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ABSTRACT 
The paper studies the response characteristics of stochastic mass damper. The excitation 
is assumed to be the stochastic process causing random vibration in the structure. The 
primary structure is appended with mass damper exhibiting nonlinear stiffness 
characteristics and viscous or internal friction type damping characteristics. The 
response of the primary structure is analyzed and using FEM solutions for FPK-
equation ( Fokker – Planck – Kolmogorov ) with the aid of standard software for trans-
ient diffusion problems. The effectiveness of the damper is assessed for various 
alternative stiffness and damping configurations for the mass damper. The solution will 
be presented in the form of marginal distribution for displacement, velocities and 
accelerations of the primary structure. 
 
Keywords: Fokker-Planck-Kolmogorov-equation, random process, stochastic mass 
damper, Markov process. 
 
 
INTRODUCTION  

The work of physicists on Brownian motion enabled the modeling of the response of 
dynamic systems to wide-band random excitation in terms of multi-dimensional Markov 
processes [1]. The state transition probability function for Markov a process is governed 
by a partial differential equation, known as the Fokker Planck Kolmogorov (FPK) 
equation, or forward diffusion equation [2]. 
 The Fokker Planck Kolmogorov equation, governing the diffusion of probability mass 
in state space, is analogical to the diffusion equations, which govern the diffusion of 
heat, or mass, in thermo-hydraulic problems. The drift and diffusion coefficients in the 
FPK equation can be related to the parameters in the dynamic equations of motion.  
The theoretical framework of Markov process theory offers, an approach to the 
treatment of non-linear random vibration problems. For cases where The excitation 
must be approximated as white noise process or the excitation pre-filtered in order to 
generate excitation processes for the system with the required power spectra.  
Then Markov process theory is also applicable to a high dimensional combined system 
consisting of the oscillators in series with the original system. These systems lead to 
multi-dimensional problems governed by FPK – equation.  
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Figure 1. Schematic figure of calender frame in paper machine. 

 
 
The class of non-linear random vibration problems for which the Fokker Planck 
Kolmogorov equation can be solved exactly is limited. The broadest class of single 
degree of freedom structural systems, for which the stationary solution of the associated 
FPK equation can be determined, requires that the mass, damping and stiffness of the 
oscillator are functions of displacement and velocity of a particular form. This class 
does not include such structural systems that are common in practical applications. 
This paper presents the two solution methods for the FPK with the application to the 
dynamic vibration absorber.  
The numerical examples presented are solved by statistical equivalent linearization or 
by finite elements in transient problem formulation. 
The statistical linearization used here follows the approach of reference [1] and the 
finite element solution approach follows the references [3], [4] and [5]. 
 
 
PROBLEM FORMULATION 
 
The application of dynamic vibration absorbers is especially effective for high slender 
structures like, for instance, supercalender frames in paper machine construction. The 
material of these calender frames is steel and they are loaded by stochastic excitation of 
calender rolls with various diameters. The excitation frequencies of various calender are 
different because the web speed in the paper machine is same for all rolls and the roll 
sizes vary. Dynamic vibration absorbers are used for decreasing the vibrations in 
calender frames in cases when the dominant vibration mode of the frame happens to 
coincide with the running speed of the paper machine. The allowable vibration 
amplitudes are specified in root mean square (rms) velocity values for the top of the 
calender frame. The typical allowable rms velocity value is 4.5 mm/s. The vibration 
absorber design for deterministic harmonic excitation loading and linear vibration 
absorber characteristics has been discussed in references [6] and [7]. The typical 
calender frame for paper machine is shown in Figure 1. 
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Figure 2  Dynamic vibration absorber 
 
 
FOKKER-PLANCK-KOLMOGOROV EQUATION FOR VIBRATION 
ABSORBER 
 
The state transition probability function for such a Markov process [1] is governed by a 
linear partial differential equation, known as the Fokker-Planck-Kolmogorov (FPK) 
equation. This equation, governing the diffusion of probability mass in state space, is 
analogous to the diffusion equations which govern the diffusion of heat, or mass, in 
seepage problems. It is possible to relate the 'drift' and 'diffusion' coefficients in the FPK 
equation directly to the parameters in the dynamic equations of motion of the system 
under consideration. For the white noise excitation process, the Markov process theory 
offers a direct approach to the exact treatment of non-linear random vibration problems.  
For the secondary system of Figure 2 the equation of motion can written be [2] 
 

( ) 2 ( ) ( ) ( )X t X t kX t W t′′ ′+ + =       (1) 
 
With 1 2( ) ( ), ( ) ( )X t X t X t X t′= =  and  [ ]T1 2( ) ( ) ( ) ,X t X t X t=   equation (1) can be 
presented 
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The Fokker-Planck-Kolmogorov equation can then be written 
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The solution for the stationary density function  1 2( , )sf x x  can then be written [5] 
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Optimum tuning ratio of linear vibration amsorber for filtered white 
noise excitation
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Figure 3  The optimum tuning for stochastically excited linear vibration absorber. 

 
 
THE RMS RESPONSE OF THE SYSTEM IN FIGURE 2 FOR FILTERED 
WHITE NOISE 
 
It will be assumed that an external force, 0 ( )F t , acts on the mass m1, The absolute 
displacements of m1, and m2, measured from the static equilibrium position, are denoted 
by x1, and x2, respectively. A linear damper, with coefficient c1, connects m1, to the 
foundation, whereas a linear spring, of stiffness k2, connects m1 and m2. It is assumed 
that Duffing type linear-plus-cubic spring connects m1 to the foundation. m1 and m2 are 
connected by linear-plus-quadratic type damper. The force in nonlinear spring is given 

by 2
1 1 1 1(1 )k x xε+  and the force in non-linear damper by 2 2 1 2 2 1( )(1 )c x x x xε′ ′ ′ ′− + − . 

The power spectrum shape of the excitation 0 1( ) ( ) /p t F t m=  is assumed to be of the 
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form 2 2
0( ) /( )pS Sω α ω= + , where ω is the frequency. The porblem is solved by 

equivalent linearization technique according to reference [4]. 
For application example following numerical values are taken to the parameters of 
system in Figure 2: 
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The excitation is defined by 2 2 1
0 1Ns kg ; 2 rad sS α− −= = . 

Optimum tuning 2 1/ω ω  for linear system  

The curve showing the optimum tuning for linear system when ε1 and ε2 are zero is 
shown in Figure 3.  It can be seen from Figure 3 that the optimum tuning ratio is 0.95. 

Optimum tuning of the non-linear vibration absorber for filtered 
white noise excitation
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Figure 4  The optimum tuning for stochastically excited non-linear vibration absorber. 
 

Optimum tuning 2 1/ω ω  for non-linear system  

The curve showing the optimum tuning for linear system when 3
1 1 0.05 Nmkε −=  and 

2
2 2 0.05 Nmcε −=  is shown in Figure 4. It can be seen in Figure 4 that for even slightly 
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non-linear system the optimum tuning is high tuned when it for linear system is low 
tuned. The optimum tuning in Figure 4 is 1.1. 
Comparison between linear and non-linear tuning curves 
If the tuning curves of Figure 3 and Figure 4 are plotted in the same frame we obtain the 
Figure 5, which shows the comparison between structural responses for linear and non-
linear vibration absorbers for different tuning ratios for filtered white noise excitation 

1.7

1.8

1.9

2

2.1

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

tuning ratio

rm
s r

es
po

ns
e 

of
 th

e 
st

ru
ct

ur
e 

[m
]

rms nonlin
rms linear

 

Figure 5  Comparison of tuning curves of linear (solid line) and non-linear (dotted line) 
vibration absorbers. 

CONCLUSION 
 
The response characteristics of linear and non-linear stochastically excited vibration 
absorber were evaluated. The optimum tuning ratio for linear as well as non-linear 
absorber were determined. It should be noted that even the slight non-linearity in the 
system changes the shape of the tuning curve essentially.   
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