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ABSTRACT 

The concept of a substitute element is introduced. The substitute element replaces 
temporarily an original element in two dimensions with an ellipse and in three 
dimensions with an ellipsoid. The purpose is to obtain an oriented length measure for an 
element varying smoothly with direction. This facilitates the extension of sensitizing 
parameters found in one dimension to two and three dimensions. Two methods to 
obtain a substitute element are described. They are called the inertia tensor method and 
the second moment tensor method. In two dimensions the methods are equivalent but in 
three dimensions they differ. Some example results are given. 

INTRODUCTION 

In our efforts to extend the sensitizing (stabilizing) parameters employed in one-
dimensional cases to two and three dimensions we have found it useful to define 
oriented linear length measures for finite elements in two and three dimensions. For this 
purpose a finite element is replaced temporarily by a shape with a smoothly varying 
boundary; we call this a substitute element. This substitute element represents the 
shape, size and orientation of the original element in some average manner. Now the 
oriented length (or diameter) of the substitute element depends smoothly on the 
direction in which the length is measured. 

We are going to describe two methods — called the inertia tensor method and the 
second moment tensor method, respectively — to generate a substitute element. In both 
methods, the final shape of the substitute element is given by an ellipsoid (in two 
dimensions by an ellipse) corresponding to a second order symmetric tensor. In the first 
method the tensor is a kind of inertia tensor and in the second method the tensor might 
be called a second moment tensor. 

The ellipsoids are generated in different ways in the two methods. We therefore first 
recall from the literature how the properties of a symmetric second order tensor are 
generally illustrated geometrically by using an ellipse or ellipsoid. We refer here to [1] 
and to the familiar application to the stress tensor τ  ( ijτ ), which is a symmetric second 
order tensor. The two alternatives are the Cauchy’s stress tensor quadric representation 
and the Lamé stress ellipsoid representation. In the Cauchy’s stress quadric 
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representation, a quadratic surface (when the eigenvalues, which are the principal 
stresses 1σ , 2σ , 3σ , are all positive, an ellipsoid) is defined by an equation  

 2
ij i jx x kτ≡ =⋅ ⋅x τ x , (1) 

where x is the position vector to the surface and k is a constant which has the correct 
physical dimension and which controls the size of the surface. It can be shown that the 
semiaxes of the ellipsoid are 

 1 2 3
1 2 3

OP , OP , OPk k k
σ σ σ

= = = . (2) 

These lengths are measured in the corresponding directions (principal directions) of the 
eigenvectors of component representation [ ]τ  of { }[ ]{ }τ= Tτ i j k i j k  in the 
usual , ,i j k  basis of a Cartesian coordinate system. Thus perhaps not so obviously, the 
higher the eigenvalue (principal stress), the shorter the corresponding semiaxis. 

In the Lamé stress ellipsoid representation, the semiaxes are taken directly to be the 
eigenvalues (principal stresses). If these are measured along the principal directions we 
obtain an ellipsoid with the same axis directions as in the Cauchy representation but the 
resulting shapes of the two ellipsoids are in general completely different. 

INERTIA PROPERTIES OF A BODY 

Reference [2] contains a lucid description of inertia properties of bodies and we refer 
here to it. The inertia tensor is defined as 

 ( )d ,Vρ= −⋅∫∫∫I r r 1 rr  (3) 

where the integral is over the body volume in question and where ρ  is the density, r 
the radius vector from the point (reference point) with respect to which the tensor is 
evaluated, 1  is the unit tensor, ⋅r r  is a scalar product and rr  a tensor product. Our 
original starting point was the intuitive observation that the corresponding inertia ellipse 
representation of the inertia tensor more or less seemed to resemble the shape and 
orientation of the plane body in question when the inertia quantities were evaluated 
about the mass center and when the density was constant. 

When dealing with the shape of a body the density distribution is of no relevance and 
we may put formally 1ρ =  in (3). It transforms to 

 ( )dVI r r 1 r r= −⋅∫∫∫ . (4) 

In Cartesian coordinates with the origin at the reference point, the diagonal components 
of (4) are the moments of inertia about the three axes: 

 ( )2 2 dxxI y z V= +∫∫∫ , 
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 ( )2 2 dyyI z x V= +∫∫∫ , (5) 

 ( )2 2 dzzI x y V= +∫∫∫ . 

The off-diagonal components are called often the products of inertia: 

 dxy yxI I x y V= = − ∫∫∫ , 

 dyz zyI I y z V= = − ∫∫∫ , (6) 

 dzx xzI I z x V= = − ∫∫∫ . 

The overbar notation is used here to refer to the fact that the coordinates are measured 
from the volume centroid. In the plane case, the definitions corresponding to (4) to (6) 
are obvious, the integrals are over the plane domain in question and the volume centroid 
is replaced by the area centroid. From now on, we will consider finite elements and 
instead of a body we speak about an element. 

Before evaluating (5) and (6), the position of the volume centroid Cr  of the element 
must be determined. It is obtained using the first moment of the element from (V is the 
volume of the element) 

 C
1 dV
V

= ∫∫∫r r  (7) 

having the Cartesian components 

 C
1 dx x V
V

= ∫∫∫ ,      C
1 dy y V
V

= ∫∫∫ ,      C
1 dz z V
V

= ∫∫∫ .  (8) 

Thus, 

 C= −r r r  (9) 

or in the Cartesian component form 

 Cx x x= − ,      Cy y y= − ,      Cz z z= − . (10) 

In the plane case the counterpart of (7) is (A is the area of the element) 

 C
1 dA
A

= ∫∫r r  

and if we operate in the xy-plane, the two first of formulas (10) apply. 
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INERTIA TENSOR METHOD 

Following now the Cauchy type representation we define the surface of the substitute 
element as the ellipsoid 

 ( )2Ik=⋅ ⋅x I x , (11) 

where Ik  is a constant which has the correct physical dimension and which controls the 
size of the ellipsoid. We set the size here so that the volume of the ellipsoid (in two 
dimensions the area of the ellipse) becomes equal to the volume V (in two dimensions 
the area A) of the element. The volume of an ellipsoid is 

 4
3

abcπ , (12) 

where a, b, and c are the semiaxes. In two dimensions, the area of an ellipse is 
correspondingly 

 .abπ  (13) 

Now referring to formulas (1) and (2), we find that the volume is given here by 

 ( )3II I I

3 2 3 1 2 3

4 4
3 3

kk k k
I I I I I I

π π= , (14) 

where 1I , 2I , 3I  are the eigenvalues of [ ]I  called also the principal moments of inertia 

and [ ]I  is the component form of { }[ ]{ }I= TI i j k i j k  represented in the usual 
, ,i j k  basis of a Cartesian coordinate system. In fact, according to literature the product 

under the square root is an invariant and in detail 

 [ ]1 2 3 det II I I =  (15) 

so that for the volume evaluation we do not actually need to determine the eigenvalues. 
Equating expression (14) with the volume V of the element gives 

 
[ ]( )1/ 61/ 3

I 1/ 3

det I

4
3

V
k

π

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

. (16) 

In two dimensions we obtain correspondingly 

 
[ ]( )1/ 41/ 2

I 1/ 2

det IA
k

π
= . (17) 
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Finally, the end purpose is to find the oriented length Ih  of the ellipsoid in the direction 
given by a unit vector n . Let the corresponding position vector on the surface be 

Ic=x n , where Ic  is the length of the position vector. Substitution of this in (11) gives 

 ( ) ( )2 2
I Ic k=⋅ ⋅n I n , (18) 

from which 

 ( ) I
I I2 2 kh c= =

⋅ ⋅
n

n I n
. (19) 

SECOND MOMENT TENSOR METHOD 

The inertia tensor method described above was arrived at by making use of familiar 
concepts from mechanics texts. Some further considerations lead to an alternative and 
geometrically more direct approach. Let us define a symmetric second order tensor 

 dV= ∫∫∫S rr  (20) 

having the Cartesian components 

 2dxxS x V= ∫∫∫ , 

 2dyyS y V= ∫∫∫ , (21) 

 2dzzS z V= ∫∫∫ , 

and 

 dxy yxS S x y V= = ∫∫∫ , 

 dyz zyS S y z V= = ∫∫∫ , (22) 

 dzx xzS S z x V= = ∫∫∫ . 

S might be called second moment tensor. In the inertia tensor method, the ellipsoid was 
generated by a Cauchy type representation. Here we will employ a Lamé type 
representation. 

It is recalled that the equation of an ellipsoid with the coordinate axes along its axes is 

 
2 2 2

2 2 2 1x y z
a b c

+ + = . (23) 

If the ellipsoid is in an oblique orientation with respect to the coordinate axes, its 
equation is seen from (23) to become 
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 ( ) ( ) ( )22 2
31 2

2 2 2 1
a b c

x ex e x e
+ + =

⋅⋅ ⋅
, (24) 

where 1e , 2e , 3e  are the unit vectors in the direction of the axes of the ellipsoid. 

Let the eigenvectors and eigenvalues of  [ ]S   be S
1v , S

2v , S
3v  and 1S , 2S , 3S , 

respectively (again [ ]S  is the component representation of S  in Cartesian basis). We 
form the ellipsoid 

 ( ) ( ) ( ) ( )
22 2

231 2
S

1 2 3
k

S S S
x ex e x e

+ + =
⋅⋅ ⋅

. (25) 

The unit vectors 1e , 2e , 3e  are now in the directions of S
1v , S

2v , S
3v  and Sk  is a 

constant which has the correct physical dimension and which controls the size of the 
ellipsoid. It is realized that we have not followed strictly the Lamé representation recipe 
as the semiaxes are here taken to be S 1k S , S 2k S , S 3k S , that is, square roots of 
the eigenvalues are employed. The reason is that S represents the measure of length 
squared rather than the length itself which is obvious from definition (20). 

Equation (25) can be transformed into a more illuminating form. For instance, 
manipulation of the first term on the left-hand side gives 

 ( ) ( ) ( ) ( ) ( )2
1 1 1 1 1 1 1

1 1 1 1S S S S
x e x e x e x e e x e ex x= = =
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ . (26) 

Proceeding similarly with the other two terms we find the left-hand side of (25) to 
become 

 1 1 2 2 3 3

1 2 3S S S
e e e e e ex x

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠
⋅ ⋅ . (27) 

The expression inside the parentheses is seen to be the inverse of S represented in the 
basis of the unit eigenvectors. Thus, equation (25) becomes simply 

 ( )21
Skx S x− =⋅ ⋅ . (28) 

The volume of the ellipsoid is obtained again according to (12) as 

 ( ) ( ) [ ]3 3
S 1 S 2 3 S 1 2 3 S

4 4 4 det S
3 3 3

k S k S S k S S S kπ π π⋅ ⋅ ⋅ = = . (29) 

Putting this equal to the volume V of the element, we find that 
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[ ]( )

1/ 3

S 1/ 3
1/ 64 det S

3

Vk
π

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

. (30) 

In two dimensions, the corresponding result is 

 
[ ]( )

1/ 2

S 1/ 41/ 2 det S

Ak
π

= . (31) 

Finally, comparing (11) and (28) with the result (19) we obtain the oriented length 

 ( ) S
S S 1

2 2 kh cn
n S n−

= =
⋅ ⋅

. (32) 

RELATIONS BETWEEN THE METHODS 

It is known that the quadratic form ⋅ ⋅n I n  gives the moment of inertia of a system with 
respect to an axis along n ([2]). Thus component representation [ ]I  of I  in a Cartesian 
system is a positive definite matrix as the moment of inertia about an axis is positive. 
The only situation when a positive semidefinite case can occur is in the case where the 
element volume is distributed on a line through the centroid. With a reasonable element 
this is not the case. 

Let us consider similarly the quadratic form 

 ( )( ) ( )( )d d dV V V= = =⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∫∫∫ ∫∫∫ ∫∫∫n S n n rr n n r r n n r n r  

 ( )2 dV= ⋅∫∫∫ n r . (33) 

The manipulations show that the result is the second moment of the system with respect 
to a plane through the volume centroid and perpendicular to n. This is always non-
negative, so the second moment tensor is also positive definite. The only situation when 
a positive semi-definite case can occur is in the case where the element volume is 
distributed on a plane through the centroid. Again, for a reasonable element this cannot 
occur. 

Because the geometric measures I and S considered are symmetric, the eigenvectors of 
[ ]I  and [ ]S  are orthogonal  (or can be chosen so) and because the tensors are positive 
semi-definite, the eigenvalues are non-negative as has been tacitly assumed above. 

Geometric measures I and S have some simple relationships. Realizing that the term 

 2 2 2x y z= + +⋅r r , (34) 

we obtain from (4) the connection 
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 ( )2 2 2d d dV V x y z V= − = + + −⋅∫∫∫ ∫∫∫ ∫∫∫I r r 1 r r 1 S  

 
 ( ) ( )1 2 3 trxx yy zzS S S S S S= + + − = + + − = −1 S 1 S S S . (35) 

Let the eigenvectors of [ ]I  be I
1v , I

2v , I
3v . Multiply both sides of (35) from the right by 

I
jv : 

 ( )I I I
1 2 3j j jS S S= + + −⋅ ⋅ ⋅I v 1 v S v  (36) 

or 

 ( )I I I
1 2 3j j j jI S S S= + + − ⋅v v S v  (37) 

or further, by arranging terms, 

 ( )I I
1 2 3 .j j jS S S I= + + −⋅S v v  (38) 

This shows that component representations [ ]I  and [ ]S  have identical eigenvectors and 
the corresponding eigenvalues are related by 

 1 1 2 3 1S S S S I= + + − , 

 2 1 2 3 2S S S S I= + + − , (39) 

 3 1 2 3 3S S S S I= + + − , 

or 

 1 2 3I S S= + , 

 2 3 1I S S= + , (40) 

 3 1 2I S S= + . 

TWO DIMENSIONS 

In two dimensions (put 3 0S =  in the two first equations (40)) 

 1 2I S= , 

 2 1I S= . (41) 

Thus the eigenvalues so to say switch places and for example 
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 [ ] [ ]det I det S D= ≡ . (42) 

Let us consider I and S here in some more detail. Using the xy-plane, the component 
representation [ ]I of { }[ ]{ }I= TI i j i j have the elements  

 2dxxI y A= ∫∫ ,      2dyyI x A= ∫∫ ,      dxy yxI I x y A= = − ∫∫ . (43) 

The component representation [ ]S  of   { }[ ]{ }S= TS i j i j  becomes thus 

 [ ]S
yy xy

xy xx

I I

I I

−⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
. (44) 

Its inverse is found to be 

 [ ] [ ]1 1 1S I
xx xy

xy yy

I I

I ID D
− ⎡ ⎤
= =⎢ ⎥

⎢ ⎥⎣ ⎦
 (45) 

or in the coordinate system invariant notation, we have 

 1 1
D

− =S I . (46) 

Comparing formulas (17) and (31) it is found that 

 I S .k D k=  (47) 

Using relations (46) and (47) in expressions (19) and (32) it is seen that they produce 
identical oriented lengths. Thus, perhaps surprisingly, the two methods are found to be 
equivalent in two dimensions but not in general in three dimensions. 

SOME EXAMPLES 

In the examples, the integrals needed to find the geometric measures — centroids, the 
components of I or S and the volumes or areas — of the elements were evaluated by 
quadratures for triangles and tetrahedrons giving exact integrals up to and including 
second order polynomials. For this purpose, four-node quadrilateral and eight-node 
hexahedron elements were divided into two triangles and six tetrahedrons, respectively.   
Use of a quadrature does not introduce any modification over the scheme discussed, as 
we will apply the sensitized (stabilized) finite element method only in connection with 
the simplest elements, that is, with three-node triangles and four-node quadrilaterals and 
in three dimensions the four-node tetrahedrons and eight-node hexahedrons. A 
quadrature is needed anyway in any practical implementation and, therefore a 
quadrature was used also in the examples. 

To give an idea of the geometrical relationship between the actual and the substitute 
element, we show the results of some calculations. The first example in Figure 1 shows 
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the original and substitute element in the two-dimensional case, for two distorted 
element shapes. In the two dimensions, the two methods discussed produce identical 
substitute elements. The three dimensional examples of Figure 2 and Figure 3 show that 
the substitute element generated by the second moment method is closer to the original 
shape in orientation and size than the one by the inertia method. 

 

                          

 

Figure 1 Substitute element by the second moment tensor method (a) for a triangular 
element and (b) for a quadrilateral element. 

 

         

 

 

Figure 2 Substitute element for a tetrahedron element (a) by the inertia tensor method 
and (b) by the second moment tensor method.  
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Figure 3  Substitute element for a eight-node hexahedron element (a) by the inertia 
tensor method and (b) by the second moment tensor method. 

CONCLUDING REMARKS 

It is rather obvious that the inertia moment method starts to produce somewhat odd 
results in three dimensions if the element considered is “thin” in some direction. One 
criterion for comparing the two methods could perhaps be the following: for an initially 
ellipsoid shaped element the methods should obviously reproduce the original element 
as the substitute element. Of course, in reality, no practical element is an ellipsoid but 
we can still use this thought experiment here. Employing the inertia and the second 
moment tensor methods in this case it is found that the second moment tensor method 
indeed reproduces the ellipsoid but the inertia tensor method does not. As an example, 
when applying the inertia tensor method for an ellipsoid with the shape / 0.5b a = , 

/ 0.25c a = , the semiaxes a, b, c are reproduced multiplied roughly by the factors 0.77 , 
0.84 , 1.54 , respectively. For the shape / 0.8b a = , / 0.6c a = , somewhat milder 
factors 0.89 , 0.96 , 1.16 , respectively, are obtained. In any case, it seems that in three 
dimensions, at least when rather elongated elements are used, the second moment tensor 
method is to be preferred. 

Considering the second moment method from a general point of view we note that we 
have in fact operated with the zeroth moment (scalar) 

 dV V=∫∫∫  (48) 

the first moment (vector) 

 CdV V=∫∫∫ r r  (49) 

and the second moment (second order tensor) 

 C Cd dV V V= +∫∫∫ ∫∫∫rr r r r r  (50) 

(a) (b)

x 

y 

z 

4 

2 

1 
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and demanded these quantities, respectively, to be the same for the original element and 
for the substitute element. The right-hand sides of (49) and (50) follow from the 
property that the first moment with respect to the centroid disappears. One could 
naturally speculate on more complicated substitute elements so that even higher 
moments could be imitated when more adjustable parameters would be available to 
alter the shape. However, using an ellipse or ellipsoid means already an improvement 
over the one-parameter circle or sphere approximation of the mathematical theory of  
the finite element method. 

A certain further equivalence between an original element and the corresponding 
substitute element appears emphasized when the shape functions of the element are 
linear in the coordinates, that is, for the three-node triangle and for the four-node 
tetrahedron. Let us consider for shortness of presentation the three-node triangle. When 
the Galerkin finite element method is applied in a linear problem (with assumed 
constant data in an element), the weak form integrand is seen to be of the form 

 2 2
0 1 2 3 4 5x y x xy yα α α α α α+ + + + + , (51) 

where the coefficients α  are constants. For instance, the constant term may emerge 
from diffusion type contributions, the linear terms from convection type contributions 
and the quadratic terms from reaction type contributions. Integrating (51) over the 
element domain produces the result 

 2 2
0 1 2 3 4 5d d d d d dA x A y A x A xy A y Aα α α α α α+ + + + +∫∫ ∫∫ ∫∫ ∫∫ ∫∫ ∫∫  

 2 2
0 1 C 2 C 3 C 3 4 C C 4 5 C 5xx xy yyA x A y A x A S x y S y Sα α α α α α α α α= + + + + + + + + . (52) 

The steps used should be rather obvious. Now, the substitute element has by design the 
same area, the same centroid coordinates (midpoint of the ellipse) and the same second 
moment components about the centroid as the original element. Thus integration of (51) 
over the substitute element domain produces again the result (52). Of course, we do not 
perform this kind of integrations over the substitute element as the substitute element is 
employed for other purposes but in any case, the result increases the credibility of the 
substitute element concept. 

As a maybe the simplest example of the application of the substitute element concept 
we could mention its use in the solution of the diffusion-convection equation by the 
sensitized (stabilized) finite element method in two or three dimensions. By taking the 
oriented length in the flow direction as the characteristic length to be used in the 
corresponding one-dimensional sensitizing parameter expression, rather satisfactory 
solutions are obtained. We intend to report results from more complicated applications 
in the future. 
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