in an iterative manner. In each iteration,
the velocity field is first updated from momentum balance (6) with time marching in
pseudo time τ and using the current pressure field. The velocity is corrected after this
by altering the pressure according to the resulting mass balance error in the continuity
equation (5). This process is repeated in pseudo time until a steady state is reached.
For time accurate flows each physical time step is considered as a steady state problem.
Therefore the solution of a steady state problem is considered first. The discussion on the
implementation of time accuracy is then based on the steady state formulation.

Momentum balance

Momentum equations (6) are integrated in pseudo time with the implicit Euler scheme.
Linearisation of the fluxes gives

AP,l∆vi,l +
∑
n6=l

aln∆vi,n = Ri,l , (9)

where
AP,l =

ρVl

∆τ
+ a(l)(l) aln =

∑
m

∂Fi,lm

∂vi,n

(10)

are the diagonal and off-diagonal terms respectively and

Ri,l = −
∑
m

Fi,lm (11)

is the explicit residual.
The convected velocity components vi,lm are upwinded by

vi,lm = vi,l +
∂vi,l

∂xi

(
xc

i,lm − xi,l

)
, (12)

where the flow is assumed to be from l to m. Above xc
i,lm are the coordinates of the centre

of the face.
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The convection velocity v̄lm and the pressure plm in Eq. (8) are taken as distance
weighted averages of the values at auxiliary points l′ and m′. The points are projected
from points l and m respectively on a line normal to face lm and going through the
centre point of this face. The values at the auxiliary points are evaluated with first order
Taylor extrapolation using a gradient averaged on the corresponding face. The gradient
components for velocities and pressure, required for the extrapolations, are calculated
using a least squares based method described in e.g. (Demirdz̆ić and Muzaferija, 1995).

The grid velocity vg,lm in Eq. (8) is based on the geometric conservation law (Hoffren,
1993). For each face it is associated with the volume swept by the face between time
steps.

In the implicit stage, i.e. for the calculation of the linearised terms in (10), the fluxes
are approximated with first order schemes. This ensures that only the closest neighbours
of a volume contribute to the linear system (9).

Mass balance and pressure correction

If the velocities resulting from the momentum equations do not satisfy the continuity
condition, the flow field has to be corrected. The corrected velocities can be written as

vi = v∗i + v′i p = p∗ + p′ (13)

Here, v∗i and p∗ are the provisional velocity components and pressure after the solution
of the momentum equations and v′i and p′ are the unknown corrections. Continuity con-
dition (5) for the corrected velocities gives a relation between the provisional values and
the corrections ∑

m

ṁ′
lm = −

∑
m

ṁ∗
lm (14)

In order to avoid decoupling of the neighbouring velocities and pressures, some arti-
ficial damping must be added into the mass fluxes in the mass balance error in Eq. (14).
In the current method a damping term dlm similar to the ones proposed by Rhie and
Chow (1983) and Davidson (1996) is used. With the added damping, the mass flux on a
face can be written as

ṁ∗
lm = ρS(lm)v̄

∗
(lm) + C

ρS2
(lm)

AP,(lm)

dlm , (15)

where C is a parameter controlling the amount of damping and AP,lm is the average of the
diagonal terms AP,l and AP,m.

The connection between the change of pressure and mass flux on a face can be derived
from the momentum equations. The approach used in the SIMPLE method (Caretto et al.,
1972) gives the pressure correction equation∑

m

αlmp′m = −
∑
m

ṁ∗
lm . (16)

Here
αlm = − ρSlmVlm

A′
P,lmni,lm (xi,m − xi,l)

αll = −
∑
m6=l

αlm (17)

23



are the off-diagonal and diagonal elements respectively. Vlm and A′
P,lm are taken as aver-

ages of the values on both sides of the face with A′
P,l and A′

P,m based on the SIMPLEC
algorithm (van Doormal and Raithby, 1984).

Updated pressures and velocities are given by

pk+1
l = pk

l + αpp
′
l vk+1

i,l = v∗i,l + αvv
′
i,l , (18)

where αp and αv are under-relaxation factors. Velocity corrections are calculated from

A′
P,lv

′
i,l = −

∑
m

Slmp′lmni,lm . (19)

Time accurate bulk flow solution

The simulation of time dependent flows is based on a three level fully implicit scheme (3-
LFI) (Hoffren, 1993). The method is implemented using dual time stepping, i.e. two time
steps – a physical and a pseudo one – are used. This is done by including the physical time
derivative terms into the appropriate time-marching steady state equations and keeping the
pseudo time derivative terms. Within each physical time step, the problem is considered
as a steady state problem and is iterated until the pseudo time derivative terms vanish.

For the bulk flow we start with the implicit time-marching steady state momentum
equations

V ∆vk
i

∆τ
= Rk+1

i , (20)

where k is the pseudo iteration step. Including a three level difference approximation for
the physical time derivative (Hoffren, 1993) on the left hand side of this equation leads to

3V n+1vn+1
i − 4V nvn

i + V n−1vn−1
i

2∆t
+ (21)

+
V k∆vk

i

∆τ
= Rk+1

i ,

where n is the physical iteration step. By approximating the future physical values by
values at the next pseudo iteration Eq. (21) can be written as

V n+1,k
(

3

2∆t
+

1

∆τ

)
∆vn+1,k

i = Rn+1,k+1 +

−3V n+1,kvn+1,k
i − 4V nvn

i + V n−1vn−1
i

2∆t
. (22)

Free surface solution

Time accurate free surface boundary condition

A common approach with surface tracking methods is to only solve for the vertical move-
ment of the free surface. In order to avoid some of the drawbacks of this approach –
especially with extremely steep waves – the free surface is defined as a parametric curve
(hx(s), hy(s)) deforming in the direction of the free surface normals. In the dual time
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stepping approach used the deformation of the free surface is solved from the kinematic
boundary condition as

∂hi

∂τ fs
= vnni −

∂hi

∂t
, (23)

where hi are the components of the free surface location defined at the centre of a free
surface face. The deformations ∆hi = ∆hnni, with ∆hn being the deformation in the
normal direction. τ fs is the free surface pseudo time, ni are the components of the outward
directed normal vector on a free surface face and vn = vini is the normal velocity on the
free surface. It should be noted that the free surface pseudo time step does not have to be
equal to the bulk flow pseudo time step. For each physical time step (∆t) this equation is
iterated with the momentum and pressure correction equations in pseudo time (with ∆τ fs)
until a steady state is reached.

The implementation of the kinematic boundary condition can be divided into two
parts: the discretisation of the normal component of the particle velocity on the free
surface and the discretisation of the velocity of the bounding surface. The former con-
stitutes the steady state part of the equation. The latter has, in principle, significance only
in time accurate simulations, as in steady state the velocity of the surface vanishes. The
corresponding discretisations will be discussed next.

Discretisation of the normal and the surface velocities

Several authors have suggested that some numerical damping is included in the kinematic
free surface condition by up-winding the slope of the free surface (see e.g. (Hino et al.,
1993), (Raven et al., 2004)). Similarly, in this work optional, controlled, numerical damp-
ing is added into Eq. (23) through up-winding in the first term on the right hand side of
the equation, i.e. the normal velocity. Namely, by a simple manipulation of the first term
the equation can be written as

∂hi

∂τ fs
= vi − vt

∂hi

∂s
− ∂hi

∂t
, (24)

where vt is the tangential velocity component on the free surface. The second term on the
right hand side is in a form of a convection term. Numerical damping can be introduced
into the equation by up-winding the free surface slope ∂hi/∂s in this term according to
the direction of the tangential velocity.

In the current method the slope components ∂hi/∂s in Eq. (24) are calculated by
MUSCL-interpolation of the free surface coordinates. The slope of the grid may be
slightly different, as grid points are always taken as weighted averages of neighbouring
wave coordinates. Even though the slope calculation is based on MUSCL-approach, one
should bear in mind, that this does not rule out the possibility to use central differencing
for the slope components as well. By an appropriate choice of the MUSCL-parameter the
scheme reduces to the central difference.

An essential part in the time accurate solution of free surface flows is the approxima-
tion of the last term in Eq. (23) representing the velocity of the free surface. (Mikkola,
2005) In the approach used here the last term in Eq. (23) is replaced directly with the
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three level difference approximation for the time derivative, that is

∂hi

∂t
=

1

∆t

(
3

2
hn+1

i − 2hn
i +

1

2
hn−1

i

)
. (25)

CODE VERIFICATION WITH METHOD OF MANUFACTURED SOLUTIONS

In the previous section a theoretical presentation of the discretised approach for the so-
lution of the governing equations has been given. For practical purposes the approach is
implemented as a computer code. The purpose of code verification is to demonstrate that
the implementation is correct in a sense that the code is solving the governing equations
correctly.

In this paper the definition for Verification and Validation advocated by e.g. Roache
(2002) and Salari and Knupp (2000) is adopted. Here Verification is concerned with solv-
ing the equations right and Validation with solving the right equations. With this definition
Verification is purely a mathematical exercise and does not deal with the correctness of
the equations in terms of physical laws. The latter is dealt with by Validation.

Roache (1998) states that verification is about solving the given partial differential
equations with given boundary conditions consistently, i.e. as a measure related to the
discretisation, such as the cell size or time step, approaches zero the numerical solution
approaches the corresponding continuum solution. Furthermore, based on the discretisa-
tion used one usually knows the order at which the error should approach zero.

Verification is further divided into two parts: Verification of Codes and Verification
of Calculations. The former deals with error evaluation using a known solution, whereas
the latter deals with estimation of the error of a numerical solution. To avoid confusion
Salari and Knupp (2000) recommend that the term Solution Accuracy Assessment (SAA)
is used for the latter. For a code it is sufficient to perform Verification of Code just once,
but after modifications the verification has to be repeated (Salari and Knupp, 2000).

The code verification process obviously requires the knowledge of the continuum so-
lution. The best solution for comparison is an exact analytical solution for a problem.
However, analytical solutions for the Euler or the Navier-Stokes equations exist only for
very simplified problems. With free surface included additional complication is intro-
duced by the non-linearity of the free surface boundary condition. This problem of lack of
analytical solutions can be circumvented by using the Method of Manufactured Solutions
(MMS) first presented by Steinberg and Roache (1985). Here the governing equations
are modified with source terms such that a known, exact, analytical solution exists for the
modified equations. In the presented work MMS has been applied for the study of the
behaviour of the discretisation error of the developed method.

All of the verification results presented in the following have been simulated with
double precision (64-bit). Each time step has been iterated in pseudo-time until the Linf-
norm of the change of the flow variables between iterations has reduced to machine zero.
This removes the influence of the iteration error due to incomplete convergence (see e.g.
Eça and Hoekstra, 2006). Thus, the numerical error consists only of the discretisation and
round-off errors. With double precision the latter is negligible in comparison.
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Method of manufactured solution

The basic idea behind MMS is to start off with the solution rather than with the equations
to be solved. That is, a solution is first manufactured and the equations are then modified
by adding source terms to provide the given solution. This apparently complex procedure
is in fact straightforward and simple to perform, wherein lies the elegance of the method.

The necessary steps in MMS are briefly described in the following. For a more thor-
ough explanation with some examples the reader is referred to e.g. (Roache, 2002). In
MMS one starts by taking a suitable analytical solution, i.e. the manufactured solution,
and substitutes it into the original governing continuum equations. If the solution does not
satisfy the equations a residual is left over from the substitution. The modified equations
are produced by substituting a source term equal to this residual into the original equations
with the manufactured solution now satisfying these modified equations. The boundary
conditions are provided by the manufactured solution or the applied boundary conditions
should be combatible with the manufactured solution.

The modifications in the equations, i.e. in practise just the source terms, are then
implemented into the solver in question. Solution of the modified equations with the
solver gives a numerical approximation of the manufactured solution. The accuracy of
the approximation depends on the discretisations of the equations and the correspond-
ing discretisation parameters, such as cell size. Code verification can now be based on
the comparison of the numerical solution and the known analytical solution. As the dis-
cretisation parameters are reduced the numerical solution should approach the analytical
continuum solution. The coupling of manufactured solutions with mesh refinements for
the estimation of the order of accuracy and, thus for more thorough code verification, was
first presented by Steinberg and Roache (1985).

Roache (2002) and Salari and Knupp (2000) have presented some remarks on the
choice of the manufactured solution. Firstly, the solution should not be trivial. On the
other hand, the solution does not have to be physical either. In fact, some physical so-
lutions, such as those for the Poiseuille or Couette flows, are undesirable as they do not
activate the advection terms in the equations. Namely, one requirement for the solution is
that it exercises all terms being tested in the equations. Roache (2002) further adds that
one wants a solution, which exercises also all ordered derivatives in the error expansion.

Grid refinement

Two approaches have been used for the generation of the grids for the refinement studies.
In the first option each grid has been generated separately with Delaundo grid generator
(Müller, 1996) based on the frontal Delaunay method. Delaundo takes as input the point
distribution on the boundaries and some parameters controlling the grid generation proce-
dure. The refinement has been applied for the boundary point distributions, and the same
control parameters have been used for each grid to maximise geometrical similarity of the
grids. In the second approach a base grid has first been generated with Delaundo. The
refined grids have been generated from this grid sequentially by bisecting each edge of
the grid and dividing each triangle into four triangles with the same shape.
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Verification of the spatial discretisation

Before studying the behaviour of the numerical error in the case of time accurate free
surface flow solution the spatial discretisation of the bulk flow equations has been verified.
For the verification the manufactured solution presented by Salari and Knupp (2000) has
been used. Here the velocities and pressure are given by

u(x, y) = u0

[
sin(x2 + y2)

]
(26)

v(x, y) = v0

[
cos(x2 + y2)

]
(27)

p(x, y) = p0

[
sin(x2 + y2) + 2

]
(28)

The resulting source terms are presented in (Salari and Knupp, 2000) and have been
left out for brevity. The rectangular solution domain is the same as the one used by Salari
and Knupp, i.e. x is between -0.1 and 0.7 and y is between 0.2 and 0.8. Similarly, the
same number of points on the boundaries has been used. However, the corresponding
numbers of elements are considerably higher than in their case as in this work triangles
have been used. Two different sets of grids have been used. In Set A each grid has been
generated separately with Delaundo. In Set B the coarsest grid from Set A has been used
as the base grid for the refinement approach.

For the numerical solution fixed velocity and extrapolated pressure has been used on
the left hand and bottom boundaries, whereas fixed pressure and extrapolated velocity has
been applied on the right hand and top boundaries.
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Figure 1: Verification of the spatial discretisation of the bulk flow equations using the
test case by Salari and Knupp (2000). The L2-norms of the error in numerical solution as
functions of generalised cell size.

Fig. 1 shows, how the numerical error – i.e. the difference between the numerical and
manufactured solution – behaves as a function of a generalised measure of the cell size.
Here the measure is taken as the inverse of the square root of the number of elements. The
results show second-order accuracy for both the velocity and pressure as the asymptotic
range is approached. This is expected as the implementation is believed to be second
order accurate and thus the method is verified in this respect. It can also be seen that both
approaches for grid refinement give similar results.
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Verification of the time accurate free surface solution

The manufactured solution used in this study is the linearised potential flow solution for
a standing wave in a rectangular container. The flow field (u, v, p) and the free surface
shape ζ are given by (Paterson, 1983)

u(x, y, t) =
ζ0ω

sinh(kh)
cosh[k(y + h)] sin(kx) sin(ωt) (29)

v(x, y, t) = − ζ0ω

sinh(kh)
sinh[k(y + h)] cos(kx) sin(ωt) (30)

p(x, y, t) =
ρgζ0

cosh(kh)
cosh[k(y + h)] cos(kx) cos(ωt) (31)

ζ(x, t) = ζ0 cos(kx) cos(ωt) (32)

Here k = mπ/L, ω2 = gk tanh(kh), h is the depth of the container, L is the length of
the container and m is an integer constant. In this work h = 1.6, L = 40, ζ0 = 0.2 and
m = 4 giving two waves over the length of the tank. Based on the manufactured solution
mirror boundary condition has been applied on the vertical sides of the container and slip
boundary condition is used for the bottom.

The source terms are produced simply by substituting the manufactured solution given
by Eqs. (29)-(32) into the governing equations. In this case the equations are the Euler
equations, the continuity condition as well as the kinematic and dynamic boundary con-
ditions

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ u

∂u

∂x
+ u

∂v

∂y
= −1

ρ

∂p

∂x
(33)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ v

∂u

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
(34)

∂u

∂x
+

∂v

∂y
= 0 (35)1 +

(
∂ζ

∂x

)2
−1/2 (

∂ζ

∂t
+ u

∂ζ

∂x
− v

)
= 0 (36)

p|fs − ρgζ = 0 (37)

The substitution gives the following source terms for the above equations.

Qu =
ζ2
0gk2

sinh(2kh)
sin2(ωt) sin(2kx) (38)

Qv =
ζ2
0gk2

sinh(2kh)
sin2(ωt) sinh[2k(y + h)] (39)

Qm = 0 (40)

Qkin = − ζ0ω sin(ωt)

sinh(kh)
√

1 + [ζ0k sin(kx) cos(ωt)]2
(cos(kx) sinh(kh) (41)

− cos(kx) sinh [k(h + ζms)] + ζ0k sin2(kx) cos(ωt) cosh [k(h + ζms)]
)

(42)

Qdyn = ρgζms [cosh(kζms) + sinh(kζms) tanh(kh)− 1] (43)
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Here ζms is the wave height (32) from the manufactured solution. The source term for
the continuity condition vanishes as the potential flow solution itself is based on the sat-
isfaction of the continuity condition. The source terms for the momentum equations are
produced purely by the advection terms as the manufactured pressure is such that the pres-
sure gradient cancels the inertia terms. The finite volume integrals of these source terms
are approximated in the solver using the value of the source term at the geometric centre
of each finite volume.

The case has been simulated with five grids and six time steps over one oscillation
period. For the boundary nodes a refinement factor r =

√
2 has been used. The number

of faces on the free surface Nfs and the total number of elements Ne for the different grids
are given in Tab. 1. The number of time steps per one period NT is given in the same
table.

Level 0 1 2 3 4 5
Nfs - 1000 706 500 353 250
Ne - 33630 17040 8320 4243 1980
NT 284 200 142 100 71 50

Table 1: The number of free surface faces and the total number of elements as well as
the number of time steps per one oscillation period for different cell size and time step
refinement levels.

For the analysis the spatial wave at each time step has been Fourier analysed. The
first harmonic frequency used corresponds to the length of the manufactured wave. The
analysis presented here is based on the study of the time evolution of this first harmonic
component of the wave, i.e.

ζ(x, t) = ζ1(t) cos(kx) (44)

For the study of the numerical damping and phase error the time variation of the first
harmonic component is represented as an exponentially decaying harmonic function

ζ1(t) = ζ0e
−αt cos(ωt) (45)

The damping factor α and the frequency ω are solved by nonlinear fit of the function to the
numerical solutions. The results of the fit are shown for different levels of grid refinement
and time step in Fig. 2. The results show clearly that – in terms of the properties of the
first harmonic – the numerical solution approaches the manufactured solution as the cell
size and time step approach zero. It can also be observed that the phase error is nearly
independent of the cell size within the tested range.

With unsteady cases the manufactured solution can only be reached if both the cell
size and the time step approach zero at the same time. Fig. 3 shows the numerical error
for the damping factor and the frequency as the grid and time step are refined with the
same ratio. Again, the results show the expected order of accuracy for both the damping
and the phase error.
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Figure 2: Discretisation error as a function of discretisation parameters. On left: damping
factor α, on right: frequency ω.
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Figure 3: Numerical error with the grid and time step refined at the same time. On left:
damping factor α, on right: frequency ω.

WAVE MAKER DESIGN PROBLEM

One purpose of the design problem has been to compare the performance of a triangular
plunger type wave maker with different wedge angles in terms of the height and quality of
the generated wave. Three wedges with angles of 25, 35 and 45 degrees with the vertical
have been chosen. The water line breadth is the same (575 mm) for all three wedges.

The quality of the generated wave has been assessed primarily by studying the hor-
izontal and vertical asymmetries of the waves. The horizontal asymmetry is defined as
the ratio of the height of the crest above the zero level to the wave height. The vertical
asymmetry is the ratio of the horizontal distances from the crest to the zero crossings in
front of and behind the crest. The quality assessment has been done in both space and
time by analysing the fluctuations of the asymmetries of the wave geometries during a
motion cycle.

The setup of the design problem is illustrated in Fig. 4. The free surface boundary has
been divided into two parts with damping zone from x = 50 m to the right hand wall.
On the damping part first order upwinding is used for the wave slope in the kinematic
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Figure 4: The wave maker design problem. Not in scale.

boundary condition.
A single grid has been generated for the case using Delaundo grid generator. The face

size changes linearly between predefined sizing stations. For the wedge these are at the
boundary endpoints and midpoint with sizes 0.03 m, 0.03 m and 0.05 m starting from
the free surface intersection. On the free surface, the face size grows from 0.03 m at the
intesection to 0.05 m at 20.115 m, stays constant up till 40 m, grows linearly to 1.0 m at
50 m and stays constant for the rest of the free surface. The size distribution on the free
surface has been based on previous studies with similar cases (Mikkola, 2006). It is such
that up till 40 m from the wave maker there are at least 30 points per wave length upto a
motion frequency of around 6.5 rad/s. Close to the wave maker the resolution is slightly
higher in order to get reliable force prediction also for higher frequencies.

The resulting grids have 27581, 26878 and 26513 elements with the 25, 35 and 45
degree wedges respectively. The corresponding numbers of faces on the wedge are 40, 29
and 24. The number of faces on the free surface for all of the cases is 897 for the part up
to x = 40 m and 84 for the rest of the free surface up to the right hand wall. As the flow
has been assumed inviscid, slip type boundary conditions have been applied on all solid
boundaries, i.e. on the wedge, on the tank floor and on the vertical walls.

The simulations have been performed for four different motion amplitudes and five to
nine different periods with 100 time steps per an oscillation period. The amplitude A has
ranged from 25 to 200 mm and the frequency ω from 1 to 9 rad/s.

Based on the performance comparison one of the wedges has been selected for addi-
tional analysis, in order to estimate the maximum force and power requirements for the
traversing gear of the wave maker. This information has also been used in the project for
structural design of the wave maker. The selection of the wedge and the estimation of the
power requirements are discussed separately below.

Selection of the wedge angle

The comparison of the performance of different wedge angles has been based on the
study of the generated wave height, asymmetries of the wave geometry in space and the
corresponding fluctuations during a motion cycle. These have been resolved by analysing
ten instantaneous wave profiles over one cycle for each amplitude-period combination.
Individual waves between zero-crossings have first been searched for. After this each
individual wave has been processed to find the wave height as well as horizontal and
vertical asymmetries.
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Figure 5: Comparison of the wave height H generated with different wedge angles for
two motion amplitudes: A = 25 mm and A = 100 mm above and below respectively.
The wave breaking limit is based on the wave length from the linear wave theory.

Fig. 5 compares the wave heights and their fluctuations with different wedge angles for
two motion periods. The curves in the figures are based on the average of the fluctuating
wave heights. As has been expected, the results show that a larger wedge angle leads to
larger waves. This is mainly explained by the larger change in the displaced volume with
increasing wedge angle. The relative difference between wedges becomes smaller with
decreasing motion frequency. There is also a clear increase in the relative fluctuations
as the wave slope approaches the breaking limit. However, results close to the breaking
limit are questionable as wave breaking is not modelled accurately. Even if, in theory, the
method is able to predict the inception of wave over-turning, the resolution of the grid is
probably not sufficient to capture the high curvature of a breaking wave. An insufficient
grid resolution leads to excessive numerical damping, which suppresses wave breaking
and reduces local wave height. Thus, close to the breaking limit the current results may
predict erroneously non-breaking waves and under-predict the wave height.
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Figure 6: Comparison of the fluctuation of the vertical asymmetry of the wave profile
with different wedge angles for two motion amplitudes: A = 25 mm and A = 100 mm
on left and right respectively. xb and xf are the horizontal distances from the wave crest
to the zero-crossing behind and in front of the crest respectively.

Figs. 6 and 7 compare the asymmetries between the wedges. The horizontal asymme-
try is also compared with second order Stokesian approximation (Méhauté, 1976). The
asymmetries characterise the geometry of the wave. For a wave with symmetric wave
crests the vertical asymmetry is 1. For a wave with equal depth of through and height of
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Second order Stokes approximation is based on the simulated wave height.

crest from the still water level the horizontal asymmetry is 0.5. If the wave propagates
with a constant geometry, the asymmetries have constant values. As can be seen from the
figures, this is not the case for the generated waves. Moreover, in addition to the differ-
ences in the generated wave height between different wedge angles, there are considerable
differences in the quality of the produced wave – especially in terms of the variation of the
vertical asymmetry. Horizontal asymmetry does show similar differences, but in a smaller
scale.

It can be roughly stated, that with the tested geometries increasing wedge angle re-
sults into increasing fluctuations of the wave geometry and thus decreasing quality of the
wave. Differences are especially large for longer waves and larger motion amplitudes.
The variation of the asymmetry for all the tested wedges is also highly dependent on the
motion frequency. There is a clear optimal area for each wedge, where the variation of
the vertical asymmetry is at its minimum. The corresponding frequency increases slightly
with increasing wedge angle.

The horizontal asymmetry agrees – in average sense – rather well with the second
order Stokes approximation. Slightly larger differences are observed for the higher fre-
quencies as the motion amplitude is increased. However, as was mentioned already above,
these results should be taken with caution due to possible wave breaking.

When choosing the wedge angle for the wave maker, a compromise between the wave
quality and the wave height has been made. The largest wedge angle has the highest wave
height to motion amplitude ratio. However, it has also the highest level of asymmetry
fluctuations and has therefore been left out of the further consideration. The smallest
wedge angle has the smallest asymmetry fluctuations, but requires significantly larger
motion amplitudes to produce comparable wave height. The larger motion amplitude
would, however, be problematic from the point of view of the mechanical construction of
the wave maker – e.g. the pistons should be longer, in addition to which the piston arms
should be thicker to prevent buckling under full loading. It was, therefore, decided that
the 35 degree wedge would be used in the new wave maker. The performance in terms
of generated wave height is significantly better than that of the 25 degree wedge. On the
other hand, considerable differences in the quality of the generated wave compared to the
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smallest wedge angle occur only for the long wave lengths, which are considered to be of
lesser importance.

Requirements for the driving gear

For the sizing of the traversing gear and structural analysis of the wedge structure the
force time histories for the 35 degree wedge have been Fourier analysed. The linear force
coefficients as well as the second and third order force coefficients are shown in Fig. 8.
The instantaneous buoyancy relative to the still water level is removed from the force prior
to the Fourier analysis.
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Figure 8: The added mass, damping, second order and third order coefficients for the
35 degree wedge with different motion amplitudes. The values are for a one metre long
wedge with water line breadth of 0.575 m.

The added mass shows a growing motion amplitude dependency as the frequency is
increased. Similar behaviour is also observed for the damping coefficient, but this might
be caused by underestimation of the wave height close to wave breaking as was discussed
before. Based on the results for constant frequency the second order force amplitude is
very accurately a function of the square of the motion amplitude and third order force
amplitude a function of the cube of the motion amplitude.

The information from the Fourier analysis combined with the mechanical limitations
and the limit for breaking waves on the motion amplitude has then been used to estimate
the maximum force required from the driving mechanism. The maximum absolute value
of the dynamic force for different motion frequencies together with the restricted motion
amplitudes are shown in Fig. 9. The dynamic force is defined here as the total force
required to move the wedge minus the static net buoyancy (lift minus weight) of the
wedge. The results have been scaled for the final wave maker, which is geometrically
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identical to the simulated wave maker, but is one and a half times larger. As the mass of
the final design is unknown at the time of writing, results for three different masses have
been presented. This gives an indication of the effect of the mass on the dynamic force. It
is probable that the mass of the wedge will be slightly higher than 2000 kg.
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Figure 9: The absolute value of the maximum dynamic force with the maximum motion
amplitude. Results for 11 metre long wedge with water line breadth 1.5× 575 mm.

The maximum force for the estimated mass occurs for the lowest frequency. This
is caused by the dominating buoyancy force. As the frequency increases the maximum
force decreases due to the increasing inertia force acting opposite to the buoyancy force.
At the same time the damping force increases. By analysing the system in more detail
as a dampened mass-spring system, it can be seen that a very rapid phase shift occurs
between 4 to 6 rad/s. If the mass is increased the shift occurs at a lower frequency and is
more subtle. For higher frequencies the inertia force dominates. However, as the motion
amplitude has to be restricted to avoid wave breaking, the maximum force grows rather
slowly. It is beneficial to increase the mass of the wave maker at low frequencies, whereas
at higher frequencies additional mass increases the maximum dynamical force due to the
dominating inertia force.

CONCLUSIONS

Unstructured finite volume method has been verified and used for the design of a plunger
type wave maker. The presented work has consisted of two parts.

In the first part the method of manufactured solutions has been used for the verifi-
cation of a time accurate, surface tracking, free surface flow solver. The bulk flow and
time accurate free surface discretisations have been verified separately using two different
manufactured solutions. The study has shown that the method of manufactured solutions
can be used easily and effectively also for the verification of surface tracking free surface
discretisations, i.e. with a highly nonlinear boundary condition.

The results show that the spatial discretisations of the bulk flow for both the velocities
and pressure are second order accurate, which is the expected order. Similarly, the free
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surface discretisation shows expected order of accuracy and the method is thus verified
for the options used in the study.

In the second part of the work the method has been used for the design of a plunger
type wave maker. Here, three different triangular wedge angles (25, 35 and 45 degrees)
for a plunger type wave maker have been compared in terms of the height and quality of
the generated wave. The quality has been assessed by comparing the fluctuations of the
vertical and horizontal asymmetries of the wave profiles. Considerable differences have
been found both for the generated wave height as well as for the wave quality. Increasing
wedge angle leads to higher waves, but it also leads to increased fluctuations of the ver-
tical asymmetry. Additionally, it has been observed that the amplitude of the asymmetry
fluctuations is highly dependent on the motion frequency. There seems to be an optimal
frequency for each wedge, which increases with increasing wedge angle.

Based on its performace, the 35 degree wedge has been chosen for the new wave
maker. A Fourier analysis of the hydrodynamic force combined with wave breaking and
mechanical limitations on the motion amplitude has then been used to estimate the max-
imum force required from the driving mechanism. This same information has also been
used for the structural design of the wave maker wedge.
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