
 1

RAKENTEIDEN MEKANIIKAN SEURA RY 
FINNISH ASSOCITATION FOR STRUCTURAL MECHANICS 

SPECIAL ISSUE FOR THE 18TH NORDIC SEMINAR ON 
COMPUTATIONAL MECHANICS 

OCTOBER, 27TH – 30TH  2005 

VOL. 38, 2005, Nro 3



 
 
 
 
 
 
 R A K E N T E I D E N  M E K A N I I K A N  S E U R A  R.Y. 
 FINNISH ASSOCIATION FOR STRUCTURAL MECHANICS 
 
 
 
 JOHTOKUNTA  ADMINISTRATIVE BOARD 
 

 
JUHA PAAVOLA, prof. (puheenjohtaja), TKK/Rakenteiden mekaniikka 
TAPIO AHO, dipl. ins., Ins.tsto Magnus Malmberg Oy 
JOUNI FREUND, tekn.tri, TKK/Lujuusoppi 
JUHANI KOSKI, prof., TTY/Tekn. mek. ja optimointi 
KARI KOLARI, dipl. ins., TKK/Lujuusoppi 
REIJO LINDGREN, dipl. ins., CSC-Tieteellinen laskenta 
SEPPO ORIVUORI, tekn.lis, Enprima Oy 
ILMO SIPILÄ, dipl. ins., Ins.tsto Ilmo Sipilä 
JUKKA TUHKURI, prof., TKK/Lujuusoppi 
MATTI RANTA, prof., kunniapuheenjohtaja 
 
 
 
 

 
 

 TOIMISTO  OFFICE 
 

SAMI PAJUNEN, asiamies, puh. 040 900 4501    
ELSA NISSINEN-NARBRO, kanslisti/jäsenasiat, puh. (09) 451 3701 

 
 

JÄSENET   MEMBERS 
 

HENKILÖJÄSENET   176 
OPISKELIJAJÄSENET     3 
YHTEISÖJÄSENET:   

  
 
 Aaro Kohonen Oy   KCI Konecranes International Plc 

Finnmap Consulting Oy  Konecranes VLC Oy 
 Ins.tsto JP-Kakko Oy   KPM-Engineering Oy 
 Ins.tsto Magnus Malmberg Oy Nokian Renkaat Oyj  
Ins. tsto Pontek Oy   Optiplan Oy 
Ins.tsto Pöysälä & Sandberg Oy  Suomalainen Insinööritoimisto SITO Oy 
TKK/Laivalaboratorio  Pohjois-Karjalan AMK    
 

   
 
 OSOITE: Teknillinen korkeakoulu, Rakennus- ja ympäristötekniikan osasto, 

   Rakentajanaukio 4 A, PL 2100,  02015 TKK, puh. (09) 451 3701, telefax (09) 451 
3826 

 
 ADDRESS: Helsinki University of Technology, Department of  Civil and Environmental 

   Engineering, Rakentajanaukio 4 A, P.O.Box 2100,  FIN-02015 HUT, Finland. 
  tel. (358-9) 451 3701, telefax (358-9) 451 3826 

http://rmseura.tkk.fi/

 

http://rmseura.tkk.fi/


If you see the name

Ruukki instead of

Rautaruukki, Rannila,

Fundia Reinforcing,

Gasell or Asva, you are

actually seeing more.

w
w

w
.r

uu
kk

i.c
om



 



Call for papers
Accidents and safety in construction sector

Construction
SAFETY
May10-12, 2006
Helsinki, Finland

Finnish Association of Civil Engineers

The construction industry is one of the

most hazardous workplaces in the world.

Mistakes during construction often lead

to very negative and unwanted results

later - to loss of property or even human

lives. Such situations may be caused ei-

ther by natural disasters and environmen-

tal changes or human errors, whether

deliberate or involuntary.

The Finnish construction industry, spe-

cialist organizations and authorities have

discussed ways to improve the situation

and found exchange of information, cir-

culation of best practices, learning from

cases and brainstorming with colleagues

and stakeholders to be one good way to

proceed. The Finnish Association of Civil

Engineers RIL, as an impartial network

of experts, has decided to open a time

window and platform for an open dis-

cussion and exchange of views between

European, Finnish and global industry

members by organizing a conference

where these issues can be presented and

discussed .

This is an open call for experts,

practioners, researchers and other pro-

fessionals dealing with structural and

occupational safety to step ahead, ex-

change their knowledge and informa-

tion about these important issues and to

learn, how to make construction indus-

try a safe industry and built environment

a safe place to live!

More information:More information:More information:More information:More information:

www.ril.fi/safety2006
or kaisa.venalainen@ril.fi
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Preface 
 
These proceedings contain the papers presented at the 18th Nordic Seminar on 
Computational Mechanics, held at Silja Serenade ferry travelling between Helsinki and 
Stockholm, the Capitals of Finland and Sweden, and hosted by Helsinki University of 
Technology, Espoo, Finland, on 27-30 October 2005. 
 
The seminars are organized annually by the Nordic Association of Computational 
Mechanics (NoACM). The NoACM was founded in 1988 with the objective to 
stimulate and promote research and practice in computational mechanics, to foster the 
interchange of ideas among the various fields contributing to computational mechanics, 
and provide forums and meetings for dissemination of knowledge in computational 
mechanics. Younger researchers, including doctorate students etc. are especially 
encouraged to participate at these seminars. The member countries of NoACM are the 
Nordic countries (Denmark, Finland, Iceland, Norway and Sweden) and the Baltic 
countries (Estonia, Latvia and Lithuania). NoACM is a subchapter of the International 
Organization for Computational Mechanics (IAC) and the European Community on 
Computational Methods in Applied Sciences (ECCOMAS).  
 
The responsibility for organizing this year’s seminar was assigned by NoACM to 
Laboratories of Structural Mechanics and Mechanics of Materials, Helsinki University 
of Technology. Traditionally, the seminars have been organized in academic university 
circumstances. To reserve for participants more time to have with each other and to 
provide the common time with more comforts, this time the seminar will be arranged in 
the ferry. The seminar contains five invited lectures and 38 contributed presentations 
divided into 10 separate sessions of which some are parallel ones. In this volume, the 
invited keynote lectures are placed first and after that comes the contributed papers in 
the order of the seminar program. 
 
On behalf of the organizers, we’d like express our gratitude to all contributors of the 
seminar, the invited and contributed speakers for their effort in preparing talks, 
presentations and papers, and to those all who have helped in practical arrangements.  
 
Finally, we thank all the sponsors, Ruukki, KCI Konecranes PLC, VTT-Technical 
Research Centre of Finland, and Finnish Association of Civil Engineers, who have 
helped us to make this seminar true. Particularly, the Finnish Association of Structural 
Mechanics, deserves to be mentioned for serving a great forum to publish the seminar 
abstracts in the special issue devoted for the seminar. 
 
Espoo, 21 October 2005 
 
The editors 
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Discrete Element Simulations in Ice Engineering

Jukka Tuhkuri
Laboratory for Mechanics of Materials

Helsinki University of Technology, Espoo, Finland
e–mail: jukka.tuhkuri@tkk.fi

Summary The ice load on an engineering structure depends on the deformation and failure process of
sea ice. As several ice features and ice failure processes are discontinuous in nature, it is tempting to study
the ice load problem by using a discontinuous approach. Discrete element method (DEM) is one of the
techniques that model the dynamics of a system of discrete particles. This paper gives a review of a group
of ice problems and their analysis with DEM.

Introduction

Determination of ice loads on ships and offshore structuresis an important technical challenge.
Ice forces acting on a structure are due to relative movementbetween the structure and ice and the
sequential failure process of the ice feature. Typical sea ice features are sheets of level ice, ridges
and rubble fields. Both ridges and rubble fields are piles of ice blocks, but ridges have an elongated
form. Ridges and rubble fields form when two ice sheets, driven by winds and currents, collide. In
the Baltic, ridges more than10 meters deep are common.

A central hypothesis in traditional solid mechanics statesthat a body under consideration is con-
tinuous and remains continuous under the action of externalforces. However, ice mechanics is one
of the engineering fields where this continuum description may not be the most appropriate, and
a discontinuum approach should be used instead. Figure 1 shows two important ice engineering
problems. The key features of the ice load cases shown are thediscontinuous nature of both the
pile of ice blocks and the failure process of ice. When an ice sheet loads a structure as in Figure
1(a), the originally intact ice sheet breaks into discrete ice blocks which accumulate in the ice-
structure interface and thus affect the failure process. Onthe other hand, when a structure indents
a ridge or an ice rubble pile as in Figure 1(b), the load on the structure is due to rearrangement of
the discrete ice blocks, in addition to possible failure of the ice blocks.

(a) (b)

Figure 1: (a) Sketch of en ice sheet failure against an inclined marine structure. (b) Snapshot of a DEM
simulation of an indentor moving down into a floating layer ofice blocks [1].

The discrete element method (DEM) is a numerical tool used tosimulate a system of particles.
DEM is based on the concept that individual material elements are considered to be separate and,
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if connected, are connected along their boundaries by appropriate interaction laws. An impor-
tant aspect of the discrete element method is that the particles may fracture and fragment, thus
increasing the total number of bodies during a simulation. In a discrete element simulation, the
interaction and behavior of individual particles will result into emergent physical properties of the
particle assembly. A DE approach can be useful in cases wherethe constitutive behavior of a par-
ticle assembly is not known. In addition to ice mechanics, DEM has been applied to deformation
of granular materials, rock mechanics, fragmentation of solids, as well as structural failure and
collapse [2][3][4]. This paper first will introduce the discrete element method and then describe
some engineering problems analysed with DEM. The goal is notto give an extensive literature
review, but to highlight a few important applications.

The discrete element method

In essence, a discrete element simulation is a computer program that models the nonlinear dynam-
ics of a system of particles. The forces on each particle are calculated at each time step and the
particles are moved to new locations with new velocities that depend on the forces. Newtonian
mechanics is assumed to describe the particle motions. A DEMprogram has the following tasks:

1. Store the position, orientation, velocity, and shape of each particle.

2. Find the neighboring particles.

3. Find the contact geometry (overlapping areas) between the neighboring particles.

4. Determine the contact forces between particles, i.e. addthe physical properties of the parti-
cles into the simulation.

5. Determine whether any particle will fracture into new particles.

6. Solve the equations of motion of the particles and move each to a new position with a new
velocity and orientation.

7. Analyse the variables of interest and construct a visual record of the systems motion.

The second and third tasks, dealing both with contact detection, are time consuming. For radially
symmetric particles (disks and spheres) it is a trivial task, but for polygonal or polyhedral particles
the task is a complex exercise in computational geometry. Presumably for this reason, the majority
of DE simulations have been performed by using disks or spheres. However, in many physical
problems the particles are not symmetric and the particle shape is an important feature of a granular
assembly [5][6][1].

The fourth task is to determine the contact forces between particles. The traditional method in
DEM has been to treat each particle as a rigid body, calculatethe overlap of the bodies and to
relate the overlap depthδ with contact force by using simple spring and dashpot models. For
example, the normal contact forceFn in compression is then

Fn = knδ + cnδ̇ (1)

wherekn is the contact stiffness andcn is the contact damping. This widely used model is some-
what controversial, because it is not clear whatkn and cn are. For elastic spheres,kn can be
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defined by using the Hertz contact model, but for other particle shapes, no generalkn exist. Thus,
a more recent approach is to use a combined finite-discrete element method where each particle is
modelled by using FEM [4][7].

The contact force in Equation 1 is for compression only. In problems dealing with an assembly of
discrete particles, the normal force in tension vanishes. However, also tensile contact forces can
be easily taken into account in DEM.

Research of ice engineering problems with DEM

Problems dealing with ice fields comprising of discrete ice floes

The early applications of DEM in ice problems concentrated in modelling the convergent behavior
of systems of circular ice floes in two dimensions (2D) [6] [8]. In these studies, the goal was to
examine the constitutive equations of ice cover in large scale. Engineering applications of this
problem include simulations of river ice transport phenomena [9], forces exerted on a boom when
it is pulled through a broken ice sheet [10] and the behavior of a ship moored in broken ice (Figure
2) [11]. Later, three dimensional (3D) simulations have shown that the floes start to overlap each
other when the floes are packed on the water surface at an average concentration of about80 %
by area [12]. In other words, when the concentration reaches80 %, the problem becomes 3D and
cannot be modelled with 2D models.

Figure 2: Snapshot of a 2D DEM simulation of a ship (left) moored in broken ice moved by a current [11].

Figure 3 shows a snapshot from 3D ice floe field simulations in which a floating layer of circular
floes, confined in a rectangular channel, was compressed by a pusher moving at a constant speed
[12]. The accuracy of the simulations was assessed by comparison with a series of similar physical
experiments performed in a refrigerated basin. Figure 4(a)shows the forces on the pusher obtained
in the experiments and simulations with two ice thicknesses. Three distinct regions are evident in
the force-displacement,F ∗(X∗), graphs. During the first period (X∗ < 6), the forces increase as
the floes are herded toward the far end of the channel. The pusher force atX∗ = 6 represents
the strength of the 2D consolidated surface layer of horizontal floes. During the second period
6 < X∗ < 35, theF ∗(X∗)-record is characterised by the resistance of the floes to rotation and
rafting, but also to frictional contact with the channel sides. The third period,X∗ > 35 begins
when the entire initial surface layer of floes has failed. Following this comparison, the computer
model was used to explore the effect of variations in channellength and width, the ratio of floe
diameter to thickness, floe on floe friction coefficients, andthe distribution of floe diameters on
the force required to compress the floes. As an example, the frictional force at the channel sides,
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Figure 3: Snapshot of a 3D DEM simulation of a pusher (right) compressing a floating layer of ice floes
[12].

which is an artifact of the experimental setup and does not appear in nature, can be removed in the
DE simulations by using periodic boundary conditions. Figure 4(b) shows the simulatedF ∗(X∗)-
record for two channel lengthsL∗ with periodic boundary conditions. Comparison between the
results shown in Figures 4(a) and 4(b) suggest that the positive slope in theF ∗(X∗)-record at
5 < X∗ < 35 in Figure 4(a) is caused by the channel edge friction.

A 3D DEM simulation of an ice floe field has also been used to model ship channel ice resistance
[13]. That was done by replacing the pusher shown in Figure 3 by a ship shaped object.

The mechanical properties of ice ridge keels are important information for ridge load calculations.
For over a decade, ice rubble problems have been studied withDEM in 2D [6] [14][1]. Snap-
shot of a simulation of ridge keel punch test was shown in Figure 1(b) and Figure 5 shows the
force-displacement graph of this simulation, together with results obtained by using other particle
shapes. These simulations suggest that the ridge keel indentation load is highest for the rubble pile
formed from rectangular particles and lowest for a pile formed from circular particles. However,
the shape of the force-displacement graph appears not to be strongly affected by the particle shape.

The differences in ice ridge analyses, performed by using a discontinuum approach (DEM) or a
more traditional continuum approach, can now be highlighted. In a DE model, the ridge behavior
is defined by local scale parameters through deformation, failure and interaction of individual ice
blocks. These local scale parameters are, for example, the elastic modulusE of ice and the ice-ice
friction coefficientµ. The traditional way to study ice ridge loads is to model the ice mass with
models based on soil mechanics. For example, in the Mohr-Coulomb model the ridge strength is
defined with friction angleφ and cohesionc. These parameters describe behavior of the ridge as
a whole. It is reasonable to assume that if the number of ice floes in a ridge is high enough, the
continuum approach should give acceptable results. However, the minimum number of ice blocks
required to fulfill the continuum approach is not known. Another point of interest is to consider
the parameters describing ridge behavior in the two approaches. Currently, it is not totally clear
what are the most important local scale parameters (µ, E, block shape, etc.), nor it is known what
are the relationships between the local scale parameters and the Mohr-Coulomb model.
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(a) (b)

Figure 4: (a) Nondimensional pusher force versus displacement as measured in experiments (model) and
simulations (simul) shown in Figure 2.h is ice thickness. (b) Nondimensional pusher force versus nondi-
mensional pusher displacement for two channel lengthsL∗ with periodic boundary conditions [12].

Problems dealing with ice sheets

The failure of ice cover against a marine structure is a fragmentation process where a solid disin-
tegrates into discrete particles which then interact with each other and pile-up against the structure
(Figure 1(a)). DEM appears to be well suited to this kind of problems, but only a few studies have
been performed, e.g. [15][16]. Another ice pile-up processis ridging. Ice ridges form when two
ice sheets are driven together, ice blocks break off the sheets and pile-up to form a ridge. Ridge
formation from two thin sheets [17] as well as from a thin sheet breaking against a thick sheet [18]
have been studied with DEM. Rafting is a process closely related to ridging. Rafting is the simple
overriding of one ice sheet by another ice sheet.

From an engineering point of view, ridging and rafting are important processes, as they define the
horizontal force an ice sheet can transmit. In other words, ridging and rafting define the horizontal
strength of an ice sheet and thus give an upper limit for the ice load on a marine structure.

Figure 6 shows snapshots from DEM simulation showing raftedand ridged ice. In that two dimen-
sional simulation [17], two identical ice sheets were pushed together. Each ice sheet was composed
of two thicknesses of ice and the ratio of thicknesses was varied to obtain degrees of inhomogene-
ity. Again, the accuracy of the simulations was assessed by comparison with a series of similar
physical model scale experiments. Both the experiments andthe simulations showed that homo-
geneous ice sheets tend to raft and inhomogeneous ice sheetstend to form ridges. Following the
comparison, the computer model was used to perform simulations to study the ridging and rafting
forces and to systematically explore the effect of the thickness and thickness inhomogeneity on
the likelihood of occurrence of ridging and rafting. Compared to the physical experiments, the
DE simulations provided a low cost alternative to systematic parametric studies. In addition, with
simulations it is easier to isolate the effect of a single variable in a physical process. Comparison
of the measured and calculated forces (Figure 7) showed thatthe average simulation forces under-
estimated the average experimental forces by about50 %. This difference is most likely due to the
two dimensionality of the computer model, and highlights the need for 3D simulation tools.
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Figure 5: Force-displacement records from punch test simulations, shown in Figure 1(b), with different
particle shapes [1].

(a) (b)

Figure 6: Scenes from a DEM simulation showing (a) rafted and(b) ridged ice [17].

Summary and discussion

In this paper the discrete element method and some typical problems in ice engineering have been
shortly reviewed. It was argued that there are ice engineering problems which should be analysed
by using a discontinuous approach, rather than the more traditional continuum approach. First,
several ice features comprise of discrete ice floes and, in addition, often the individual ice floes
are large compared to the size of the ice feature. As an example, an ice ridge may be formed
through stacking of less that ten layers of ice. Second, the ice failure process is a discontinuous
fragmentation process. An example of this kind of problem isfailure of an ice cover against a
structure.

The studies reviewed have demonstrated the usefulness of DEM in ice engineering. DEM can be
used in similar tasks than model scale experiments but, moreimportantly, DEM can be effectively
used to study the effects of changing a single parameter.

While DEM is well established and has been applied to different kinds of problems, the application
of DEM is still expanding, probably because of the increase in available computing power. One of
the interesting new trends in DEM is the development of combined finite-discrete element method
[4], where each discrete element is modelled with FEM. Whilethis is computationally demanding,
it offers possibilities to model the particle-particle contacts in a more rigorous way than can be
done with a spring and dashpot model, see Equation 1.
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Figure 7: Force-displacement records from 3D physical experiments (model tests) and similar 2D ridge
simulations shown in Figure 5(b) [17].
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Summary We present algorithms and numerical simulations of fluid flow at the nano-, meso- and macroscale.
The techniques involve nonequilibrium molecular dynamics simulations of fluids in nanoscale confinement,
dissipative particle dynamics for fluids at the mesoscale, and smooth particle hydrodynamics and particle
vortex methods for compressible and incompressible macroscale fluid dynamics. We couple the nano- and
macroscale descriptions using a Schwarz alternating procedure and effective boundary wall forces to min-
imize the artifacts introduced by the interface between the two regions. This procedure is extended to the
mesoscale model and includes the inherent fluctuations at this length scale. A unifying particle description
is used thoughout in the framework of massively parallel hybrid particle-mesh library.

Introduction
Particle methods provide a powerful, unifying description of discrete and continuum mechanics
[17] with applications that that range from atomistic systems using molecular dynamics (MD)
simulations, through agglomerations of atoms and molecules at meso-scopic time and length
scales using dissipatitive particle dynamics (DPD), and continuum description of fluid and solid
mechanics using vortex particle method (VM) and smooth particle hydrodynamics (SPH), to plan-
etary systems invoking Barnes-Hut [1] and hybrid particle-mesh methods [13].
The kinematic relations governing these different systems share many common features and may
often be described in terms of short- and long-range interaction potentials. The latter includes the
omnipresent

�����
potential governing electrostatics, gravitation, and “induced fluid motion” in vor-

tex particle methods. The computational cost associated with the evaluation of the
�����

-potential
formally scales as ���
	��� , where 	 denotes the number of computational elements/particles, and
severely limits the computational efficiency of these methods. Fast Multipole Methods (FMM)
[12] have been developed to reduce the computational cost to formally ���
	� , while retaining
the flexibility of the ���
	��� algorithm, but carries in general a large prefactor, currently limiting
this method to ��� �����  . Hybrid partcle-mesh methods overlay the particle domain with a regular
mesh to obtain solution for the partial differential equation corresponding to the particular inter-
action potential [15]. This method achieves significantly higher serial and parallel efficiency than
FMM cf. [8, 24], but are currently limited to problems in simple geometries. We employ these
hybrid methods to study fluids at the nano-, meso-, and macroscale, specifically the influence of
confinement on the validity of the no-slip velocity boundary conditions.
The objective of the present paper is two-fold. First we describe simulations of flow at the nano-
and meso-scale, and demonstrate techniques that allow us to couple the the different time and
lenght scales. Second, we outline the main elements of the parallelisation of a hybrid particle-
mesh library [24] designed for multi-scale problems.
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Nano-scale fluid mechanics
The understanding of the static and dynamic behaviour of fluids at solid interfaces is central for
the modeling and simulation of fluid mechanics problems. For nanoscale systems this is particular
important as the no-slip boundary condition ( ���������
	������� ��� ) usually assumed in macroscale fluid
mechanics is know to fail. Thus a finite fluid “slip” velocity ( ����	�� ������������������� ����� ) has been
observed in experiments of water in hydrophobic capillaries [14, 25, 7, 3], whereas the amount
of slip at hydrophilic surfaces remains less clear [6, 26]. The slip is traditionally modeled by the
Navier slip condition [18]: � � 	! � " �"$#
% (1)

where  � denotes the slip length, and
" �"&# the normal component of the velocity gradient at the

surface.
We study this model using large scale parallel molecular dynamics (MD) simulations of canonical
flow problems including the flow past a circular cylinder, and here described by water molecules
passing the surface of a carbon nanotube [27]. The water is modeled by the SPC/E model [4]
with a

�����
potential acting between the partial charges located at the atomic sites, and a 12-6

Lennard-Jones potential ( ' ) between the oxygen atoms

' � � (	*),+ -/.$0 �(1�2 � � .$0
�31 ��4
5 (2)

+ and
0

denote the energy and length scale of the potential. The interaction between the water and
the 2.5 nm diameter rigid carbon nanotube mounted at the center of computational box is given
by a Lennard-Jones potential (Eq. (2)) acting between the oxygen and carbon atoms.
A flow is imposed in the stream- and spanwize directions using an adaptive body force acting on
the waters upstream of the carbon carbon nanotube. Periodic boundary conditions are imposed in
all spatial direction and effective model the flow past an array of carbon nanotubes.
The time average density and velocity profiles (Fig. 1) are sampled after the decay of the initial
transient at 40 ps, and throughout the remaining 340 ps of the simulation. The density profile
(Fig. 1a) display a layering characteristic of water at a hydrophobic surface, and the tangential
velocity profile (Fig. 1b) a negligible slip length of ��� �76$8  [27]. Conversely, the slip length
in the direction along the axis of the carbon nanotube (Fig. 1c) is 9:9 6$8 indicating that the slip
length is not a material property of the fluid-solid interface, but depends on the particular flow
configuration. Work in on the way to derive alternative slip models and will be report at the
meeting.

Multiscale simulations of nanoscale flow problems
Direct numerical simulation of nanoscale flows through MD simulations is computationally ex-
pensive, and presents a level of detail only required in a specific regions of interest e.g., in the
vicinity of the fluid-solid interface. The remaining part of the computational domain may be de-
scribed by continuum models, here the Navier-Stokes equations, and provides orders of magnitude
improvement in the computational efficiency. The implementation of such a multiscale scheme
requires the coupling of mass and momentum fluxes across the interfaces between the atomistic
( ;< ) and continuum domains ( ;>= ) cf. Fig. 2. A Schwarz alternating procedure is employed to en-
sure the conservation of the fluxes across the overlap region between the two systems cf. Ref. [28].
The iterations proceed by sampling the atomistic system at the boundary of the continuum system
to provides boundary conditions for the continuum solver. The continuum system is solved to
steady-state and provides at the boundary to the atomistic system an updated flux of mass and
momentum. The mass flux is imposed by introducing or removing atoms in the vicinity of the
interface. The insertion of atoms into a dense fluid is non-trivial and achieved using the Usher
algorithm cf. [9]. The convective momentum flux is imposed by adjusting the mean velocity of
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Figure 1: The time averaged radial density profile of water (a) flowing past an array of carbon nanotubes
[27]. The diameter of the carbon nanotube is 2.50 ��� and the onset flow speed 100 ����� � . The profiles
are sampled upstream (- -: section III), at the mid-section (– –: section II), and downstream section (—
: section I). The time averaged tangential (b) and axial (c) component of the streaming velocity for the
three-dimensional flow past an array of carbon nanotubes. The measured tangential profile (– � – and - -)
is sampled from section II and V and compared with a fit to the Stokes veloicity profile for the flow past
a circular cylinder [2], and to the corresponding results (–+– and —) from a purely two-dimensional flow.
The axial profiles were found to be similar for all the six sections, and a combined average is fitted to the
linear profile 	 
������������� .

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �
� � � � � � � � �
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Figure 2: Schematic of a hybrid atomistic/continuum computational domain [28]. !#" denotes the size of
the overlap domain between the atomistic domain $&% (entire shaded area) with boundary '(% (dark shaded
area) and the continuum domain $*) with outer boundary +,$#) and inner boundary '() . The fine grid
corresponds to the finite volume mesh and - is the area of a cell face. The right picture is a close-up of
a hybrid computational domain to study the flow of liquid argon around a carbon nanotube as used in the
present work.
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Figure 3: Effective boundary force �	� on a Lennard-Jones particle located at a distance
��


from the
boundary of an atomistic system of density � ���� �	��� � ��� and at temperature � ������

K. Displayed are
the constant force used in Ref. [20] (– –), a diverging force [19] (– � –), and the measured force used in the
present study (

�
).

the atoms in the overlap region (Fig. 2) while assuring the desired temperature through a rescal-
ing of the velocity fluctuations. The conservation of the flux of mass and convective momentum
therefore secures a proper ideal gas pressure in the atomistic system. The non-ideal virial pressure
contribution is imposed through wall potential functions [28] measured in a separate simulation
cf. Fig. 3.
Figure 4 compares the results obtained for the flow of argon past a carbon nanotube using a fully
atomistic simulations (Fig. 4a,c) with the multiscale algorithm (Fig. 4b,d) [28]. Disregarding the
fluctuations inherent of the atomistic system, the agreement of streamlines and flow speeds is
excellent. Further details of the method and validations studies may be found in Ref. [28].

Dissipative Particle Dynamics
A continuum, Navier-Stokes description of nanoscale flows lack the fluctuations inherent at this
length scale see e.g., Fig. 4, and may in a multiscale algorithm artificially suppress the fluctuations
of the atomistic system, hence reducing the fluid temperature [11]. To prevent this we consider
modeling the continuum using the method of dissipative particle dynamics (DPD). In this model
clusters of atoms and molecules are modeled as a single DPD-particle and are assumed to inter-
act via pair potentials consisting of conservative, stochastic, and dissipative forces cf. [16, 10].
Previous DPD studies have mainly considered fluids in periodic system, and have modeled solid
walls by layers of immobile “solid” particles combined with hard walls and reflection schemes
to prevent leakage of fluid particles out of the system. The desired behaviour of such a wall
model depends on the length scale of the system. Most problems currently addressed by DPD
simulations are performed at a length scale where molecular effecs of the wall on the fluid shold
be negligible, including the near wall density fluctuations observed in Fig. 1a. However, present
DPD wall models do not prevent such fluctuation cf. Fig. 5a. and to minimize these artifacts,
we propose to extend the effective wall potential introduced in the previous section [28] to the
method of dissipative particle dynamics. The extension involves sampling of the individual force
components in both the normal and tangential directions cf. Fig. 6, the latter to ensure satisfaction
of the no-slip condition [22, 29, 21].

PPM - A General Purpose Hybrid Parallel-Mesh Library
In an effort to dissiminate particle methods and to improve their computational efficiency we
are currently implementing a general purpose hybrid particle-mesh library — the PPM-library
cf. [24]. The formalism of particle methods was recently reviewed by Koumoutsakos [17] and
amounts to tracking the dynamics of 	 particles carrying physical properties of the system that is
being simulated. The dynamics of the particles are Ordinary Differential Equations (ODEs) that
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Figure 4: Multiscale simulations of liquid argon flowing part a carbon nanotube [28]. (a) Computational
domain for the reference solution of the flow of argon around a carbon nanotube using a purely atomistic
description. (b) Hybrid atomistic/continuum computational domain. Both computational domains have an
extent of � � ��� � ��� . (c) Velocity field for the reference solution averaged over 4 ns. The white lines are
streamlines, and the black lines are contours of the speed ( � ��� ). (d) Velocity field of the hybrid solution
after 50 iterations. The black square denotes the location of ' % . The solution in $ % is averaged over 10
iterations.
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Figure 5: DPD simulations of a fluid at rest and confined between two wall. From left to right is shown
(a0 the density profile obtained in Ref. [21], and the present density (b) and temperature profiles (c). The
fluctuations observed in the present model is 6 % and 2 % for the temperature and density.
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Figure 6: The ensemble average normal and tangential forces acting on DPD at a distance,
�

from the
fictitious wall. The only non-zero components Left: the green curve show the normal component of the
conservative force, and on the right the tangential components of the conservative (blue), dissipative (green),
and stochastic (light blue) forces. The only non-zero mean forces are the tangential dissipative force (green)
and the normal component of the conservative force.

determine the trajectories of the particles � and the evolution of their properties:

�����
��� 	 � � ��� % � 3	 �	


�� 2
 � ��� % � 
���� � % ��
  % (3)

� � ���� 	 �	

�� 2

� � ��� % � 
���� � % ��
  % (4)

(5)

where
���

denotes the position of the � -th particle, � � its velocity, and � � the vector of properties
such as concentration, charge, vorticity, or temperature. The dynamics of the simulated physical
system are represented by the functions


and

�
that represent solutions of the field equations

(such as the Poisson equation for velocity-vorticity formulations of the Navier-Stokes equations
in VM) or integral representations of diffential operators (such as Laplacian operators in SPH).
In Particle-Mesh (PM) methods, the functions


and

�
are evaluated on a mesh through the

corresponding field equation. The hybrid method requires:

� the interpolation of the � � carried by the particles from the irregular particle locations onto
the regular mesh points ( ��� )

���
�	
� � 2

� � � � � ���  � � % (6)

where
�

denotes the interpolation function.

� the solution of the field equation: � � � 	 ��� (7)

where
�

denotes the diffential operator, and
� � the field quantity on the mesh.
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� the interpolation of
� � from the mesh to the particle locations (

� �
):

� ���	
� � 2

� � � � � � �  � � % (8)

and
�

is the number of mesh points.

The accuracy of the method depends on the smoothness of


and
�

, on the interpolation function
(
�

), and on the discretization scheme (
�

) employed for the solution of the field equation.
The parallel implementation of the algorithm is complicated by several factors:

� the simultaneous presence of particles and meshes prohibits a single optimal way of paral-
lelization — the computational cost associated with the interpolation steps and the solution
of the field equation are of equal magnitude.

� complex-shaped computational domains and strong particle inhomogeneities require spa-
tially adaptive domain decompositions.

� particle motion may invalidate the domain decomposition and cause rising load imbalance,
and inter-particle relations (e.g., chemical bonds in MD) constrain decompositions and data
assignment.

The library attains it efficiency using structured, uniform cartesian meshes for the solution of the
field equations. As a result, the physical and computational domains are rectangular or cuboidal in
two and three dimensions. Complex geometries are handled by immersed boundaries, through the
use of source terms in the corresponding field equations, or through boundary element techniques.
Adaptive meshing capabilities are possible using AMR concepts as adapted to particle methods
[5].
The simultaneous presence of particles and meshes require several different concurrent domain
decompositions. These decompostions are assumed to decompose the computational domain into
rectangular or cuboidal sub-domains with a sufficient granularity to secure adequate load balance
while limiting the number of sub-domains to a minimum. The concurrent presence of different
decompositions allows to perform each step of the computational algorithm in its optimal environ-
ment with respect to load balance and the computational-to-communicaton ratio. For the actual
computations, the individual sub-domains are treated as independent problems and extended with
ghost mesh layers and ghost particles to allow for communication between them.
Figure 7 shows a domain decompostion of a cellular compartent (the Endoplasmic Reticulum)
using the PPM-library [23]. The decomposition is performed using recursive orthogonal bisection
in � and � directions.

Summary
We have presented numerical simulations of fluid flow at the nano-, meso- and macro-scale. The
atomistic description have demonstrated that the classical Navier slip model result in a flow de-
pendent slip length. We have extended current multiscale algorithms with effective boundary
potentials to remove artifacts introduce at the interface between the different nano- and macro-
scopic description of the flow. A similar procedure has furthermore been applied to the method of
dissipative particle dynamics. Finally, we have outlines elements of a parallel implementation of
hybrid particle-mesh algorithms for efficient simulations using particles.
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Figure 7: Top view of the computational domain (left panel) used for the study of diffusion in cellular
compartments [23]. The resulting PPM domain decomposition (right panel) using recursive orthogonal
bisection in � and � directions ( � direction fixed) on 242 processors. Rectangles show the 9311 PPM sub-
domains, color codes processor affiliation. The peripheral elongated domains are a result of the recursive
orthogonal bisection decomposition.
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Summary We present a hierarchical multiscale method for the numerical solution of two-phase flow in
strongly heterogeneous porous media. The method is based upon a mixed finite-element formulation, where
basis functions are computed numerically on a coarse grid to correctly and accurately account for subscale
permeability variations from an underlying (fine-scale) geomodel.

Introduction
Natural porous rock formations are heterogeneous at all length scales. When modelling fluid
flow in porous formations, it is generally not possible to account for all pertinent scales, from the
micrometre scale of pore channels to the kilometre scale of the full reservoir. Instead, one has
to create models for studying phenomena occurring at a reduced span of length scale, and any
modelling attempt should therefore generally be accompanied by appropriate rescaling (up- and
downscaling) techniques.
Here we focus on how to incorporate fine-scale features from a detailed geomodel into flow simu-
lations on a reservoir scale. Whereas industry-standard geomodels may contain between106–109

grid cells, commercial reservoir simulators are typically capable of simulating models with104–
106 degrees of freedom. A large activity is therefore devoted to upscaling/downscaling between a
detailed reservoir model and a coarser simulation model.
We present an alternative approach based on a multiscale formulation for pressure and flow veloc-
ities, where the global flow is computed on a coarse grid and fine-scale heterogeneity is accounted
for through a set of generalised, heterogeneous basis functions. The basis functions are computed
numerically by solving local flow problems (as is done in many flow-based upscaling methods),
and when included in the coarse-grid equations, the basis functions ensure that the global equa-
tions are consistent with the local properties of the underlying differential operators. Several
different multiscale methods have been proposed, including the multiscale mixed finite-element
method (MsMFEM) [2], the multiscale finite-volume method [9], and numerical subgrid upscal-
ing [6]. Common for all three methods is that they produce mass-conservative solutions both on
the coarse grid and on the underlying fine grid, and they may thus be used either as very robust
upscaling methods or as efficient fine-scale solvers.

Multiscale Mixed Finite Elements
The Two-Phase Flow Model
We consider incompressible flow of two phases (water and oil). For simplicity, we neglect the
effects of gravity and capillary forces. The flow equations can then be formulated as an elliptic
equation for the pressurep and total velocityv,

v = −(λw + λo)K∇p, ∇ · v = q. (1)

Hereq is a source term representing injection and production wells,K is the rock permeability
(i.e., the ability to transmit fluids), andλα = kr

α/µα is the mobility of phaseα, whereµα is
viscosity of phaseα andkr

α = kr
α(S) is the relative permeability, i.e., the reduced ability of the

rock to transmit fluids due to the presence of other phases. The saturationS denotes the volume
fraction of water and is described by the transport equation

φ∂tS + v · ∇f(S) = qs, (2)

whereφ is the rock porosity andf = λw/(λo + λw) is the fractional flow function.
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Figure 1: A general coarse grid overlying a uniform fine grid with the grey area giving the support of basis
functionψij .

Mixed Finite Elements
The mixed finite-element discretisation of the pressure equation (1) in a domainΩ seeks a pair
(v, p) ∈ U × V , whereU andV are finite-dimensional subspaces ofHdiv

0 (Ω) andL2(Ω), respec-
tively, such that∫

Ω
v · (λK)−1u dx−

∫
Ω
p∇ · u dx = 0, for all u ∈ U, (3)∫

Ω
l∇ · v dx =

∫
ql dx, for all l ∈ V. (4)

Thus letting{ψi} and{φk} be bases forU ⊂ Hdiv
0 (Ω) andV ⊂ L2(Ω), we obtain approximations

v =
∑
viψi andp =

∑
pkφk, where the coefficientsv = {vi} andp = {pk} solve a linear

system of the form [
B C
CT O

] [
v

−p

]
=

[
0
q

]
, (5)

where

bij =
∫

Ω
ψi · (λK)−1ψj dx, cik =

∫
Ω
φk∇ · ψi dx, and qk =

∫
Ω
φkq dx.

Multiscale Basis Functions
In a standard discretisation, the spacesU andV typically consist of low-order piecewise polyno-
mials. In the multiscale methods,U andV are given by the solution of local flow problems. Let
K = {Km} be a partitioning ofΩ into mutually disjoint grid cells. Furthermore, letT = {Ti}
be a coarser partitioning ofΩ, in such a way that wheneverKm ∩ Ti 6= 0 thenKm ⊂ Ti; see
Figure 1. LetΓij denote the non-degenerate interfacesΓij = ∂Ti ∩ ∂Tj . For eachΓij we assign
a basis functionψij ∈ Ums, and for eachTi we assign a basis functionφi ∈ V .
The basis functionψij is obtained by forcing a unit displacement from cellTi to Tj ; that is, by
solving,

ψij = −λK∇φij , ∇ · ψij =
{

wi(x), for x ∈ Ti,

−wj(x), for x ∈ Tj ,
(6)

with ψ · ν = 0 on ∂Ωij , whereν is the outward-pointing unit normal to∂Ωij pointing fromTi

to Tj . For cells containing a well (i.e., for allTi for which
∫
Ti
q 6= 0), the weight functionwi is

given by

wi(x) =
q(x)∫

Ti
q(ξ) dξ

. (7)

This choice ensures a conservative approximation ofv on the fine grid. For all other cells, we
choosewi(x) = 1/|Ti or wi(x) = 1

m tracem(K(x))/|Ti|. The corresponding basis functions
can be seen as generalisations of the lowest-order Raviart–Thomas basis functions in a standard
mixed method. Figure 2 illustrates thex-velocity basis functions in two different cases.
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Heterogeneous coefficientsHomogeneous coefficients

Figure 2: Thex component of the velocity basis function associated with an edge between two cells of
different size for a homogeneous and a heterogeneous permeability field, respectively.
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Figure 3: Schematic of the SPE10 reservoir model. The reservoir dimensions are1200×2200×170 ft., and
the model consists of60 × 220 × 85 grid cells. The top and bottom plots to the right depict the logarithm
of the horizontal permeability in the top layer of the Tarbert formation and the bottom layer of the Upper
Ness formation.

Discussion
In this section we show that MsMFEM: (i) is an accurate and robust alternative to upscaling; (ii)
is efficient when used as an approximate fine-scale solver for dynamic flow cases; and (iii) is very
flexible with respect to the choice of coarse grid cells, given an appropriate fine-grid solver.

Accuracy and Robustness — 10th SPE Comparative Solution Project
Model 2 from SPE10 [7] was designed as a benchmark for various upscaling techniques and
consists of two different rock formations; see Figure 3. Both formations are highly heterogeneous,
with permeability variations of more than eight orders of magnitude, but are qualitatively different.
The shallow-marine Tarbert formation is smooth, and therefore not too hard to upscale. The
fluvial Upper Ness formation contains intertwined networks of high-permeability channels and
poses severe challenges to any numerical method.
In Figure 4 we compare production curves from a MsMFEM simulation with a reference solu-
tion obtained by direct simulation on the full model. For the MsMFEM simulation we used a
5 × 11 × 17 coarse grid and computed the fluid transport on the fine grid using fluxes from the
corresponding subscale velocity field. For comparison, we also include results obtained from a
upscaling/downscaling approach [8]. The MsMFEM is able to accurately reproduce the flow in
the fine-scale channels and therefore matches the reference curves almost exactly. The upscal-
ing/downscaling approach, on the other hand, does not properly account for the coupling between
small-scale and large-scale effects and therefore fails to reproduce the production curves of the
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Figure 4: Water-cut curves after 2000 days of production for the SPE10 benchmark.

Figure 5: MsMFEM solutions for varying coarse grids on layer 85 from the SPE10 benchmark. In the left
column, the coarse-grid fluxes are used to compute fluid transport, and in the right column, the subgrid
fluxes are used to compute the transport on the original grid.
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Figure 6: Computational work (idealised) for different coarse grids, assuming a Cartesian128× 128× 128
grid on the fine-scale.

individual wells correctly. See [3] for a more thorough discussion.
Next, we consider flow in the bottom layer computed using three different coarse grids with
12 × 44 cells, 6 × 22 cells, and3 × 11 cells. Figure 5 compares saturation profiles obtained
using the coarse-grid fluxes obtained by MsMFEM, and saturation profiles obtained on the fine
60×220 grid using the subgrid fluxes. The figure shows that the resolution is improved remarkably
by utilising the inherent subgrid resolution rather than using MsMFEM as an advanced upscaling
method. Moreover, it is evident that MsMFEM is robust with respect to the size of the coarse grid.

Computational Efficiency
Depending on the nonlinearity of the system (1)–(2), the pressurep may need to be recomputed
several times throughout a simulation. In fact, the number of pressure solves in a typical flow
case of water injection into a oil reservoir is of the orderO(102). The key to the computational
efficiency of the MsMFEM is the following observation: before the water front has swept through
a coarse blockTi, the coefficientλ(S)K(x) in (6) is constant (sinceS is constant), and after the
waterfront has left the grid block,λ(S) increases slowly. After the initial pressure solve, only
a few basis functionsψij close to the water front need to be recomputed [2], unless there is an
abrupt change in the pressure field due to e.g., changing well configurations.
In Figure 6 we have plotted the computational cost for MsMFEM for different coarse grids com-
pared with the cost of a direct solution on a uniform Cartesian grid with1283 grid blocks. The
figure shows that the MsMFEM may not necessarily be more efficient than direct fine-scale so-
lution for a single pressure solve, but it is also clear that the work associated with determining
basis functions dominates the work associated with solving the global system. Hence, for a full
simulation, where a minor fraction of the basis functions need to be updated in each pressure
solve, the MsMFEM provides a potentially very large speedup. Moreover, since all basis function
can be computed independent of each other, the MsMFEM has an inherent parallelism that can be
exploited to speed up the computations.

Flexibility
A major advantage with the multiscale mixed formulation is the flexibility with respect to grids.
A bit simplified this can be stated as follows: given an appropriate solver for the fine grid system,
the multiscale method can be formulated and basis functions can be computed on (almost) any
coarse grid where each grid block consists of an arbitrary collection of connected fine-grid cells.
Moreover, numerous numerical tests show that MsMFEM isnot very sensitiveto the shape of
the coarse cells and accurate results are obtained for grids containing blocks with pretty ‘exotic’
shapes [5]. This means that the process of generating a coarse simulation grid from a complex
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Figure 7: Comparison of flow velocity obtained direct simulation on an unstructured triangular grid and by
MsMFEM on an unstructured coarse grid.

Figure 8: A coarse grid defined on top of a structured corner-point fine grid. The cells in the coarse grid are
given by different colours.

geomodel can be greatly simplified, regardless of whether the fine grid is fully unstructured or is
a structured corner-point grid with geometrical complications due to faults, throws, and eroded
cells.
We end the paper by showing a few grid models to support the claim of the great flexibility
inherent in MsMFEM. As the first example we consider an unstructured triangular fine grid in 2D.
The coarse grid blocks in Figure 7 are formed as collections of fine-grid cells and can thus have
almost arbitrary polygonal shape. The resulting grid contains cells that are (almost) triangular,
quadrilateral, pentagonal, and hexagonal. By using unstructured triangular fine grids, it is easy to
adapt both the fine grid and the coarse grid to complex external and internal boundaries.
As a next example, Figure 8 shows a vertical well penetrating a structured corner-point grid with
eroded layers. On the coarse grid, the well is confined to a single cell consisting of all cells in
the fine grid penetrated by the well. Moreover, notice the single neighbouring block shaped like a
’cylinder’ with a hole.
Finally, Figure 9 shows a subsection of the SPE10 model, in which we have inserted a few flow
barriers with very low permeability. In [5] it was shown that MsMFEM becomes inaccurate if
coarse grid cells are cut into two (or more) non-communicating parts by a flow barrier. Fortu-
nately, this can be automatically detected when generating basis functions, and the resolution can
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Figure 9: The upper row shows the permeability field (right), and the interior barriers (left). The lower row
shows a hierarchically refined grid (left), the barrier grid (middle), and a coarse grid block in the barrier
grid (right).

be improved by using some form of grid refinement. The figure shows two different approaches:
(i) structured, hierarchical refinement, and (ii) direct incorporation of the flow barriers as extra
coarse grid blocks intersecting a uniform3× 5× 2 grid. This results in rather exotic coarse cells,
e.g., as shown in the figure, where the original rectangular cell consisting of10 × 16 × 5 fine
cells is almost split in two by the barrier, and the resulting coarse cell is only connected through
a single cell in the fine grid. Although the number of grid cells in the barrier grid is five times
less than for the hierarchically refined grid, the errors in the production curves are comparable,
indicating that MsMFEM is robust with respect to the shape of the coarse cells.

Concluding remarks
The research has been funded by the Research Council of Norway through contracts 158908/I30,
152732/S30, and 162606/V30.
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e-mail: ragnar@chalmers.se

Summary The focus of this contribution is on dynamic crack propagation modelling, introducing the the-
oretical continuum mechanical framework and presenting two simple models for crack propagation. Also
particular aspects of the numerical implementation is considered.

Introduction
In this contribution, we discuss a finite deformation FE-model for crack propagation based on
the concept ofpartition of unity, originally introduced by Melenk and Babuška [1], and the de-
velopments by Wellset al. [2]. The main concept is to consider the total deformation map as a
superposition of two fields, one continuous and one discontinuous, leading to a coupled system of
equilibrium equations to be solved using a monolithic approach.

To model the fracture behaviour of the material, we distinguish between two different models.
Firstly, a cohesive zone model of damage-plasticity type is formulated in the reference configu-
ration, relating the cohesive Mandel traction to a material ’jump’, which in turnis related to the
direct (spatial) discontinuity1. Secondly, the Material Crack Driving Force (MCDF) model is for-
mulated as a generalised Griffith criterion based on the material crack driving force, identified as
a reaction force at the crack tip in the inverse discontinuity problem [4], energy conjugated with
the virtual crack extension. Both models are compared and discussed with respect to structural
response, efficiency, aspects of implementation etc.

Furthermore, we extend the model to account also for dynamical effects,e.g. rapid transient
loading which is of great importance in many manufacturing applications and impact loading sit-
uations. The intention is to build a theoretical and numerical foundation for further analyses of
important dynamic phenomena such as crack arrest, crack branching and rate dependent cohe-
sive behaviour among others. The introduction of inertia effects also rises interesting questions
regarding the numerical treatment in terms of efficient and stable time integrationalgorithms.

Kinematics
As a basis for the kinematical description, we consider the direct deformation map which maps
points in the material reference configuration,X ∈ B0, onto points in the deformed spatial con-
figuration,x ∈ B as

ϕ [X, t] = ϕc [X, t] + HS [S [X]] d [X, t] with d = x − xc (1)

1The formulation in terms of the Mandel traction and the material jump is made toensure material frame indifference
of the model, cf. [3]
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whereHS [S [X]] is the Heaviside function centered at the internal (closed) discontinuity bound-
ary,ΓS , shown in Fig. 1. The argumentS [X] is defined as

S [X]<0 X∈D−

0 , S [X]=0X∈ΓS , S [X]>0 X∈D+
0 with N =

∂S [X]

∂X
X∈ΓS , ‖N‖ = 1 (2)

whereN is the normal vector toΓS pointing into the regionD+
0 . Note that the discontinuous part,

d, is defined on a subregionD0 of B0 (grey area) with assumed Dirichlet boundary conditions
along the boundary∂D+

0 \ΓS .

Figure 1:Kinematical representation of the discontinuous direct motion problem.

The pertinent deformation gradient becomes

F = ϕ ⊗ ∇X = F c + HSF d + δS d ⊗ N with F c = ϕc ⊗ ∇X andF d = d ⊗ ∇X (3)

whereδS [S[X]] is the Dirac delta function.

Governing equations and solution strategy
To arrive at the coupled equilibrium equations, we first consider the strong form of the equation of
motion

ρ0ü − Σ
t
1 · ∇X = bmec (4)

with Σ
t
1 being the first Piola-Kirchhoff stress tensor andbmec the (applied) mechanics body forces

and where the acceleration̈u can be subdivided (due to the present kinematical representation) as

ü = ϕ̈c + HSd̈ (5)

From Eq. 4, the standard (continuous) form of the principle of virtual work can easily be estab-
lished, which in turn may be reformulated to the final coupled continuous/discontinuous form by
insertion of the discontinuous kinematical representation in Eqs. 1 and 3:

(C):

∫
V0

Σ
t
1 : ∆F c dV =

∫
Γ0

∆ϕc · t1dΓ +

∫
V0

∆ϕc · b
mecdV −

∫
B0

ρ0∆ϕc · ü dV (6)

(D):

∫
D0

HSΣ
t
1 : ∆F d dV +

∫
ΓS

∆d · t1dΓ =

∫
D0

HS∆d · bmecdV −

∫
D0

HSρ0∆d · ü dV (7)

Fracture modelling
We will present and compare two different models, a cohesive zone model and the Material Crack
Driving Force model.
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Cohesive zone model
To model the stress degradation along the internal interfaceΓS , we formulate a cohesive damage-
plasticity model based on previous works [4,5], thus the nominal traction vector is defined in
terms of an effective nominal traction̂t1 and a damage variable0 ≤ α ≤ 1 ast1 = (1 − α)t̂1.
Furthermore, this effective nominal traction is related to the effective Mandel tractionQ̂ via t̂1 =
F−t

c ·Q̂. Finally,Q̂ is expressed in terms of a material jumpJ = F−1
c ·d asQ̂ = K · (J −Jp) =

K · Je whereK is a stiffness parameter for the interface and whereJp andJe are the plastic
and elastic part of the material jump respectively. The evolution laws forJp anα are then defined
such that the resulting relation betweent1 andd is according to Fig. 2.

σf

de dp

Figure 2:Relation between nominal interface traction and discontinuity.

Material Crack Driving Force model (MCDF)
The second model proposed is based on the MCDF,P , identified in the inverse discontinuity
problem [4] as a reaction force at the crack tip, energy conjugated with the virtual crack extension.
Interesting properties of this force is that the magnitude corresponds to thevalue of theJ-integral
and that the force is aligned in the direction of maximum energy release. Hence, a fracture cri-
terion may be formulated such that the crack is propagated in the direction of the force when
the magnitude exceeds a critical value. The drawback of this model is the large mesh sensitiv-
ity. However there are techniques to decrease this dependence, e.g. domain integral methods or
equivalent.

Numerical example
To illustrate the capabilities of the proposed model, we study a simple numerical example in terms
of a DCB-test with a pre-defined fracture interface (modelled through thefinite elements), shown
in Fig. 3a, loaded with an increasing loading rate: quasi static (no dynamic effects), ṙ = 5,
10 and 15 m/s. The coupled continuous/discontinuous problem is discretised using standard finite
element approximations for the two fields and solved with an implicit Newmark-β time integration
scheme. Moreover, the continuous material response is considered Neo-Hookean withE = 3.24
GPa andν = 0.35 and the fracture process is governed by the proposed cohesive zone model with
modeI fracture energyGI

f = 100 N/m and failure stressσf = 20 MPa. In Fig. 3b, the damage
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distribution along the internal interface at the final load step, corresponding to r = 0.04 mm, is
presented for the different loading rates.
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Figure 3:a) Modelled DCB with h=1mm, L=2mm and a thickness of 1mm. b) Damage distribution along
ΓS for different loading rates

References
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We look at the catastrophic tsunami, at the frightening storm surge and at extreme wind wave 
conditions from simple linear and weakly nonlinear viewpoints. All the phenomena reflect the 
possibility of wave propagation on the water surface. Tsunami and storm surge are visually very 
similar to each other on the open sea, but the properties of their transformation in shallow areas and 
near coastline differ radically. Although the linear theory in many cases fails to correctly represent 
quantitative properties of these phenomena, it still allows systematic description of their most 
important features on the level of elementary mathematics. 

The extreme devastation caused by the Indian Ocean Tsunami is mostly caused by a rare character of 
the underlying earthquake. In particular, specific geometric features of the rupture and the resulting 
wave pattern well explain why this tsunami was particularly hazardous in Sri Lanka and India, and 
why it remained compact until the African coast. 

Storm surges in many cases can also be considered as simple (linear) superposition of different factors. 
The extreme storm surge in Estonia and Finland during windstorm Erwin/Gudrun (January 2005) can 
be mostly explained by an (un)fortunate coincidence of relatively uncommon factors. 

Finally, we shortly discuss exceptional wave conditions in the northern Baltic Proper during this 
windstorm. The measured wave heights were relatively modest—maximum significant wave height 
7.2 m—only because the most rough seas occurred remote from the wave sensors. Wave models 
indicate that the largest waves occurred off the coasts of Saaremaa and Latvia where the significant 
wave height probably exceeded 10 m. Exceptionally long waves with peak periods up to 12 s also 
occurred in the central part of the Gulf of Finland owing to a specific combination of forcing factors 
and the geometry of the Baltic Sea. 
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Summary Conical shells of piece wise constant thickness made of  a metallic material are considered. The
shell wall is welded to a rigid central boss whereas the connection between the shell and the boss is
weakened with a stable crack. The designs with the maximal load carrying capacity are established under
given material consumption of the shell. Material of the shell wall obeys von Mises yield condition.
 
Introduction
Thin walled circular conical shells under external pressure are of interest in ocean engineering.
Also, circular conical shells welded to a cylindrical upper section are used as superstructures
for elevated water tanks. The steel vessel is expected to with stand to the pressure of water.
This involves the necessity of limit design.

Limit analysis and design of circular conical shells subjected to the lateral distributed loading
and  shells  loaded  by  a  rigid  central  boss  have  been  studied  by  several  authors.  Various
solutions  developed  under  different  assumptions  regarding  to  loading  conditions  and  yield
surface can be found in monograph books by Hodge [4], Chakrabarty [2] and others. 

In the previous paper by authors (Lellep and Puman [6]) problems of optimization of conical
shells made of an ideal plastic Tresca material were considered. In the present paper conical
shells with part through cracks are studied in the case of Mises material.

Figure 1: Conical shell with crack  loaded by the central boss

Formulation of the problem
Let  us  consider  a conical  shell  with  the  rigid  central  boss  of  radius  a.  The  shell  is  simply
supported at  the outer edge of radius R and clamped at the inner edge (Fig. 1). The shell  is
loaded through the rigid boss at its vertex by the load P.

It is assumed that the thickness of the shell is piece wise constant, e.g. 
jhh  (1)
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for  1jj a,ar   where .n,,0j 
It is stated that a0 = a, an+1 = R.  The number n is assumed to be fixed. However, the parameters
ai (i = 1,...,n)  and hj (j = 0,...,n)  are unknown constants which will be defined so that the cost
function will attain its minimal value. 
Although we consider the internal edge of the shell as a clamped edge the bond between the
shell and the boss is not an ideal one. We assume that at r = a a stable crack of constant depth c
is located. The circular crack of radius a emanating from the lower part of the connection
between the shell and the boss, respectively, is to be classified as a part-through surface crack.
Similar cracks of depth cj  are located at r = aj (j = 0,...,n)  as well.

As the perfomance index will be either the limit load or the weight (or, material volume) of the
shell. The material volume of the shell corresponding to the thickness distribution (1) is
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Here  stands for the angle of inclination of a generator of the shell. 

The material  of  the  shell  is  assumed to be an ideal  plastic  one.  When minimizing the  cost
function (2) it is expected that the load carrying capacity of the shell is fixed. Alternatively,
when  maximizing the  load  carrying capacity  the  amount  of  the  material,  or  volume of  the
material is assumed to be bounded. Material of the shell obeys von Mises yield condition.

Basic equations
The stress components to be incorporated in the study are  the membrane forces  N1,  N2 and
bending moments M1, M2. Corresponding deformation components are 1, 2 and 1, 2.

We assume that the metallic material of shells can be modelled as an ideal rigid-plastic material
obeying von Mises yield criterion and associated flow law. On the plane of principal stresses
1 , 2 the ellipse of Mises circumscribes the hexagon of  Tresca. Here 0 stands for the yield
stress  of  the  material.  Parametrical  equations  of  the  exact  yield  surface  in  the  space  of
generalized stresses were derived by A. Iljushin. Due to its complexity the exact yield surface is
unsuitable for practical calculations in particular cases. 

It was shown by several authors (Robinson [7],  Haydl and Sherbourne [3]) that a non-linear
approximation of the exact yield surface 
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leads  to  reasonable  assessments  of  the  limit  load  in  the  lower  bound  analysis.  The
approximation (6) will be used in the present study, as well. In (6) Mj  and Nj  stand for plastic
limit moment and limit force for a section with thickness hj , respectively.

It  will  be  convenient  to  carry  out  the  optimization  procedure  in  terms  of  dimensionless
quantities defined by
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(4)

Here M* and N* stand for the yield moment and yield force associated with the reference shell
with thickness h* . 

Making use of notations (4) one can present equilibrium equations as
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From (3) one can determine making use of (4)
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Substituting (6) in (5) yields the set of equations
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(7)

The last  equation  in  (7)  is  a  natural  consequence of the  matter  that  q = const. .  Here  and
henceforth primes denote the differentiation with respect to the dimensionless variable  .

The methods of the mathematical theory of optimal control will be used whereas n1, m1 and q
will be considered as state variables and n2, m2 as control variables. The quantities j  and j  are
treated as concentrated parameters. Foundations on the control theory can be found in books by
Bryson and Ho [1], Hocking [5].

The system of equations (7)  is  solved numerically.  The distribution of bending moments  is
depicted in Fig. 2.

Concluding remarks
Calculations have been carried out for shells with one or two steps in the thickness. Numerical
results revealed the ability of the optimized shell to with stand loads which are much higher in
comparison to that of shells of constant thickness. The efficiency of the design depends on the
parameter  k and the ratio of  the internal   and external  radius,  respectively. For instance, if
k = 0,3  and   = 0,55 the redistribution of the material  in the framework of designs with a
single step gives up to 5% higher limit load. For greater values of the   the efficiency of the
design is higher (up to 20% if  = 0,95  and 0 = 1,2).
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Figure 2: Bending moment distribution for k = 0,3 and α0 = 0,55.
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Summary This work presents an algorithm for the automatic simulation of quasi–static crack growth in
linear elastic bodies with existing cracks. The algorithm, based on the so-calledϑ method, provides the
load vs. crack extension curves in the case of stable rectilinear crack propagation. Some results for 2D
problems of linear elastic fracture (LEFM) are reported.

Introduction
The evaluation of crack growth in brittle and quasibrittle bodies with existing cracks is a funda-
mental topic when the structural reliability related to a certain crack length has to be studied. In
particular, the crack length extension under a certain load increment is an important variable to
be analyzed during a given loading process [1]. In this context, the Griffith energy release rate
still represent a strong theoretical tool for establishing the onset of crack growth in LEFM. Fur-
thermore, several criteria for determining the direction of crack propagation under various mode
loading can be found in the fracture mechanics literature ([2]). Instead, as already observed in
[3], a general theoretical model for calculating the increments of crack growth during a loading
process does not exist yet. This limit still characterizes the computer codes for simulation of crack
propagation in linear elastic fracture (see references in [3]). In the present work we propose a new
approach for quasi–static crack growth simulation based on the so–calledϑ method originally
introduced by Destuynder and Djaoua in [4].
The basic idea of theϑ method is to transform the variables of the current configuration in a
one-to-one manner to the variables of the perturbed equilibrium problem. All physical quanti-
ties of the perturbed configuration are then rewritten in the current. The method introduces an
energetic domain parameter known in literature as theGθ and characterized by a smooth value
vector functionϑ defined along a known direction of crack growth in a subdomain of the current
configuration (see [4]).
In the present paper, successiveGϑ–based crack growth problems written in the current configu-
ration furnish the increments of crack growth relative to given load increments. Furthermore, at
each load step the equilibrium is imposed in the current configuration with updated crack length.
For sake of simplicity, the method is defined for cases of stable rectilinear crack growth but it can
be extended to curvilinear crack propagation in nonlinear materials. The proposed algorithm is
implemented by using the computational tools of the computer code ELMER (CSC - Scientific
Computing LTD., Espoo, Finland). Remeshing and a standard FEM discretization are employed.
Some results for rectilinear crack growth in case of plane strain are presented.
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The ϑ method
In this section we briefly recall theϑ method by analyzing the rectilinear crack growth of a two–
dimensional elastic cracked body of unit thickness subjected to a load process (see Figure 1).
The Destuynderϑ method introduces a linear perturbation from the current configurationΩ to the
updated domainΩδa:

Fδax = x + δaϑ(x) , ∀x ∈ Ω (1)

whereϑ represents a smooth vector valued function defined inΩ such that|ϑ| = 1 at the crack
tip andϑ = 0 on∂Ω\Sf .

ΩΩΩΩ ΩΩΩΩ

Figure 1: Current (Ω) and perturbed (Ωδa) cracked domains;Sf = boundary with applied forces;Su =
boundary with applied displacements;λ=control parameter;̂f= fixed load;δλ f̂= load increment;δa > 0 =
crack length increment;ϑ = vector field. Homogeneous material; no traction along the surface of the crack;
body forces neglected.

The transformationFδa permits to rewrite each function of the updated domain as an associated
function of the current configuration (see details in [4]). By approximating the determinant of the
Jacobian ofFδa and the inverse of the Jacobian as

| Jδa |≈ 1 + δa (divϑ), (Jδa)−T ≈ 1 − δa (∇ϑ)T (2)

the associated solution in the configurationΩ, written in terms of displacements and stresses, is:

uδa = u0 + δu + Ru, σδa = σ0 + δσ + Rσ (3)

where(u0,σ0) represents the elastic solution of the equilibrium problem in the current configu-
ration andδa−1(||Ru||V + ||Rσ ||Σ ) → 0 asδa → 0. Furthermore the increments (δu, δσ) are
the unique solution inV × Σ of the following problem (see proof in [4] for the case of null load
increments):

{ ∫
Ω δσ : ∇v − δa

∫
Ω s0 : ∇v = δλ

∫
Sf

f̂ · v ∀v ∈ V∫
Ω C δσ : τ −

∫
Ω τ : ∇δu − δa

∫
Ω r0 : τ = 0 ∀τ ∈ Σ

(4)

where the spacesV andΣ are, respectively,V = {v ∈ (H1(Ω))2, v = 0 on Su} andΣ = {τ ∈
(L2(Ω))4, τT = τ} while s0 = σ0∇ϑT − (divϑ)σ0 andr0 = −1

2(∇u0∇ϑ + (∇u0∇ϑ)T ).
As a direct result, the method introduces the so calledGϑ parameter:

Gϑ =
1

2

∫

Ω
s0 : ∇u0 −

1

2

∫

Ω
r0 : σ0 (5)

This parameter has the same meaning as the Griffith energy release rate in LEFM and coincides
with the RiceJ integral for all subdomainsΩϑ ∈ Ω (see [4]). Then, the choice ofϑ has the same
meaning as that of the path along which theJ integral function is integrated.
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A Gϑ-based crack growth formulation
From a theoretical point of view, the new idea of this work is to use domain transformation (1)
for solving a problem of crack growth during a load process. At this aim, theGϑ(u,σ) of the
perturbed configurationΩδa, taking into account (3), after some manipulations can be written in
the current configurationΩ as

Gϑ(u0 + δu,σ0 + δσ) ≈ Gϑ(u0,σ0) + δGϑ (6)

whereδGϑ =
∫
Ω s0 : ∇δu −

∫
Ω r0 : δσ.

In the case of flat resistance curves and stable quasi–static crack growth, the following conditions
must be locally satisfied for each load increment (see [2]):

Gϑ = Gf , δGϑ = 0 (7)

whereGf represents the fracture energy. For sake of simplicity, the unknowns of the incremental
problem and of conditionδGϑ = 0 are reduced to(δu, δa). Then, we haveδσ = E[ε(δu)+δa r0]
whereE is the elasticity tensor andε the strain tensor. Finally, the following system is obtained:





∫
Ω E ε(δu) : ε(v) − δa

∫
Ω t0 : ∇v = δλ

∫
Sf

f̂ · v
∀v ∈ V ; δa > 0

−
∫
Ω t0 : ∇δu + δa

∫
Ω Er0 : r0 = 0

(8)

wheret0 = s0 − Er0. The system provides the crack length incrementδa. In operator form we
have: [

A BT

B C

] [
δu
δa

]
= dλ

[
F
0

]
(9)

Starting from a state defined by the indexi = 0, the proposed algorithm for crack growth is
characterized by successive analyses consisting of the following steps:

1. Linear elastic analysis for the cracked body of domainΩi subjected to the load factorλi. In
operator form we have:

Aiui = λiF (10)

2. Evaluation of the crack increment in the updated configurationΩδai
trough the equation

obtained by solving system (9):

δai =
1

BT
i A−1

i Bi − Ci

dλi

λi
BT

i ui (11)

3. Updating of the new current configurationΩi+1 and remeshing.

4. Updating of the load factor:
λi+1 := λi + dλi (12)

Results and concluding remarks
The presented approach is implemented by using the computational tools of the FEM computer
code ELMER (CSC - Scientific Computing Ltd., Espoo, Finland). During crack propagation,
remeshing is performed. In this section the rectilinear crack propagation in a rectangular cracked
plate in plane strain is analyzed (see Figure 2 for the details). The proposed algorithm provides
the curve load vs. crack length during crack growth.
In order to directly extend the method to curvilinear crack growth, the simplest way is to represent
the curvilinear path by means of a linear piecewise curve. Then, the described algorithm can be
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used for determining the crack growth increments along each line of the curve after calculating the
direction of crack extension by using one of the methods existing in literature (see [2]). A more
rigorous approach should take into account the real shape of the path and define the direction of
crack growth like a variable of the problem. A theoretical formulation for differentiating energy
functionals with respect to the crack length in case of curvilinear cracks was presented in [5].
Anyway, also in that work the shape of the path had to be known before calculating the derivative
of the functionals.
The approach presented in this paper is also very suitable to be extended to elastic–plastic mate-
rials as suggested in [6].
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Figure 2: Edge cracked plate clamped on the bottom and loaded by a uniform traction on the top: dimen-
sions =7 × 14; E= 30×106; ν=0.25; initial traction= 1.0; initial crack length=3.5; final crack length= 6.5.
SI units. Plane strain state. Quadratic triangular FE. Displacements and final mesh (left). Curve load vs.
crack length (right).
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[1] Xi Y, Ba žant ZP. Random growth of crack withR-curve: Markov process model. Eng. Frac. Mech.

1997;57:593–608.
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Summary An explicit FE-procedure for modeling rock failure process under dynamic indentation is 
presented. The basic ideas, with some modifications, of the recently developed numerical code for 
simulating the quasi-static rock failure named RFPA are combined here with an explicit time integrator 
for simulating the dynamic failure. The impact of the indenter is modeled by imposing the contact 
constraints with the forward increment Lagrange multiplier method. A numerical example is solved.      
 
Introduction 
Numerical modeling of the brittle fracture is an important task in rock engineering. Engineers 
therein are interested in modeling the rock failure process, e.g., during percussive drilling. This 
paper presents an explicit procedure for FE-modeling of rock failure under dynamic indentation 
which process is essential in percussive drilling. This work is a continuation of the author’s 
work presented in [1] where an explicit FE-procedure for modeling the stress wave propagation 
due to impact of a piston in a domain with non-reflecting boundaries was presented. In this 
work the method presented in [1] is combined with the rock fracture model of a recently 
developed numerical code RFPA (Rock Failure Process Analysis Code)  (Tang [2], Zhu & Tang 
[3]) resulting in an explicit code where the impact of the indenter is modeled by considering it 
as a deformable body. The basic ideas of RFPA utilized here are as follows: The heterogeneity 
of rock is considered by assuming the material parameters to be conformed to the Weibull 
distribution. Progressive failure and the constitutive law for mesoscopic elements are modeled 
within the framework of damage mechanics. The Mohr-Coulomb criterion with tensile cut off 
(Rankine criterion) is used as the crack initiation condition. Cracking is similar to the smeared 
crack models. In this study the crack model of RFPA is modified at the element level so that the 
tensile crack is orientated orthogonally to the greatest principal stress. 
 
Statistical modeling of rock heterogeneity  
According to Tang [2], the global nonlinear behavior of brittle materials can be simulated by 
linear finite elements with heterogeneous material properties. In RFPA these properties, 
including compressive and tensile strengths σc,σt, Young’s modulus E, and Poisson’s ratio ν (in 
this study the density ρ also) are assumed to conform to the Weibull distribution, for which the 
density and distribution functions are, respectively 
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Interpretation of the Weibull parameters in this context is that m is a homogeneity index for 
rock and u0 is the mean value of, e.g. Young’s modulus. In order to generate Weibull distributed 
properties for a rock sample, a single number (Q(u) in (1)) from uniformly distributed random 
data between 0 and 1 is assigned to each element of the mesh. This is done separately for each 
material parameter. Then the corresponding material parameter u is solved from the second 
equation (1). The element size accepted, based on laboratory experiments, for obtaining good 
results is 1mm×1mm (in plane) [3].   
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Constitutive-damage mechanical model for elements 
It is assumed that rock behaves like brittle material under loading and, thus, linear damage 
mechanics can be used for describing the gradual failure process. During the degradation of an 
element, the Young’s modulus (and strength of rock) is defined as [4] 
                    ,)1( 0EDE −=               (2) 
where D is the isotropic damage variable and E0 is the Young’s modulus of intact rock. The 
uniaxial constitutive law for a finite element is illustrated in Fig. 1 (a) [3]  
 
 
 
 
 
 
 
 
 
                       (a)                                                        (b) 
Figure 1:  Uniaxial constitutive law of element (a) and aligned crack model with local coordinates (b) 
  
In Fig. 1 (a) σt, σc denote the compressive and tensile strengths of rock, respectively, and σtr, σcr 

denote the corresponding residual strengths which the element still possess after the brittle 
failure. The initiation of failure is indicated by the Rankine and Mohr-Coulomb criteria for the 
tensile and shear modes, respectively, as    
                  tσσ ≤1  (tensile),   ck σσσ ≥− 13 , )sin1/()sin1( ϕϕ −+=k   (shear)            (3) 

where σ1, σ3 are the greatest and smallest principal stress, respectively, and ϕ is the friction 
angle of rock. Criteria (3) are checked at the center of each element. The damage variable is 
calculated as follows [3] 
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In (4) λ is a residual strength coefficient defined as σt/σt0 = σc/σc0 = λ, εtu is the ultimate tensile 
strain defined as εtu = ηεt0, where εt0 is the elastic limit strain (=σt/E0) and η is an ultimate strain 
coefficient [3]. In order to extend the constitutive law described in Fig. 1 (a) to multiaxial stress 
states, the uniaxial strains in (4) are replaced by ε3 (maximum compressive strain) [3], 

         23
1eqv ><∑= = ii εε  and ( )( )121

1
0 0

σσνσσε +−+−= kcEc          (5) 

where McAuley brackets have been used and k is as in (3). Since the damage process is 
irreversible for materials like rock, the damage variable cannot decrease. Thus, if the strain εeqv, 
at some strain states, is smaller than its maximal previously reached value, then D is kept 
constant. The same applies to the strain ε3.  
In RFPA both the shear and tensile damage causes the degradation of finite elements but the 
tensile failure is considered as the main cause for the crack initiation. When the equivalent strain 
reaches the ultimate tensile strain limit, the element loses its ability to transfer stresses (D = 1) 
and it is treated as an “air element” but it is not removed from the mesh. This is the method, 
similar to the smeared crack models, how RFPA simulates crack initiation, propagation and 
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interaction of cracks. In this study the unilateral nature of damage is taken into account similarly 
as in [4]. The deactivation of damage is done independently for each principal stress as follows. 
       2,1,))(1(2))(1(2 =−+−= iDHKDHG VViii εενεεσ         (6) 

In (6) εV  is the volumetric strain, G is the shear modulus, K = E/((1+ν)(1-2ν)), and H(•) is the 
Heaviside function. This method keeps the mapping between stresses and strains continuous. 
 
In the above described model the macro crack is represented by connecting arrays of fully 
damaged elements. Thus the model doesn’t account for the local orientation of the discontinuity 
at the (meso)element level. In the present approach the tensile crack is allowed to rotate locally 
so that it is orthogonal to the greatest principal stress σ1 as indicated in Fig. 1 (b). When the 
failure initiates its inclination angle α is kept fixed. This introduces anisotropy to the model 
which is taken into account by transforming the elasticity matrix written in the local t,n-
coordinate (see Fig. 1) system into the global coordinate system. In addition, the strain εeqv in 
(4) is replaced by the strain normal to the crack. Thus, in this modified model the element is 
able to transfer stresses in the direction normal to the crack only when crack is closing but in the 
tangential direction, it transfers normal stresses as intact material.  
 
Explicit procedure for solving the dynamic indentation problem 
In order to simulate the crack propagation in time domain the explicit modified Euler time 
integrator is chosen because it is readily compatible with the viscous non-reflecting boundary 
scheme and the forward increment Lagrange multiplier method which is employed for imposing 
the contact constraints. Combining these methods leads to the following equations for solving 
the incremental response of the system [1]. 
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In (7), the denotions are: u is the nodal displacement vector, M is the lumped mass matrix, fqp, 
fqs are the nodal force vectors (corresponding to the dilatation and shear waves, respectively) 
integrated from the viscous type of non-reflecting boundary conditions, fint is the internal force 
vector assembled from the element contributions fint

e = t∫BTD(E(D))BdAu, G is the contact 
constraint matrix, λλλλ is the lagrange multiplier vector which has the physical meaning of contact 
forces in this context, and b is the initial distance between the indenter and rock.  
 
Numerical example  
The presented procedure is demonstrated by solving the dynamic indentation problem depicted 
in Fig. 2.  
 

 
 
 
 
 
 
 
 
 
Figure 2: Illustration of dynamic indentation problem and initial data 

Data for indenter            Data for rock 
   
ρ = 7800 kg/m3                     ρ0 = 2500 kg/m3, mρ = 100 
ν = 0.3             ν0 = 0.2, mν = 100  
E = 200 GPa              E0 = 60 GPa, mE = 6 
v0 = 6 m/s                       σc0 = 100 MPa, mσ = 6 
              σt = 0.1σc, ϕ = 30°,  
              λ = 0.1, η = 5 

v0 
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In order to simulate the infinity of rock viscous damper type non-reflecting boundary conditions 
are imposed on the boundaries of the rock. The plane strain case is assumed, and the bilinear 
quadrilateral element is used in the generation of a regular mesh consisting of 120×80 elements 
for the rock and 20×30 for the indenter. The size of each element is 1mm×1mm. The parameters 
η, λ and m (Fig. 1) are chosen so as to make the rock domain correspond to hard rock, e.g. 
granite. The tensile strengths of the elements are generated from the compressive strengths of 
those elements by multiplying the latter values by a factor 0.1. A time step ∆t = 8.2E-8s is used 
in numerical simulations. Fig. 3 shows the crack patterns simulated with the present approach. 
 
 
 
 
 
 
 
 
 
 
 
 
                 (a)                     (b) 
Figure 3: Simulated crack patterns without (a) and with the oriented crack  (b)  
 
In Fig. (3) the black color corresponds to the intact rock, the dark gray (1 in color bar) to partly 
damaged rock in tensile mode, the light gray (2 in color bar) to rock damaged in shear mode, 
and the white color to fully damaged rock (in tensile mode). It can be seen that the crack pattern 
between the two models are very similar. Both of them produce the Herzian cone cracks, typical 
for right-angled indenters, and the vertical median cracks. Finally it is noted that virtually no 
shear failures occur which is due to the fact that the compressive strength is 10 times higher 
than the tensile strength.  
         
Concluding remarks 
An explicit FE-code for simulating the dynamic indentation, which occurs e.g. in percussive 
drilling, is developed in this work. The results of the simulations show that the present model is 
promising. The explicit approach to the considered problem is computationally cheap, not only 
because of the lumped mass matrix approach but also because the response of the structure need 
and can be calculated only within the reach of the propagating stress wave. It is also simple and 
thus allows easily for the extension of simulating the whole percussive drilling process 
including the piston, rods, couplings, and even some hydraulics.   
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The Variational Multiscale Method, see Hughes et al [2] provide a general framework for deriva-
tion of multiscale methods where the effects of fine (unresolved) scales on coarse (resolved) scale
are accounted for through additional terms in the variational formulation. The additional terms
involve the fine scale part of the solution, which satisfies an equation driven by the residual of
the coarse scale part of the solution. In the simplest case the fine scale part of the solution can
be approximated by a suitable scaling of the residual. Some problems require, more refined ap-
proaches, where the fine scales are approximated using solutions to localized problems, see Larson
and Målqvist [4].
In this talk we present recent results, see [1], on the Navier-Stokes equations where we consider
feedback to the coarse scales based on the fine scale velocity gradient. By taking the gradient of the
Navier-Stokes equations we obtain an equation for the velocity gradient. We model the fine scale
velocity gradient in terms of the residual obtained when inserting the coarse scale velocity gradient
into this equation. The method is illustrated in several applications to realistic 3D turbulent flows.
In particular, we show examples of the force fields generated by the additional fine scale terms.
The new additional terms are not constructed in such a way that they provide stabilization to the
method, on the contrary, they drive certain phenomena in the flow. For instance, the simplest
possible term modifies the vorticity vector with a vortex stretching term, which feed energy into
the vortex. In fact, we may expect that discretization may introduce more viscosity into the model
and thus effects of the fine scales could in some situations be driving instead of stabilizing. This
property is in sharp contrast to standard stabilized methods such as the SUPG and GLS. The recent
method of Hughes et al display similar properties, see [3].
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In this talk we outline a basic framework for adaptive simulation of multiphysics problems. We
assume that we have access to solvers for the different kinds of physics in the problem. A mul-
tiphysics solver can then be obtained by letting these solvers communicate in a network. This
situation is typical in industrial and lab environments where efficient solvers with detailed mod-
eling of certain physical phenomena have been developed over the years. These solvers are then
combined in multiphysics simulations.
We develop a basic a posteriori error analysis for such networks of solvers. We assume that
each solver is adaptive and supports duality based a posteriori estimates for the error in linear
functionals of the solution. The error in the functional is basically estimated by terms accounting
for the discretization of the problem and the error in data to the problem. The discretization error
is controlled using standard adaptive mesh refinement based on the a posteriori error analysis.
The data error can account for uncertainty in given data or may depend on another solver. In the
latter case the data error can be controlled by sufficient accurate solution of that problem. This
dependency between the problems in the network is captured and quantified by solving a specific
sequence of dual problems.
The basic theory is illustrated on some examples including solution of the pressure equation to-
gether with the transport equation with applications to oil reservoir simulation and the heat equa-
tion coupled with linear elasticity with application to stresses caused by heat in gearbox casings.
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ABSTRACT 
 
We present herein methodology for handling fluid-structure interaction involving hydrodynamical 
flow around two or more cylinders. Due to vortex induced vibration of the cylinders the relative 
motions between them may be large and even collision may occur. To handle such cases we have 
developed tailored algorithms for mesh movement and remeshing that is robust and efficient. The fluid 
grid is composed of a structured part around the cylinders taking care of the boundary layer and an 
unstructured part away from the cylinder that makes it possible to do automatic remeshing in a flexible 
manner. Special care is taken in the remeshing step in order to not perturb the fluid loads on the 
cylinders due to interpolation between the old and new mesh. 
 
We will focus on the methodology and validate its performance against high quality laboratory tests of 
two cylinders in a tandem set up. The computed response of the cylinders and the corresponding 
computed fluid loads will be compared with the physical experiments. These tests are particular 
relevant for analyzing the possibility for collisions of offshore risers or submerged pipelines which is 
important unresolved issues for oil exploration on deep water. 
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A new tool joint system is considered. Traditionally these rotary connections have been designed with
only one shoulder geometry. However, in order to increase the torque rating of the tool joint, a new design
is introduced using two shoulders. This design allow reduced tool joint dimensions whereby down-hole
equipment more easily can be fitted. In order to evaluate the validity of the design, finite element analysis
have been performed in ANSYS. The results obtained indicate that the new design is valid and further tests
can be performed.

Introduction

In a drill string different components are connected by tool joints. The tool joints are rotary con-
nections with a box member and a pin member. A typical drill string with such tool joints is shown
in figure 1(Left) and in figure 2(Top). In order to maintain internal and external pressure in the
drill pipe and transmit torque these rotary shouldered connections (RSC) are pre-loaded by a so-
called make-up torque. In the conventional connection only one shoulder is defined and the joint
is conical with tapered threads as specified by [1], [2], [3], and [7].

Figure 1: (Left) A conventional rotary single shouldered connection (RSC), i.e. a conical threaded connec-
tion with tapered pin and box threads, and sealing shoulders. (Right) A rotary double shouldered connection
(RDSC).

The new type of connection, see figure 1(Right) and figure 2(Bottom), is not conical and two shoul-
ders are defined. The new connection is termed a rotary double shouldered connection (RDSC) in
the following.

The shoulder in these rotary connections function as a metal to metal seal for maintaining the pres-
sure down-hole. During operation the connection is subjected to various load systems, however,
the main load systems are: tensile forces and bending moments acts simultaneously with a high
torque, e.g. during directional drilling where the bore hole is deviated.

The rotary connections with given dimensions depicted in 2 are selected for the finite element
analysis conducted. Material used for the connections is AISI4145 with a yield limitYm =
124.73 × 103[psi] and modulus of elasticityE = 29.8 × 106[psi]. The new design RDSC al-
low a smaller wall thickness, pitch of thread, and root radius, thus, more design space for fitting
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Figure 2: (Top) A RSC NC 50 with dimensions. (Bottom) A comparable RDSC with dimensions.

down hole equipment compared to the load bearing capacity. Comparison with design formulas
indicate that care must be taken when evaluating the stresses in a pre-tensioned threaded connec-
tion. [8], [4], [6], and [5] suggest different approaches to determine the induced tension in the
connection. Depending on how the friction is taken into account the results obtained from the de-
sign formulas can vary significantly. Therefore, the objective have been to gain confidence with
the RDSC model with respect to the same modeling considerations, i.e. friction at the shoulders,
as for the RSC model which should be replaced. The finite element analysis programme ANSYS
is used for the numerical analysis.

Analysis

The load configuration considered is determined from [7] and is given as the make-up torqueTm

Tm =
SA

12

[
p

2π
+

Rtf

cosα
+ Rzf

]
(1)

where the recommended stress levelS = 0.6 × Ym = 74838[psi], A is the cross-sectional area,
p = 0.25[in] is the pitch or lead,f = 0.08 is the coefficient of friction between mating surfaces
[2], andα = 60/2 = 30[◦] is the thread angle or pitch angle.

The friction coefficientRt taking into account the friction at the thread surfaces is given as

Rt =
C + (C − (L− 0.625)× tpr × 1/12)

4
(2)

whereC = dp, tpr is the taper ratio, andL = 4.5[in] is the length of the thread.

The friction coefficientRz taking into account the friction between the mating shoulder surfaces

is given asRz =
OD −Qc

4
, whereQc = 5.3125[in] is the box counter-bore, and the outside

diameterOD = 6.625[in].

For the RSC NC 50dp = 6.625[in] and tpr = 2[in/ft], i.e. the torque is found to beT =
21454[ft − lb] thus Fz = 77720.15[lbs]. Tension inducedP due to the applied torqueP =
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533 × 103[lbs] = Fy. The forcesFz andFy are applied as combined loading of the model and
solution is run for the static case using axi-symmetry.

For the new connection RDSCdp = 5.68[in] and tpr = 0, F = 90650[lbs] = Fz. Tension
induced due to the applied torqueP = 487× 103[lbs] = Fy.

Results

The resulting shear stress distributionτyz can seen from figure 3.

Figure 3: (Left) The shear stress distribution for the RSC NC 50. (Right) The shear stress distribution for
the RDSC model.

As RSC NC 50 and the RDSC connection have different thickness, for a good comparison the
computational values are taken at the same distance from the centre of the connection. Eight points
are selected through the thickness of the connection as depicted in figure 4.

Figure 4: (Left) The through thickness von Mises stress distribution for the RSC NC 50. (Right) The through
thickness von Mises stress distribution for the RDSC model.

Although the overall dimensions in the RDSC have been reduced the effect of the double shoulder
reduces the maximum stress von Mises.

In order to evaluate the effect of the double shoulder further contact analyses have been performed
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with ANSYS applying element types plane82, contact171, contact172, and target169. The result-
ing stress von Mises distribution is shown in figure 5

Figure 5: (Left) The von Mises stress distribution for the RSC NC 50 resulting from a contact analysis.
(Right) The von Mises stress distribution for the RDSC model resulting from a contact analysis.

The contact analysis also indicates that the stress distribution in the double shouldered connection
is more smooth and the maximum stress level has been reduced.

Conclusion

A RSC NC 50 and a RDSC have been compared using axi-symmetric finite element models. The
effect of pre-tension is considered using an induced tension combined with a make-up torque. The
results indicates that the stresses in the RDSC model are reduced compared to the RSC NC 50,
allowing a full-scale prototype of the RDSC model to be tested as the next step.
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Summary An elastoplastic material model accounting for the interlayer slippage of paper layers is used to
study the deformation of a paper roll compressed against a rigid nip roller. Calculated load–deformation
paths are compared to experimental results. It is found that the interlayer slippage in the nip area plays a
key part in the deformation mechanism of the roll.

Introduction
Material constants for paper have been measured and reported by many authors [1], [2], [3].
However, the elastic material parameters obtained from the tests are not directly applicable to
a wound roll. A purely elastic continuum model cannot correctly describe the layered structure
of a paper roll and account for the slippage of the paper layers during the deformation. This
can be a real drawback, since the interlayer slippage can play a key role in the mechanism of
deformation [4], [5]. This is especially true in the case of nip1 loads when high local stress
concentrations in the roll can occur.
In this paper, an orthotropic elastoplastic material model, with the interlayer slippage described by
plastic shear [6], is used to study the load–deformation paths, permanent deformations and layer–
to–layer slippage in a paper roll loaded against a nip roller. It is demonstrated that compression
tests of paper rolls against solid nip rollers can be used in determining the material parameters of
paper by fitting the corresponding computed and measured results. Using this approach, values
for the radial and shear moduli of paper are determined. The model can correctly predict the
permanent deformations and hysteresis found in experimental tests.

Constitutive model for layered structure
The detailed mathematical formulation of the model used in this work is given in [6]. The main
idea of the model is that the layered structure of the roll is embedded in the constitutive equation
defining the material response. Larger elements of this jointed material, each spanning over sev-
eral hundreds of layers, can then be used in the finite element model of the roll. The description
of slippage between the layers in the material is based on the theory of plasticity. Since the layers
in a roll are closely spaced compared to the characteristic dimensions of the domain of the model,
they can be smeared into a continuum with slip surfaces. The outcome was an elastoplastic jointed
material model for orthotropic materials with shear limits based on Coulomb friction. Finally, the
model was implemented in ABAQUS/Standard finite element structural analysis software to per-
form the calculations.

Compression test and FE-model
In the compression test a roll of catalog paper was compressed against a solid nip roller as shown
in Fig. 1. Since the initial radial pressure distribution, generated in the roll during winding, can
have a significant effect on the slippage of the layers, it had to be taken into account. This pres-
sure distribution was estimated using pull tab measurements. The indentation δ, i.e., the relative

1the contact region between the paper roll and nip roller
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displacement of the centres of the roll and roller, as well as the nip load P and paper to paper
coefficient of friction µpp were also measured.� � � � � � � � �� � � � � � � � � � 	 

 
 � � � � � � � �� 	 � � � �  � � � �� �� � � � � � � � � �� � � � � � � �� � � � � � � � � �
Figure 1: Paper roll compressed against a nip roller. The radii of the roll and roller are r1 and r2, respec-
tively.

To model the compression test, a finite element simulation of a hollow cylinder of orthotropic
jointed material around a rigid core, representing the paper roll, compressed against a rigid roller
was performed. During one load cycle the roller was first compressed against the roll and then
withdrawn. A total of two load cycles were simulated. A two dimensional model under plane
strain conditions was used. Only one half of the roll had to be modelled when using the appropriate
symmetry conditions. Numerical studies indicated that the results were

• practically independent of the Poisson’s ratios νrθ, νrz , νθz and the coefficient of friction
between the paper roll and nip roller µpr. For the Poisson’s ratios typical values from [7]
were used.

• only slightly dependent on the elastic moduli Eθ and Ez . The modulus Eθ was measured.
A value typical for catalog paper was used for Ez .

The values for Er and Grθ were determined by fitting the calculated and measured results. It
should be noted that values for the shear modulus Grθ are rarely reported in existing literature, and
yet it is an important parameter in modern winding models including the nip action. A summary
of the parameter values used in the ultimate calculations are given in Table 1.

Table 1: Values of the parameters used in the calculation. The indices r, θ and z refer to the radial,
circumferential and axial directions of the roll, respectively.

Elastic moduli Poisson’s ratios Shear modulus Coefficients of friction
Er = 10.0MPa νrθ = −0.0055 Grθ = 42.0MPa µpp = 0.275
Eθ = 5100 MPa νrz = −0.0035 µpr = 0.4
Ez = 2600 MPa νθz = 0.37

Results
The indentation δ as a function of the nip load P is shown in Fig. 2. A preload of 1 kN/m was
applied to remove the entrained air below the top layers of the paper roll and to set the zero point
for the displacement. The calculated results (solid line) are in relatively good agreement with the
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experimental results (dotted line). Note that the loading and unloading do not happen along the
same path. Instead, a hysteresis cycle can be seen and a permanent indentation of approximately
0.3mm remains after the first load cycle. For comparison, the calculation was repeated using
a purely elastic, orthotropic model for the paper roll. The result is shown in Fig. 2 (dashed
line). Obviously the elastic model cannot produce the hysteresis cycle and, thus, the loading
and unloading occur along the same path. The elastic model is also more than 30% stiffer than the
elastoplastic model. This can be understood, since in the plastic model layer–to–layer slippage
softens the behaviour.
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Figure 2: Indentation δ as a function of the nip load P . Experimental results (circles and dotted line) and
calculated results obtained using the elastoplastic model (solid line) and elastic model (dashed line).

Regions of interlayer slippage
Since the interlayer slippage contributes significantly to the indentation–load behaviour, it is in-
teresting to see where the slippage occurs. The permanent plastic engineering shearing strain (or
permanent interlayer slippage) after two load cycles is shown in Fig. 3.

Figure 3: Plastic engineering shearing strain (or interlayer slippage) in the paper roll after two completed
load cycles. A close up of the nip region and the finite element mesh are shown on the right. Only the left
half of the roll is shown.
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The area of high slippage is found on the side of the nip region close to the roll surface, penetrating
about 40 mm into the roll. This can be expected, since this is the region of high shear stresses
of cylindrical contact problems where shear stresses overcome the frictional forces and slippage
occurs. Note also that in this region the radial compressive stresses are not as high as right below
the nip area.

Concluding remarks
An orthotropic elastoplastic jointed material model accounting for the slippage and separation of
the paper layers has been used to study the deformation of a paper roll compressed against a nip
roller. The calculated results were compared to experimental data and a good correspondence was
found. If other parameter values are known, the present model can also be utilized in an indirect
method for determining the shear modulus Grθ of paper from roll compression tests. A direct
measurement of Grθ is difficult due to the thinness of paper. It was also shown that a purely
elastic model highly exaggerates the stiffness of the roll. In conclusion, the interlayer slippage
plays a key role in the deformation mechanism of a paper roll, and it has to be taken into account
in the calculations if accurate results are to be achieved.

References
[1] R.W. Mann, G.A. Baum and C.C. Habeger. Determination of all nine orthotropic elastic constants for

machine–made paper. TAPPI Journal, 63, 163–166, (1980).
[2] G.A. Baum, D.C. Brennan and C.C. Habeger. Orthotropic elastic constants of paper. TAPPI Journal,

64, 97–101, (1981).
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Summary In this paper, we discuss different approaches to explicit filtering in LES and the choice of the
filter function. Explicit filtering of the whole velocity field fails to predict the flow statistics while filtering
of the change in the velocity field or only the convection term of the Navier–Stokes equations behave better.
Using a filter as close as possible to the spectral cut-off produces the best result. However, using explicit
filtering increases the effect of the modelling error on the statistics.

Introduction
In Large Eddy Simulation (LES), the large scales of fluid motion are solved from the Navier–
Stokes equations, and a sub-grid scale (SGS) model is applied to describe the effect of the small
scales on the large scales. When low-order (i.e. second or fourth order) finite-difference-type
methods, where discretization is not performed in the Fourier space, are applied, and the compu-
tational grid is let to define the separation between resolved and SGS scales, the numerical error
becomes a problem. It can be larger than the effect of the SGS model. Explicit filtering of the
resolved flow field has been noticed to improve the situation [1].
Filtering of the whole velocity field in the end of each time step has been the traditional approach,
but it has been criticised of leading to multiple filtering of the velocity field from the previous
time levels [2], and in a priori testing, it has lead to unphysical behaviour of the SGS term [3].
Filtering of the non-linear convection term of the Navier–Stokes equations has been suggested as
an alternative approach [2]. The approach has been applied in actual simulations [4], and it has
given promising results also in a priori tests [3]. However, filtering of only the convection term
breaks the Galilean invariance. This can be recovered by using a filter as close as possible to the
spectral cut-off filter or by proper SGS modelling.
In this paper, we discuss different approaches to explicit filtering and compare between some
explicit filters. As the test case, we have a fully developed turbulent channel flow between two
infinite parallel walls. The Reynolds number based on the friction velocity and the channel half-
height is Reτ = 395. This corresponds approximately to Re ≈ 6500 based on the mean velocity.

Governing Equations and Applied Numerical Methods
In LES of an incompressible flow, we solve the filtered Navier–Stokes equations, which are writ-
ten here in the non-dimensional form as:

∂ũi

∂t
= −

∂P

∂xi

−

∂p̃

∂xi

+
∂

∂xj

(
− ũiũj − τij +

1

Reτ

(
∂ũi

∂xj

+
∂ũj

∂xi

))
, (1)

where (x1, x2, x3) = (x, y, z) refer to non-dimensional streamwise, wall-normal and spanwise
spatial coordinates, respectively, t to time, (ũ1, ũ2, ũ3) = (u, v, w) to resolved velocity vector, ρ
to density, P to mean pressure, p̃ to fluctuating resolved pressure, and τij is a model for the SGS
stress tensor ũiuj − ũiũj . Here, the equations are scaled by the channel half-height, 0.5h, and
friction velocity uτ =

√
τwall/ρ, and the Reynolds number is thus defined as Reτ = 0.5huτρ/µ.

The standard Smagorinsky model [5] is applied to model τij .
In the present simulations, the second-order central-difference scheme was applied on a staggered
grid system for spatial discretization. For time integration, a third-order, three-stage Runge–Kutta
method was applied. For details of the methods see Ref. [6]. The applied resolution and the
domain size are given in Table 1.
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Table 1: Resolution and domain size of the applied LES grid.

x z y

length of the domain (scaled by 0.5h) 6.0 3.2 2.0
number of grid points 54 54 60

size of the grid cell in wall units (∆+) 44 11 min 2, max 27

wall units: x+ = Reτx, where x is scaled by the channel half-height.

Different Approaches to Explicit Filtering
One step of the applied Runge-Kutta method may be written as:

ũn+1

i = ũn
i + ∆tn

(
c1∆ũn + c2∆ũn−1

)
, (2)

where the superscript refers to time levels and c1 and c2 are the coefficients of the method. In the
first applied approach to explicit filtering, the whole velocity field, ũn+1

i , is filtered in the end of
each step. In this case, the velocity field ũn

i from the previous step will be multiply filtered. This
leads to loss of information if a filter other than sharp spectral cut-off is applied [2]. In the second
approach, the change in the velocity field, ∆ũn

i , is filtered, and in the third and fourth approaches,
only the non-linear convection term, ũiũj , and the sum of non-linear convection term and the
SGS term, ũiũj + τij , are filtered, respectively. The second, third and fourth approach avoid the
multiple filtering of the velocity field. In the fourth approach, also the possible higher frequencies
produced by the SGS model are removed from the resolved field.

Some Discrete Filters
We apply altogether four discrete filters in this paper: the Trapezoidal and Simpson filters and
a third and fifth order commutative filters from Ref. [7]. Here, filtering is applied only in the
homogeneous directions, and thus the commutation of filtering with differentiation is not required.
However, the commutative filters are closer to the spectral cut-off filter than the Trapezoidal and
Simpson filters. The applied filters are described in Table 2.

Table 2: Coefficients of the applied discrete filter functions. ũi (xj) = ΣK
l=−Kalũi (xj+l).

a0 a±1 a±2 a±3 a±4 a±5

Trapezoidal 1/2 1/4
Simpson 2/3 1/6

3rd order commut. 1/2 9/32 0 -1/32
5th order commut. 1/2 75/256 0 -25/512 0 3/256
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Results
Comparison between the Filtering Approaches
In cases discussed in this subsection, the third-order commutative filter was applied. Filtering of
the whole velocity field in the end of each time step spoiled the simulation. The mean velocity
and Reynolds stresses were overpredicted by more than 100% and even the total shear stress was
incorrectly predicted, and thus the mean momentum balance was not satisfied in the channel.
Since the applied filter was not the spectral cut-off, multiple filtering of the velocity field resulted
in excessive smoothing of the velocity field.
The mean velocity profile, the deviatoric diagonal streamwise Reynolds stress and the SGS shear
stress from the other approaches are plotted in Figure 1. In the mean velocity profile, the slope
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is incorrect in all the cases. When ∆ũi is filtered, the mean velocity is under-predicted and when
ũiũj or ũiũj + τij are filtered, it is slightly over-predicted. The deviatoric diagonal Reynolds
stress is over-predicted in all the cases, and the approach where ∆ũi in filtered is closest to the
DNS results. The peak in the SGS shear stress increases in approaches where ũiũj or ũiũj + τij

are filtered, but further away from the wall, it decreases in all the cases. Filtering of the SGS term
has no effect on the statistics since the Smagorinsky model does not introduce new frequencies
in the resolved flow field. The situation would be different if a scale-similarity-type model was
applied.
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Figure 1: Comparison between the filtering approaches. Left: Mean velocity profile. Middle: Deviatoric
diagonal streamwise Reynolds stress −u′u′∗. Right: SGS shear stress τ12.

Comparison Between Different Filters
In this subsection, we study the effect of the chosen filter on the flow statistics using the approach
where ũiũj + τij is filtered. The mean velocity profile, the deviatoric streamwise Reynolds stress
and the SGS shear stress are plotted in Figure 2. The slope of the mean velocity improves and
the over-prediction of the mean velocity and the Reynolds stress decrease as a filter closer to the
spectral cut-off is applied. The over-prediction of both quantities is worst when the Trapezoidal
filter is applied. The peak in the SGS shear stress decreases as a filter closer to the spectral cut-off
is applied.
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Figure 2: Comparison between filters. Left: Mean velocity profile. Right: Deviatoric diagonal streamwise
Reynolds stress −u′u′∗. Right: SGS shear stress τ12.

Computational cost
In the present case, taking one step in the time integration method took on average 0.57 CPU
seconds. When explicit filtering was applied, this took approximately 1.5 CPU seconds. The
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differences in CPU time between the applied filters were at maximum 0.05 CPU seconds per time
step.

Conclusions
In this paper, we have discussed two aspects of explicit filtering in LES. Firstly, four approaches
were compared and secondly, four filters were tested using one of the approaches. Filtering was
applied only in the homogeneous directions, and the standard Smagorinsky model was applied.
Explicit filtering of the whole velocity field seriously damaged the flow statistics, which was due
to the multiple filtering of the velocity from the previous time levels. This situation can be avoided
only if the spectral cut-off filter is applied.
There were only small differences between the other tested approaches, and all the studied statis-
tics were further away from DNS results than the traditional LES with no filtering. This can be
due to counteraction between numerical and modelling errors, which has been noticed to lead to a
situation where a decrease in either one can lead to increased total error [8]. Filtering of ∆ũi pro-
duced results closest to the DNS results. However, based on results of Ref. [4], it seems possible
that using a mixed model with a scale-similarity term could change the situation.
The effect of the chosen explicit filter was studied using the approach where the resolved and
the SGS convection terms are filtered. In this approach, using a filter as close as possible to the
spectral cut-off minimises the error due to the broken Galilean invariance and the effect of filtering
to the large scales. Here, it was noticed that as the applied filter approached the spectral cut-off
filter, the prediction of the slope of the mean-velocity profile and the peak of the Reynolds stress
were improved. The peak in the SGS stress decreased as the filter approached the spectral cut-off.
The effect of the chosen filter was larger than the effect of the choice of the filtering approach.
As a conclusion, it seems that just applying explicit filtering does not necessarily improve the
simulation results. As shown by the present results, one has to pay attention to the choice of the
filtering approach and especially to the filter. In addition, since the effect of the model did not in-
crease when the Smagorinsky model was applied, improved SGS modelling has to be considered.
Also, the increased computation time is a drawback. However, the clear benefit in explicit filtering
is that the effect of the numerical error decreases. As long as it has a major role in the simulation
results, the interpretation of for example the behaviour of different SGS models is difficult.
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Summary This paper presents a two-dimensional-in-space mathematical model of amperometric
biosensors with perforated and selective membranes acting under internal and external diffusion
limitations. The model is based on non-linear reaction-diffusion equations. Using numerical
simulation the influence of the geometry of the biosensor as well as of the external diffusion region
on the biosensor response was investigated.

Introduction

Biosensors are measuring devices that contain a biological entity [1]. The enzyme in
a biosensor recognizes the substrate to be measured and specifically converts it into a
product of the biochemical reaction. The amperometric biosensors measure the faradic
current that arises on a working indicator electrode by direct electrochemical oxidation or
reduction of the product. The amperometric biosensors are known to be reliable, cheap
and highly sensitive for environment, clinical and industrial purposes [2].

A practical biosensor contains a multilayer enzyme membrane [3]. The electrode acting
as a transducer of the biosensor is covered by selective membrane, following a layer of
immobilized enzyme and an outer perforated membrane [4].

The goal of this research was to build a model approaching the practical amperometric
biosensor and taking into account the geometry of the membrane perforation. Using com-
puter simulation the influence of the geometry of the biosensor as well as of the external
diffusion region on the biosensor response was investigated. The simulation was carried
out using the finite difference technique [5].

Mathematical model

The holes in the perforated membrane were modelled by right cylinders. The holes are of
uniform diameter and spacing, forming a hexagonal pattern. Fig. 1a presents the biosensor
schematically.

The entire biosensor may be divided into equal hexagonal prisms with regular bases. For
simplicity, it is reasonable to consider a circle whose area equals to that of the hexagon and
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Figure 1: A principal structure of the biosensor and the profile of the unit cell at Y-plane.

to regard one of the cylinders as a unit cell of the biosensor. Fig. 1b shows the profile of the
unit of the biosensor. b1, b2−b1, b3−b2, b4−b3 are the thicknesses of the selective membrane,
basic enzyme layer, perforated membrane and external diffusion layer, respectively, a2 is
the radius of the base of the unit cell, a1 is the radius of the holes. We also assume that
holes are filled with the enzyme.

Let Ω1, Ω2, Ω3 be open regions corresponding to the selective membrane, enzyme region,
diffusion layer, respectively, and Γ2 - the boundary between of Ω2 and Ω3,

Ω1 = (0, a2) × (0, b1), Ω2 = ((0, a2) × (b1, b2)) ∪ ((0, a1) × [b2, b3)) ,

Ω3 = (0, a2) × (b3, b4), Γ2 = [0, a1] × b3.
(1)

The biosensor action is described by the reaction - diffusion system (t > 0)

∂P1

∂t
= D1∆P1, (r, z) ∈ Ω1, (2)

∂S2

∂t
= D2∆S2 −

VmaxS

KM + S2

,
∂P2

∂t
= D2∆P2 +

VmaxS

KM + S2

, (r, z) ∈ Ω2, (3)

∂S3

∂t
= D3∆S3,

∂P3

∂t
= D3∆P3, (r, z) ∈ Ω3, (4)

where ∆ is the Laplacian in cylindrical coordinates, Si(r, z, t) is the concentration of the
substrate in Ωi, i = 2, 3, Pj(r, z, t) is the concentration of the reaction product in Ωj,
j = 1, 2, 3, Vmax is the maximal enzymatic rate and KM is the Michaelis constant.

Let Ωi be the closure of the corresponding open region Ωi, i = 1, 2, 3. The initial conditions
(t = 0) are as follows:

S2(r, z, 0) = 0, (r, z) ∈ Ω2 \ Γ2, S2(r, z, 0) = S0, (r, z) ∈ Γ2,

S3(r, z, 0) = S0, (r, z) ∈ Ω3,

Pi(r, z, 0) = 0, (r, z) ∈ Ωi, i = 1, 2, 3.

(5)

The boundary and matching conditions (t > 0) are

P1(r, 0, t) = 0, S3(r, b4, t) = S0, P3(r, b4, t) = 0,
∂S2

∂z

∣∣∣
z=b1

= 0 r ∈ [0, a2], (6)
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∂P1

∂r

∣∣∣
r=0

=
∂P1

∂r

∣∣∣
r=a2

= 0, z ∈ [0, b1], (7)

∂P2

∂r

∣∣∣
r=0

=
∂S2

∂r

∣∣∣
r=0

=
∂P2

∂r

∣∣∣
r=a2

=
∂S2

∂r

∣∣∣
r=a2

= 0, z ∈ [b1, b2], (8)

∂P2

∂r

∣∣∣
r=0

=
∂S2

∂r

∣∣∣
r=0

=
∂P2

∂r

∣∣∣
r=a1

=
∂S2

∂r

∣∣∣
r=a1

= 0, z ∈ [b2, b3], (9)

∂P3

∂r

∣∣∣
r=0

=
∂S3

∂r

∣∣∣
r=0

=
∂P3

∂r

∣∣∣
r=a2

=
∂S3

∂r

∣∣∣
r=a2

= 0, z ∈ [b3, b4], (10)

∂P2

∂z

∣∣∣
z=b2

=
∂S2

∂z

∣∣∣
z=b2

=
∂P3

∂r

∣∣∣
z=b3

=
∂S3

∂r

∣∣∣
z=b3

= 0, r ∈ [a1, a2], (11)

D1

∂P1

∂z

∣∣∣
z=b1

= D2

∂P2

∂z

∣∣∣
z=b1

, P1(r, b1, t) = P2(r, b1, t), r ∈ [0, a2], (12)

D2

∂P2

∂z

∣∣∣
z=b3

= D3

∂P3

∂z

∣∣∣
z=b3

, P2(r, b3, t) = P3(r, b3, t), r ∈ [0, a1], (13)

D2

∂S2

∂z

∣∣∣
z=b3

= D3

∂S3

∂z

∣∣∣
z=b3

, S2(r, b3, t) = S3(r, b3, t), r ∈ [0, a1]. (14)

The measured current depends upon the flux of the reaction product at the electrode
surface. The density i(t) of the current at time t can be obtained explicitly from Faraday’s
and Fick’s laws

i(t) = neFD1

1

πa2
2

∫
2π

0

∫
a2

0

∂P1

∂z

∣∣∣∣
z=0

rdrdϕ, (15)

where ne is a number of electrons involved in a charge transfer and F is Faraday constant.
We assume, that the system (2)-(14) approaches an equilibrium or steady - state when
t → ∞, i∞ = lim

t→∞

i(t).

The problem was solved numerically using the finite difference technique [5]. We introduced
a non-uniform discrete grid in all three directions: r, z and t. Using the alternating direction
method, an implicit finite difference scheme was built. The resulting systems of linear
algebraic equations were solved efficiently because of the tridiagonality of their matrices.

Results of calculations

The thickness δ = b4 − b3 of the external diffusion layer is inversely proportional to the
intensity of solution stirring [6]. To investigate the effect of the external diffusion on the
biosensor response we calculated the normalized steady-state current,

iN (δ) =
i∞(δ)

i∞(0)
, δ = b4 − b3, δ ≥ 0, (16)

where i∞(δ) is the steady-state biosensor current at given thickness δ of the diffusion layer.
Fig. 2 shows the results of calculations.

One can see in Fig. 2, iN is a monotonous increasing function of the thickness δ of the
diffusion layer in the cases of relatively large radius a1 of the holes of the perforated
membrane (a1 > 0.2a2 = 0.2µm). Due to the external diffusion the biosensor current can
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Figure 2: The normalized steady-state current iN versus the thickness δ of the diffusion layer at
different values of the radius a1 of holes, a1 = 1.0 (1), 0.8 (2), 0.6 (3), 0.4 (4), 0.2 (5)µm, S0: 100
(a), 1 (b)µM, Vmax: 100 (a), 1 (b)µM/s, a2 = 1, b1 = 2, b2 = 4, b3 = 14 µm, D1 = 1 µm2/s, D2

= 300 µm2/s, D3 = 2D2, KM = 100 µM, ne = 2.

vary even in an order of magitude. In the opposite case of relatively small radius a1 of
holes the biosensor response practically does not depend upon the intensity of stirring of
analyte (Fig. 2). This property is valid for wide rages of the substrate concentration S0

and maximal enzymatic rate Vmax.

Concluding remarks

The mathematical model (2)-(14) of operation of the amperometric biosensors with se-
lective and perforated membrane can be used to investigate pecularities of the biosensor
response in stirred and non stirred analytes.

In the case of relatively large radius of holes of the perforated membrane, the steady-state
current is a monotonous increasing function of the thickness of the external diffusion layer
and that layer should be taken into consideration when modelling the biosensor action
(Fig. 2). In the case of relatively small radius of holes the biosensor response practically
does not depend upon the intensity of stirring of analyte (Fig. 2), and the external diffusion
layer may be neglected to model the operation of biosensors with perforated membrane.
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Summary This paper describes an aircraft ground behavior model of a Valmet Vinka –type light aircraft 
developed for a Matlab/Simulink-based flight simulation software. This simulation could be used in 
preliminary flight training in the Training Wing of the Finnish Air Force. The model was found out to 
perform realistically despite simplifications and constants that had to be estimated due to lack of data. 
 
Introduction 
Valmet Vinka light aircraft, shown in Fig. 1, is used for flight training in the Finnish Air Force. 
The Laboratory of Aerodynamics at Helsinki University of Technology is developing a new 
flight simulation model of the aircraft that could replace the existing outdated analog simulators. 
The aircraft landing gear and ground behavior form a part of the aircraft model so that taxiing, 
take-off and landing can be trained as well as up-and-away flying. 

 
Figure 1: Valmet Vinka light trainer aircraft. 

The aircraft model is developed into an in-house developed Matlab/Simulink-based flight 
simulation software HUTFLY2 described in reference [1]. The basic simulation program 
includes an atmospheric model, non-linear six-degree-of-freedom rigid-body flat-earth 
equations of motion, determination of forces and moments and other common routines required 
by the simulation. The simulation can be controlled using a joystick, a throttle and pedals 
connected to the computer, and it can be run synchronized to real-time clock (“near real-time”). 
Virtual Reality Modeling Language (VRML) is used extensively in the visualizations. 
Matlab/Simulink can also be used to control simulator cockpits and motion platforms. 
Therefore, the present simulation could be used in flight training if an aircraft model is available 
for the application. 
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Landing gear and its modeling 
Valmet Vinka has a fixed tricycle landing gear with a freely-castoring nose wheel. At low 
speeds on the ground, the steering is controlled using differential braking. As the speed builds 
up, the rudder power becomes adequate for aerodynamic steering control. The main landing 
gear legs are attached to a fuselage frame and the oil/nitrogen-filled shock absorbers to the leg 
and the center beam of the aircraft. The firewall-attached nose-wheel strut steering angle is 
limited to ±15º, and a spring is used to keep the strut straight during flight. The strut has an 
oil/nitrogen-filled shock absorber as well. The landing gear layout and main components are 
shown in Fig. 2. 

Fuselage
attachment

Leg

Shock absorber

Torque link
assembly

Brake

Strut

Centering
springHinge Firewall

 
Figure 2: Landing gear components. 

The ground behavior model is fully described in reference [2] and can only be discussed very 
briefly in this context. The principle of the model is to first calculate virtual positions of the 
three tires corresponding to the fully extended gear flight geometry to be compared to the 
ground level at each simulation time step. If some of the tires are below ground level, ground 
contact is detected, and landing gear calculation is carried on further. The next step is to solve 
the true tire positions, landing gear shock absorber displacements and velocities using the solved 
gear deflections and their previous values. The damper forces can then be calculated using an 
ordinary spring-damper-equation with non-linear springs. The damping ratio of the dampers had 
to be estimated from test simulations at maximum sink rates since only static test data were 
available. 
 
The non-trivial freely-castoring nose wheel is modeled using equation 

( ) ( ) ( ) ( )VMMMMI z /4321 βαβββ &&&& +++=  (1)

In Eq. 1, the first moment term (M1) is the straightening spring moment due to steering angle β. 
The second one (M2) is the combined damping effect of the strut bearings and the spring. The 
term M3 is the moment due to tire deformation. It depends on the straightening moment due to 
tire sliding angle α and moment due to tire cornering force and caster length of the strut. The tire 
sliding moment is non-linear and takes the maximum sliding angle into account. After the 
maximum sliding angle, the moments related to tire deformation are only dependent on the 
cornering force and caster length. The last term M4 models the damping of the tire in ground 
contact and depends on the velocity (V), steering angle, contact surface length and normal force. 
The inertial moment Iz of the nose landing gear had to be estimated. 
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The tire velocities are calculated in their own coordinate systems referred to the ground to be 
used in determining the coefficients of friction in longitudinal and lateral directions. The lateral 
movement of the main wheels with aircraft vertical displacement is an important factor. Friction 
is naturally divided into rolling and sliding, but the tires have no forward sliding friction, since 
due to simplification, they are considered to be only rolling. Therefore, the brakes are also 
simplified to be anti-locking. A friction circle principle is used to limit the maximum coefficient 
of friction during hard lateral maneuvering and braking. The coefficients are scaled to zero 
when velocity is zero to assure zero friction forces at complete rest. The coefficients of friction 
are chosen for dry pavement, but can be scaled to simulate wet or icy runway conditions. 
 
Finally, the friction forces affecting the tires are calculated and combined with the normal 
supporting forces. These forces are then transferred into the center of gravity of the aircraft 
again with a new coordinate transform. Dealing with multiple coordinate systems in six degrees 
of freedom unavoidably adds complexity into the model. The model has constraints on hard 
landings with too high rates of descent. The aircraft geometry is also taken into account to stop 
simulation in situations were other parts of the aircraft than the wheels have contact with 
ground. The model also provides landing gear parameters into a VRML animation, which was 
also used in validating the realism of the model. 
 
Simulation results 
To demonstrate the ground behavior model, results from a landing simulation are presented in 
Fig. 3. The landing at groundspeed of 30m/s was performed with a -5° aircraft sideslip angle 
(nose right with respect to the velocity vector) to show non-symmetric effects. 
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Figure 3: Results from a landing with -5° sideslip angle. 
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The first two frames of Fig. 3 show the height of the aircraft center of gravity and the Euler 
angles that represent aircraft attitude. The roll angle Φ is positive right wing down, pitch angle θ 
positive nose up and azimuth angle ψ positive nose right. The two lower frames show the main 
landing gear deflection angles and the nose gear steering angle. The main landing gear angle is 
the angle between the aircraft symmetry plane and the landing gear leg viewed from the nose of 
the aircraft. This angle is about 30° when the main landing gear is unloaded and about 40° 
loaded on the ground with an aircraft weight of 1100kg. The nose wheel steering angle is 
positive right. 
 
The main gear touches down at a center of gravity height of 1.35m and the nose gear a while 
later as seen from the main landing gear and nose wheel steering angle plots. As the aircraft has 
negative sideslip, the left shock absorber compresses more than the right one and the aircraft 
banks left as seen in frame two. The nose gear steers left towards the direction of the velocity 
vector as it touches the ground, but some oscillations are apparent. The aircraft rotates its nose 
up and wings level to a ground rest attitude. The azimuth and nose wheel steering angles 
decrease as the aircraft steers away form the sideslip condition. The attitude angles settle nicely 
after about 2 seconds of ground roll. The main landing gear angles settle to values slightly less 
than at rest since there is still aerodynamic lift present.  
 
Concluding remarks 
A series of simulations was performed with the landing gear model to verify its performance. It 
was observed that the model simulates the ground behavior of the aircraft realistically despite 
the fact that certain numeric values used in the model had to be estimated. The model is now 
implemented to the HUTFLY2 flight simulation as part of the Valmet Vinka aircraft model. 
 
References 
[1] J. Öström. Developing a Low-Cost Flight Simulation to Support Fatigue Analysis. AIAA 

Modeling and Simulation Technologies Conference. AIAA 2004-5161, (2004). 
[2] M. Haatio. Modeling of aircraft ground behavior into a flight simulation program. 

Master’s thesis. Espoo, Finland. Teknillinen korkeakoulu, (2004), (in Finnish). 

  70



A benchmark study: MITC4-S and boundary layer-type
deformations

Antti Niemi∗, Juhani Pitkäranta and Harri Hakula
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Summary We study one of the open problems in the finite element modelling of shell deformations, the
approximation of boundary and interior layers. We consider here a special finite element construction
named MITC4-S in the context of a simplified shallow shell model. The element is closely related to
engineering practice and is certainly one of the best bilinear elements aimed for general shell analysis.

Introduction
The phenomena of membrane and shear locking are known to impair various elements in the
bending-dominated deformation of a thin shell. The problem results from the inability of the stan-
dard finite element subspace to satisfy the conditions of vanishing shear and membrane strains. To
reduce the effects of the consraints, the variational formulation is often modified by applying re-
duction operators to the strains. The reductions must be designed very carefully to avoid the loss
of stability in other (more common) deformation states where the membrane and shear strains
play a more dominant role. It is often argued that a finite element scheme that performs well in
both bending-dominated and membrane-dominated deformations would also perform well in the
so called intermediate cases where boundary layer-type deformations typically dominate. How-
ever, already in the Reissner-Mindlin plate model, there are algorithms that are free of locking
when the solution is smooth but cause error growth at a free boundary where the layer is known
to be strong [3]. This “plate layer”, which has a very short range, is found also in shells, but as
a result of curvature effects the shell layers may have significantly wider ranges [2]. Therefore it
seems to be necessary to isolate the layers and study them as a separate problem.
To investigate the numerical effects that arise in the FEM approximation of shell layers, we have
presented a model problem with a concentrated point load [1]. The problem setup is such that
reference solutions of arbitrary precision are computable using Fourier techniques. We focus here
in particular to the approximation of a point layer in an elliptic shell but also line layers generated
by the characteristic lines of a parabolic or a hyperbolic shell midsurface are studied.
Our approach is based on a simplified shallow shell model and an interpretation of the bilinear
MITC4 shell element in this context. The simplified formulation, named here MITC4-S, has
turned out to be very handy as it preserves the essential features of the original (degenerated)
3D approach while making mathematical error analysis possible to some extent, at least. In the
present study we observe experimentally that the numerical modifications of MITC4-S unlock
the standard bilinear element also when approximating layers although some traces of other side
effects are found in the case of a point layer.

The Reissner-Naghdi shallow shell model
The deformation of the shell is described in terms of a displacement field u = (u, v, w, θ, ψ)
defined on the shell midsurface ω. In addition to the tangential displacements u, v and the trans-
verse displacement w, the vector field u consists of the dimensionless rotations θ, ψ related to the
transverse shear deformations. In our model the scaled strain energy of the shell with a constant
thickness t may be expressed as

A(u,u) = Am(u,u) + As(u,u) + Ab(u,u), (1)
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where the different bilinear forms represent the portions of energy stored in membrane, transverse
shear and bending deformations. They are defined as

Am(u,u) =

∫

ω

{
ν(β11 + β22)

2 + (1 ¡ ν)(β2
11 + 2β2

12 + β2
22)
}
dω,

As(u,u) =
1 ¡ ν

2

∫

ω

{
½2

1 + ½2
2

}
dω,

Ab(u,u) =
t2

12

∫

ω

{
ν(κ11 + κ22)

2 + (1 ¡ ν)(κ2
11 + 2κ2

12 + κ2
22)
}
dω,

(2)

where βij , ½i, and κij are the membrane, transverse shear, and bending strains, respectively.
In the following we assume that ω is a rectangular domain expressed in the coordinates x, y.
We also assume that the curvature tensor {bij} of the midsurface is constant and write a = b11,
b = b22, and c = b12 = b21. The shell is then called elliptic when ab ¡ c2 > 0, parabolic when
ab ¡ c2 = 0, and hyperbolic when ab ¡ c2 < 0. The above assumptions are valid for example
when the shell is shallow, i.e. the midsurface differs only slightly from a plane. In general the
strain fields in Eqs. (2) depend on the geometry of the shell. In the simplest case one may set
dω = dxdy and write the relation between the strain and the displacement fields as

β11 =
∂u

∂x
+ aw, β22 =

∂v

∂y
+ bw, β12 =

1

2

(
∂u

∂y
+
∂v

∂x

)
+ cw,

½1 = θ ¡
∂w

∂x
, ½2 = ψ ¡

∂w

∂y
,

κ11 =
∂θ

∂x
, κ22 =

∂ψ

∂y
, κ12 =

1

2

(
∂θ

∂y
+
∂ψ

∂x

)
.

(3)

If L is a linear functional corresponding to the potential energy of the external load, then the
deformation of the shell is obtained by minimizing the total energy

F(u) =
1

2
A(u,u) ¡ L(u) (4)

over the kinematically admissible displacements u ∈ U .

The model problem
We consider a model problem such that the shell is loaded in the transverse direction with a
periodic and self-balancing point load of the form

f = ¡F
∑

i,j

(¡1)i+jδ(x¡ 2i)δ(y ¡ 2j), (5)

where the load amplitude F > 0 is a constant (Fig. 1). The corresponding linear functional is then
given by

L(u) = ¡F
∑

i,j

(¡1)i+jw(2i, 2j). (6)
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Figure 1: Periodic point loading: • −̂ ‘upwards’, × −̂ ‘downwards’.

The proposed problem may be regarded as a generalization of the classical pinched cylinder
benchmark test where two normal and equal point loads are applied centrally at the opposite
sides of a cylindrical surface. The quality of approximate solutions is often measured by only
comparing the transverse displacement under the point load to some reference value. We would
like to point out that this can be misleading since the exact value of the transverse deflection is
infinite at the load application points if Reissner-Mindlin type kinematic assumption is made in
the underlying shell model.
Taking into account the strain expressions (3) and the specific nature of the load potential (6), we
conclude that in general the displacement field is of the form





u(x, y) =
∑

m,n

{
UA

mn sin
mπx

2
cos

nπy

2
+ UB

mn cos
mπx

2
sin

nπy

2

}
,

v(x, y) =
∑

m,n

{
V A

mn cos
mπx

2
sin

nπy

2
+ V B

mn sin
mπx

2
cos

nπy

2

}
,

w(x, y) =
∑

m,n

Wmn cos
mπx

2
cos

nπy

2
,

θ(x, y) =
∑

m,n

Θmn sin
mπx

2
cos

nπy

2
,

ψ(x, y) =
∑

m,n

Ψmn cos
mπx

2
sin

nπy

2
.

(7)

We also observe that the load is not able to excite Fourier modes with m or n even. Consequently,
we have to sum over odd indices only in the above expressions.
To determine the unknown coefficients, we substitute the Ansatz (7) directly into the expression
(4) for the total energy and integrate the strain energy density over one period ω as indicated by
the dash line in Fig. 1. The solution is then obtained by choosing

zmn =
(
UA

mn V A
mn UB

mn V B
mn Wmn Θmn Ψmn

)
(8)

to make
F(u, v, w, θ, ψ) =

1

2

∑

m,n

z
T
mnAmnzmn ¡

∑

m,n

z
T
mnb = min! (9)
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The symmetric matrix Amn is also positive definite and the load vector b is defined as

b = ¡4F (0 0 0 0 1 0 0) . (10)

We evaluated by symbolic computation the entries of the matrix Amn as functions of the indices
m,n and the parameters ν, t, a, b, c. Symbolic expansion of the solution zmn is also in the realms
of possibility but the expressions become so complicated that their applicability is questionable.
However, the numerical values of the Fourier coefficients are easily obtained by giving some
values to the parameters and choosing suitable stopping indices for m,n.
As an example we show in Fig. 2 the strain field e12 = β12 ¡

t
2
κ12 in an elliptic shell (a = b = 1,

c = 0) and compare it to the one calculated by the MITC4-S algorithm.

Figure 2: The tangential shear strain e12 in an elliptic shell as given by the MITC4-S algorithm (right) and
Fourier analysis (left).
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Summary We summarize the main parts of the theoretical results introduced and analyzed in [5] for the
MITC plate elements [2], [4]. We also illustrate and verify the superconvergence properties and the post-
processing method with various numerical computations.

Introduction
The deflection approximation of the MITC plate elements [2], [4] is shown to be superconvergent
with respect to a special interpolation operator [5]. This property holds in the H 1-norm and the
interpolation operator is closely related to the reduction operator used in the MITC methods. A
part of the superconvergence result is, roughly speaking, that the vertex values obtained with the
MITC methods are superconvergent. This may be an explanation why these methods have become
so popular.
By utilizing the superconvergence property a postprocessing method has been introduced in [5]
— to improve the accuracy of the deflection approximation. The new approximation for the
deflection is constructed element by element which implies low computational costs. The new
approximation is a piecewise polynomial of one degree higher than the original one.
Here we first summarize the main parts of the theoretical results. Then we show various com-
putational results illustrating the superconvergence properties of the original approximation and
confirming the improved accuracy of the postprocessed approximation. In the numerical tests both
uniform and non-uniform meshes are used and cases with different kinds of boundary conditions
are studied.

MITC finite elements for Reissner-Mindlin plates
We consider a linearly elastic and isotropic plate with the shear modulus G and the Poisson ratio
ν. The midsurface of the undeformed plate is Ω ⊂ R

2 and the plate thickness t is constant.
The boundary of the plate we divide into hard clamped, hard simply supported and free parts:
∂Ω = ΓC ∪ ΓSS ∪ ΓF. The spaces of kinematically admissible deflections and rotations are then

W = {v ∈ H1(Ω) | v
|ΓC

= 0, v
|ΓSS

= 0}, (1)

V = {η ∈ [H1(Ω)]2 | η
|ΓC

= 0, (η · τ )
|ΓSS

= 0}, (2)

where τ is the unit tangent to the boundary. For the analysis the problem is written in mixed form
in which the shear force q = t−2(∇w − β) is taken as an independent unknown in the space
Q = [L2(Ω)]2 [4], [5]. For the bilinear form we define the bending part and the linear strain
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tensor:

a(φ,η) =
1

6
{(ε(φ), ε(η)) +

ν

1 − ν
(div φ,div η)}, (3)

ε(η) =
1

2
(∇η + (∇η)T ). (4)

We consider the triangular family but we emphasize that all the results are valid for quadrilateral
families as well. By C

h
we denote the triangulation of Ω. As usual, we denote h = maxK∈Ch

hK ,
where hK is the diameter of K . The space of polynomials of degree k on K is denoted by P

k
(K).

By C we denote positive constants independent of the thickness t and the mesh size h.
In the MITC methods [2], [4] the finite element subspaces W

h
⊂ W and V

h
⊂ V are defined for

the polynomial degree k ≥ 2 as

W
h

= {w ∈ W | w
|K

∈ P
k
(K) ∀K ∈ C

h
}, (5)

V
h

= {η ∈ V | η
|K

∈ [P
k
(K)]2 ⊕ [B

k+1(K)]2 ∀K ∈ C
h
}, (6)

with the ”bubble space”

B
k+1(K) = {b = b3p | p ∈ P̃

k−2(K), b3 ∈ P3(K), b3|E = 0 ∀E ⊂ ∂K}, (7)

where P̃
k−2(K) is the space of homogeneous polynomials of degree k−2 on the element K . The

discrete shear space is the rotated Raviart-Thomas space of order k − 1,

Q
h

= { r ∈ H(rot; Ω) | r
|K

∈ [P
k−1(K)]2 ⊕ (y,−x)P̃

k−1(K) ∀K ∈ C
h
}. (8)

The reduction operator R
h

: H(rot; Ω) → Q
h

is defined locally, with RK = R
h|K

, through the
conditions

〈(RKη − η) · τE , p〉E = 0 ∀p ∈ P
k−1(E) ∀E ⊂ ∂K, (9)

(RKη − η,p)K = 0 ∀p ∈ [P
k−2(K)]2, (10)

where E denotes an edge to K and τ E is the unit tangent to E. (·, ·)K and 〈·, ·〉E are the L2-inner
products.
With these assumptions and notation the MITC finite element method for the Reissner-Mindlin
plate model, under the transverse loading g ∈ H−1(Ω), can be written in the following form [4],
[5]: Find the deflection w

h
∈ W

h
and the rotation β

h
∈ V

h
such that

a(β
h
,η) +

1

t2
(R

h
(∇w

h
− β

h
),R

h
(∇v − η)) = (g, v) ∀(v,η) ∈ W

h
× V

h
. (11)

The discrete shear force is q
h

= t−2
R

h
(∇w

h
− β

h
) ∈ Q

h
.

Superconvergence and postprocessing
For the superconvergence result we need the classical quasi-optimal interpolation operator I

h
:

Hs(Ω) → W
h
, s > 1, [5]: With a vertex a and an edge E of the triangle K , we define

(v − IKv)(a) = 0 ∀a ∈ K, (12)
〈v − IKv, p〉E = 0 ∀p ∈ P

k−2(E) ∀E ⊂ K, (13)
(v − IKv, p)K = 0 ∀p ∈ P

k−3(K), (14)

with IK = I
h|K

∀K ∈ C
h
. The key property for the proof of the superconvergence is the close

connection between the interpolation and reduction operators [5, Lemma 4.5]:

R
h
∇v = ∇I

h
v ∀v ∈ Hs(Ω), s ≥ 2. (15)

Then the following superconvergence result holds [5, Theorem 4.1]:
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Theorem 1. There is a positive constant C such that

‖∇(I
h
w−w

h
)‖0,K ≤ ChK‖β−β

h
‖1,K+‖β−β

h
‖0,K+t2‖q−q

h
‖0,K+t2‖q−R

h
q‖0,K . (16)

For one element this gives a local improvement of order hK + t when comparing the convergence
rate for ‖w

h
− I

h
w‖1 to the rates for both ‖w − w

h
‖1 and ‖w − I

h
w‖1 [5, Theorem 3.2, Lemma

4.2]. Since I
h
w interpolates w at the vertices (see Eq. (12)) this also gives an indication that the

vertex values of w
h

converge with an improved speed.
In the postprocessing we construct an improved approximation for the deflection in the space

W ∗

h
= {v ∈ W | v

|K
∈ P

k+1(K) ∀K ∈ C
h
}. (17)

For the postprocessing we first introduce the interpolation operator I ∗

h
: Hs(Ω) → W ∗

h
, s > 1, by

the equations (12)—(14) with k + 1 in place of k. Thus, the interpolation operators I ∗

h
and I

h
are

hierarchical, and the local spaces for the additional degrees of freedom are defined as

Ŵ (K) = {v ∈ P
k+1(K) | IKv = 0, (v, p)K = 0 ∀p ∈ P̃

k−2(K)}, (18)

W (K) = {v ∈ P
k+1(K) | IKv = 0, 〈v, p〉E = 0 ∀p ∈ P̃

k−1(E) ∀E ⊂ K}. (19)

Furthermore, the space Q
∗

h
follows the definition (8) and the operator R

∗

h
the definitions (9) and

(10), with k + 1 in place of k. Now the method is defined as follows [5]:

Postprocessing scheme. For all the triangles K ∈ C
h

find the local postprocessed finite element
deflection w∗

h|K
∈ P

k+1(K) = P
k
(K) ⊕ Ŵ (K) ⊕ W (K) such that

I
h
w∗

h|K
= w

h|K
, (20)

〈∇w∗

h
· τ E,∇v̂ · τ E〉E = 〈(β

h
+ t2q

h
) · τ E,∇v̂ · τ E〉E ∀E ⊂ ∂K, ∀v̂ ∈ Ŵ (K), (21)

(∇w∗

h
,∇v̄)K = (β

h
+ t2q

h
,∇v̄)K ∀v̄ ∈ W (K). (22)

We note that the postprocessed deflection is conforming since (β
h
+ t2q

h
) ·τ is continuous along

inter element boundaries. For the method we have the following error estimate [5, Theorem 5.1]:

Theorem 2. There is a positive constant C such that

‖∇(w − w∗

h
)‖0,K

≤ C
(
hK‖β − β

h
‖1,K + ‖β − β

h
‖0,K + t2‖q − q

h
‖0,K

+ ‖∇(w − I∗
h
w)‖0,K + ‖β − R

∗

h
β‖0,K + t2‖q − R

∗

h
q‖0,K + t2‖q − R

h
q‖0,K

)
.

(23)

Also this result is local and it is made up of two parts: The first part is related to the error of the
original method and the second part consists of interpolation estimates — both parts giving an
improvement by the factor hK + t compared to the original approximation.

Selected computational results
Our numerical computations are performed for a test problem for which an analytical solution has
been obtained in [1]. The domain is the semi-infinite region Ω = {(x, y) ∈ R

2
| y > 0} and the

loading is g = 1

G
cos x. The Poisson ratio is ν = 0.3, the shear modulus is G = 1/(2(1 + ν)),

the shear corrector factor is κ = 1 and the thickness is t = 0.01. The boundary Γ = {(x, y) ∈

R
2
| y = 0} is either hard simply supported or free. We have used both uniform and non-uniform

meshes with quadratic (k = 2) and cubic (k = 3) elements.
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The numerical results are clearly in accordance with the theory: In the interior of the plate the
convergence rate of the original finite element deflection in the H 1-norm is r ≈ k, and the con-
vergence rate of the postprocessed finite element deflection is r∗ ≈ k + 1 ≈ r + 1, as seen in
Fig. 1 (left). The behavior in the L2-norm looks very similar, although to rigorously prove the
improvement in that case seems to be difficult. In the boundary region of the free edge case the
rate of convergence rapidly slows down for both the original and the postprocessed deflection, as
proved in [6], [3]. But still, a significant accuracy improvement is obtained, especially for coarse
meshes and lower order elements. Furthermore, the superaccuracy of the vertex values is obvious,
as seen in Fig. 1 (right).
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Figure 1: Left: Simply supported edge; Interior region; Uniform mesh; H 1- error with k = 2, 3
(dashed line for the original, solid line for the postprocessed deflection).
Right: Free edge; Boundary region; Non-uniform mesh; Pointwise error along the line y = π/4
with k = 2 (dashed line for the original, solid line for the postprocessed deflection, triangles for
the vertex values).
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[6] J. Pitkäranta and M. Suri. Design principles and error analysis for reduced-shear plate-bending finite
elements. Numer. Math., 75, 223—266 (1996).

  78



Locking-Free Plate Elements at Free Boundary
Juhani Pitkäranta
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Summary We study here a special problem that arises in some locking-free finite elements for the Reissner-
Mindlin plate model when part of the boundary of the plate is free. We demonstrate unexpected (though
predicted by theory) local error growth when the mesh is coarse as compared with the thickness of the plate.

Introduction
In plate bending problems based on the Reissner-Mindlin model, standard finite elements are
known to suffer from shear locking at the limit of zero plate thickness. To avoid the effect, various
special finite element formuations have been proposed. The generic idea in these so called locking-
free formulations is to impose some numerical shear reduction within the otherwise usual energy
principle. The reduction is done by modifying the shear energy term elementwise, e.g. by local
projections, selective underintegration, mixed interpolation, numerical dampening factors, etc. In
this paper we demonstrate that some of these locking-free formulations suffer from unexpected
error growth at a free boundary where the boundary layer is relatively strong. Being absent in
the standard FEM, the effect may be viewed as a backlash caused by shear reduction. It appears
on relatively coarse meshes where the mesh spacing is large compared with the thickness of the
plate. It even appears (and is particularly unexpected) at the limit of zero thickness where the
exact solution has no layer.

The benchmark problem
We consider a square plate occupying the domain Ω = [0, 1] × [0, 1] × [¡t/2, t/2] (t = dimen-
sionless thickness) and the Reissner-Mindlin plate bending model where the energy of the plate is
given by

F(θ, ψ, w) =
1

2

∫
1

0

∫
1

0

[ ν(κ11 + κ22)
2 + (1 ¡ ν)(κ2

11 + 2κ2
12 + κ2

22)] dxdy

+
3(1 ¡ ν)

t2

∫
1

0

∫
1

0

(½2
1 + ½2

2) dxdy ¡

∫
1

0

∫
1

0

fw dxdy.

(1)

Here ν is the Poisson ratio and κij and ½i stand for the bending and transverse shear strains,
respectively. The strains have their usual expressions in terms of θ, ψ (rotations) andw (transverse
deflection). The transverse load f is chosen to be of the simple form

f(x, y) = F cos ky, k = 2π. (2)

The boundary conditions are set as follows:

x = 0 : free
x = 1 : clamped
y = 0, 1 : periodic

With these assumptions the problem reduses to one dimension and is solvable exactly. The solu-
tion u = (θ, ψ, w) is of the form

u = ul + us, (3)
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or

h h

Figure 1: The finite element meshes

where us is smooth uniformly in t, apart from a weak layer at x = 1, and ul is the dominant layer
at the free boundary as given by

ul = G (kt2 sin ky, at cos ky, 0) e¡ax/t, (4)

where G is proportional to F and a =
√

12 + k2t2.

The finite element models
We ssume either a uniform rectangular mesh with mesh spacing h or a triangular mesh obtained
by subdividing the rectangels into two triangles, see Fig. 1. We consider three locking-free plate
elements of lowest order:

E1 The bilinear MITC4/QUAD4 element — one of the classics of finite element engineer-
ing. The shear reduction is imposed either by mixed interpolation or (equivalently) by
anisotropic underintegration, see [1, 2]. For the error analysis, see [3] and the references
therein.

E2 A modification of the previous element. In addition to shear reduction one imposes here
numerical shear dampening by factor t2/(h2 + t2) — an idea that dates back to [4]. The
combination of the two modifications is suggested by mathematical error analysis, see [5]
for the analysis in a slightly different context.

E3 A triangular element proposed in [6]. In this formulation, which also originates from math-
ematical error analysis, the usual linear element is enriched by cubic bubble functions for
the rotations and is used as nonconforming element (with the dgrees of freedom at the
midpoints of the sides) for the transverse deflection.

Error bounds
We decompose the finite element solution in the benchmark problem in analogy with Eq. (3) as

uh = ulh + ush ,

where ulh and ush stand for the finite element projections of us and ul, respectively. Since us is
smooth uniformly in t and since the finite elements considered are all locking-free, the elements
behave optimally when approximating us. Quantitatively this means that the error us¡ush, when
measured in the energy norm, is of order O(h) uniformly in t for all the three elements [3, 7, 8].
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Figure 2: Finite element layer modes

For the layer error term, the analysis in [7, 8] gives the following bounds in the energy norm:

h < t : ul ¡ ulh = O(h/
√

t) (E1,E2,E3) (5)

h ≥ t : ul ¡ ulh =

{
O(h+

√

t) (E1)
O(

√

h) (E2,E3)
(6)

Here the bound (5) indicates that on sufficiently fine meshes (h < t), all the three elements
behave optimally (as compared with interpolation accuracy) even when approximating the layer.
On coarser meshes, especially when t ¿ h, the finte element models considered obviously fail
to capture the layer. The best one can then hope for is that the layer in the numerical model is
more or less absent. That being the case, the layer error should be of the same order as the layer
itself, i.e., of order O(

√

t). As shown by the second bound (6), this is essentially how the element
E1 behaves (modulo an additional term of order O(h)). Instead the elements E2 and E3 behave
differently: The layer approximation error is of order O(h1/2) uniformly in the range 0 ≤ t ≤ h, a
result confirmed by a lower error bound in [8]. Thus there arises numerical layer amplification on
coarse meshes with elements E2,E3. According to the error analysis this is not a locking effect but
rather a consistency (or equilibrium) error caused by the shear reductions [8]. The phenomenon is
particularly interesting at t = 0, where the exact solution is the Kirchhoff solution with no layer.

Benchmark solutions
We solve the benchmark problem by the three finite elements methods, choosing ν = 0, t = 0.01
and h = 0.05 = 5t. We focus on the layer mode ulh in each case. In Fig. 2 the horizontal
profiles of the numerical layer modes are shown for the vertical rotation ψ. For comparison, the
exact layer mode is also shown. We observe that the E1 aproximation of the layer mode has a
small amplitude and gives little indication of the presence of the layer as expected. In the E2 and
E3 approximationsis, a numerical boundary layer appears. The amplitude and the length scale of
decay of this layer are both of order O(h), so the strength in the energy norm is of order O(h1/2).
The slow rate of convergence when t¿ h is thus explained.

  81



Conclusions
We have demonstrated by benchmark solutions that in some of the locking-free plate element for-
mulations proposed in the literature there arises numerical layer amplification at free boundary.
In the MITC4/QUAD4 formulation this effect does not appear, so some shear modifications are
better than others in this respect. In general, when designing locking-free finite element formula-
tions for plates or shells, one should take into account that numerical modifications focusing on
one solution component may cause unwanted error growth on other components.
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Summary To simulate the deployment of lightweight structures, efficient shell elements are required. Tri-
angular rotation-free shell elements, where the out-of-plane rotation around each edge is approximated from
the main element and the adjacent element, represent a group of such elements. Various formulations for
the plate bending part have been published. Simple elements, such as the CST and the LST, have then been
used for the membrane part. In this article, the aim has been to find the best possible superposition of a
rotation-free plate part and membrane part.

Introduction
For most thin-film structures, i.e. airbags, the bending stiffness may be neglected in the simulation.
Contrary, for space inflatables, the vanishingly small bending stiffness may have non-negligible
effects on the deployment behaviour. In the micro-gravity environment of space, the strain energy,
induced by the folding of the structure, may be sufficient to cause premature deployment for
certain structures, e.g. crease-pattern folded tubes [1]. Wrinkling is also an important issue in
many applications. Therefore, it is crucial to take into account the bending stiffness.

Due to the singularity of the unstressed folded configuration, explicit time integration schemes
should be used in a dynamic deployment simulation. Since a time-consuming explicit integra-
tion scheme is required, at least during the initial phase of the deployment, simple and rapidly
computed elements are desirable. Triangular elements are usually the preferred choice as they
can be adapted to arbitrary geometries and because of efficient triangle mesh generators. In this
respect, the triangular shell elements without rotational DOF are particularly interesting since the
bending stiffness can be included without increasing the size of the problem. This paper reviews
the various formulations available for these elements in an attempt to find a simple, yet accurate,
one for deployment simulations of inflatable structures.

Summary of rotation-free elements
The shell elements without rotational DOF, i.e. rotation-free (RF) elements are composed of a
plate bending part, which uses the out-of-plane displacements of the three adjacent elements to
approximate the curvatures, and a common membrane element, using the in-plane displacements
to compute the in-plane strains.

Plate bending
Hamphire et al. [2], Phaal and Calladine [3] [4], Oñate et al. [5] [6] [7], Brunet and Sabourin
[8] and Guo et al. [9] have all developed RF plate elements. The derivations differ, but the main
assumptions are almost the same. They are all based on Kirchoffs plate bending theory and
assumes constant curvatures for simplicity, i.e the basic assumptions are the same as used by
Morley [10]. In the RF elements the rotations used by Morley are approximated using the out-of-
plane displacements.

The elements are derived differently, but the resulting stiffness matrices are almost the same for
all the RF elements listed above, except the one by Phaal and Calladine [3] [4]. The reason is that
the same important steps and the same important assumptions are used. The hinges around each
edge of the main element can be described by the two elements sharing the edge. The first step
is to determine the deflection angles ( � ), i.e. the angles that each of the two elements indivdually
forms relative to the common edge due to the displacements in the nodes. All but Phaal and
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Calladine [3] [4] then relates � to the rotations, and then the rotations to the (constant) curvatures.
The only difference is how the contribution from the two deflection angles are weighted. Oñate
et al. used the average in their first BST element [5] [6], then updated it to use second degree
polynomial shape functions in their EBST element [7]. Brunet and Sabourin [8] and Guo et al. [9]
used weights proportional to the inverse of the heights of the triangles perpendicular to the edge.

Phaal and Calladine [3] [4] use a different approach. The displacements are expressed as poly-
nomials of second degree, where the coefficients of the quadratic terms are proportional to the
curvatures. The curvatures ( � ) are then determined to best fit with the the coordinates and dis-
placements of the nodes. A small disadvantage is that the inverse of a 3 times 3 matrix relating �
and � is required, which makes the handling of boundary conditions slightly more complicated.

Membrane part
In most of the rotation-free shell elements, the constant strain triangle (CST) is used to represent
the membrane stiffness. The CST element has been the preferred choice because of its simplicity,
having only the in-plane translations in the three corner nodes as degrees of freedom.

The second most simple choice would be to use a linear strain triangle (LST) approach. Re-
cently, Oñate and Flores [7] suggested to use the six nodes in the same patch of elements as for
the plate bending part to compute an isoparametric LST triangle. This approach has primarily
two disadvantages because of the overlapping: it is nonconforming and it becomes unnecessarily
computationally expensive. This nonconformity may cause problems especially for unstructured
grids.

Here, we also suggest that isoparametric LST elements are used because of the superior accuracy
compared to CST elements. The LST elements are computed as usual by using the same nodes as
for the plate bending part, but one fourth of the elements compared to the LST approach by Oñate
and Flores [7].

The advantages are that the accuracy is better than for the CST element, and the nonconformity,
overlapping and cumbersome boundary conditions associated with the approach by Oñate and
Flores [7] are avoided. The main disadvantage with this approach would be that some additional
work is necessary when all nodes are not in the same plane. If the difference is small, which it
usually will be, the projections can simply be used. If the difference is large then distances normal
to the surface should be used. Another problem may be the same as for LST elements in general,
shear-locking may occur if more than one point is used in the reduced integration.
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Summary The objective of the present paper is to derive goal-oriented a posteriori error estimators for
the error obtained while approximately evaluating the nonlinear J -integral as a fracture criterion in linear
elastic fracture mechanics (LEFM) using the finite element method. Such error estimators are based on the
well-established strategy of solving an auxiliary dual problem. In a straightforward fashion, the solution to
the dual problem is sought in the same FE-space as the solution to the primal problem, i.e. on the same
mesh, although it merely acts as a weight of the discretization error only. In this paper, we follow the
strategy recently proposed by Korotov [6] and derive goal-oriented error estimators of the averaging type,
where the dual solution is computed on a different—usually coarser—mesh than the primal solution.

Introduction
In (macroscopic) continuum mechanics of elastic deformations, the failure of structures can gen-
erally be analyzed within the framework of fracture mechanics as one possible approach. In this
paper, we restrict our considerations to the special case of linear elastic fracture mechanics as used
in analyzing the fracture behavior of materials denoted as “brittle”. A fundamental step was the
introduction of the J -integral concept by Cherepanov [3] and Rice [7] as an appropriate criterion
for crack propagation, which can be interpreted within the framework of Eshelbian mechanics as
the absolute value of the material force acting on the crack tip, see e.g. Steinmann [11].
In a finite element setting, the a posteriori estimation of the error of the J -integral requires a
special approach widely known as goal-oriented error estimation as introduced by Eriksson et
al. [4] and developed further by Becker and Rannacher [2] and others. A key feature in this
context is the construction of the dual data. Since the J -integral is nonlinear by definition, a
suitable linearization is required to pose and to solve the dual problem.
In recent years, goal-oriented adaptive finite element methods in fracture mechanics have been
established, see Rüter et al. [8, 10, 9] and Heintz et al. [5]. Remarkably, the first steps in this
direction have already been taken in 1984 by Babuška and Miller [1].
The paper is organized as follows: first, the boundary value problem of linearized elasticity is
introduced and the J -integral is presented. Subsequently, we discuss the construction of the dual
data. Finally, we focus on averaging-based error estimation techniques for the error of the J -
integral based on the solution of the dual problem and present an illustrative numerical example.

Linear elastic fracture mechanics
The linearized elasticity problem
In this section, we briefly present the linearized elasticity problem. To begin with, let us in-
troduce the elastic body which is given by the closure of a bounded open set � � R

3 with a
piecewise smooth, polyhedral and Lipschitz continuous boundary � such that � D N�D [ N�N

and �D \ �N D ;, where �D and �N are the portions of the boundary � where Dirichlet and
Neumann boundary conditions are imposed, respectively. Assuming, for the sake of simplicity,
homogeneous Dirichlet boundary conditions, all admissible displacements u W N� ! R of the
elastic body N� are elements of the Hilbert space V D fv 2 ŒH 1.�/�3 I vj�D

D 0g.
The weak formulation of the linearized elasticity problem then reads: find u 2 V such that

a.u; v/ D F.v/ 8v 2 V (1)
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with the continuous, symmetric and V -elliptic bilinear form a W V � V ! R and the continuous
linear form F W V ! R defined by

a.u; v/ D

Z
�

� .u/ W ".v/ dV and F.v/ D

Z
�N

Nt � v dA; (2)

respectively. Here, � D � W " denotes the stress tensor given in terms of the fourth-order
elasticity tensor � and the strain tensor " defined as the symmetric gradient of u. Furthermore,
Nt 2 ŒL2.�N /�3 are prescribed tractions imposed on the Neumann boundary �N . For the sake of
simplicity, body forces are omitted in our formulation.
The discrete counterpart of the variational problem (1) consists in seeking a solution u1h in a
finite-dimensional subspace V1h � V satisfying

a.u1h; v1h/ D F.v1h/ 8v1h 2 V1h: (3)

The J -integral as a crack propagation criterion
In the classical theory of LEFM, three principally different but equivalent strategies have been
developed in the last century, namely the energy release rate concept, the stress intensity approach
and the J -integral concept, as originally proposed by Cherepanov [3] and Rice [7].
In this paper, we deal in particular with the widely-used J -integral concept. The J -integral, which
is a nonlinear functional J W V ! R, can be conveniently derived by a straightforward application
of the concept of material forces, since J is the projection of the material force F mat acting on the
crack tip into the direction of crack propagation (given in terms of the unit vector ejj), i.e.

J.u/ D

Z
�J

ejj � Q̇ .u/ � n dA; (4)

where �J is an arbitrary contour around the crack tip and Q̇ denotes the so-called Newton-
Eshelby stress tensor given by Q̇ D WsI � H

T � � with specific strain-energy function Ws ,
identity tensor I and displacement gradient H . Hence, the material force acting on the crack tip
can be evaluated in terms of the (material) tractions Q̇ � n at the contour �J . Notice the analogy
to a physical force which can be determined by the (physical) tractions � � n.
A pre-existing crack then starts to grow if J reaches the material dependent threshold Jc .
From a computational point of view, however, it proves convenient to compute the J -integral by
means of the equivalent domain expression

J.u/ D �

Z
�J

H .qejj/ W Q̇ .u/ dV (5)

rather than by the contour expression (4). In the above, q D q.x; y/ (or q D q.x; y; z/ in three
dimensions) represents an arbitrary, continuously differentiable weighting function with q D 1 at
the crack tip and q D 0 on the contour (or surface) �J that bounds the area (or volume) �J .

A posteriori error estimation
The error of the J -integral
Our main objective in this paper is to estimate the nonlinear error measure J.u/ � J.u1h/. Since
J is nonlinear by definition, we first derive its exact linearization JS W V ! R such that J.u/ �
J.u1h/ D JS .u; u1hI e/ with discretization error e D u � u1h. Upon applying the fundamental
theorem of calculus on J , the so-called secant linear form JS takes on the form

JS .u; u1hI e/ D �

Z
1

0

Z
�J

H .qe jj/ W ˙ .�.s// W H .e/ dV ds; (6)
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Figure 1: Parallel-edge-cracked borosilicate glass plate, primal loading and area�J .

see Rüter and Stein [9], with �.s/ D u1h C se, s 2 Œ0; 1� and fourth-order tensor of elastic tangent
moduli associated with the Newton-Eshelby stress tensor ˙ , cf. Heintz et al. [5], defined as

˙ D
@ Q̇

@H
D I ˝ � � I ˝ � � �H

T ˝ I � �
�
H

T ˝ 1 C H
T ˝ 1

�
; (7)

where � and � are Lamé parameters.

Duality techniques
In order to estimate the error of the J -integral, we follow the general strategy of solving an
auxiliary dual problem which reads: find a solution

�

u 2 V that satisfies

a.
�

u; v/ D JS.u; u1hI v/ 8v 2 V : (8)

An exact error representation formula for the error measure JS .u; u1hI e/ in terms of the solution
of the dual problem (8) is now simply obtained by substituting v D e into (8) and reads

JS .u; u1hI e/ D a.e;
�

u � �
�

u2h/ C a.e; �
�

u2h/ 8�
�

u2h 2 V2h (9a)

D a.e;
�

u � �
�

u2h/ C R.u1hI �
�

u2h/ 8�
�

u2h 2 V2h (9b)

with residual functional of the primal problemR W V ! R defined as

R.u1hI �
�

u2h/ D F.�
�

u2h/ � a.u1h; �
�

u2h/; (10)

where the finite-dimensional subspace V2h � V is generally different from V1h. Note that in the
special case where V2h � V1h, the residualR clearly vanishes due to the Galerkin orthogonality.
In computational practice, we choose �

�

u2h as the finite element solution of the discretized dual
problem (8). In this case, the secant form JS .u; u1hI e/ is approximated by its tangent JT .e/ D
JS .u1h; u1hI e/. The goal-oriented a posteriori error estimator is then simply obtained by av-
eraging the gradients that appear in the bilinear form a (on the element level) as described in
Korotov [6], see also the references therein. In this fashion, however, no error bounds can be ob-
tained. Finally, it should be emphasized that only the bilinear form a needs to be approximated for
the computation of the error estimator, since the residual functional R can be computed exactly.

Numerical Example
The system considered in this numerical example is a parallel-edge-cracked borosilicate glass
plate in plane-stress state subjected to 4-point bending, as depicted in Figure 1. For the chosen
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Figure 3: Effectivity index.

borosilicate glass, the following material data are assumed: E D 64 000 N/mm2, � D 0:2 and
Jc D 0:015 kJ/m2. The chosen load in this example is F D 0:6 N/mm2. Due to symmetry
considerations, only one half of the specimen is modeled using triangular P1-elements.
The estimated error of the J -integral is plotted in Figure 2. Here, an optimal error convergence
can be observed, although—within the adaptive mesh refinement process—the dual finite element
solution is solved only once on a coarse mesh (758 degrees of freedom). The associated effectivity
index is visualized in Figure 3 and also shows a good result around the desired value of ”1”.
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Summary Brownian motion studies enabled the modeling of the stochastic structural response with the
aid of multi-dimensional Markov processes. The state transition probability function for a Markov
process is the solution of a partial differential equation, known as the Fokker Planck Kolmogorov (FPK)
equation, or forward diffusion equation. The FPK- equation governs the diffusion of probability mass in
state space. It is analogical in form to the diffusion equations for heat and mass transfer in thermo-
hydraulic problems. The drift and diffusion coefficients in the FPK-equation can be related to the
parameters in the dynamic equations of motion. The finite element formulation using standard software
for diffusion problems forms an effective approach for solving non-linear random vibration problems
with the aid of FPK -equation.

Introduction

The Brownian motion studies were the basis for the modeling of the response of dynamic systems to
random excitation in terms of multi-dimensional Markov processes (Soong, 1973), (Roberts & Spanos,
1990), (Soong & Grigoriu, 1993), (Lin & Cai, 1995), (Soize, 1998). The state transition probability
function for a Markov process can be exoressed in the form of the solution of partial differential
equation, known as the Fokker Planck Kolmogorov (FPK) equation.
 The Fokker Planck Kolmogorov equation that determines the diffusion of probability mass in state
space, is analogical to the diffusion equations of heat or mass transfer in thermo-hydraulic problems.
The drift coefficients and the diffusion matrix in the FPK equation are related to the parameters in
equations of motion of the vibration systems. 
The solution of FPK –equation offers an approach for solving non-linear random vibration problems. 
The finite element solution follows the references (Yi, Spencer & Bergman, 1997), (Wojtkiewicz &
Bergman, 2001a) and (Wojtkiewicz & Bergman, 2001b).

Literature survey

Soong (1973) gives the FPK-equation formulation and solution for a single-degree of freedom oscillator
excited with white noise W(t):

X’’(t) + 2βX’(t) + k(X) = W(t) (1) 

With X(t) = X1(t), X’(t) = X2(t) and with the vector X(t) = [X1(t), X2(t)]T  Equation (1) can be
presented in Ito equation form as follows:

dX(t)=[X2(t),-k(X1(t))-2βX2(t)]Tdt+[0,dΒ(t)]T  (2)
where

E{dΒ(t)} = 0, E{[dΒ(t)]2} = 2Ddt (3)

The Fokker-Planck-Kolmogorov equation can then be written

∂f(x,t|x0,t0)/∂t = -∂/∂x1(x2f) + ∂/∂x2{[k(x1) +2βx2]f} +∂2/∂x2
2(Df)  (4)

The solution for the stationary density function fs(x1,x2) can then be written

FPK-equation solutions for stochastic structural response

Pentti Varpasuo
 Fortum Nuclear Services Ltd,

Helsinki, Finland, e-mail:
pentti.varpasuo@kolumbus.fi 
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fs(x1,x2) = c exp{-2β/D[∫0
x1k(x)dx +x2

2/2]}  (5)

Soong&Grigoriu, 1993, give the solution of Duffing – equation with the aid of FPK- equation as
follows. The oscillator has the unit mass, the damping parameter is c, and the restoring force is given by
the function U’(x). The oscillator is subjected to zero-mean Gaussian white-noise excitation W(t) with
one-sided power spectral density G0. The displacement X(t) of the oscillator satisfies the  differential
equation

X’’(t) +cX’(t) +U’ (X(t))=W(t) (6)

an alternative Ito form of this equation is

dX1(t) = H,2[X(t)]dt; (7)
     dX2(t) = -{H,1[X(t)] + cH,2[X(t)]}dt + (πG0)1/2dB(t)

In Equation (7) X1(t) = X(t); X2(t) = X’(t); H(X) = U(X) + X2/2 denotes the total mechanical energy; H,k
= ∂H/∂xk; and B(t) is the standard Wiener process with independent increments dB(t) of zero means and
variances dt. The vector process X(t) having components X1 (t) and X2 (t) is of the diffusion type. The
stationary Fokker-Planck equation for the transition probability density f(x,t|x0,t0) is

-∂/∂x1(H,2f) - ∂/∂x2[(-H,1 –  cH,2)f]+πG0/2∂2f/∂x2
2 (8)

Suppose U’ (X) = ω0
2X(1 + εX2). The system with this restoring function is called the Duffing

oscillator. The stationary probability density of X(t) is

f(x1,x2)={(2π)1/2σ0’qexp[-1/(2σ0
2)(x1

2 + ε/2x1
4)]}{1/(2πσ0’)1/2exp(-x2

2/(2σ0
2’)} (9)

where σ0
2=πG0/(2cω0

2) and σ0
2’=ω0

2σ0
2 represent stationary variances of X(t) and X’(t) for linear

oscillator when ε=0. The normalization constant q is given by

q-1 = π(G0/(2cε))1/2exp [1/(8εσ0
2K1/4(1/(8εσ0

2))] (10)

where K1/4 is the modified Bessel function of order ¼. The stationary variance of the displacement is

σX
2 = (πε/2)1/2(2σ0

2/ε)3/4  D-3/2(1(2εσ0
2)1/2)/K1/4(1/(8εσ0

2)) (11)

where D-3/2( ) is the parabolic cylinder function. Lin&Cai, 1995, consider the nonlinearly damped
SDOF- system under multiplicative and additive white noise excitation. The nonlinear system governed
by

X’’ + (α + βX2)X’ + ω0
2[1 + W1 (t)] X = W2(t) (12)

where W1(t) and W2(t) are independent Gaussian white noises with spectral densities K11 and K22,
respectively. Equation (12) is replaced by the following Ito equations:

dX1 = X2dt (13)

dX2 = -[(α + βX1
2)X2 + ω0

2X1]dt + [2π(ω0
4K11X1

2 + K22)]1/2dB(t) (14)

The reduced Fokker-Planck equation, corresponding to (13) and (14), is given by

x2∂p/∂x1-∂/∂x2{[(α+βx1
2)x2+ω0

2x1]p}+π(ω0
4K11x1

2+K22)∂2p/∂x2
2 =0 (15)

The solution for the stationary probability density function in Equation (15) is given by
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p(x1,x2)=Cexp[-α/(2πK22)(ω0
2x1

2+x2
2)] (16)

Equation (16) shows that the displacement X(t) = X1(t) and the velocity X’(t) = X2(t) at the same t are
jointly Gaussian distributed. The same Gaussian distribution is obtained if we set β = 0 and Wl (t) = 0,
that is, if the system is linear and under only the additive white noise excitation. This means that under a
suitable combination of additive and multiplicative Gaussian random excitations, the stationary
response of a nonlinear system can also be Gaussian. Different stochastic systems can sometimes share
a common probability distribution.
Soize, 1998, gives extensive formulations for the use FPK-equation in different types of random
vibration problems. For numerical solution example of the stochastic differential equation, the Monte
Carlo numerical simulation is used. The random vibration problem is formulated with the aid of the first
order Ito equation and a Crank-Nicholson numerical time integration scheme is used for the solution.
The Ito equation can be written as

d(Q(t),P(t)T = b(Q(t),P(t))dt + [A] dW (17)

In equation (17) Q(t) are the generalized coordinates and P(t) are the generalized momentums. b is the
drift vector and [A] is the diffusion matrix and W is normalized Wiener process. To make the solution
of the equation (17) suitable for the use a Crank-Nicholson method the following identity is introduced

 [M(q)]-1 = [Mo]-1 + ([M(q)]-1 - [Mo]-1) (18)

With the aid of Equation (18) Equation (17) can be written as

dX = [A]Xdt + V(X)dt  + [A ]dW (19)

where [A] = [ [0], g0[S0]]T and X = (Q,P) and matrix A and vector V(X) are defined by

A11 = [0], A12 = [M0]-1, A21 = [K0], A22 = - [Β0][Μ0]−1 (20)

V(X) = [ U(Q,P), R(Q,P) – [Β0]U(Q,P) ]T (21)

In Equation (21) [Β0] is the damping matrix, U(Q,P) = ([M(Q)]-1 – [M0]-1)P and R(Q,P) is a vector
whose components Rj (Q,P) are given by the inner vector product

Rj(Q,P) = 1/2 <[Dj(Q)][M(Q)]-1P,[M(Q)]-1P> (22)

 [Dj(Q)] = ∂/∂Qj[M(Q)] (23)

With these the Crank-Nicholson time integration scheme yields

Xn+1-Xn = 1/2∆t [A ] (Xn+l +Xn) + 1/2∆t {V(Xn+l)+V(Xn )} + [A ] ∆Wn+1 (24)

Equation (24) can be written as

Xn+1 = [K] N(Xn+1) + Gn+1 (25)

where Gn+1 is independent from Xn+1, but depends on Xn and ∆Wn+1, and [K] is a constant matrix. Each
time step, Xn+1 in Equation (25) is solved by the iterative algorithm X(j+1)

n+1 = [K ] V(X(j) n+1 + Gn+l , for j
> 0 with initial value X(0)

n+1 = Xn

Finite element formulation of numerical solution

Two dimensional form of FPK - equation can be written as
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∂f/∂t = -Σ∂/∂xi(zif) + ½ ΣΣ ∂2/∂xi∂xj(Hijf) (26)

Indices i and j in the sums of Equation (26) go from 1 to 2. Vector zi in Equation (26) is called the drift
vector and matrix Hij the diffusion matrix. With f=0 on boundary of the investigated domain and with
initial condition fx0(x0,0) = fx0. Equation (26) is amenable to solution with the aid of finite element
method. Approximating the transition probability density function f by the following expression

fx (x,t) = ΣNj(x)fj
e(t) (27)

where the functions Nj are shape functions expressing the unknown transition probability density
function inside one finite element using its nodal values.   
The solution of Equation (26) is obtained by weighted residual formulation using the Bubnov–Galerkin
method (Wedig&von Wagner, 1999).  First the residual of Equation (26) is defined by substituting into
equation the approximation of Equation (27). The weighted residual is then formed by multiplying the
residual with weighting functions and the weighted residual is integrated over the investigated domain
and the result is set to zero. This means that the residual is required to be orthogonal to the space, where
the base vectors are the weighting functions. The special feature of the Bubnov–Galerkin method is that
weighting functions are the same as the shape functions in Equation (27) i. e. Wi = Ni. In this study four
node quadrilateral elements are used and shape and weighting functions in local system of coordinates
are as follows

N1 = ¼(1-ξ)(1-η) (28)
N2 = ¼(1+ξ)(1-η) (29)
N3 = ¼(1+ξ)(1+η) (30)
N4 = ¼(1-ξ)(1+η)§ (31)

In Equations (28) – (31) ξ and η are coordinates in the local elemental system of coordinates and their
values vary from -1 up to +1. By implementing the procedure described above the governing matrix
equation of problem is obtained as

Kij=Σ∫{Nj∂Ni/∂x2∂H22/∂x2+ H22∂Ni/∂x2∂Nj/∂x2+Ni Σzr∂Nj∂x r- NiNjΣ∂zr/∂xr}dx (32)
Cij = Σ∫NiNjdx (33)

In Equations (33) and (34) the indices in first sums go from 1 to Ne, where Ne is the number of elements
in the model, and the indices in sums inside the brackets go from 1 to 2. The underline in x means that x
is a vector of two components. The integrations in (33) and (34) go over the volume of the element. In
order to clarify the meanings of drift vector {z} and diffusion matrix [H] we look into the case of
Duffing oscillator, which has the following governing equation

y’’+ 2βy’ +ω2y3 = W(t); (34)

where the autocorrelation function for W(t) is E[W(t)W(t+τ)] = 2πS0δ(t) and τ = t2 – t1 and δ(t) is
Dirac’s delta function. In this case the drift vector and the diffusion matrix of the FPK- equation are as
follows

z1  = y’ (35)

where y’ is the velocity of the Duffing oscillator.

z2 =-2βy’ – ω2 y3 § (36)

where y is the displacement of the Duffing oscillator. The diffusion matrix is given by only one element
as follows
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H22 = 2πS0 (37)

where S0 is constant power spectral density of white noise process.

Conclusion

The paper shows how the well established finite element apparatus and the standard linear finite
element codes can be used to solve nonlinear random vibration problems
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Summary A general analytical solution for the delaminated composite beam on a two-parameter 
elastic foundation is derived. The solution is not restricted to a particular range of magnitudes of the 
foundation parameters. The effect of size and location of the delamination on the frequencies and mode 
shapes are investigated.   
 
1. Introduction 
Delamination in composite laminates may develop from small cracks due to imperfect 
fabrication processes or impact loading during service. The presence of delamination is 
known to cause strength and stiffness degradation as well as changes to the vibration 
characteristics of the structure. The vibrations of delaminated beams have been studied in 
many papers [1]-[8]. On the other hand, beams resting on elastic foundations are very 
common technical problems in structural and geotechnical engineering. The influences of 
elastic foundation stiffness on the free vibration of beams and plates have been examined in 
[9]-[12]. Various types of foundation models have been developed. The simplest model is the 
Winkler model in the case of which the foundation medium is taken into account as a system 
of infinitely close linear springs. Another model proposed by Pasternak acquires shear 
interaction between springs.  
In the present study, the free vibration analysis of delaminated layered composite beams 
resting on elastic foundation is considered. The elastic foundation is modeled with the aid of 
two parameters [11], [12]. 
 
Formulation of the problem   
In this section, the analytical solution to the free vibration of a delaminated composite beam 
resting on the elastic foundation is formulated. For the sake of simplicity the case with one 
delamination region is considered. The geometry of the asymmetrically delaminated beam 
with width b is shown in Figure 1. The delaminated beam can be viewed as a combination of 
four beams, each beam having thickness Hi and length Li (i = 1, …, 4), connected at the 
delamination boundaries x = x2, x = x3. Each of the beams is treated as a classical Euler-
Bernoulli beam. The following assumptions are considered: 
1. The delaminated layers are assumed to be in touch along their whole length all the time, but 
are allowed to slide over each other.  
2. The cross-sections near the delamination fronts remain perpendicular to the deformed 
midplane of the beam and thus take full account of the differential stretching between the two 
delaminated layers of the beam.  
The governing equations of the free vibrations of the i-th (i = 1;4) beam segment for the 
transverse displacement are: 

,0)( 2
12

2

24

4

=−+− iii
ii

i wAk
dx

wd
k

dx
wd

D ωρ             (1) 

 
where Di is the bending stiffness, ρi is the mass density, wi is the mode shape and Ai is the 
cross sectional area of the  i-th beam. The quantity � denotes the frequency, the quantities k1 
and k2 denote the Winkler and Pasternak parameters, respectively.  
The mechanical properties of the composite beams can be determined using the classical 
laminate theory [13]: 
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In (2) and (3) iD11  denotes the bending stiffness, iA11  is the extensional stiffness and iB11  is 

coupling bending/extensional stiffness of the beam section. The quantity kQ11
ˆ  is the 

coefficient stiffness of the k-s lamina of the beam section and can be calculated with the aid 
of lamina parameters. In (3) E11, E22 and ν12, ν21 stand for the longitudinal and transverse 
Young’s modules and Poisson’s ratio of a single lamina, respectively; θ is the lamina 
orientation angle; zk and zk-1 are the locations of the k-th lamina with respect to the mid-plane 
of the beam section (Fig. 1 b). The second term in (2) takes into account the reduction of 
stiffness due to the bending-extension coupling [14]. 
 
 
            

 
 
(a)      (b)    
 
Figure 1: The geometry of the composite beam: (a) model of the beam with one delamination; (b)  the 
i-th beam laminate   
 
 
The following quantities are introduced: 
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Taking (4) into account the solution of (1) can be expressed as 
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where the functions )(xF i
k  can be presented as following: 
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The quantity �i is defined as 
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The governing equation for beam segments 2 and 3 is  
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The solution can be found similarly as in the previous case. The unknown coefficients i
kC can 

be determined by four boundary conditions and 8 continuity conditions.  
The continuity conditions for deflection, slope, shear force and bending moments at x = x2 
are: 
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where the load Pd  depends upon the extent of differential stretching of the delaminated 
layers. The load Pd can be obtained from the axial equilibrium and compatibility conditions 
between shortening/stretching of the delaminated layers [2]. Similar conditions can be 
established at x = x3. The boundary conditions and the continuity conditions provide 12 

homogeneous equations for 12 unknown coefficients i
kC . A non-trivial solution for the 

coefficients exists only when the determinant of the coefficient matrix vanishes.  
 
Numerical results  
 
The calculations is performed on a T300/934 graphite/epoxy cantilever beam with a [00/900]2s 
stacking sequence, which was studied by Shen and Grady [4]. The dimensions of the 8-ply 
beam are 127x12.7x1.016 mm3. The material properties for the lamina are: E11 = 134 GPa, E22 

= 10.3 GPa, G12 = 5 GPa, ν12 = 0.33 and ρ = 1.48e3kg/m3. All delaminations are at the 
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midspan and the delaminations sizes are 0.0 (intact beam), 25.4, 50.8, 76.2 and 101.6 mm. 
The results of the calculations are presented in Table 1.   
 

Table 1 
The primary frequencies of symmetrically delaminated cantilever beam (Hz) 

 
Delamination 

length 
Present 
k1=k2=0 

FEM [4] 
k1=k2=0 

Analytical[6] 
k1=k2=0  

Present 
k1=400, 

k2=0 

Intact 82.01 82.04 81.88 84.31 

25.4 80.73 80.13 80.47 83.30 

50.8 75.83 75.29 75.36 78.87 

76.2 66.73 66.94 66.14 70.70 

101.6 56.24 57.24 55.67 61.60 
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Summary  The main object in this study is to apply failure criteria to the fatigue life prediction of FRP 
covered rolls running in paper machines. This abstract reflects the theory of failure criterion for the model 
under development.  
 
Introduction 
In a calender paper is running through the contact area between two rolls, where the loading 
rates are quite high. The calender composite covers run for long times in paper machines and 
can reach respectable ages in number of loadings received, and thus the effect of the repeated 
compressive loadings on the cover durability is interesting.  
 
Fatigue analysis of composite materials is difficult due to several concurrent failure modes and 
their mechanisms. Especially for compression failure, the mechanisms that lead to failure are 
not fully understood yet.  
 
Several theories have been proposed for predicting the failure of composites. After a thorough 
review of various composite failure theories [1, 2], a criterion for matrix failure in compression 
called LaRC03 [3], was selected as the best candidate. LaRC03 criterion predicts matrix failure 
without requiring curve-fitting parameters and it has been shown accurate and physically 
consistence [4].   
 
LaRC03 criterion for matrix failure in compression 
LaRC03 is based on Hashin’s criteria and Puck’s action plane concept. However, for matrix 
compression Hashin was not able to calculate the angle for the fracture plane. The Mohr-
Coulomb (M-C) criterion is commonly used in applications where fracture under tension 
loading is different from fracture under compression loading and now in LaRC03 criterion it is 
applied to calculate the angle of fracture. Boehler, while studying the failure of chopped 
glassfiber/epoxy mat laminates under confining pressures, formulated a shearing criterion based 
on the M-C criterion and found it to fit his experimental measurements well. 
 
The matrix failure under compression loading is assumed to result from a quadratic interaction 
between the effective shear stresses T

effτ  and L
effτ  acting on the faces of a fracture plane. The 

effective stress effτ is related to the stresses Tτ  and nσ  (see Fig. 1) by the 

expression T
eff nτ τ ησ= + . In the literature, 1tan ( )η−  is called the angle of internal friction and 

it is assumed to be a material constant. In general, the effective stresses must be defined in both 
directions as shown in Eq. 1. 

T T T
eff n

L L L
eff n

τ τ η σ

τ τ η σ

= +

= +
 

(1) 
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where terms ηT and ηL are referred to as coefficients of transverse and longitudinal influence, 
respectively, and the operand if 0x x x= ≥ ; otherwise 0x = .The matrix failure index 
(FIM) is written as 

2 2T L
eff eff

M T LFI
S S
τ τ⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (2) 

 
where ST and SL are the transverse and in-plane shear strengths, respectively.  
 
 

 
Figure 1. Fracture of a unidirectional lamina subjected to transverse compression and in-plane stress. 
 
The stress components can be expressed in terms of the in-plane stresses 22σ and 12τ and the 
angle of the fracture plane α , and thus the effective stresses can be defined as  

( )
( )

22

12 22

cos sin cos

cos cos

T T
eff

L L
eff

τ σ α α η α

τ α τ η σ α

= − −

= +
, (3) 

 
The angle of the fracture plane α is the one that maximizes the failure index (FIM) and it 
depends on the applied transverse stress σ22 as shown in Fig. 2.  

 
Figure 2: Matrix failure envelopes for a typical unidirectional E-glass lamina subjected to in-plane 
compression and shear loading. 
 
The coefficient of transverse influence ηT is  

0

1
tan 2

Tη
α

−
= . (4) 
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The angle of fracture plane α0=53o±2o  is a typical for composites. Therefore, the coefficient of 
transverse influence is in the range 0.21 . 0.36Tη≤ ≤
 
The coefficient of longitudinal influence ηL can be determined by shear tests, but in absence of 
test data, it can be estimated as  

0
2

0

cos 2
cos

L
L

C

S
Y

αη
α

= − . 
(5) 

 
The transverse shear strength ST is difficult to measure experimentally, but it can be determined 
from  

0
0 0

0

coscos sin
tan 2

T CS Y αα α
α

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
. (6) 

 
For a typical fracture angle of 53o .    0.378 T CS Y=
 
The stiffnesses and strengths used in LaRC03 curve are shown in Fig. 3, in which there are also 
the envelopes for other criteria. 
  

 
Figure 3. Failure envelopes and WWFE test data for unidirectional composite E-Glass/LY556.   
 
Modelling 
A 2-D FE-modelling of the polymer covered roll is to be performed using the commercial finite 
element software ABAQUS. The model geometry and the boundary conditions take advantage 
of the symmetry conditions. The contact area between rolls will be modelled by specifying a 
contact between them, and the load is to be created by forced displacement of the contrary roll. 
The criterion will be programmed as subroutine and implemented into ABAQUS.   
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Concluding remarks 
This study presents a criterion, which seems to be promising in predicting the fatigue failure in 
compression. In the future there is the possibility to verify the computed results with the test 
results. 
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Summary At construction based on design plan, there are often deviation in support positions, 
bends, welds and mass distributions. For a pipe model to be valid, certain rules regarding deviation 
from model based on drawings, are convenient. In the present context, a method to validate a 
dynamical calculation is proposed. New eigen frequencies for the as-buildt system are calculated 
from a modal analysis, and compared to design frequencies. If the deviation is within a certain 
range, it is assumed that other properties are also limited, and that, the results from the original 
complete model are valid. 
 
Introduction  
A piping system attached to the reactor tank and the main steam line was calculated for 
dynamical loads, static loads and thermal expansion. The purpose of the pipe is to ensure 
that the level of water in the tank(vessel) is known, by leading exhaust gases from the 
facility of measurment at the top of the pipe. Due to the close vicinity of the reactor, the 
piping system is Class 1, according to ASME[1], however since the diameter of pipes are 
small, the rules for Class 2 are sufficient to validate the system. Thus, thermal transients 
leading to low cycle fatigue, need not be considered. 
 
The dynamical loads that are present, in various combinations with static loads, are e.g. 
water hammer due to closure of inner or outer valves, water hammer due to opening of 
safety walves for steam pipe, oscillations from wet-well, floor respons spektra for 
earthquake, occuring for different levels of operation, such us normal operation, start and 
shut-down, safety shut-down. Load input are present as time history as well as spectral 
amplitudes. 
 
Combination of loads are done according to rules given by the owner in a document 
specified for the system. 
 
Loads due to weight, pressure and thermal expansion are always combined with 
superposition. In some cases, dynamical loads could be combined with SRSS. This is less 
conservative causing the larger load to give the main contribution. 
Since the valve opening causes the 'chugging', it emanates from the same source, and it is 
most likely that the effects are not superposed as maximum contributions, but are in 
different phases.   

 
Model 
For small pipes, there is a regulatory [2], that admits installation without a calculation.  
This contains rules for distance between supports, types of support and a  restriction on 
the lowest eigen frequency (approx 33Hz, in this case). For the exhaustion pipe, the 
expansion loop at the attachment to steam pipe, gives lower eigen frequencies (approx 
8Hz), cf. Figure 1. Hereby, a full dynamic analysis was performed. 
 
The pipe was calculated in the program Pipe Stress [3]. 
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To achieve a model with correct, known boundary condition, parts of attached pipes 
needed to be invoked. The rigid ends of the model was the tank, the inside wall of the 
reactor containment, and the floor above wet-well.  

 
 

Results for design configuration  
Pipe orientations and support positions were adjusted in order to achieve sufficiently low 
stresses for load combinations at all levels. Based on these results, corresponding loads on 
supports were deduced, and components were designed to withstand the loads. 
 
Since the model contained both the large steam pipes and the exhaust pipe, the entries of 
the stiffness matrix where different in magnitude. Such conditions, could be known to 
introduce some sensitivity to the system, however that is handled in the program. It was 
observed however, that (minor) changes of support positions, and piping, caused over-
stresses for dynamical loads. This was mostly due to the fact, that there were small 
margins from the beginning. 
 
Adaption to as-buildt configuration 
After construction, there were some deviation in support positions, change in pipe 
lengths, bends, welds and mass distributions. Distributed mass consists of pipe and heat 
isolation, whereas valves often are modeled as point masses. 
 
Within the code, there are some possibility to tune parameters, such as stiffness of valves 
and direction of supports. Within these ramifications, it may have been possible, however 
time consuming, to verify the system by calculation. 
 
Extension of ASME nonmandatory appendix 11, for validation of dynamical 
calculation when deviations in as-buildt  
For a pipe model to be valid, certain rules regarding deviation from model based on 
drawings, are convenient. Suggestions on admissable alterations in as-buildt compared to 
design, are given in ASME appendices. In this context, the rules are extended to 
dynamical variations. 
 
Admissable alteration for mass distribution is according to ASME appendix, 20%. This 
may be expressed in alteration of eigen frequencies for oscillation of bending degrees of 
freedom at a beam with given boundary conditions, free ends/supported ends, and is 9%. 
(The alteration is independent of boundary conditions.) A suggestion on code develop-
ment is that every change is permitted, that results in a change in eigen frequencies less 
than this value. 
 
Since the analysis for the dynamical loads requires significant calculation effort, and the 
result is highly dependant of eigen frequencies that are obtained through a quite simple 
modal analysis, this proposal is a significant improvement, and a great part of the 
calculations done before hardware construction, will be valid also for as-buildt. 

 
This code development is valid for dynamical loads, when as-buildt differs from used 
calculation profound (input data). The static load cases eigenweight (DW), operating 
pressure (PO) and thermal expansion (TO), are not enveloped. These are verified with the 
static mandatory rules. 

 
The shift in eigen frequency could be allowed to be the sum (or SRSS or max) of the shift 
in eigen frequencies, for all admissable changes. An investigation, and evaluation of 
validity should be done, for some chosen systems.  
Δω(allowed)=F(Δω(ch in mass distr), Δω(ch in supp pos), Δω(ch in point masses)) 
F(x,y)=x+y, or F(x,y)=(x2+y2)1/2, or F(x,y)=max(x,y) 
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Conclusion  
A new method to verify a calculation analysis, compared with revised drawings and input 
data was proposed. Instead of the calculation of new actual loads on the system, a 
comparison between eigen frequencies, for as-buildt, and previously analysed system, is 
made. If changes are within a certain tolerance, a full analysis is not required. 
 
Advantages of the method 
• New input data for dynamical loads are not necessary. (When support positions 

are moved, the dynamical loads may change, and new files for load basis have 
to be deduced, which implies significant work load. 

• Only modal analysis required. 
• New calculation of support loads is not required 

• Highlights the present approach to dynamical effects, in terms of load 
combination and calculation profound for input data 

 

Remarks 
In order to actually reduce dynamical loads, damping facilities need to be installed. 
Oscillation of the building could be damped by a liquid in communicating vessel at top of 
the building, as is done in buildings subjected to ground motions, eg earthquakes. This 
will reduce the loads from the floor response.  Vibrations in the system are reduced by 
installing a rubber spring facility, with the unwanted eigen frequency, near the oscillating 
area. 
 
In nuclear application, vibrations of the system with the circulation pump, where 
eliminated by installing a so called damping weight. The name is somewhat misleading, 
since it changes the eigen frequency, but does not introduce energy consuming damping. 
 
Since the system response close to resonance is exponenential, it should be discussed 
whether there are some cases that should be excepted from the rule extension, 9%. 
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Summary Determination of the forces between joined rectangular discrete particles (elements) is
presented. A two-dimensional discrete element program is developed further to handle these forces. A
vibrating beam is simulated to benchmark the calculation of the forces between particles joined together.

Introduction

Discrete element method (DEM) is a numerical tool used to simulate the nonlinear dynamics of a
system of particles. In DEM, individual material particles (discrete elements) are considered to be
separate, but the elements can interact with each other through particle–particle contacts [1] [2].
Thus DEM has been applied especially to studies of granular materials in, for example, rock and
ice mechanics.

However, DEM is also usefull in analyses of fragmentation of solids as well as structural failure
and collapse [3] [4] [5]. In such studies, in addition to modelling fracture, also the behavior of
the structure before fracture must be modelled with DEM. As an example, when simulating the
failure of a floating sea ice sheet against a structure, the dynamics of the ice sheet before failure
must also be modelled. In a discrete element simulation, the ice sheet, or beam in 2D, is composed
of discrete elements which are joined or “glued” together. In this work, the joining of discrete
elements together and calculation of forces between joined discrete elements is presented and
implementation into a DEM code is verified through simulations of a vibrating beam.

Equations of motion

In this context all the particles (discrete elements) are rigid and uniform rectangles. In discrete
element method, the motion of each rigid particle, position r, velocity v, orientation θ and angular
velocity ω, has to be determined in some frame of reference. According to Newton’s second law
of motion, the motion of a rigid particle is described by the following differential equations

mi

d2
ri

dt2
= Fi and Ii

d2
θi

dt2
= Ti (1)

for each particle i. In Equation (1) mi, Fi, Ii and Ti are the mass, force, moment of inertia and
torque respectively.

The forces Fi and torques Ti contain both the internal and external forces acting on the particle i.
To distinguish the internal and external forces from one another we introduce a group of discrete
particles: A group of particles is a collection of particles that are joined together in such a manner
that the group can support both tensile and compressive forces. Now, the internal forces are due
to relative movement between two adjacent particles in a same group of particles and the external
forces are due to other sources such as collisions between particle groups, gravity and bouyancy
of individual particles etc. It follows from these definitions and the fact that the particles are rigid,
that one particle alone can not have any internal forces. In the rest of this work only internal forces
are considered.
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Forces between joined particles

Forces between joined particles in discrete element method is covered by e.g. Hopkins [6]. Since,
with our definitions, there are no internal forces defined between different particle groups or in
one particle, we next consider two adjacent particles in a same group, see Fig. 1(a). The particles
have an adjacent edge by which they are joined together. The joint is considered viscous-elastic. In
DEM, the forces between joined particles are due to relative movement of the particles. In Fig. 1(b)
two adjacent particles, which have moved with respect to one another, are shown. The local frame
of particle 1 and the frame on edge of the particle 1, with normal and tangential directions, are
also shown in Fig. 1(b). The distance between the corresponding points on the adjacent edges of
particles 1 and 2 is denoted by δ and will be called a stretch. The stretch is a function of t, the
tangential direction of the edge, i.e. δ(t).

21

h
b

b) adjacent particles

h

b

a) group of particles

t

n
δ(t)

−h/2

n

t

δn(t)

h/2

c) normal component of stretch

Figure 1: a) A group of particles with two adjacent particles highlighted. b) Two adjacent particles which
have moved with respect one another. c) Normal component of the stretch δn(t).

In Fig. 1(c) the normal component of the stretch is shown. Following [6], the normal component
of the elastic and dissipative forces exerted on particle 1 is integrated over the length of the joint
as follows

Fn = Fne + Fnd =
E

b

∫ h/2

−h/2

δn(t)dt + cn

∫ h/2

−h/2

δ̇n(t)dt, (2)

where E is Young’s modulus, b is the width and h is the height of the particle and cn is the normal
damping constant. The tangential component of the force, the shear force, is derived analogously
by using the shear modulus G and the tangential component of the stretch δt(t)

Ft = Fte + Ftd =
G

b

∫ h/2

−h/2

δt(t)dt + ct

∫ h/2

−h/2

δ̇t(t)dt, (3)

where ct is the tangential damping constant. The torque from the elastic and dissipative normal
forces in the local frame of particle 1 is
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Tn = Tne + Tnd = −

E

b

∫ h/2

−h/2

tδn(t)dt − cn

∫ h/2

−h/2

tδ̇n(t)dt. (4)

The torque exerted by shear forces to the local frame of particle 1 is

Ts =
b

2
(Fte + Ftd). (5)

Solving the equations of motion

After all the forces and torques have been calculated for each particle by using (2), (3), (4) and
(5), the equations of motions (1) are solved using explicit time integration. The following central
difference method is used:

r
i+1 = r

i + v
i∆t +

(∆t)2

2

F i

m

v
i+1 = v

i +
∆t

2
(
F i

m
+

F i+1

m
), (6)

for each time step i = 1, 2, . . . The orientation θ and angular velocity ω of each particle are also
determined by the same method.

Vibration of a beam

As a simple test case for the calcutation of the forces between joined particles, a vibrating beam
was modeled with different boundary conditions. Both the longitudinal and transverse vibrations
were studied. Figure 2a) shows the displacement of the midpoint of the beam in case of longitu-
dinal vibration and Figure 2b) shows the displacement of the midpoint of the beam in transverse
vibration.
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Figure 2: a) Longitudinal vibration of a beam. b) Transverse vibration of a beam.
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The natural frequences of the beam with different boundary conditions were calculated and com-
pared to the analytical solutions presented in [7]. Young’s modulus E = 1.0 · 109 MPa, density
ρ = 920 kg/m3 and the height of the beam h = 0.5 m were the same for all the test cases. Other
used properties and results are shown in table 1.

Table 1: Natural frequences of the beam.

boundary length of number of ω [1/s] ω [1/s]
conditions vibration the beam [m] ∆t [s] elements ([7]) (DEM)

clambed–clambed longitudinal 3.96 5.0 · 10−7 19 827.1 826.7
clambed–clambed transverse 4.0 5.0 · 10−5 9 210.4 209.4
clambed–free transverse 4.25 5.0 · 10−5 9 29.3 29.2

Concluding remarks

The calculation of the forces between joined rectangular particles in discrete element method was
presented and implemented to a DEM program. Vibrating beam was simulated with the program
and the natural frequences obtained were compared to ones given by analytical solutions. No
significant differences between the solutions could be found.
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Summary In this note we introduce a method for handling general boundary conditions based on an
approach suggested by Nitsche (1971) for the approximation of Dirichlet boundary conditions. We use
Poisson’s equations as a model problem and present the a priori and the a posteriori error estimates. Also,
we show that conventional error estimates for Dirichlet and Neumann boundary conditions are a special
case of the proposed error estimates.

Introduction
Enforcing perturbed Dirichlet boundary condition i.e. the Robin boundary condition with small
coefficient in the derivative term leads to a high condition number in the system matrix. Perturbed
boundary condition also plagues the adaptive mesh refinement based on the a posteriori error
estimate since the straight forward formulation of the problem leads to a posteriori estimate that
induces a too dense mesh on the boundary. A numerical scheme has to take these facts into
account in order to produce an efficient and numerically stable method.
Perturbed boundary conditions arise for example in linear elasticity where a solid is on a very stiff
but elastic support. Also, enforcing normal Dirichlet boundary condition with the penalty method
is equivalent to solving a problem with perturbed Dirichlet boundary conditions since the penalty
method is not consistent.
We show a method based on the Nitsche method [1] [2] [3] to circumvent the high condition
number of the system matrix in the case of the perturbed boundary condition. The method is
proposed in a way that it is possible to move continuously between the Neumann and the Dirichlet
boundary conditions. We show the a priori error estimate that has the optimal rate of convergence.
Under the saturation assumption we also show the a posteriori error estimate.

Deriving The Nitsche Method
We use the Poisson problem as a model problem.

−∆u = f

∂u

∂n
=

1
ε
(g − u) + q

u = 0

in Ω

onΓ

on∂Ω \ Γ

(1)

whereΩ is a bounded domain in space with polygonal boundary,f ∈ L2(Ω), g, q ∈ L2(Γ) and
ε ∈ R, ε > 0.

Remark 1. The value of the parameterε allows to move between the Dirichlet and Neumann
problems continuously i.e.

ε → 0 ⇒ u = g

ε →∞ ⇒ ∂u

∂n
= q

onΓ

onΓ .
(2)

We suppose that we have shape regular finite element partitionsTh of the domainΩ ∈ RN ,
N = 2, 3. By K ∈ Th we denote an element of the mesh and byE we denote an edge of the
element. The mesh induces a partitioning also to the boundary of the domain∂Ω and we denote

Gh = {E : K ∩ Γ, K ∈ Th} .
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(The Nitsche Method). Find uh ∈ Vh such that

Bh(uh, v) = Fh(v) ∀v ∈ Vh (3)

where

Bh(u, v) =
(
∇u,∇v

)
Ω

+
∑

E∈Gh

{
− γhE

ε + γhE

[ 〈∂u

∂n
, v

〉
E

+
〈
u,

∂v

∂n

〉
E

]
+

1
ε + γhE

〈
u, v

〉
E
− εγhE

ε + γhE

〈∂u

∂n
,
∂v

∂n

〉
E

} (4)

and

Fh(v) =
(
f, v

)
Ω

+
∑

E∈Gh

{
1

ε + γhE

〈
g, v

〉
E
− γhE

ε + γhE

〈
g,

∂v

∂n

〉
E

+
ε

ε + γhE

〈
q, v

〉
E
− εγhE

ε + γhE

〈
q,

∂v

∂n

〉
E

}
.

(5)

Remark 2. Settingγ = 0 in equation(3) yields the conventional variational formulation of the
model problem(1). Due to the inconsistency of the penalty method this variational form can also
be seen as the variational form induced by the application of the penalty method with penalty
parameterε to the problem

−∆u = f

u = g + εq

in Ω
onΓ .

Remark 3. Settingε = 0 in equation(3) yields the variational form of the Nitsche method applied
to problem [2]

−∆u = f

u = g

in Ω
onΓ .

Remark 4. Lettingε →∞ in equation(3) yields the variational form of the Neumann problem

−∆u = f

∂u

∂n
= q

in Ω

onΓ .

Lemma 1 states that the proposed method is indeed consistent.

Lemma 1. The solutionu of the equations(1) satisfies

Bh(u, v) = Fh(v) ∀v ∈ V . (6)

A priori error estimate
For the analysis of the method we define the following mesh-dependent norm

‖v‖2
h := ‖∇v‖2

L2(Ω) +
∑

E∈Gh

1
ε + hE

‖v‖2
L2(E) . (7)
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Lemma 2. There is a positive constantCI such that [3]

∑
E∈Gh

hE

∥∥∥∥∂v

∂n

∥∥∥∥2

L2(E)

≤ CI‖∇v‖2
L2(Ω) ∀v ∈ Vh . (8)

Since it is possible to compute a value to the coefficientCI of Lemma 2, it follows from Lemma 3
that the proposed method is always stable.

Lemma 3. Suppose thatγ < 1/CI . Then there exists a positive constantC such that

Bh(v, v) ≥ C‖v‖2
h ∀v ∈ Vh . (9)

Following interpolation estimate holds [3].

Lemma 4. Suppose thatu ∈ Hs(Ω), with 3/2 < s ≤ p + 1. Then it holds

inf
v∈Vh

‖u− v‖h ≤ Chs−1‖u‖Hs(Ω) . (10)

Now we can formulate the a priori error estimate in the mesh dependent norm.

Theorem 1. Suppose thatγ < 1/CI . Then it holds

‖u− uh‖h ≤ C inf
v∈Vh

‖u− v‖h (11)

and ifu ∈ Hs(Ω) and3/2 < s < p + 1, then

‖u− uh‖h ≤ Chs−1‖u‖Hs(Ω) . (12)

A posteriori error estimate
The a posteriori error estimate of the Nitsche method is based on the saturation assumption [4].
The assumption is that refining the mesh produces better solution in the mesh dependent energy
norm.

Assumption 1. Assume there existsβ < 1 such that

‖u− uh‖h ≤ β‖u− u2h‖h , (13)

whereu2h is a solution on a mesh size2h.

Theorem 2. Suppose the saturation Assumption 1 holds and thatγ < 1/CI . Then it holds

‖u− uh‖h ≤ C
( ∑

K∈Th

E2
K(uh)

)1/2
, (14)

where

E2
K(u) = h2

K‖∆u + f‖2
L2(K) + hE

∥∥∥∥[[∂u

∂n

]]∥∥∥∥2

L2(∂K∩I)

+
hE

(ε + γhE)2

∥∥∥∥ε
(∂u

∂n
− q

)
+ u− g

∥∥∥∥2

L2(∂K∩Γ)

,

(15)

whereI is the internal boundaries of the mesh.

  115



Remark 5. Settingε = 0 yields

E2
K(u) = h2

K‖∆u + f‖2
L2(K) + hE

∥∥∥∥[[∂u

∂n

]]∥∥∥∥2

L2(∂K∩I)

+
1

hE
‖u− g‖2

L2(∂K∩Γ) ,

(16)

which is the a posteriori estimate of the Nitsche method for the non-perturbed problem.

Remark 6. Settingγ = 0 yields

E2
K(u) = h2

K‖∆u + f‖2
L2(K) + hE

∥∥∥∥[[∂u

∂n

]]∥∥∥∥2

L2(∂K∩I)

+ hE

∥∥∥∥∂u

∂n
− q +

1
ε
(u− g)

∥∥∥∥2

L2(∂K∩Γ)

,

(17)

which is the a posteriori estimate of the penalty method or the conventional approach to the
perturbed problem.

Remark 7. Lettingε →∞ yields

E2
K(u) = h2

K‖∆u + f‖2
L2(K) + hE

∥∥∥∥[[∂u

∂n

]]∥∥∥∥2

L2(∂K∩I)

+ hE

∥∥∥∥∂u

∂n
− q

∥∥∥∥2

L2(∂K∩Γ)

,

(18)

which is the a posteriori estimate of the Neumann problem.

These remarks show that the a posteriori estimate holds for all values ofε, even the limit values
of ε yield the correct a posteriori estimate. In addition, settingγ = 0 yields the conventional
approach or the penalty method, depending on the problem.
For the proofs of the error estimates check [5].
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Summary We show that popular gradient averaging techniques can be successfully used for reliable control
of local errors appearing in finite element computations for linear elliptic type boundary value problems.
Error control in terms of linear functionals with local supports and also in terms of local integral norms is
considered. General schemes for construction of easily computable estimates for both types of control are
described and effectivity of the proposed estimates is demonstrated in numerical tests.

Introduction
The paper is devoted to a recent trend in a posteriori error estimation which is based on the con-
cept of control of local computational errors. Error estimates of such type control are strongly
motivated by practical needs, in which analysts are often interested not only in the classical error
in global energy norms, i.e., over the whole solution domain, but also in information about local
errors over certain parts of it. One way for obtaining such an information is to introduce a linear
functional ` associated with a subdomain of special interest and to construct a posteriori com-
putable estimate for `(u − ū), where u is the exact solution and ū is the approximate one. We
show that popular and computationally cheap gradient averaging procedures can be effectively
used for such a purpose if ū is computed by the finite element method. Moreover, we show that
also an error measured in local integral norms can be effectively estimated via estimates of the
error in terms of suitably constructed linear functionals. The effectivity of proposed estimates is
demonstrated in numerical tests.

Control of error by linear functionals
Model elliptic problem. Let Ω be a bounded and connected domain in R

d (d = 1, 2, ...) with a
Lipschitz continuous boundary ∂Ω, we consider the problem: Find u such that

−div(A∇u) = f in Ω, u = 0 on ∂Ω, (1)

where f ∈ L2(Ω), matrix A = {aij(x)}d
i,j=1

is symmetric and is such that

aij(x) ∈ L∞(Ω), A(x)ξ · ξ ≥ c ‖ξ‖2
∀ξ ∈ R

d
∀x ∈ Ω. (2)

To find an approximation for problem (1) by the finite element method we employ the so-called
weak formulation of (1): Find u ∈ H1

0 (Ω) such that
∫

Ω

A∇u · ∇w dx =

∫

Ω

fw dx ∀w ∈ H1
0 (Ω). (3)

Let uh ∈ H1
0 (Ω) be a continuous piecewise polynomial finite element approximation of u com-

puted on the primal mesh Th. The question is in which sense to measure the error e := u − uh.
One way to do that is via linear functional `ϕ (e.g., with a local support ω ⊆ Ω), i.e., to estimate
the value, for example, of

`ϕ(e) = `ϕ(u − uh) :=

∫

Ω

ϕ(u − uh) dx, where supp ϕ = ω. (4)
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Figure 1: Ω, ω, Th (88 nodes), uh, and typical Tτ (31 and 247 nodes).

It is clear that the estimates for the above value can also be used to estimate the value of `ϕ(u) =∫
ω

ϕudx, called often as the quantity of interest.

Error decomposition. In order to estimate (4), one usually introduces the so-called adjoint prob-
lem: Find v ∈ H1

0 (Ω) such that (cf. (3))
∫

Ω

A∇v · ∇w dx =

∫

Ω

ϕw dx
(
= `ϕ(w)

)
∀w ∈ H1

0 (Ω). (5)

If function ϕ ∈ L2(Ω), then problem (5) has a unique solution. Usually, one cannot solve (5)
exactly and only the finite element approximation vτ , obtained on adjoint mesh Tτ (not necesarily
coinciding with Th), is available. Then we can represent error (4) as follows
∫

Ω

ϕ(u−uh)dx=

∫

Ω

A∇v ·∇(u−uh)dx=

∫

Ω

A∇(v−vτ ) ·∇(u−uh)dx+

∫

Ω

A∇vτ ·∇(u−uh)dx=

=

∫

Ω

fvτdx−

∫

Ω

A∇vτ ·∇uhdx+

∫

Ω

A∇(v−vτ ) ·∇(u−uh)dx=E0(uh, vτ )+E1(uh, vτ ). (6)

Construction of estimator. It is well known that averaged gradients of finite element approxi-
mations for linear elliptic problems usually demonstrate so-called superconvergence effect (see,
e.g., [1]). This suggests to use averaged gradients instead of unknown gradients in (6) and
estimate (4) by the following a posteriori computable value (called estimator) Ẽ(uh, vτ ) =

E0(uh, vτ ) + Ẽ1(uh, vτ ), where

Ẽ1(uh, vτ ) =

∫

Ω

A(Gτ (∇vτ ) −∇vτ ) · (Gh(∇uh) −∇uh) dx, (7)

and Gh and Gτ are suitable gradient averaging operators.

Numerical test. Let Ω be a L-shaped domain with reentrant corner at (0, 0) obtained from a square
(−1, 1)×(−1, 1), ω := (−0.2, 0)×(−0.2, 0) (see Fig. 1 (left)), let ϕ ≡ 1 in ω (and vanish outside
of ω), A be the unit matrix, f ≡ 10 in Ω. The continuous piecewise linear finite element solution
uh is calculated on Th with 88 nodes, then `(u − uh) = 0.005346. The performance of the
estimator for various choices of adjoint meshes (having 31, 42, . . . , 2077 nodes) is presented in
Fig. 2. The effectivity index Ieff := Ẽ(uh, vτ )/`(u − uh). We clearly observe that: a) estimator
gives reasonably good results (0.72 ≤ Ieff ≤ 0.93) for adjoint meshes which are considerably
coarser than the primal meshes; b) estimator is asymptotically (τ → 0) correct. Very similar
results are reported in [2, 3, 4, 5] for the problem (1) with mixed boundary conditions and also for
problems in linear elasticity.
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Figure 2: Behaviour of estimator Ẽ and its parts, E0 and Ẽ1, for various adjoint meshes.

Mesh adaptivity. The estimator Ẽ(uh, vτ ) =
∑

T∈T
(i)

h

IT , where each contribution IT is a value

of the integral taken over a particular element T of the current primal mesh T
(i)

h
. This suggests

to construct the next primal mesh T
(i+1)

h
in order to decrease the error (4) as follows. First, we

find the maximum among all modulus |IT |’s and, secondly, mark up those elements T ’s which
have their contributions larger than the “user-given threshold” θ (θ ∈ [0, 1]) times that maximum

value. Refining the marked elements and making the mesh conforming, we get T (i+1)

h
. The high

effectivity of this adaptive procedure has been demonstrated in [2, 3, 5].

Control of error in local integral norms
Estimates for the error measured in terms of specially constructed functionals can be used also for
evaluating local integral norms of the error. Let us consider, for example,

‖e‖2
2,ω = ‖u − uh‖

2
2,ω =

∫

ω

|u(x) − uh(x)|2 dx. (8)

It is obvious that ‖u − uh‖2,ω = sup
η∈L2(ω)

R

ω

η(u−uh)dx

‖η‖2,ω
, where supremum is attained at η = u − uh.

If a priori known that u − uh ∈ Ξ(ω) ⊂ L2(ω), then

‖u − uh‖2,ω = sup
η∈Ξ(ω)

∫
ω

η(u − uh)dx

‖η‖2,ω

=: |u − ū|Ξ. (9)

However, |u − uh|Ξ is only seminorm and equality in (9) is normally replaced by inequality.
Nevertheless, |·|Ξ may give adequate presentation on norm ‖·‖2,ω provided Ξ contains sufficiently
large amount of trial functions. Let Ξ := {ϕ1, ϕ2, . . . , ϕn}, where ϕi are given. In [4] it is first
proved that

|u − uh|Ξ = (B−1
l · l)

1

2 , (10)

where

l=(`ϕ1
, `ϕ2

, . . . , `ϕn
)T , `ϕi

(u − uh) =

∫

ω

ϕi(u − uh)dx, B =
(∫

ω

ϕiϕj dx
)n

i,j=1
. (11)

Further, it is proved that
∣∣∣|u − uh|Ξ − ‖u − uh‖2,ω

∣∣∣ = O(diam(ω)k), where k depends on

regularity of u and number of trial functions used in definition of | · |Ξ, see [4]. Thus, estimates
from Section 2 can be efectively used to estimate the error (8) by (10)–(11) with `ϕi

, i = 1, . . . , n,
replaced by corresponding estimates.
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Numerical test. Consider the test problem from Section 2, for which ‖u−uh‖2,ω = 0.028703. To
estimate this local norm of the error we can use e.g. estimates via 4 functionals, `ϕ1

, . . . , `ϕ4
, with

ϕ1, . . . , ϕ4 being bilinear over ω and constructed so that they are equal to 1 at one node and 0’s at
the other. If the error in terms of functionals can be computed exactly then |u−uh|Ξ = 0.028182,
which gives a very good estimation of (8) as predicted theoretically in [4]. However, in practice
we only have estimators’ values, which estimate the error by the value 0.019795 if the adjoint
mesh with 42 nodes is used, and by the value 0.026881 - for the case of the adjoint mesh with 549
nodes.

Comments
1. The approach proposed in Section 2 is different from the others available in the literature,
where it is always assumed that primal and adjoint problems are solved on the same mesh. Using
our technique one can obtain reliable estimates also for the case when the number of nodes in
adjoint mesh is considerably smaller than the number of nodes in primal mesh.
2. The effectivity of the estimator Ẽ strongly increases when one is interested not in a single
solution of the primal problem for a concrete data, but analyzes a series of approximate solutions
for a certain set of boundary conditions and various right-hand sides (which is typical in the engi-
neering design when it is necessary to model the behavior of a construction for various working
regimes). In this case, the adjoint problem can be solved only once (for each ω and `ϕ), and this
solution can be further used in testing the accuracy of approximate solutions of various primal
problems.
3. In the above we considered problem (1) with a homogeneous Dirichlet boundary condition
only for simplicity. A more general problem with nonhomogeneous mixed boundary conditions
can be treated in the same way (see [2]). Similar estimates can be straightforwardly constructed
(using the ideas described above) for the other elliptic models, e.g., in linear elasticity (see [3, 5]),
etc. The same ideology can be also applied to approximations obtained by hp-version of FEM.
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[1] I. Hlaváček, M. Křı́žek. On a superconvergent finite element scheme for elliptic systems. I. Dirichlet
boundary conditions. Apl. Mat. 32, 131–154, 1987.

[2] S. Korotov. A posteriori error estimation of goal-oriented quantities for elliptic type BVPs. J. Comput.
Appl. Math. (in press).

[3] S. Korotov. Error control in terms of linear functionals based on gradient averaging techniques. Com-
puting Letters (submitted).
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Summary We formulate the Helmholtz problem as an exact controllability problem for the time-dependent
wave equation. The problem is discretized in space domain with spectral elements leading to high accu-
racy and diagonal mass matrices. After discretization, exact controllability problem is reformulated as a
least squares problem, which is solved by conjugate gradient method. We illustrate the method with some
numerical experiments on an acoustic scattering simulation.

Introduction
We consider a controllability method for the numerical solution of the two-dimensional Helmholtz
equation with an absorbing boundary condition describing the scattering of a time-harmonic inci-
dent wave by a sound-soft obstacle:

−κ(x)2

ρ(x)
U −∇ ·

( 1
ρ(x)

∇U
)

= 0, in Ω, (1)

U = 0, onΓ0, (2)

−iκ(x)U +
∂U

∂n
= Gext, onΓext, (3)

whereU(x) denotes the total acoustic pressure consisting of the scattered waveUscat(x) and the
incident waveUinc(x) = exp(i~ω · x), wherei is the imaginary unit and the vector~ω gives the
propagation direction. The functionGext depends on the incident wave. The domainΩ is bounded
by the surface of the obstacleΓ0 and an absorbing boundaryΓext. Vectorn is the outward normal
vector to domainΩ. The wavenumber and density of the material are denoted byκ(x) andρ(x),
respectively, and they are varying with respect tox. The wavenumber is related to the angular fre-
quencyω = ‖~ω‖2 and to the speed of soundc(x) by the formulaκ(x) = ω

c(x) . The corresponding

wavelength is given byλ(x) = 2π
κ(x) .

Numerous solution methods exist directly for the time-harmonic equation above. For example,
various fictitious domain and domain decomposition methods have been applied to the corre-
sponding finite element problems. A common quality of these methods is that they lead to large-
scale indefinite linear systems, which are solved iteratively. It is difficult to develop efficient
preconditioners for the iterative solution, especially when the material coefficients are varying.
Another difficulty in the finite element solution of the Helmholtz equation is the pollution effect,
which deteriorates accuracy when wave number increases even if discretization resolution is kept
fixed (see, e.g., [6]). Many techniques have been developed to reduce the pollution effect and
during recent years various methods using plane waves as basis functions have turned out to be
succesful (see, e.g., [3], [5]). In this work, we adhere to a polynomial basis, but increase the order
of the basis functions to reduce the pollution effect.
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Exact controllability formulation
An alternative approach to solving the time-harmonic equation is to return to the corresponding
time-dependent equation and look for time-periodic solution. Direct time-integration of the wave
equation can be used to reach the time-periodic case, but convergence is usually too slow to be
useful in practice. We use the idea of Bristeau, Glowinski and Périaux to speed up the conver-
gence by control techniques [1]. The original time-harmonic equation is reformulated as exact
controllability problem for the wave equation: Find initial conditionse0 ande1 such that:

1
ρ(x)c(x)2

∂2u

∂t2
−∇ ·

( 1
ρ(x)

∇u
)

= 0, in Q = Ω× [0, T ], (4)

u = 0, onγ0 = Γ0 × [0, T ], (5)
1

c(x)
∂u

∂t
+

∂u

∂n
= gext, onγext = Γext × [0, T ], (6)

u(x, 0) = e0,
∂u

∂t
(x, 0) = e1 in Ω, (7)

u(x, T ) = e0,
∂u

∂t
(x, T ) = e1 in Ω. (8)

Spectral element discretization
For the spatial discretization of the wave equation (4)-(7), we use spectral element method, which
combines the geometric flexibility of classical finite elements with the high accuracy of spectral
methods. The computational domain is divided into quadrilateral elements, and in each element
a local higher-order polynomial basis is introduced. The degrees of freedom corresponding to the
basis functions are located at the Gauss-Lobatto integration points of the elements. This method is
especially useful for the solution of time-dependent wave equations, because it leads to a diagonal
mass matrix also with a higher-order basis [2] (see also [8]). This fact is very beneficial for the
time-dependent simulation with explicit schemes. After spatial discretization we have the semi-
discrete equation

M∂2u
∂t2

+ S ∂u
∂t

+Ku = F , (9)

where vectoru(t) contains the nodal values of the functionu(x, t) at timet, and satisfies the initial
condition (7) at timet = 0. Because mass matricesM andS are diagonal, explicit time step-
ping with central finite differences requires only matrix-vector multiplications. Stiffness matrix is
denoted byK, andF is the vector due to the functiongext.

Least-squares problem
The exact controllability problem for computingT−periodic solution for the wave equation in-
volves finding such initial conditionse0 ande1 that the solutionu and its time derivative∂u

∂t at
time T would coincide with the initial conditions. For the numerical solution, the exact control-
lability problem is replaced by a least-squares optimization problem with the functionalJ , which
is, on the discrete level, of the form:

J(e0, e1,u) =
1
2

(
(u(t)− e0)

T K (u(t)− e0) +
(

∂u(t)
∂t

− e1

)T

M
(

∂u(t)
∂t

− e1

))
. (10)

The purpose is to minimize functionalJ , which depends on the initial conditions both directly
and indirectly through the solution of the wave equation.
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Conjugate gradient method
Since vectoru depends linearly on the initial conditionse0 and e1, J is a quadratic function,
and (10) can be minimized by solving the linear system∇J(e0, e1) = 0 with a preconditioned
conjugate gradient (CG) method. The transition procedure to compute the initial approximation
of e0 ande1 for the CG algorithm as well as the block-diagonal preconditioner,

L =
(
K 0
0 M

)
, (11)

are the same as the ones used in [1].

Each CG iteration step requires computation of the gradient∇J , which involves the solution of
the wave equation (4)-(8) and its adjoint equation. Also solution of one linear system with matrix
L and some matrix-vector operations are needed. In [1], formulas for the gradient corespond to
the continuous function, while we compute the gradient of the discretized function (10). Thus,
the formulas are slightly different, but the basic operations are the same.

Solution of a linear system with the preconditioner requires the solution of two systems with the
stiffness matrixK and the diagonal mass matrixM. Efficient solution of linear systems with
the matrixK is critical for the overall efficiency of the control method. We apply the algebraic
multigrid (AMG) by Kickinger [7] at this stage. The use of AMG methods for spectral elements
has recently been studied in [4].

Numerical examples
We illustrate the performance of the controllability method with scattering in domainΩ = [0, 5]×
[0, 4], where we have two coated non-convex semi-open cavities as reflectors. Internal width and
height of cavities are0.75 and1.25. Thickness of both the wall and the coating material is0.25,
and distance between cavities is1.0 (see Fig. 1). To guarantee accuracy demands also for higher
orders, the time interval[0.0, 1.0] is divided into 300 timesteps of equal size. Computations have
been carried out on a HP 9000/785/J5600 workstation at 552 MHz PA-RISC 8600 CPU.

The absorbing boundary condition is presented such thatgext = ∂uinc
∂n + ∂uinc

∂t with the incidence
plane wave of the formuinc(x, t) = cos(~ω ·x) cos(ωt)+sin(~ω ·x) sin(ωt), whit angular frequency
ω = 4π and propagation direction~ω = ω

2 (−
√

2,
√

2). Density is assumed to be constantρ(x) =
1.0. In the first test, the speed of soundc(x) is varying such that it is equal to one outside
the obstacle and0.5 in the coating, implying that outside the obstacle wavelengthλ(x) = 0.5
and in the coatingλ(x) = 0.25. Absorbing boundary is located at a distance of1.5λ from the
obstacle. Since rectangular mesh with element widthh = 0.0625 is used, there are8 elements per
wavelength outside the obstacle and4 in the coating. In the second test case, parameters are the
same, expectc(x) = 0.25 in the coating of the right hand obstacle.

Both test examples are solved by increasing the order of the spectral element basis. Contour lines
representing the total fieldu in (4)-(8) are plotted in Fig. 1 and Fig. 2 with order of the spectral
element basis equal to4. The number of CG iterations needed to solve the control problem are
given in Tbl. 1, which also shows the number of degrees of freedom (DOF) in the spectral element
mesh. CPU time in seconds is depicted in Fig. 3, where DOF increases as the order of the spectral
element basis increases from 1 to 5. Spectral order equal to one corresponds to bilinear finite
elements.

Concluding remarks
Simulation results in Tbl. 1 show that, if the spatial discretization is accurate enough, the number
of iterations remains nearly constant while the number of optimization variables (i.e. two times
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DOF) increases. In addition, the computational effort of the method seems to depend linearly on
DOF (see Fig. 3).

Figure 1: Solution of the first test problem. Figure 2: Solution of the second test problem.

number of iterations
order DOF test 1 test 2

1 4635 372 579

2 18039 289 695

3 40211 292 594

4 71151 292 596

Table 1: Number of iterations which is needed to
reduce the relative euclidean norm of the gradient
of the functionalJ below10−4.

Figure 3: CPU time in seconds with respect to degrees
of freedom, whenc(x) is 0.5 in both coatings and 1.0
outside the obstacles.
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Summary A matrix-based manipulation to deal with invariant expressions in arbitrary coordinates is 
described. It can be considered as a simplified tensor analysis formulation for first and second order 
tensors. The skills demanded from the student to be able to apply the formulation are modest: basic 
matrix algebra and few rules concerning open products in dyads. Use of the method is demonstrated in 
connection with polar coordinates and momentum balance equation of mechanics. 
 

Introduction 
Tensor analysis formalism is undoubtedly the most elegant way to describe physics and 
especially mechanics in arbitrary coordinate systems. In basic engineering courses, however, 
there is usually no possibility to sacrifice time for preparing the students to master the necessary 
concepts of, say, summation convention, covariant differentiation, Christoffel symbols, etc. [1]. 
Then, a matrix-based formalism, can be employed with profit as this mathematical tool should 
be familiar from the elementary courses of linear algebra. 
 

Notation 
Two sets of base vectors will be considered simultaneously, of which one is the Cartesian 
“refer nce system” and the other one general. These are denoted here by the symbols  and 

, respectively. The relationship between the systems is written as 
e ,i j

,e ea b

 [ ]
e i

Fe j
a

b

Ï ¸ Ï ¸Ô Ô =Ì ˝ Ì ˝
Ô Ô Ó ˛Ó ˛

, (1) 

where [ ]F  is a  matrix having an inverse. As above and in what follows, a square matrix 
will be represented by square brackets and a column matrix by braces. Inverting or/and 
transposing 

2 2¥

(1) and using rules of matrix algebra gives obvious equivalent alternative 
representations. 
 

Employing these base vectors, a vector a  can be expressed e.g. in forms 

 { } { } { } { }x
x y

y

e aai
a a a i j a a e eeaj

a
a b a b a

a

b b

Ï ¸ Ï ¸Ï ¸Ï ¸ Ô Ô Ô Ô= = = =Ì ˝ Ì ˝ Ì ˝ Ì ˝
Ô Ô Ô ÔÓ ˛ Ó ˛ Ó ˛ Ó ˛

 (2) 

and a dyad  for example as a

 { } { } { } .
x xxx xy

yx yy y y

a a a aa a e ei
a i j e e i je ea a a a a aj

aa ab a ba a
a b

b bba bb a b

È ˘ È ˘È ˘ Ï ¸ Ï ¸Ï ¸ Ô Ô Ô Ô= = =Í ˙ Í ˙Í ˙Ì ˝ Ì ˝ Ì ˝
Ô Ô Ô ÔÍ ˙ Í ˙ Í ˙Ó ˛ Ó ˛ Ó ˛Î ˚ Î ˚ Î ˚

  (3) 

From the matrix algebra point of view, representations of (3) are 1 -matrices. In ordinary 
matrix algebra, transposing a 1 -matrix (often called a scalar) does not change its value. 
However, here with dyads, transposing any of the right-hand sides of 

1¥
1¥

(3) using the ordinary 
matrix algebra rules produces the conjugate dyad ca . For example, 

 { } { }
TT

c
xx xy

yx yy

a aa a ei
a i j e e ea a a aj

aa ab a
a b

bba bb

È ˘È ˘ Ï ¸Ï ¸ Ô Ô= = Í ˙Í ˙ Ì ˝ Ì ˝
Ô ÔÍ ˙ Í ˙Ó ˛ Ó ˛Î ˚ Î ˚

 (4) 
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This follows from the non-commutative property of the open products of the base vectors in the 
dyads. Connections between the components of the invariant quantities a  and a  in  (2) and (3)
in different bases can be easily obtained with the help of relation (1). 
 

Basic tools  
The connection indicated above between two sets of base vectors can be employed without 
necessarily considering the sets associated with two separate coordinate systems. From this on, 
however, we consider in particular a mapping between the familiar rectangular Cartesian system 
with coordinates x and y and another possibly curvilinear one with coordinates and   a b

 { } { }( , ) ( , ) .
i

r x y x y
j j

a b a b
Ï ¸ Ï ¸

= =Ì ˝ Ì ˝
Ó ˛ Ó ˛

i
 (5) 

The conventional obvious way to associate base vectors with the coordinate systems is as 
follows:  

  
/
/

x

y

e r x i
e r y j
Ï ¸ ∂ ∂ Ï ¸Ï ¸

= =Ì ˝ Ì ˝ Ì ˝∂ ∂Ó ˛ Ó ˛Ó ˛
     (6) 

and   

  
/ / /
/ / /

e r x y i
e r x y j
a

b

a a a
b b b

Ï ¸ ∂ ∂ ∂ ∂ ∂ ∂ Ï ¸Ï ¸ È ˘Ô Ô = =Ì ˝ Ì ˝ Ì ˝Í∂ ∂ ∂ ∂ ∂ ∂Ô Ô Ó ˛ Î ˚Ó ˛Ó ˛
˙  (7) 

In tensor analysis literature, base vectors defined as (6) and (7) are said to form a natural basis 
for the systems or they are called covariant base vectors. As seen, base vectors (6) are here unit 
vectors whereas base vectors (7) are usually not of unit length. The corresponding unit vectors 
can be obtained by normalizing. However, formulas remain usually much simpler if the 
derivations proceed with base vectors (7). If desired, the normalization to unit vectors can be 
performed at the very end. 
 

Comparison with (1) shows that here the matrix 

  
/ /

[ ] .
/ /

x y
F

x y
a a
b b

∂ ∂ ∂ ∂È ˘
= Í ˙∂ ∂ ∂ ∂Î ˚

 (8) 

One useful result is obtained as follows: 

  { } [ ] { }[ ] [ ][ ] [ ]T Te i
e e F i j F F F Ge j

a
a b

b

Ï ¸ Ï ¸Ô Ô◊ = ◊ = =Ì ˝ Ì ˝
Ô Ô Ó ˛Ó ˛

  (9) 

The interpretation of the manipulations above, and its generalization to other types of products, 
combining vector and matrix algebra should be rather obvious. The symmetric matrix  of [ ]G
(9) is the matrix counterpart of the covariant metric tensor. It has a very important role in 
continuum mechanics and therefore introducing the shorthand notation for it is justified. 
 

The derivatives of the general base vectors with respect to the curvilinear coordinates and given 
in the same basis are needed in many cases. We find from (1) (as base vectors of the Cartesian 
system are constants): 

  [ ] [ ] [ ] 1 ,
e ei

F F Fe j
a

b ba a a
-Ï ¸ Ï ¸Ï ¸∂ ∂ ∂Ô Ô Ô ÔÊ ˆ= =Ì ˝ Ì ˝ Ì ˝Á ˜Ë ¯∂ ∂ ∂Ô Ô Ô ÔÓ ˛Ó ˛ Ó ˛e

a  (10) 

  [ ] [ ] [ ] 1 .
e ei

F F Fe j
a

b bb b b
-Ï ¸ Ï ¸Ï ¸ Ê ˆ∂ ∂ ∂Ô Ô Ô Ô= =Ì ˝ Ì ˝ Ì ˝Á ˜∂ ∂ ∂Ë ¯Ô Ô Ô ÔÓ ˛Ó ˛ Ó ˛e

a  (11) 

Comparing these with tensor analysis literature, it is seen that the matrix products multiplying 
the column matrix of base vectors on the right-hand sides of (10) and (11) are the matrix 
counterparts of the Christoffel symbols of the second kind. 
 

Applying chain differentiation gives 
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  , (12) [ ] 1/ / / / /
/ / / / /

x x x
F

y y y
a b a
a b b

-∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ï ¸ È ˘Ï ¸ Ï
= =Ì ˝ Ì ˝ ÌÍ ˙∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ó ˛ Î ˚Ó ˛ Ó

a
b
¸
˝
˛

where the last form is seen to be valid by inverting relation (8). The formula is useful for 
instance when the nabla operator is employed. Starting with the well-known expression in the 
rectangular Cartesian case, we obtain 

 { } { } [ ][ ]( ) { }[ ]
1T 1/ /

.
/ /

x
i j e e F F e e G

y a b a b
a a
b b

- -∂ ∂ ∂ ∂ ∂ ∂Ï ¸ Ï ¸ Ï
— = = =Ì ˝ Ì ˝ Ì∂ ∂ ∂ ∂ ∂ ∂Ó ˛ Ó ˛ Ó ˛

/
/

¸
˝

i

 (13) 

These are the tools necessary for applications. We continue with some illustrative examples. 
The idea is to start from an invariant quantity expressed in a familiar form in a rectangular 
Cartesian coordinate system and by suitable matrix manipulations express it finally in variables 
of the other system [2]. 
 

Gradient in polar coordinates 
We consider first the polar coordinate system with  and  and derive the expression 
of the gradient operator. The mapping between the Cartesian system and the polar coordinate 
system of type 

~ ra ~b q

(5) is given by   

 { } { }cos sin
i

r x y r r
j j

q q
Ï ¸ Ï ¸

= =Ì ˝ Ì ˝
Ó ˛ Ó ˛

.  (14) 

From this we get  

 ,  [cos sin
[ ]

sin cos
F

r r
q q
q q

È ˘
= Í ˙-Î ˚

] [ ][ ]T 2

1 0

0
G F F

r

È ˘
= = Í ˙

Í ˙Î ˚
,   (15) 

and from (13) 

 { }[ ] 1
2

/ 1
/r r

r
i j e e G e e

x y r rq q q
- ∂ ∂Ï ¸∂ ∂ ∂— = + = = +Ì ˝∂ ∂∂ ∂ ∂ ∂Ó ˛

q
∂ . (16) 

Let us note that here | |q  and if the base vectors were normalized one would obtain the 
usual expression containing just one  in the denominator of the second term of 

e r=
r (16).  The base 

vectors of the polar coordinate system are clearly orthogonal as the off-diagonal terms of [  
are zeros. 

]G

 

Momentum balance in continuum mechanics 
As a second example, we consider equation describing the momentum balance of continuum. 
Writing component forms of this –innocent looking– equation may easily turn to disaster. In our 
opinion, explicit use of base vectors makes the reasoning concerning the various selections and 
steps leading to the component forms rather easy to follow even in case of large displacements 
and curvilinear material coordinate system.  
 

To be specific, we aim at writing the component forms of differential equation (actually in two-
dimensions) 
 0fs—◊ + =   in  ,   (17) 3V Ã
in which  is the Cauchy stress and s f  is the given body force so that practical calculations are 
possible. As the equation describes the momentum balance of a material volume V  depending 
on the solution, the first thing is to rewrite (17) in a coordinate system in which the solution 
domain is constant V . For this purpose, one assumes that the position vectors of material 
particles of the initial and final domains V  and V , respectively, are related with mapping  

 { } { }( ) ( , ) ( , ) ( , ) ( , ) r
x y r

eÏi
r r u r x u x y y u x y r u r u r

ej q
q

q q
Ï ¸ ¸

= + = + + = +Ì ˝ Ì ˝
Ó ˛Ó ˛

 (18) 

of type (5),in which r  identifies a material particle and ( )u r is its displacement. As vector 
quantities, these can be expressed in any convenient coordinate system as indicated by the 
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second form for the Cartesian system and the third form for the polar system. The remaining is 
just an exercise of the themes discussed.  
 

As a dyad, Cauchy stress is invariant and can be expressed in any coordinate system. When 
substituted there, the gradient and Cauchy stress in system give representation  

 { }[ ] { }1 /
( )

/
e

e e G e e e
aa ab a

a b a b
bba bb

s sa
s

b s s
- È ˘Ï ¸∂ ∂Ï ¸ Ô Ô—◊ = ◊ Í ˙Ì ˝ Ì∂ ∂ Ô ÔÓ ˛ Í ˙Ó ˛

˝
Î ˚

  (19) 

for the first term on the left hand side of (17). Assuming e.g. that the components of the body 
force are given in the Cartesian system, the second terms becomes 

 { } { } 1[ ]x y x y
ei

f f f f f F ej
a

b

- Ï ¸Ï ¸ Ô Ô= =Ì ˝ Ì ˝
Ô ÔÓ ˛ Ó ˛

  (20) 

When substituted in (17), expressions (19) and (20) give the component forms. Usually the 
basic unknowns are the displacement components so that mapping (18) is not known ‘a priori’, 
but it rather follows as the part of the solution. Then, naturally an additional (constitutive) 
equation relating somehow the stress dyad and displacement vector is needed. 
 

The relationship between the base vectors of the material coordinate system , the polar 
coordinate system  and the reference coordinate system

,e ea b
,re eq ,i j  is given by   

 
1 1 cos sin

sin cos1 1

r

u v v u v v
e e ir r r r r r
e eu u u u u u r r jvr vr

r r

a

b q

q q
q q

q q q q

∂ ∂ ∂ ∂È ˘ È ˘+ + + +Í ˙ Í ˙Ï ¸ Ï ¸Ï ¸ È ˘Ô Ô ∂ ∂ ∂ ∂= =Í ˙ Í ˙Ì ˝ Ì ˝ Ì ˝Í ˙∂ ∂ ∂ ∂ -Ô Ô Î ˚Í ˙ Í ˙Ó ˛ Ó ˛Ó ˛ - + + - + +Í ˙ Í ˙∂ ∂ ∂ ∂Î ˚ Î ˚

  (21) 

Above we have used the shorthand notations ru  and q . The last form, written in terms 
the base vectors of the reference coordinate system, is needed as the base vectors of the 
reference system were assumed to be constants e.g. in derivation of  

u= v u=

(13) and those for the polar 
system do not satisfy this. Matrix[ ]F , appearing in the basic formulas, is obvious from (21) and 

 [ ] [ ][ ]T 2

1 11 0

0 1/1 1

u v v u u vr
r r r rG F F

u u v v v urvr
r r r

q

q q

∂ ∂ ∂ ∂È ˘ È+ + + -Í ˙ ÍÈ ˘∂ ∂ ∂ ∂= = Í ˙ ÍÍ ˙∂ ∂ ∂Í ˙Í ˙ ÍÎ ˚- + + + + +Í ˙ Í∂ ∂ ∂Î ˚ Î
v

r q

˘
˙
˙

∂ ˙
˙∂ ˚

.  (22) 

With these expressions, the component forms of the equations (19) become rather lengthy 
although the derivation is straightforward. The setting simplifies considerably under the small 
displacement assumption as then only the middle terms of the right hand side of (22) is retained. 
 

Concluding remarks 
We have presented a matrix manipulation formulation for vectors and dyads. To apply it, the 
skills demanded from the student are modest: basic matrix algebra and few rules concerning 
open products in dyads. As the number of new concepts beyond those of ordinary is not large, 
the formulation may be useful alternative in some courses in mechanical engineering education. 
 

The presentation was restricted to two dimensions, but the formulas in the three-dimensional 
case are obtained by increasing the sizes of the relevant matrices just by one. In the discussed 
form, the presentation does not go beyond second order tensors (this is, however, often enough 
in mechanics). If index notation and summation convention are introduced, the matrix 
formulation above can be transformed to a much more compact form. However, this demands a 
new step of assimilation from the student and if this is worth the effort depends again on the 
depth of applications in a course. 
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Summary It is suggested that the connections between Lagrange’s equations and system equations in 
displacement based finite element method should be emphasized in teaching of mechanics. The only 
actual difference between them lies in the way the generalized forces due to inertia are traditionally 
calculated. A simple example shows two ways to evaluate generalized forces due to inertia. 
 
Introduction 
It is a common experience that students cannot often form a comprehensive view of a subject 
especially if the knowledge comes from different courses given by different lecturers using 
maybe varying terminology and notation. In mechanics, computational procedures, for example, 
have introduced apparently new concepts into teaching and the students may have difficulties to 
see any connections with the older analytical methods. Every effort should be made to 
emphasize the unifying concepts in different courses to help the students to assimilate a solid 
ground based on the actually few basic principles of mechanics. One of these is the principle of 
virtual work and the present article deals with two apparently different applications of it 
howing their close connection. s 

The importance of the principle of virtual work in applications and in teaching of mechanics 
cannot be overestimated. Lagrange’s equations of motion and system equations in displacement 
based finite element method are powerful examples of procedures obtained directly from the 
principle of virtual work. Students of engineering meet Lagrange’s equations and finite 
elements probably in separate courses and probably in the above order. 
 
Equations of motion 
Let us recall shortly how classical Lagrange’s equations of motion are derived using a particle 
system as an example case. Let the equation of motion for a particle be written as 

 .i i i im+ − =F f a 0  (1) 

Here, i  is the resultant of the external forces acting on the particle, if  is the resultant of the 
internal forces acting on the particle, i  is the mass of the particle and i  the acceleration of 
the particle. Multiplying (dot product) both sides of (1) by a virtual displacement 

F
m a

iδr and 
summing the equations over the particles of the system produces the virtual work equation 

 ext int inert 0i i i i i i i
i i i

W W W W mδ δ δ δ δ δ δ≡ + + ≡ + − =∑ ∑ ∑F r f r a ri i i  (2) 

The meaning of the additional notation introduced should be obvious. The position vector of 
particle i depends on the generalized coordinates  and possibly also explicitly on 
time t: 

1 2, , , nq q q"

  129



 ( )1 2, , , , .i i nq q q t=r r "  (3) 

The virtual displacement is obtained as 

 .i
i

jj
q

q
δ jδ

∂
=

∂∑ rr  (4) 

When this is substituted in (2) and it is demanded that the equation is valid for any selection of 
the variations of the generalized coordinates, there follows the equations of motion 

  (5) ext int inert 0, 1,2, ,j j j jQ Q Q Q j n≡ + + = = "

where the generalized forces are evaluated by 

 ext ,i
j i

ji
Q

q
∂

=
∂∑ rF i  (6) 

 int ,i
j i

ji
Q

q
∂

=
∂∑ rf i  (7) 

 inert .i
j i i

ji
Q m

q
∂

= −
∂∑ ra i  (8) 

Students of engineering meet these equations usually for the first time in courses of classical 
mechanics. However, in this connection the generalized forces due to inertia are first 
additionally transformed by a rather involved mathematical manipulation into the forms 

 inert d
dj

j j

T TQ
t q q

⎛ ⎞∂ ∂
= − −⎜⎜ ∂ ∂⎝ ⎠� ⎟⎟  (9) 

where T is the kinetic energy of the system. Thus, finally, the equations of motion become 

 ext intd , 1,2, ,
d j j

j j

T T Q Q j
t q q
∂ ∂

− = + =
∂ ∂

"
�

.n  (10) 

These are the famous Lagrange’s equations of motion. In conservative cases the generalized 
forces from external and internal forces can further be represented by derivatives of certain 
otentials. p

 
We might call expression (9) as the indirect way and expression (8) as the direct way to evaluate 
the generalized forces due to inertia. Of course, they both give identical results but the efforts 
demanded to perform the calculations may differ considerably. It seems that in textbooks on 
lassical mechanics the direct way is given hardly any notice. c 

Later, engineering students usually attend courses on the finite element method in the 
displacement formulation especially in connection with structural mechanics or strengths of 
materials. The terminology there is traditionally such that the students cannot easily detect any 
connections with Lagrange’s equations. However, the system equations in the finite element 
method are exactly according to (5), and the transformation into (9) is not usually performed. 
Now, it is important for the teacher to emphasize to the students that the nodal displacements 
(changing the continuum to a finite degree of freedom system) are in fact special kind of 
generalized coordinates. Then a curious student can start to see some connections but he/she 
may still wonder why the left-hand side of (10) never appears. The obvious reason is that in the 
finite element method it is quite straightforward to use the direct way to evaluate the generalized 
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forces (there often called nodal forces) due to inertia. This is because normally the 
displacements (and thus positions) are linear in the nodal displacements and therefore the 
accelerations are also linear in the nodal accelerations. This makes the expressions in the direct 
formulation simple. 
 
An example 
We demonstrate the two alternative ways to evaluate generalized forces due to inertia with an 
extremely simple example of classical mechanics: a pinned frictionless slender homogeneous 
rod in plane motion under gravity (Fig. 1). 
 

                                                               
 
 
Figure 1: A rod with mass m and length l in plane rotational motion about point O. 
 
Let the inclination angle q (Fig. 1) be the generalized coordinate and let coordinate s along the 
rod fix generic point on the rod. The position vector is given by 
 sin coss q s q= −r i j  (11) 

where i and j are unit vectors along the axes and differentiation gives the velocity 
 cos sins qq s qq= +v i� j�  (12) 

and acceleration 
 ( ) ( )2 2sin cos cos sin .s q q s qq s q q s qq= − + + +a i�� ��� � j  (13) 

The derivative 

 d cos sin .
d

s q s q
q q
∂

= = +
∂

r r i j  (14) 

The system here is the rod. The generalized force from internal forces is zero. We evaluate the 
generalized force from external forces (gravity) for simplicity without integrations by reducing 
the gravity forces to the center of mass to the resultant force 
 .mg= −F j  (15) 
Thus, according to (6), 

 ext
/ 2 cos sin sin .

2 2 2s l
l l mglQ mg q q

q =
∂ ⎛ ⎞= = − + = −⎜ ⎟∂ ⎝ ⎠
rF j i ji i q  (16) 
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The indirect way to evaluate the generalized force due to inertia is here very convenient. The 
kinetic energy of the rod is 

 
2

2
0

1
2 6

mlT I q q= =� 2�  (17) 

and thus from (9): 

 
2 2

inert d d d .
d d d 3j

j j j

T T T ml mlQ q
t q q t q t

⎛ ⎞∂ ∂ ∂
= − − = − = − = −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

�� � 3
q��  (18) 

In the direct way, we obtain using (8) first 

 inert djQ m
q
∂

= −
∂∫

rai  

 ( ) ( ) ( )2 2
0

sin cos cos sin cos sin d .
lm s q q s q q s q q s q q s q s q s

l
⎡ ⎤= − − + + + +⎣ ⎦∫ i j ii�� ��� � j  (19) 

The integrand becomes 

 ( )( ) ( )( )2 2sin cos cos cos sin sins qq s qq s q s qq s q q s q− + + +�� ��� �  

 2 2 2 2 2cos sin .s qq s qq s q= + =�� �� ��  (20) 
Thus, finally again, 

 
3 2

inert 2 2
0 0

d d
3 3

l l
j

m m m lQ s q s q s s q
l l l

= − = − = − = −∫ ∫�� �� �� ��.ml q  (21) 

The equation of motion becomes 

 
2

ext inert sin 0
2 3j

mgl mlQ Q q q+ = − − =��  (22) 

or after simplification 

 3 sin 0.
2
gq q
l

+ =��  (23) 

In the classical textbook applications of Lagrange’s equations the systems usually consist of 
some rigid body and pointmass assemblages. As for these bodies well-known formulas give 
ready expressions (obtained also originally by integrations) for the kinetic energy, it is easy to 
see that the indirect way to evaluate generalized forces due to inertia is to be preferred. In the 
inite element method the situation is different. f 

Conclusions 
Our suggestions based on the above considerations are the following. When Lagrange’s 
equations are lectured on, the teacher should inform the students that later, when they meet the 
finite element method, the system equations there are in fact “almost” Lagrange’s equations, the 
only difference being the way the generalized forces due to inertia are evaluated. Further, the 
teacher might present an example like the one above to show in detail the steps needed in 
obtaining the generalized forces by the two ways. Similarly, when the finite element method is 
lectured on, the teacher should remind the students about the connections to Lagrange’s 
equations. If a student can see and remember such connections, it leads to a unification of 
concepts and represents clearly a kind of economy of thought. 
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Summary Useful examples in mechanics are given. The merry-go-round walk, as an illustration of
kinematics is refered to. An example of Coriolis effect, is revisited and illustrated. Properties of the
intertia tensor is highlighted, eg. principal axis, free motion, angle 120-symmetry. 

Introduction 
It is convenient to introduce properties with their formal three-dimensional definition. Then
it is possible to use the tools, already known, from mathematics, eg. trippel vector product
and matrix algebra.

Statics
Define: Sum of forces, F. Sum of Moment of forces in a point 0, M0.
Characterize the force-system by the two properties F, M0. 
Derive the formula for ’byte av momentpunkt’, (change of point for Moment).
Then, it is easy to cathegorize the force-system as either: Nollsystem, Momentsystem,
Resultantsystem or Kraftskruv.

Dynamics 
In the kinematical formula of acceleration, the different contributions could be exemplified
from the ’merry-go-round walk’ as in [1].

An interesting observable occurence of the Coriolis effect compared with centripetal
acceleration is to be found in river banks, [2][3]. This is illustrated and concluded] [3], cf.
Figure 1.

The three dimensional definition of inertia tensor is very useful. With the methods of
mathematics, properties of principal axis, symmetries etc, is easily given [1]. As an
illustration of free motion around principal axis, a box is thrown in rotation, which is stable
or unstable.

From invariance, it could be shown that a 3-’propeller’, have two equal principal values,
and thus have the same inertia properties as an in-plane circular disc [1]. 

Conclusion 
Some concepts of inertia in classical mechanics were exemplified. Use of modern matrix
algebra in conjunction with inertia for rigid bodies, is a challenging combination of abstract
formalism and actual moving constructions.
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Inertia effects in river flows. 
 
Consider an amount of water in 
motion at a river on earth. 
The water fulfils the equation of 
motion 
ma=F 
a=asys+arel

, www.algonet.se/~lsdata 

 

The system's acceleration asys is 
composed by coriolis-acceleration  
and centripetal-acceleration. 

 
The coriolis-acceleration reads 
2Ωxvrel , where Ω is the angular 
velocity of earth Ω=Ωez, and vrel is 
the velocity of the water  
relative to the earth.  
 
For river heading west-to-east,  
the direction of this part regarded 
as an inertia force is 
-2mΩvrel ezx(-ey)= 2mΩvrel (-ex). 

As seen in the figure, on the 
Northern hemisphere (-ex) has a 
component directed towards the 
equator, south.  

 
 
In rivers, this could be notified as 
erodation of the river bank. The 
effect is largest for straight rivers, 
where the velocity is directed west-
east for a while, (cf. Arnold). 

 
For rivers with sharp bends, the 
centrifugal force is the dominating.  
This reads ωx(ωxr), where ω=vrel/r, 
and r is the bending radius. 
 
Hereby, the outer river bank in 
every bend is affected/erodated, 
independent of location at earth. 
 

 
 
 
Part of Volga, where the Coriolis-
effect is manifested. 
 
The coriolis-effect also cause water 
eddies to have opposite directions 
south and north of the equator 
respectively. 
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Summary It is often necessary to combine different core materials in a sandwich structure. In this case a
tri-material wedge is found were the two core materials meet the face sheets. This configuration is known
to lead to singular stress state. The evaluation of stresses in this vicinity is not trivial using commercially
available analysis software. Here an approach is developed based on the eigenfunction expansion solution
used in conjunction with the finite element solution for the whole structure.

Introduction
Sandwich structures consist of two stiff and strong face sheets separated by a thick and compliant
core material. This combination results in a structures which is both light weight and has high
bending stiffness and strength in addition to high buckling resistance. Sandwich structures often
form the basis for extremely light weight application. However, it is often necessary to insert
stiff core insert into a sandwich structure, because the main core material is neither strong or stiff
enough to support concentrated loads, see Fig. 1(a).
Now a new situation emerges, because at the intersection between the main core and the core
insert there is a so-called tri-material wedge. This configuration may lead to singular stresses
within the framework of linear elasticity, and this state of stress may seriously affect the strength
of the structure – particularity the fatigue strength, see e.g. Bozhevolnaya and Thomsen [1, 2]. It
is therefore important to evaluated the strength and magnitude of the singularity.

Assumed solution
The problem is posed a linear elastic solution in two dimensions by assuming plane strain. This
may be expressed using Airy’s stress function. The solution to Airy stress function is assumed to
be (Eq. (1)) expressed in terms of the complex potentials for each of the material domains z ∈ Ωk

(k = {1, 2, 3}) as:

ϕk(z) = a1kz
λ + a2kz

λ (1)

ψk(z) = b1kz
λ + b2kz

λ

where z is the coordinate represented as a complex number z = x+i ·y, λ is an unknown constant
that has to be determined, along with the coefficients aik and bik, and (. . .) denotes the complex
conjugated, see e.g. Theocaris [3] or Pageau et al. [4].
This solution may also be determined by using either a separation of variables principle or using
the Mellin transform of Airy’s stress function, but it leads to the exact same solution.
In the present case a the geometrical configuration is given in Fig. 1, although it is generally
possible to vary all angles.

Eigenvalue problem
The next step in the solution procedure is to ensure that tractions (stress) and displacements are
continues across the radial material interfaces. This leads to a set of eight nonlinear homogeneous
equations. These may be written in matrix form as:

C(λ) · x = 0 (2)
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Figure 1: A sandwich structure subjected to a concentrated load fitted with a core insert (a), where a tri-
material corner is found at the interface between the core insert and the main core (b).
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Figure 2: The eigenvalue (λ) as a function of the angle θ1.

whereC(λ) is the coefficient matrix, x is a vector of constants (a1k, a2k, b1k and b2k). This system
of equations give a non-trivial solution when the determinant of C(λ) vanishes. An analytical
solution to this equation is not known, but a number of numerically determined roots are shown
in Fig. 2 for the materials system given in Table 1. The material properties given in the table are
quite common for sandwich structures with in this case represent a sandwich of Divinycell PVC
foam core materials [5] and Aluminium face sheets.
The knowledge of the eigenvalues will all ready give some information about the structure of the
solution. The stress field is given as:

σij ∝ rλr−1 cos(ω ln(r))fk(θ) (3)

Material Young’s modules Poisson’s ratio
Ω1 (Divinycell H60) 60 MPa 0.32
Ω2 (Divinycell H200) 310 MPa 0.32
Ω3 (Aluminium) 70 GPa 1/3

Table 1: The material data used for the determination of the eigenvalue λ.
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Figure 3: Finite element model of three point bending of a sandwich beam.

where λr and ω are the real (<(λ)) and imaginary (=(λ)) parts of the eigenvalue, respectively. It
is readily seen that if λr < 1 then the expression will lead to singular stresses. Furthermore, it
is seen that if the imaginary part of the eigenvalue ω 6= 0 then the stresses exhibit an oscillating
behaviour, with increasing frequency as r → 0. In fact ln(r) tends to infinity as r → 0, thus the
oscillations increase towards the apex of the wedge.
The eigenvalues in Fig. 2 are not unique for any given configuration. It is possible to determine
infinitely many eigenvalues and corresponding eigenfunctions (Eq. 3). The sandwich configura-
tion is, however, not suitable for an series expansion based on the eigenfunctions due to thin face
sheets. Instead the analytical solution will be used in conjunction with a finite element model.

Finite element model
A finite element model has been developed for general stress analysis of the sandwich specimen,
see Fig. 3. It is difficult to determine the stresses near the singularity with standard displacement
based elements, however. It is also difficult to get an idea about the convergence properties of any
given solution.
Instead it will be assumed that the stress field near the tri-material wedge can be described in
the form Eq. (1), where the λ has been determined from Eq. (2). The stress field defined by
Eq. (1) will be fitted to the stress field from the finite element solution using the coefficients aik

and bik, such that it is possible to extrapolate the solution arbitrarily close to the apex of the
wedge. Furthermore, it is possible to quantify the convergence of the finite element solution by
the correlation with the analytical solution inspired by the approach of Zienkiewicz and Zhu [6, 7].
As a simple test the stresses σxx along the radial line θ = 0 will be fitted to the analytical solution
given as:

σxx = c0 + c1r
λr−1 (4)

where c0 and c1 are to be determined, and λr = 0.8194305330 for the materials given in Table 1.
The imaginary part of the eigenvalue has been neglected (ω = 0.18 · 10−9) due to its small
magnitude. In Fig. 4 the stresses are plotted in a radial line from the wedge based on the raw finite
element data and the fitted function. The function was fitted using the nonlinear least-squares
(NLLS) Marquardt-Levenberg algorithm implemented in Gnuplot [8]. As it may be observed
in Fig. 4 the fit between the finite element solution and the eigenfunction is very good for r >
0.5mm, and this corresponds nicely to the element size in this area, where the edge length of
elements is approximately le = 0.6mm.
The fitted function may be extended to cover all three domains Ωk = {Ω1,Ω2,Ω3} if the eigen-
values of Eq. 2 were known, although this has not yet been implemented. In this manner it will
be possible to fit the first few terms of the eigenfunction expansion based on Eq. (1) to the finite
element solution, such that the stress state near the apex of the tri-material wedge, and in addition
obtain an estimate of the accuracy of the finite element solution in this area.
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Concluding remarks
The singular stress state in a tri-material corner is evaluated by fitting the eigenfunction expansion
to a finite element solution. In this manner it is possible to extrapolate the stresses from the finite
element solution closer to the singularity. It is also possible to set up a measure of the convergence
of the finite element solution based on the eigenfunction solution.
This approach will be developed further in the future such that the eigenvectors will be included
in the eigenfunction expansion.
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Summary A system identification procedure for the estimation of material parameters associated with a 
block of polymer is presented. The polymer is modelled as a linear viscoelastic material, whose 
constitutive law can be expressed by an exponential hereditary relaxation kernel. The identification is 
based on a nonlinear least squares fit of the model solution to the measured compression data. As a result, 
the relevant stiffness and viscosity parameters of the material are obtained. The uniqueness of the solution 
in terms of the number of modelling parameters is discussed. 
 
Introduction 
Polymers are widely used engineering materials due to their unique properties such as high 
durability and good mechanical behaviour. While in many materials (metals or glass, for 
example) deviations from perfect elasticity are small, in polymeric systems, by contrast, the 
mechanical behaviour is dominated by viscoelastic phenomena which may be truly spectacular. 
In the deformation of hard solids, atoms are displaced from their equilibrium positions only 
locally. In polymers, on the other hand, the flexible threadlike molecules are rearranged on a 
local as well as long-range scale, giving rise to rapid as well as slow responses, respectively. 
This leads to viscoelastic behaviour and to a wide range of time scales under external stress [1]. 
When polymers are used in dynamic systems as components, it is necessary to know the 
structural parameters, such as stiffnesses and relaxation times, related to the polymers. These 
parameters can be estimated by an identification technique that utilizes the response of the 
system to a properly selected external excitation. In this work, the external excitation was 
provided by a simple compression test. The convolution integral type stress-strain history, 
expressed in a closed form in terms of the system parameters, was fitted to the corresponding 
measured values using the nonlinear least squares fit algorithm. As a result, values for the 
material stiffnesses and time constants were obtained. 
 
Mechanical Model of Viscoelastic Behaviour 
The material models of viscoelasticity usually utilize a hereditary approach where stress is a 
function of the current strain as well as the past history of the strain in the material. For small 
displacements, a linear model may be assumed. The most popular constitutive models based on 
mechanical models consisting of springs and dashpots are the well-known Voigt, Maxwell, 
Kelvin, and Wiechart models [1], [2]. According to the generalized Maxwell model (see Fig. 1),  
the viscoelastic constitutive law under uniaxial loading is [3], [4] 
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where σ  and ε  are the stress and strain in the material element, respectively, E∞  and iE  are 
the elastic moduli, iτ  the relaxation times and (0)iε  the initial values of the internal strains of 
the single Maxwell elements ( 1,..., )i n= , 1 nE E E E∞= + + +"  and t  is time.  
 
 
 
 
 
 
 
 
Figure 1: Generalized Maxwell model describing a material element. 
 
The relaxation time iτ  can be expressed in terms of the elastic modulus iE  and dashpot 
viscosity iη  as  

, 1, ,i
i

i
i n

E
ητ = = …  

 
If the compression of the material element is started from an equilibrium position, the initial 
values (0)iε  vanish. In the uniaxial compression test the measurements were done at times 
 

( 1) , 1, ,jt j t j m= − ∆ = …  
 
The corresponding values of stress and strain are denoted by ˆ jσ  and ˆ jε . By defining the 
integral  
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the calculated stresses ( )j jtσ σ=  can be expressed as 
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By using the trapezoidal integration rule it is easy to see that the integrals i jI  can be calculated 
recursively as  
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Eqs. 5 and 6 establish the relation between the values of stress and strain in terms of the 
viscoelastic parameters E , iE  and iτ ( 1, , )i n= … .  
 
Parameter Estimation 
The parameters of a system can be identified by the response of the system to external stimuli. 
The nature of the model and availability of suitable material tests act as a guide for a proper 
identification method. The method should be robust enough to give accurate estimates for the 
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desired system parameters even in the presence of external perturbations and measurement 
errors. In this work, nonlinear curve fitting in the sense of least squares was utilized. The least 
squares algorithm is known to be relatively robust due to its low-pass filtering properties. It 
consists of finding the system parameters so that the squared 2-norm of the residual is 
minimized, that is  

2

1

ˆ ˆmin ( )
m

j j
j

σ σ
=

 − ∑x
ε  

 
where 1 1( , , ,..., , )T

n nE E Eτ τ∞=x  is the vector of system parameters, ˆ jσ  and { }ˆ ˆ jε=ε  are the 
measured values of stress and strain, respectively, and ˆ( )jσ ε  the stress calculated from Eqs. 5 
and 6 for the measured strains ˆ  ( 1,..., )k k jε = . The Matlab-routine lsqcurvefit with large-scale 
optimization and lower and upper bounds was used. This algorithm is a subspace trust region 
method and is based on the interior-reflective Newton method and preconditioned conjugate 
gradients. 
 
An example of the measured stress and strain during the interval 0 - 1 s is shown in Fig. 2a and 
the stress-strain relation in Fig. 2b. The target value of strain was set to 0.95 %. During the first 
0.02 s the compressive stress was increased from zero in such a way that the target value of 
strain was approximately achieved. After that the force control system regulated the 
compressive stress so that the target value was sustained. As can be seen from Fig. 2a, the strain 
remains quite close to the target value. There are, however, small fluctuations around this value 
due to external disturbances and, possibly, due to small oscillations in the feedback control 
system. There are also fluctuations in the stress, although not as much as in the strain. 
 
 
 
 
 

 
 
 
 
 
Figure 2: (a) Measured stress and strain as a function of time, and (b) measured stress-strain relation of 
the compression test. 
 
The model was fitted to the data of Fig. 2b as explained above for one, two and three spring-
dashpot pairs in the generalized Maxwell model. The results are shown in Table 1.  
 

Table 1. Results of the parameter estimation. 
  
 
 
 1 2.438 0.726   0.166   0.7286 
 2 2.362 1.198 0.518  0.015 0.374  0.0459 
 3 1.906 1.262 0.337 0.733 0.011 0.137 2.299 0.0325 
 

(7)

     n               E∞            1E             2E            3E                   1τ             2τ              3τ                r  
(GPa) (s) 
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In addition to the system parameters, the normalized residual of the fit at the solution is shown. 
This value acts as a good indicator of the goodness of the fit. The measured and calculated stress 
histories are shown in Fig. 3a. It can be seen that the fit is good with an average error of 0.2 
MPa (0.7 %) per measured value. 
 
 
 
 
 

 
 
 
 
 
 
Figure 3: (a) Measured and calculated stress histories, and (b) residual of the fit and the indeterminacy of 
the solution as a function of system parameters. 
 
To study the uniqueness of the solution, the least squares minimization search was launched 
from several initial points of the parameter space. The spread of the resulting solutions was 
considered by the quantity 
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which is a measure of the indeterminacy of the solution. Here max min( ) ( )E E E∞ ∞ ∞∆ = −  is the 
spread and ,aveE∞  the average of E∞  corresponding to the different initial points, and similarly 
for the other parameters. The residual r  of the fit and the indeterminacy e  as a function of 
system parameters is shown in Fig. 3b. It can be seen that the optimal value of system 
parameters is five ( 2n = ). Above that the fit does not improve but the uniqueness of the 
resulting system parameters is lost. 
 
Concluding remarks 
A system identification procedure for the evaluation of the material parameters of a viscoelastic 
block of polymer was presented. The numerical evidence of the present work suggests that the 
uniqueness of the solution is lost when the number of parameters becomes redundant, that is, 
the residual of the fit does not decrease with an increasing number of system parameters. 
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Summary Topics of fibre reinforced concrete are covered. A non-local plasticity model is used to
simulate the failure modes of blocks subjected to vertical displacement. FE-model results display
cracking in bands over the specimen, as also visible in experiments. To model the adhesion properties
when used in lining, the corresponding gradient plasticity equations, in conjunction with the thin-film
formulation are discussed. The maximum plastic strain is located at a distance from the interconnect,
depending on length scales. 

Introduction 
Fibre reinforced concrete is used in a variety of applications, cf. SFC (1985). Nowadays, the
main application is known to be lining. The concrete and metal fibres makes a material suitable
for covers of rock due to combined desired adhesion properties and ductility.

In general the cracking of a composite may consist of many features cf. Jonsson (2000). Recent
modelling have been non-local damage plasticity, Geers et al (1999). Here, we shall focus on
macroscopic formation of a shear band, and layer effects, which may be modeled by non-local
plasticity.

Recent experiments for various random fibre reinforced concrete mixtures has been performed
inlab, Ay (2000). The specimens were blocks of different sizes, and loading was applied as
displacement on top. The failure modes were found to be shear band(s), at an angle, which is the
typical behaviour of a von Mises material. 

Model for blocks
The model is taken from Strömberg and Ristinmaa (1996), and the results display the formation
of shear band and global softening. A weaker element is randomly initiated and at softening,
‘cracking’ is present at two slip lines. 

Thin film 
The nonlocal model could be expanded to a gradient model, cf [7]. The gradient formulation
will be used to model adhesion of fibre reinforced concrete when used in lining, and as cover.
The geometry and loading is of a thin film of thickness t, subjected to biaxial inplane strain, cf.
Gudmundson (2004). In the present formulation, the consistency condition will be a second
order differential equation for plastic strain. 

Results
For negative plastic modulus (i.e local softening), the solution are the hyperbolic functions. 
To achieve size effects, stress is assumed to be a decreasing function, and minimum is located
outside the film. Physically, this corresponds to that largest plastic strain delocalizes from the
interconnect. The gradient part will contribute with hardening in the stress strain relation, and
acts as a stiffener. To calculate an average elastic plastic modulus, the stress is integrated over
the film, and divided by thickness. It is found that although the matrix is softening, the overall
behaviour may be hardening. The hardening is inversely proportional to film thickness, i.e. the
configuration display so called size effect ’the thinner, the harder’. 
For positive plastic modulus, the consistency condition is elliptic. 

  143

mailto:lena_str@hotmail.com


Attention to boundary effects
Preliminaries: The consistency condition in one dim is a Fredholm equation that reads 

-  = { } y hσ σ λ (1)

where σ denotes stress, yσ  constant yield stress, h are hardening/softening, λ=λ(x), x is the

coordinate of film thickness (0<x<t) and 2 2{ }  exp( - ) /  ( ) dx lλ ξ λ ξ ξ= ∫ , where the
integration ranges over plastic part of material body. To get gradient plasticity, a series
expansion of λ(ξ)  is integrated, to achieve spatial derivatives. 
The integration of the series expansion in [7] is not exact close to boundaries, since symmetry is
not provided. Therefore, a more exact expression to {λ} will be deduced. Instead of achieving a
constant value interpretated as a constant material length parameter, certain fields will appear.
Also, the anti-symmetry, cause the presence of a non-vanishing gradient term.  
Thus, the general expression close to plastic boundary may be written

{ } ( ) ( ) '( ) ( ) ''( ) ..x g x x l x xλ λ λ λ= + + +
where g and l are fields with the dimension of length and square lengths respectively.
Here, we will consider the case when the gradient-term is omitted, motivated by the expression
in the interior. (In constitutive modeling (Truesdell), a gradient term introduces direction in a
scalar expression if the gradient is not squared, and is therefore not included in first order
theories.)
The consistency condition then reads

 ( ) ( ) ( ) ''( )yB B h x hl x xε σ λ λ− = + +
where ε is the constant input biaxial strain (load parameter), B is biaxial film modulus, h is
hardening/softening.
With the assumption that λ(x) is a function of l(x), the equation admits a polynomial solution 

2( )   /( )      x B B h ax bx cλ ε= ∆ + + + + ,  a,b,c being arbitrary constants,  - yε ε ε∆ = .

The solution is arbitrary. It could be noticed that there are conditions on the parameters
depending on sign of h, for the plastic field and the length field l(x) to be positive functions. The
function may be normalized such that the constant part is the local, classical solution, i.e. c=0.

At first, the two requirement above will not be pursued, and we will consider a general
polynomial solution. To determine the parameters, it is assumed that there is a layer of stress
close to the boundary, and that stress decreases at distance. This phenomenon may appear since
the hard aggregates acts as stiffener, that are able to produce high stresses. Since the
interconnect repel the fibres/aggregates, cf Trouchu (2001), the layer will appear a distance
from the interconnect, however in the solution, it will be arbitrary close to the interconnect.

It is assumed that the polynomial solution holds at the region 0 bx x< < . From bx  to the
surface, bx x t< < , the solution will be constant. The stress field in the film will be
approximated to be a decreasing function in 0 bx x< <  (according to figure). Adaptation of the
polynomial to this case gives 

2( )  - ( ) /    x x B ax bλ ε σ= = +
With the boundary conditions λ(0)= 0 and ( )  , bxλ ε= ∆ the most simple solution is found. 

To achieve an average modulus, stress is integrated over thickness, and divided by t, from
whereas    (2 / 3) /   a b yB x tσ ε σ= ∆ +
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The size effect, the thinner the harder, is displayed, and, due to the assumptions, no dependency
of hardening parameter, h. Since stress varies, bending is present in the film. 
We note that the λ-distribution do not meet the above requirement of a ‘softening’ layer (h<0).
An approach for a ‘softening’ layer (h>0), would be the field

    2 2( ) - ( ) / (2 / / )b bx x B x x x xλ ε σ ε= = − , 
giving the average stress  (1/ 3) /  a b yB x tσ ε σ= ∆ +
Assuming other boundary conditions, the constant stress at the film surface may be positive. For
large negative values, the overall response may be softening, that is the average modulus is
negative. To achieve further dependence on parameter h, we assume the boundary condition

 ( )   /( ) bx B B hλ ε= ∆ +                                                              (2)
This correspond to local plasticity in bx x t< < . The average modulus aM  reads

2  (2 / 3) /( )( / )  /( )a bM B B h x t Bh B h= + + + (3)
for ;    ((2 / 3) - )( / ) a bh B M B h x t h<< = +

We note that the modulus
• decreases with increasing abs(h) if h negative
• increases with increasing h if h positive
• the first term is always positive
• there may be softening if abs(h) is large enough 
• a small bx  corresponds to localisation and promotes softening

Evolution of plastic layer zone, stability and uniqueness of solution 
Iteration formula for location of boundary
Consider that the location for layer boundary bx , may change. Physically, the freedom in
location, could be due to material structure, inhomogeneties or a (micro-) cracking process.
Prop: A new location of layer zone newx  is assumed, such that new /n bx x x= , where nx  is
given by fix point(s) to the iteration formula.  

1 ( )  (1- (2 / 3) )n n n nx f x A x x+ = = (4)

This was first studied by Fatou (1903), and applied to evolution theory, by May (1970).
When the formula converges r = f(r), and r is known as a fix point. Here, the formula is scaled
such that newx = bx  at the last stable fix point (when A=3).

At fix point 2 2 2 2 (3 / 2(1-1/ ))  /( ) / (3 / 2(1-1/ ))new bx x A B B h a Aε= = ∆ +  , modifies boundary
condition (2).

Remarks
If, at layer boundary, λ’ is assumed to depend of a canonical coordinate - 1n nAx x + , then
(4)  corresponds to a mixed Dirichlet-Neumann condition, [4];

1(4 / 3) / ( ) '( - )b n n nA x x Ax xλ λ += . 

Τhe format could also be seen as a non-local condition, where value in a point depend on values
at surrounding points, however these may coincide. 
There are also similarities with Newton’s law used at boundary condition for heat conduction. 

1'( ) (4 / 3) / ( ( ) -  ( ))n b n nx x x xλ λ λ += and  1 1 0 '( ) - (4 / 3) / ( ( ) -  )n b nx A x xλ λ λ+ += .             
Note the opposite sign of gradient dependence, giving that contributions to gradient is achieved
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at both boundaries. Summation of conditions and λ0=0, gives the above format, since λ’ is
linear. For other functions, the format may be given by a series expansion.

Location of boundary layer
Assume that A is an increasing function of ∆ε. Then, upon loading, the iteration formula
(4) display stability, instability and chaos, with qualitative and quantitative results from May
(1970) [9].  
Conditions for convergence, in terms of material parameters will be 1<A<3, and the
corresponding values new0 ( / ) 1bx x< < . 
For A=3.2, f alters between two values 0.51 and 0.76, which correspond to non-uniqueness of
layer location, at constant strain level new b,  A( )=3.2, and / =0.77 x xε ε∆ ∆ and 1.14.
In the formula of May(1970), convergence of the formula is considered for different A. The
inverse could however also be considered: As is seen above, the value 0.51 also corresponds to
a value of A less than 3, which means that in a situation where we control f, the parameter A
may achieve any of these values. 

Localization and softening
As an illustration, we shall apply the effects from the evolutiong zone concept on a specimen
subjected to increased loading (strain controlled). Assume that strain localises and the layer
appears. Fix point format is assumed active for A>3. As strain increases A(∆ε)>3 and the zone
width admits two solutions, one wider and one smaller. For the smaller, the average modulus
decreases, and softening may appear. 
Further, in turn, the smaller may correspond to a lower strain state, thus for this bifurcation
branch, we may have snap back. To achieve this at instability, the inverse behaviour at
bifurcation need to be considered.
When strain is further increased, the zone width admits 4 solutions, (one of which smaller than
at lower strain rate), to be chaotic when A(∆ε)>3.57 where it is possible to have new( / )=0bx x .

Rate sensitivity 
Assuming evoluting layer zone is governed by diffusion-like processes or dislocation
movement, it could be expected that there is a threshold for loading rate above which the effect
is not observable, since the micro structural velocities are lower. This corresponds to a ductile-
brittle transition.
For faster deformation rates, it is likely that the self evoluting effect is less, and therefore
average hardening behaviour is dominating. Note, however, that either localization or wider
zone are possible (or a pending between the two, in a 2ncyclic solution) at bifurcations.

Conclusion 
A nonlocal plasticity model for fibre reinforced concrete was proposed. Numerical simulations
of failure in shear, showed good agreement with experimental results.

The adhesion property is due to the fact that for low dense reinforced mixtures, the surface
repels the fibres, Trochu (2001). This is reflected by the solution to the layer problem within
gradient plasticity, and corresponds to that the surface repels dislocation as notified in Fleck and
Hutchinson (1997). The result presented here, give that the maximum plastic strain is located at
a distance from the bimaterial boundary, that is not at the interconnect of wall and concrete. The
nonuniform strain distribution will cause hardening of the coating.

With attention to behaviour near elastic-plastic boundaries, a new differential equation for
effective plastic strain were deduced. A polynomial solution were exploited. It was found that
an iterative format of boundary condition gives possibilities of an evoluting layer location. The
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resulting format display different properties of stability, multiple solutions and chaos. 
Since the strong non-local formulation with integral do not contain explicit boundary condition,
it is not equivalent with gradient plasticity (weakly non-local formulation). The non-similar
solutions above, show that comparisons with different approaches, are of great importance.
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Summary The aim of this study was to investigate a time-temperature superposition method for a 
polyester resin. The principles of thermorheologically simple materials and thermorheologically complex 
materials are presented, and the method of time-temperature superposition is applied.  
 
Introduction 
Possibilities to use polymer matrix composites are versatile. The composite materials can be 
used for example in railway wagons and road transport vehicles. In this kind of use the polymer 
matrix composites increase payloads of the transportation vehicles due to their high strength to 
weight ratio.  
 
Although the use of the polymer matrix composites gives some benefits, they also cause some 
problems. The polymer resins in composites do not act as time-independent material such as 
steel. It is possible that its mechanical behaviour changes considerably in process of time. 
Thereby, it is important to develop methods, which can foresee the long-term behaviour of the 
polymer matrix composites. The test methods used should also be time saving and easy, because 
a huge variety of polymer materials exists.  
 
Thermorheologically simple materials  
There is a special type of temperature dependence of material properties concerning most 
polymer materials. They are referred as thermorheologically simple materials (TSM) and their 
behaviour can be analytically described by time-temperature superposition (TTS). The creep 
function at arbitrary base temperature T = T0 is J( t ), where t is time. When temperature field 
changes uniformly, it is possible to designate a corresponding creep function Ĵ( t, T ), where T 
denotes absolute temperature. Then  
 ( ) ( ) ( )0

ˆ , lJ t T J t L t= = og , (1) 
where the independent variable is changed in J( t ). The next relationship is the basic postulate 
of TSM  
 ( ) ( )ˆ , logJ t T L t Tϕ= +⎡ ⎤⎣ ⎦ , (2) 
where the shift function φ( T ) obeys the relations as follows  

 ( )0 0Tϕ = , 
( ) 0

d T
dT
ϕ

. (3) 

The meaning of equation (2) can be physically explained such that the change of temperature 
shifts the creep function in the horizontal direction when plotted against log t. A change of 
variable in the shift function is introduced by setting 
 ( ) ( )logT aϕ = T . (4) 
The conditions of the first shift function in Eq. (3) now imply that 

 ( )0 1a T = , 
( ) 0

da T
dT

. (5) 
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Now, by using equations (1) and (4), equation (2) can be written as  
 ( ) ( ) ( )ˆ , logJ t T L ta T J ξ= =⎡ ⎤⎣ ⎦ , (6) 
where  
 ( )ta Tξ = . (7) 
It is referred as reduced time. Thus, the creep function Ĵ( t, T ) at any temperature can directly 
be obtained from the creep function J( t ) at base temperature T0 by replacing time t with the 
reduced time ξ.  It can be written in the integral presentation for the reduced time when 
temperature is allowed to change arbitrarily. 

 ( )( )
0

,
t

ia T x dξ τ τ= ∫ , (8) 

where xi are coordinates and τ is time. The shift function a( T ) is a basic property of the 
material and it has to be determined from material tests [1]. The equation (6) represents time-
temperature reduction without any vertical shifting. However, it has been observed that the 
vertical shift can be required to reduce the data [2]. 
 
Thermorheologically complex materials  
The phenomenon of thermorheological complexity can be applied to the materials, which do not 
form a smooth master creep curve by simple horizontal sifting. All elastic material parameters 
are independent of temperature and all time constants should have the same temperature 
dependence in the TSM, whereas material parameters of thermorheologically complex materials 
(TCM) are not restricted [3]. If material exhibits different degradation mechanisms, then it will 
not be thermorheologically simple [4]. 
 
TCM can be divided into two classes, namely TCM-1 and TCM-2. The first class includes 
materials, which are composed of two or more TSM. This class consists also the composite 
materials. The second class includes other materials [5]. For TCM-2 cases, equation (6) can be 
modified such that the vertical shifting is taken into account. 
 ( ) ( )ˆ , ( )J t T b T J ξ= , (9) 
where b( T ) is a temperature dependent vertical shift factor [4].  
 
In the effective time theory, the strain response is related to the stress σ  and the reference 
complianse curve J by the equation [6] 

 ( ) ( )
0

t dt J d
d
σε ξ ξ τ
τ

′= −∫ . (10) 

 
The shift factor functions 
The shift factors between the reference curve and other creep curves can now be calculated by 
equations (6) or (9), when the relation between the real and reduced time has been obtained 
experimentally from the creep tests. Another method is to use semi empirical expressions as the 
WLF equation [4] 

 
( )1 0

2 0

log T

C T T
a

C T T
− −

=
+ −

, (11) 

where C1 and C2 are material constants, which can be obtained by material tests. T0 is usually 
chosen to be the glass transition temperature Tg. WLF is normally used above Tg.  
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At temperatures below Tg the Arrhenius equation can be used [7]. 

 
0

1 1log c
T

b

AFa
k T T

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
, (12) 

where A is a constant, kb is Bolzmann constant and Fc is free energy, which is a constant below 
the glass transition temperature [2]. 
 
Mathematical models for the creep compliance 
The creep compliance can be illustrated by many different mathematical functions, from which 
the most commonly used functions are Kohlrausch function and generalized Voigt model which 
is also known as Prony series. The Kohlrausch function has the form 

 ( ) 0 exp tJ t J
β

τ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

, (13) 

where J0 is the initial creep compliance and β is a shape parameter. This is usually used to 
describe the short-term creep compliance. The Prony series is expressed as 

 ( )
1

0
1

1 exp
K

k
k

tJ t J S
τ

−

=

⎡ ⎤⎛ ⎞= + − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ , (14) 

where K is the number of significant decaying exponent terms and Sk are the Prony coefficients. 
The Prony series represents the long-term creep compliance in general. [8] 
 
Creep tests 
The testing material was a medium reactive ortophthalic or polyester resin. One panel was cast 
by using this material and specimens were cut from this panel. Dimensions of the specimens 
were: length 120mm, width 15mm and thickness 5mm. There were three constant testing 
temperatures: 40°C, 60°C and 75°C. In each temperature four specimens were tested. The stress 
was approximately 3.3MPa and the duration of creep test was 48 hours for one specimen. The 
creep compliance curves can be seen in Fig. 1 (Left). 

 
Fig 1. Left: The creep compliance curves from three different constant temperatures. Mid: The curves are 

shifted in horizontal direction. Right: The curves are shifted in horizontal and vertical directions.  
Dotted solid line in the mid and right figure is the reference curve. 

 
Reference curves and shift factors 
It can be seen that it is not possible to fit Kohlrausch function to the creep compliance curves 
(Fig. 1. Left) and, thus, only the Prony series is used. One creep compliance curve, which was 
tested at 40°C, was chosen to be the reference curve. The Prony series were fitted to this curve. 
After this, other curves were shifted in the horizontal direction at first by using the method of 
root mean square to obtain the best possible result. The vertical shift factor was forced to be 
bT = 1. The shifted curves can be seen in Fig.1 (mid) and the shift factors in Fig 2. (left). 
Thereafter, the vertical shift factor was allowed to vary freely. The horizontal and vertical shift 
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factors can be again obtained by using the RMS method and they are shown in Fig.2 (mid and 
right), the shifted curves are in Fig.1 (right). 

 
( ) 2

1

% 100
N

T T i i

i i

b f a x y
RMS

y=

−⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑ , (15) 

where N is the number of measured points in the creep curve,  f() is the reference curve, aT and 
bT are the shift factors and (xi, yi) are measured points in the creep curve.  

 
Fig 2. Left: The horizontal shift factors from the first case. Mid and Right:  The horizontal and vertical 

shift factors from the second case. The solid line represents the Arrhenius type shift factor function 
in the left and middle figure. In the right figure, the shift factor function is a straight line. 

 
Concluding remarks 
It can be seen in Fig. 1 (mid) that the horizontal shifting only is not adequate. The creep 
compliance curves do not smoothly overlap the reference curve. Thus, the vertical shifting is 
needed and the testing material is clearly thermorheologically complex.  
 
The Arrhenius type shift factor function does not fit to the horizontal shift factors well. The 
curves obtained at 75°C do not need shifting as much as the curves at 60°C. One reason for this 
could be that the physical aging, which increases the material stiffness, affects the creep 
compliance curves at the highest testing temperature.  
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Summary Safety factors for soil slopes are calculated using a non-linear Mohr envelope. The often used
linear Mohr-Coulomb envelope tends to overestimate the safety as the material parameters are usually
determined at much higher stress levels, than those present at slope failure. Experimental data indicates
that this leads to overestimation of the soil strength at low stress levels. The calculations are performed
with the finite element method, and the plastic integration is carried out in principal stress space which
simplifies the computations considerably.

Introduction

Traditionally slope stability calculations are carried out using limit state analysis. If this is to be
done analytically the soil must be considered as a Mohr-Coulomb material. The material parame-
ters of the Mohr-Coulomb model, friction angle,ϕ, and cohesion,c, are often determined by the
triaxial test. A substantial amount of experimental data indicates that the linear Mohr-Coulomb
envelope does not describe the strength of the soil to a satisfactory degree, see e.g. Baker [1].
This is especially pronounced at low values of the hydrostatic pressure, compared to the chamber
pressure of the triaxial test. In slope stability calculations the pressure in yield zones are smaller
than the pressure in the standard triaxial test at which the Mohr-Coulomb parameters were de-
termined. This can cause an overestimation of the safety of the slope. A solution to this problem
can be obtained by expressing the soil strength as a non-linear Mohr-envelope, see fig. 1. Several
such criteria have been proposed in the literature, e.g. Jiang et al. [2] and Yang and Yin [3]. These
references then calculates the safety factor by the upper bound method using an approximation of
the slip surface. In the present paper a full non-linear finite element analysis will be carried out.
This has the advantage that no approximation of the slip surface has to be made.

Nonlinear yield criterion

Baker [1] suggests the following version of a nonlinear Mohr envelope to capture the nonlinear
dependence of the failure shear stress on the normal stress on the slip plane:

τ = PaA

(
T − σ

Pa

)h

(1)

Here the parametersτ andσ are the shear and normal stress on the slip surface, respectively,
Pa is the atmospheric pressure,T is a nondimensional tensile strength parameter,A is a scaling
parameter andh controls the curvature of the envelope. It can be seen on figure 1 that the envelope
fits test results quite well.

Yield criterion in principal stresses

The non-linear Mohr envelope of Eq. (1) is expressed with respect to the stresses on a given slip
section of the failing soil. i.e. at a certain orientation. In order to apply a yield criterion in a general
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Figure 1: Mohr-Coulomb and non-linear envelope, Eq. (1), fitted to test results. The envelopes are fitted by
Baker [1] and the test results are by Perry [5].

framework an isotropic criterion should be formulated in invariants. An explicit translation of Eq.
(1) into principal stresses is not possible, but a similar expression is a modified version of the
Hoek-Brown criterion given in [4]:

f = σ1 − σ3 − σc

(
1 − mσ1

σc

)n

(2)

Hereσ1 andσ3 are the major and minor principal stress, respectively,σc is the uniaxial compres-
sive strength,m = σc/σa, whereσa is the apex stress, see figure 2, andn is a curvature parameter,
0 5 n 5 1. Forn = 1 the Mohr-Coulomb criterion is obtained.

-20-40-60-80

-20

-40

-60

-80

Mohr-Coulomb

Modified Hoek-Brown

σ1 [kPa]

σ3 [kPa](σa, σa)

(0,−σc)

Figure 2: Plane strain Mohr-Coulomb and modified Hoek-Brown yield criterion in principal stresses.

Stress update in principal stresses

In the finite element calculations the slope soil is treated as a perfectly plastic material, and an
associated flow rule is applied. The plastic stress integration is carried out using a return map-
ping scheme. The general return mapping scheme is outlined by Crisfield [6] for general yield
criteria. For this method to be applicable the yield criterion must be expressed in the general six-
dimensional stress space, or in the stress invariantsI1, I2, I3 or I1, J2, J3. To express the modified
Hoek-Brown yield criterion in this manner will be very complicated. But as the criterion is ex-
pressed in principal stresses the return mapping scheme can be carried out in a simple fashion
with respect to the principal axes. This is a further development of the method outlined in refer-
ences [7, 8].
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Safety factor of a slope

Usually in geotecnical engineering the safety factor expresses the ratio of the actual shear strength
to the shear strength needed to maintain equilibrium. For the Mohr-Coulomb criterion this can be
expressed as

rMC =
c − σ tan ϕ

cr − σ tan ϕr
(3)

wherec andϕ are the cohesion and the friction angle of the soil, respectively. The reduced param-
eterscr andϕr are the strength parameters needed to maintain equilibrium of the slope. One way
to estimate the safety factor is theϕ − c reduction scheme, see e.g. reference [9]. The parameters
c andtan ϕ are reduced proportionally, which corresponds to a fixed apex point and a reduced
friction angle.

After establishing equilibrium of self-weight and externally applied loadsc andtanϕ are grad-
ually reduced until equilibrium can no longer be satisfied. The last values before failure are then
used to calculate the factor of safety.

In the example the parametern is an independent parameter, and the rest of the parameters of the
Hoek-Brown criterion are fitted to the Mohr-Coulomb criterion such that the envelopes in principal
stress space as well as the tangents coincide at the point(σ1, σ3) = (0, σc). This gives

m =
k − 1

n
and σc = 2c

√
k (4)

wherek = 1+sin ϕ
1−sin ϕ is a friction parameter.

The Hoek-Brown parameters are reduced by reducing the Mohr-Coulomb envelope proportionally
as explained in the above. The curvature parametern is kept constant throughout the parameter
reduction.

Computational example

A slope is modelled with finite elements as shown on figure 3. The slope has a height of 10 m and
is 20 m wide. The domain has a height of 15 m and a width of 40 m. The domain is modelled
using six-noded triangular LST-elements. The left and right boundaries are constrained horizon-
tally and the lower boundary is fixed. Plane strain conditions apply. The soil has a selfweight of
γ = 20 kN/m3. The strength parameters forn = 1 areϕ = 32◦ andc = 6 kPa, which complies
with the values fitted from test results shown in figure 1. Four analyses have been carried out with

102010
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Figure 3: Geometry and finite element mesh.
Length unit is m.
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Figure 4: Hoek-Brown yield criteria with different
n-values in plane strain.
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different curvature parameters,n = 1, 0.9, 0.7, 0.5, respectively. The different yield criteria can
be seen in figure 4.

The result of the computation can be seen in table 1. As expected the safety level decreases with
decreasingn.

Table 1: Safety factors calculated by the finite element method.n = 1 is equivalent to a Mohr-Coulomb
material.

Material Safety factor
n = 1 1.81
n = 0.9 1.73
n = 0.7 1.47
n = 0.5 1.24

Conclusion

Slope safety factors has been calculated on the basis of a non-linear Mohr-envelope. The non-
linear envelope fits test results better than the classical Mohr-Coulomb criterion, especially at low
confinement pressures, which are the stress states predominantly present on the slip surfaces of
a slope collapse. The safety factors are calculated with the finite element method, using return
mapping in principal stress space for the plastic integration.
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Summary A numerical approach for shape optimisation was used to improve the structural performance 
of a sandwich component. The objective was to reduce a failure index in the vicinity of a core interface 
by modifying its shape. This was successfully achieved, and a reduction in the failure index of 37% was 
obtained by the use of shape optimisation.   

Introduction 

Structural sandwich elements have gained widespread acceptance within the aerospace, marine, 
automotive, building and sustainable energy industries as an excellent way to obtain extremely 
lightweight components and structures with very high bending stiffness, high strength and high 
buckling resistance. Other advantages include good acoustic damping, thermal insulations and 
corrosion resistance. 
 
However, for practical as well as structural reasons the use of sandwich structures frequently 
involves the use of different cores in the same sandwich element [1]. Various core inserts 
(stiffeners, backing plates, etc.), which substitute a part of the original core in sandwich panels, 
are also used often in sandwich structures.  
 
It is well known that the joining of different cores in sandwich beams and panels leads to local 
effects at the core junctions [1]. The local effects are caused by the mismatch of the elastic 
properties of the adjoining core materials, and they manifest themselves by a rise of the in-plane 
stresses in the sandwich faces as well as of the shear and through-the-thickness stresses in the 
adjacent cores. Depending on the properties of the materials chosen for such a sandwich 
configuration, the stress concentrations may cause local fracture of the core materials, but 
severe face damage is also a highly possible scenario. This may jeopardize the structural 
integrity of a sandwich structure and cause failure under quasi-static as well as fatigue loading 
conditions [2].  
 
Recently it has been shown [3], that stress concentrations associated with the local effects 
described above can be reduced significantly by modifying the shape of the core interfaces [3]. 
In addition, it has been shown that crack initiation depends on the shape of the core interfaces 
[4], and that the inclination angle of the interfaces influences the location of crack initiation [4].  
 
None of the previous works dealing with the design of core junction interfaces, including the 
references cited above, have attempted a rigorous systematic approach to shape optimisation of 
core junction interfaces using mathematical programming and design sensitivity analysis. Thus, 
the objective of this paper is to propose an improved core junction design for a particular 
sandwich configuration based on design sensitivity analysis and a systematic optimisation 
technique. 

  157

mailto:jja@ime.aau.dk


Shape Optimisation Method 

The design optimization problem is solved in an iterative loop based on finite element analysis, 
analytic design sensitivity analysis and mathematical programming. In this case the 
mathematical programming problem is solved using SLP (Sequential Linear Programming). 
Two approaches can be used to evaluate the structural response of a model. One is a local 
criterion approach, which in this case concerns the stresses in the structure. A global criterion is 
another method to evaluate the structural response. The compliance of a structure is one 
example of a global criterion. It is decided to formulate a local criterion as objective function for 
the optimisation problem as the cause of fracture is assumed to be an increased stress level at 
the core junction. 
 
The objective thus is to minimize stress concentrations in and around the junction by 
minimizing the maximum value of a failure index, Fprincipal, which is defined as the ratio of the 
first principal stress, σ1, to the allowable tensile stress in the material, ST, i.e. Fprincipal = σ1/ST. 
The shape design variables, xi, are the positions of a set of points describing the interface curve, 
and these are restrained to vary between the limits xxx i ≤≤ . Thus, the optimization problem 
may be stated as:  
 ( )principal i

i

Objective function: min max(F (x ))

Constraints: x x x≤ ≤
 (1)

 
The framework for solving the optimisation problem in Eq. 1, is the structural design 
optimisation system ODESSY (Optimum DESign SYstem), developed at the Institute of 
Mechanical Engineering, Aalborg University [5 and 6].  

Finite Element Model 

The problem considered is a three-material interface, which occurs in sandwich panels with 
multiple core materials or inserts, see details in [7]. A sandwich beam designed with two 
different core materials and aluminium face sheets is subjected to three-point bending, see 
Figure 1. The beam has a total length of 500mm and consists of two 1mm face sheets of 
aluminium 7075T-6 and a 25mm core made from DIAB Divinycell H60 and H200. The 
materials are assumed to be isotropic and exert linear elastic behaviour. The mechanical 
properties of the three materials are summated in Figure 1. 
   

Material  E 
[MPa] 

ν  ST 
[MPa] 

H60  60  0.32 1.4  
H200 310  0.32 4.8  
Aluminium  73000 0.33 503   

Figure 1 Sandwich beam model with butt junction-type interfaces. Two different core materials are used: 
DIAB Divinycell H60 and H200. Their properties are given in the table. E is the modulus of elasticity, ν 
Poisson’s ratio and ST tensile strength of the material. 

To investigate the stress distribution in and around the core junction interface, a plane stress 
finite element model is made. According to symmetry only half of the beam is examined. The 
finite element model consists of a total of 20519 6- and 9-node isoparametric 2D elements. 
The element size near the interfaces is 0.30mm. At the core interface the elements have an even 
smaller side length of 0.08mm (see Figure 2). This refined mesh accurately predicts the stress 
situation in close vicinity of the three-material interfaces.  
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The applied load (F) is 2200N and is uniformly distributed over a length of 2mm. To obtain the 
failure index at this load level for the initial configuration, i.e. vertical core junction interfaces, 
an initial analysis is performed. The failure index is defined as shown in Eq. 2.  
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⎠

⎞
⎜
⎜
⎝
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=

ALT

AL
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HT

H
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,
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200,

200,1

60,

60,1 ,,
σσσ
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Fig. 2 illustrates the failure index distribution Fprincipal for the beam in initial configuration. At 
the upper interface corner, considerable stress concentrations are observed in the core material. 
As singularities arise in the point where the three materials are joined, nodes at a representative 
distance from the singularity are chosen for reference. Convergence tests show that at the 
current mesh resolution, a distance of dc=0.2mm is sufficient to ensure convergence of the 
model. 

Figure 2: Left: Plot of the failure index Fprincipal in the beam. Right: indication of the interface lines c1, c2 
and c3 used for evaluating the failure index. The points c1A, c1B, c2A and c2B are indicated. 

The shape optimization problem is formulated with the objective of minimizing the level of 
Fprincipal in the foam materials. The parameterisation of the problem is shown in Fig. 3.  

 
Figure 3: Left: The design boundary is parameterised as a five point cubic B-spline with second order 
continuity. Vectors indicate the move directions for the four control points (A-D). The area meshed with 
6-node triangular elements is indicated with a rectangle. Right: The objective function is evaluated in 
both core materials along lines placed at characteristic distances dc away from the singular corner points 
of the butt junction. 

The four control points A-D are allowed to translate horizontally, each controlled by a design 
variable xi, as indicated in Fig. 3.  
The shape optimisation problem is formulated as a min-max problem using a bound formulation 
and the objective of minimizing the local failure index for the two core materials evaluated at 
the interface lines c1, c2, c3, c4 and c5 indicated in Fig. 5. In order to save computational time 
only those failure indices which have a value above 80% of the highest failure index are taken 
into account (a failure index is a number between zero and one, where one indicates that failure 
will occur).  

Results 

The optimised result can be seen in Fig. 4. The largest failure level has been relocated to the 
central part of the junction interface, and the failure index level has been reduced from 0.76 to 
0.48, a reduction of 37%.   
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Figure 4 Left: Failure index distribution for the optimised core interface. Right: Failure index level for the 
original and optimised interface along the top interface. As expected a reduction of the failure index is 
obtained. 

Comparing the results in Fig. 2 and 4 it can be observed that the heightened failure level, which 
previously occurred near the top three-material interface, has been significantly reduced. 

Discussion and Conclusion 

It has been shown, that it is possible to obtain a significant improvement in the performance of a 
sandwich structure, even with singular stress states present in the initial design. 
The largest failure index of the original design is reduced by 37% relative to the new design. A 
first principal stress criterion is used as objective for the optimisation problem. It can be 
discussed if this choice is sufficient to improve the structural performance of a sandwich 
component. Some remarks can after all be stated regarding the optimisation of the core interface. 
One is that the interface should be critical to the structure, meaning that failure should initiate in 
the vicinity of the interface. Another regards the use of a first principal stress criterion. This 
decision is based on the assumption that if small cracks appear near or in the interface they will 
most likely propagate in mode-I. However it should be mentioned that other stress based criteria 
have been tried out as well. 
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Summary: This paper addresses free wave propagation in an unbounded elastic sandwich plate loaded by a 
layer of a viscous compressible fluid. The dispersion equation is derived for this coupled wave guide and 
the influence of various parameters of a sandwich plate composition and of the heavy fluid loading on the 
viscosity-induced attenuation of waves is studied. 
 
 
Introduction 
The time harmonic linear wave propagation in elastic structures with heavy fluid loading is 
traditionally considered within the framework of a theory of a compressible inviscid fluid (the 
classical model of an acoustic medium). This model is perfectly valid for analysis of vibrations of 
elastic structures submerged into an unbounded volume of a fluid (e.g., a ship hull in water) or 
vibrations of thin-walled fluid-conveying structures (e.g., a water-filled tube). However, in some 
situations, which are rather common for various industrial applications, propagation of an 
acoustic wave in a narrow gap between, say, two elastic plates or shells should be considered and 
the attenuation effect produced by viscosity of a fluid cannot be ignored. The paper addresses 
exactly this case. 
 
A model of dynamics of a viscous fluid 
Linearised Navier-Stokes equations are formulated as 

( ) ( )fl
v v p v
t

ρ μ λ μ∂
− Δ +∇ − + ∇ ∇⋅ =

∂

r
0

r r rr ) r
,   (1a) 

0fl v
t
ρ ρ∂
+ ∇ ⋅ =

∂

r r
,        (1b) 

ˆˆ ( )p v E ˆ2 eσ λ= − + ∇ ⋅ + μ
r r ) ,     (1c) 

ˆ2 ( Te v v= ∇ + ∇
r rr r) ,      (1d) 

2
fl

p c
ρ
∂

=
∂

       (1e)  

Here flρ  and flc  are density and sound speed in a quiescent fluid ; p  is pressure;  - velocity, vr

σ̂  and  - stress tensor and strain rate tensor; ê Ê  - identity tensor; μ)  and ν  - dynamic and 
kinematic coefficients of viscosity; flμ ρ ν=) ; λ  - second coefficient of viscosity, which has the 

following value 
2
3

λ μ= − )  (the volume viscosity is negligible). 

The velocity field is sought in the following form: 
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       (2) 
Thus, in the coordinate frame, where  is vertical axis and z x  is horizontal axis,  
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 [1], satisfy uncoupled equations: 
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Then a pressure is expressed only via scalar potential: 
4
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Normal and shear stresses are formulated as 
2 2
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⎟      (8) 

These stresses act at the plate and they are accounted for in its equations of motion. This model of 
a viscous fluid naturally merges the classical model of an acoustic medium as viscosity 
coefficients vanish. It also merges the classical model of linear elasto-dynamics as the constitute 
law linking the stress tensor and the strain rate tensor is replaced by the conventional in elasticity 
relation between the stress tensor and the strain tensor, which involves a shear modulus.  
 
A model of a sandwich plate loaded by a layer of viscous compressible fluid 
An infinitely long sandwich plate is loaded by a layer of viscous compressible fluid. This layer 
has a thickness H2  and it is bounded by a rigid wall at the opposite to a plate side. The sandwich 
plate consists of two symmetrical relatively thin, stiff skin plies and thick, soft core ply. 
Dimensionless parameters are introduced to describe the internal structure of a sandwich plate: 

skin

core

h
h

ε =  as a thickness parameter (a ratio of thickness of each individual skin ply to a thickness 

of a core ply), core

skin

ρδ
ρ

=  as a density parameter, core

skin

E
E

γ =  as a stiffness parameter. Hereafter, 

subscripts denoting parameters of skin plies are omitted. The deformation of a sandwich plate is 
governed by two independent variables: a displacement of the mid-surface of the whole element 

 (which are the same for all plies) and a shear angle between the mid-surfaces of skin plies w θ . 
Motion of a plate with heavy fluid loading is governed by the following equations [2]: 

4 2 2 4

1 14 2 2 2 2( ) zx
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w w w wD M I 1N
x x x t x t x

τθ σ ∂∂ ∂ ∂ ∂ ∂
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∂ ∂ ∂
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Formulas for the elastic parameters in Eqs. (9-10) are quite cumbersome. They are presented in 
reference [3]. 
Dynamics of the fluid is governed by Eqs. (4-5) and (7-8), with continuity conditions at the fluid-
structure interface written as:  

2

1x
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wv N
x z t x

wv
z x t

t
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The second pair of conditions at the rigid ‘bottom’ is: 
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      (12)  

The problem in free wave propagation is solved and the dispersion equation is derived. This 

equation formulates a relation between K kH=  and 
fl

H
c
ω

Ω = . Due to the viscosity of a fluid, 

all wave numbers K acquire a real part, which characterizes the rate of decay of ‘almost’ 
propagating waves.  
 
Numerical examples 
A water-loaded sandwich plate is considered and the depth of its layer is characterized by the 

ratio 
skinh
H

=χ  (the depth parameter).  Let a free incident wave have the amplitude . As it 

passes along the plate, it’s amplitude decreases to , then: 

inA

outA ⎟
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⎞

⎜
⎝
⎛ K

H
L

A
A

in

out Reexp~ , Re 0K < .  

Hence, wave attenuation is quantified by the real part of K . In Figures 1-3, the following 
notations are used: Curves A – the structure-originated flexural modes, B – the structure-
originated shear modes, C – the first fluid-originated modes, D – the second fluid-originated 
modes. 

 
Figure 1 

Curves denoted by dots correspond to 10χ = , by boxes to 20χ =  and by daggers to 30χ =  in 
Figure 1. Other parameters are 0.25ε = , 0.0001γ = , 1.0=δ . Depth parameter χ  has a 
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significant influence on attenuation of structure-originated mode (an increase in χ , which 
corresponds to a decrease in plate’s thickness, leads to more intensive attenuation). However, it 
has a weaker influence on attenuation of fluid-originated modes. 

 
Figure 2 

In Figure 2, curves denoted by dots correspond to 0.15ε = , by boxes to 0.25ε =  and by 
daggers to 1ε = . Other parameters are 20χ = , 0.0001γ = , 1.0=δ . The thickness parameter 
has the strongest influence on structure-originated shear modes.  

 
Figure 3 

In Figure 3, curves denoted by dots correspond to 0.0001γ = , by boxes to 0.0005γ =  and by 
daggers to 0.0025γ = . Other parameters are 20χ = , 0.25ε = , 1.0=δ . The influence of this 
parameters is relatively weak. 
 
Concluding remarks 
The reported results suggest that the attenuation of waves in fluid-loaded sandwich plates due to 
fluid’s viscosity may be rather large (even for plates in water) and this effect is strongly ‘mode-
dependent’. 
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Summary The recent interest in tensegrity structures for various applications has increased the need for
simple and robust analysis methods. This work presents a method, which is closely connected to the gen-
eralised Maxwell’s rule, for evaluating the softening effect due to all internal mechanisms in a prestressed,
kinematic indeterminate assembly.

Introduction
The recent interest for tensegrity structures in mechanics and biology has increased the research on
simple and robust analysis methods [3, 4]. The present work follows the work on distributed static
indeterminacy, [8], which can be used to investigate the influence of element length imperfections
on the prestress. First, the connection between the force density, force and finite element methods
is outlined. Then, two methods for evaluating the softening effect of the internal mechanism are
described.

Relationships between equilibrium matrices and the tangent stiffness matrix
Consider a general three-dimensional pin-jointed assembly with b bars, j joints and c kinematic
constraints. The static and kinematic properties are described by the generalised Maxwell’s rule
[2]:

3j − b − c = m − s (1)

where m is the number of mechanisms (rigid body or internal) and s the number of states of
self-stress.

Force density method versus force method
The equilibrium equation in the x-direction for a node i where three bars meet is

qih(xi − xh) + qij(xi − xj) + qik(xi − xk) = fix (2)

where q = t/l is the force density or tension coefficient for each bar. In the force density formu-
lation, the nodal coordinates are the unknowns:

(−qih qih + qij + qik −qij −qik)

⎛⎜⎝ xh

xi

xj

xk

⎞⎟⎠ = fix (3)

whereas in the force method it is the element forces that are the unknowns:(
xi − xh

lih

xi − xj

lij

xi − xk

lik

)( tih
tij
tik

)
= fix (4)

The connectivity for a pin-jointed assembly is written as a b × j connectivity matrix C. For a bar
n which connects nodes i and j:

Cn,p =

⎧⎨⎩
+1 for p = i,

−1 for p = j,

0 otherwise.
(5)
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Force density matrix
For a complete assembly, the equilibrium equations in the x-direction with the nodal coordinates
as unknowns are

Dx = fx (6)

where D = CTQC and Q = diag(q). Equations identical in form to (6) can be written in terms
of the y- and z-directions.

Equilibrium matrix
If the forces are the unknowns the equilibrium equations is written as

Ht = f (7)

where the equilibrium matrix is conveniently formed as [6]:

H =

⎡⎣CTdiag(Cx)L−1

CTdiag(Cy)L−1

CTdiag(Cz)L−1

⎤⎦ (8)

The nullspace of H contains the states of self-stress and its left nullspace contains the mechanisms.

Tangent stiffness matrix
The previous equilibrium formulations only include the geometry of the framework and not the
material properties. The equilibrium equations in a finite element setting is written as

Kd = f (9)

where the tangent stiffness matrix K is composed of the elastic and geometric stiffness matrices,
which for the pin-jointed assembly is written as [7, 4]:

K = HΦ̃HT︸ ︷︷ ︸
KE

+ I3 ⊗ D︸ ︷︷ ︸
KG

(10)

Note that the diagonal matrix Φ̃ contains the modified axial stiffness of the bars. For bar i with
cross-sectional area ai, modulus of elasticity ei and unstrained length l0,i, the modified axial
stiffness is [1, 4]

φ̃ii =
aiei

li
=

aiei

l0,i

(
1 − li − l0,i

li

)
=

aiei

l0,i
− ti

li
(11)

which for normal construction materials is only little different from the normal axial stiffness
aiei/li.

Evaluation of the flexibility of kinematic indeterminate assemblies
The bases for the mechanisms can be found from the singular value decomposition of H, as
illustrated in [5] and collected in the 3j − c × m matrix M. Certain frameworks, e.g. cable nets
and tensegrity structures, have several internal mechanisms. By plotting each mechanism, the
individual softening influence can be evaluated, but the accumulated influence of all mechanisms
is difficult to estimate from these plot. Therefore, a simple method is proposed, in which the
flexibility of each node due to the internal mechanisms is indicated by a single number.
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Elastic and geometric redundancy
Ströbel [7] introduced a method with elastic and geometric redundancies for the elements to evalu-
ate the flexibility and stability of prestressed kinematically indeterminate structures. In his method
the total indeterminacy of the system is the sum of the elastic and geometric redundancies [7, 9]:

r = rel + rgeo = 4b + c − 3j (12)

The geometric stiffness matrix KG adds three stiffness parameters in the x-, y- and z-directions
to the elastic stiffness matrix, on which the generalised Maxwell’s rule was based. For a single
element, a geometric redundancy equals to 3 means that the element is stable without the influence
of the geometric stiffness. A value lower than 3 describes the part of the geometric stiffness
necessary for stabilisation and a value higher than 3 indicates that the element is unstable and has
to be stabilised by other elements. In this method a distinction is made between compression and
tension elements as the latter is more stable.

Distributed kinematic indeterminacy
The approach by Ströbel [7] is interesting as the effects of the elastic and geometric stiffness can
be assigned to each member by two numbers. However, the redundancy factors are difficult to
interpret as they are not directly connected to a new counting rule, Eq. (12), and not the widely
used generalised Maxwell’s rule, Eq. (1). The method proposed in this work is directly connected
to the generalised Maxwell’s rule and previous work on statically and kinematically indeterminate
structures, e.g. [5].
Similar to the distribution of the static indeterminacy s over the elements for kinematically inde-
terminate frameworks [8], the kinematic indeterminacy m may be distributed over the nodes. In
Figure 1, a tensegrity simplex with quadratic base is shown. If all the base nodes are fully fixed
c = 12, the kinematic indeterminacy m = 1 is evenly distributed over the free nodes, Figure
1(a). If, however, the minimum six degrees of freedom is fixed such that the rigid body modes
disappear, m = 3 is distributed over the nodes as shown in Figure 1(b).
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0.3009
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Figure 1: Distribution of the kinematic indeterminacy m for a tensegrity simplex with square base: (a)
m = 1 (c = 12) and (b) m = 3 (c = 6).

Conclusions
It has been shown that the equilibrium matrix of the force method is used to create the elastic
stiffness matrix whereas the equilibrium matrix of the force density method is used to create the
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geometrical stiffness matrix. The degree of kinematic indeterminacy may be distributed over all
nodes and used as an indicator for the flexibility of the each node due to all internal mechanisms.
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Summary A simple methodology that enables exact shape sensitivity analysis with unstructured meshes
is presented. Method does not involve finite differencing or differentiation of the mesh generator, but is
based on deformation of an existing mesh with the aid of the discretized Laplace equation.

Introduction
Design sensitivity analysis is an important step in gradient-based shape optimization [2, 3]. With
the aid of automatic differentiation, gradients of highly nonlinear cost functionals can be computed
exactly up to numerical precision.

The cost functional to be differentiated is typically implicit function of the control variables:
J (α) = J(α, u(α)). Hereα is a vector of control variables andu(α) =: u is the solution to
the set of algebraic equations arising from the finite element discretization of the state equation
r(α, u(α)) = 0.

In the classical adjoint method of the optimal control theory the sensitivity is computed from

∂J (α)
∂αk

=
∂J(α, u)

∂αk
− λT ∂r(α, u)

∂αk
, (1)

whereλ is solution to the adjoint equation(
∂r(α, u)

∂u

)T

λ = ∇uJ(α, u). (2)

In this method, we need derivatives of form∂f/∂αk with f being r or J . It is generally not
feasible to write these terms as explicit functions of the design variables, since such expressions
would be very specific and complex. Assumingf depends onαk only through the variation in the
computational domain, those derivatives can be formally written as

∂f

∂αk
=

∂f

∂X

∂X

∂αk
, (3)

whereX represents the mesh nodal co-ordinates. This form is more useful in practice, since
computation of∂f/∂X can be implemented so that the resulting code is independent of shape and
mesh parameterization. For details, see for example [3].

The computation of the nodal sensitivities is sometimes considered as the responsibility of the
mesh generator [5]. But with unstructured meshes, there exists no algebraic rule for the mesh
node locations. Mesh generators can in principle be differentiated with an automatic differentiator
such as ADIFOR [1], but many unstructured mesh generation methods include iterative procedures
in which nodes are added, relocated and removed, which makes the nodal co-ordinate dependence
on the design non-smooth or even discontinuous. Therefore, automatic differentiation of the mesh
generator will result in only one-sided derivatives, which are of limited practical value.

  169



Computation of the mesh sensitivities
Shape optimization cycle can include a series of relatively small changes in the design. We would
therefore like to avoid remeshing of the whole domain in every optimization step, but instead only
deform the existing mesh. The Laplace equation∆v = 0 is widely used for the mesh deformation
[5]. With this equation, there is no coupling of the deformation in different directions, and we can
thus look at the computation of the deformation field in one direction.

Discrete form of the equation isAv = b, where

A =
(

I 0
A21 A22

)
, b =

(
vb

0

)
. (4)

Here we assume that Dirichlet boundary condition is specified on the whole boundary, andvb

includes the boundary values.

To obtain the deformation in the domain, we simply setvb to be the boundary deformation and
solve forv. The nodal sensitivity∂X/∂αk can now be obtained by using the same equation with
vb being the sensitivity of the boundary nodes∂Xb/∂αk. This can be seen in the following way:

The equation can also be written asv = Lvb where L is a linear transformation whose matrix is
formed out of the columns ofA−1 that correspond to the boundary nodes. The mesh co-ordinates
X = (X1, . . . , XN ) can therefore be presented in a form

Xi = Xi,0 + L(Xb
i (α)−Xb

i (α0)) (5)

whereXi,0 are the initial co-ordinates,Xb
i are the boundary co-ordinates andα0 is the initial

design. From this we can obtain the required sensitivities

∂Xi

∂αk
= L

∂Xb
i

∂αk
. (6)

which is equivalent with solving the systemAv = b with vb being∂Xb/∂αk.

Notice, that the matrixA stays the same through the whole sensitivity analysis, and therefore its
decomposition has to be done only once, no matter how many design variables we have.

Test problem: fluid flow control
The presented approach is demonstrated with the following fluid flow control problem. We have
a channel with fixed inlet height and inlet flow profile. Our target is to produce a given target
outflow profile by adjusting the shape of the channel. The configuration can be seen in figure 1.
The channel is assumed to symmetric in thex2 direction.

We used so called CAD-free parameterization [4] and used thex2 co-ordinates of the nodes on
Γw as design variables. Since the nodes are allowed to move only inx2 direction the sensitivities
∂X1/∂α are all zero. Sensitivities∂X2/∂α are computed from (6). The required boundary sen-
sitivities ∂Xb

2/∂αk are readily obtained: Sensitivity of a node with respect to the design variable
that corresponds to the node itself is always one. Sensitivities with respect to other design vari-
ables are zero, except for the nodes onΓo, which have a sensitivity that is directly proportional to
theirx2 co-ordinate with respect to the design variable corresponding to the node onΓw ∩ Γo .
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The fluid flow is governed by the steady state Navier-Stokes equations{
−∆~u +∇p + ρ~u · ∇~u = 0 in Ω

∇ · u = 0 in Ω.
(7)

Given inlet velocity profile and the target outlet velocity profile have the form of a Poisseuille flow

u∗1 =
3
2
U(1− y2), u∗2 = 0 (8)

wherey = 2x2/h, h is the height of the channel at that point andU is the characteristic velocity.
We wish to accelerate the flow so thatU at the outlet will be double theU at the inlet.

Obviously this problem is ill-conditioned (ie. the optimum boundary may be oscillatory). We wish
to have a solution where the boundaryΓw is in some sense as smooth as possible. Therefore, we
add to the cost functional a term that penalizes for any nonsmoothness of the boundary. In full the
cost functional reads

c =
∫

Γo

(w1(u1 − u∗1)
2 + w2 u2

2)ds + w3||rp||2. (9)

Herewi are the weighting factors andrp is the discrete residual of the expression

∆δ = 0 onΓw (10)

whereδ is thex2 deformation of the boundary.

Solver was created on Numerrin software development environment1, which provides the FE rou-
tines, build-in automatic differentiation via operator overloading, and basic optimization routines.
We used elementwise constant approximation for the pressure and rotated linear elements for the
velocity. Automatic differentiation allowed us to use Newton linearization to solve the state equa-
tion efficiently. Optimization was done using sequential quadratic programming (SQP).

The Reynolds number at the inlet was specified to be 100. We started the optimization from a
channel with a rectangular profile. Final shape of the channel along with the pressure contours
and outlet velocity profile can be seen in figure 1. In figure 2 the velocities at the outlet are plotted.
We can see, that the goals are reached very well. The final shape of the channel is influenced by
the choice of the penalty term, which tends to minimize the curvature of the moving boundary.

Conclusions
A general methodology that enables exact sensitivity analysis in FE framework with unstructured
meshes is presented. The mesh deformation is done using the discretized Laplace equation. This
procedure has certain limitations: it is found out that the moving boundary has to be sufficiently
smooth at all optimization steps to avoid inverted elements. On the other hand, the nodal co-
ordinate sensitivities with respect to any kind of boundary parameterization can be computed,
which enables the exact computation of the cost functional derivative.

Use of the method is demonstrated with a Navier-Stokes control problem using CAD-free shape
parameterization, which is a very general method, but may require some kind of smoothing to
prevent irregularities on the boundary [4]. Also the number of design variables often becomes
large, which may result in slow convergence of the optimization.

1Product of Numerola Oy, see www.numerola.fi
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Figure 1: Optimized shape, the pressure contours, and the velocity field of the final solution at the outlet.
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Figure 2: Velocity components and the target velocity profile at the outlet.
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Summary The topic of this paper is the discrete structural optimization of frames by using heuristic 
particle swarm optimization (PSO) method. The topology and the shape of the frame are fixed and beams of 
the frame must be selected from standard RHS-sections. Semi-rigid beam elements are used in the analysis.  

Introduction 

Tubular structures are common in real life and thus there is a clear need to achieve more 
economical designs. Structural optimization offers a natural way to go further than just analyzing a 
few selected candidate structures by finite element method. Since there is only a certain set of 
profiles available, it leads to nonlinear constrained discrete optimization problem. 
Discrete optimization problems are usually much harder to solve than the ones that contain only 
continuous design variables. Heuristic methods like genetic algorithms (GA) are rather simple and 
very flexible algorithms and still suitable for solving a variety of hard discrete or combinatorial 
optimization problems. In this study a new population based heuristic method called Particle 
Swarm Optimization (PSO) is used to improve the performance of tubular structures.  

Particle swarm optimization 

The basic idea of stochastic PSO is to model the social behavior of a swarm (e.g. birds or fishes) in 
nature. A swarm of particles tries to adapt to its environment by using previous knowledge based 
on the experience of individual particles and the collective experience of the swarm. It is useful for 
a single member and the whole swarm to share all information in the population.  

In PSO the new position i
k 1+x  for particle i depends on the current position i

kx  and velocity i
k 1+v  

 i
k

i
k

i
k 11 ++ += vxx         (1) 

where the velocity is calculated as follows 

 ( ) ( )i
kk

i
k

i
k

i
k

i
k rcrcw xpxpvv −+−+=+

g
22111 .     (2) 

i
kp  is the best ever position for particle i and g

kp  is the best ever position for the whole swarm. w is 

so called inertia, r1 and r2 are uniform random numbers [ ]1,0, 21 ∈rr  and c1 and c2 are the scaling 
parameters. The value of w controls how widely the search process is done in the search space. 
The idea of the last two terms connected to c1 and c2 in the Eq. (2) is to direct the optimization 
process towards good potential areas in the search space. Usually 4,18,0 << w  and 221 == cc  
are selected. The value of w can be changed dynamically so that it is bigger during early iteration 
rounds and becomes smaller later when it is time to focus on promising areas. 
Basically PSO is an algorithm for continuous unconstrained optimization problems. Discrete 
design variables can be taken into account simply rounding each design variable to closest allowed 
value in Eg. (1). Constraints can be handled by penalizing unfeasible solutions according to the 
unfeasibility. References [2] and [3] concern the basics of PSO. 
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Semi-rigid beam element 

Usually, for the sake of simplicity, the behavior of the joint in the frame is assumed to be perfectly 
rigid or pinned. Unfortunately in real life this idealization is not true and joints are semi-rigid. The 
bending moment causes some rotational deformation in the connection. In order to get a simple 
linear analysis it is possible to assume that the rotation is proportional to the bending moment. 

 
Figure 1: The semi-rigid beam element. v1, φ1, v2 and φ2, are the node displacements. 

Figure 1 represent four degree of freedom plane beam element with two linear rotational springs at 
both ends (stiffness factors are k1 and k2). The stiffness matrix, the mass matrix and the geometric 
stiffness matrix of element in Fig. 1 have been presented in ref. [1]. Based on [1] it is 
straightforward to add the axial degrees of freedoms and to generalize the study to concern the 12 
degrees of freedom space beam element which is the element type that has been used in this study.  
The value of rotational stiffness k depends on the type of the joint and the dimensions of the 
profiles connected together. Because it is difficult to determinate the exact values for stiffnesses 
during the optimization process the fixity factor α can be used instead of it. The fixity factor gets a 
value [ ]1,0∈α  so that 0=α  means perfectly pinned joint and 1=α  means perfectly rigid joint. 

If the value of fixity factor α is known then the actual rotational stiffness is 

 
α

α
−

⋅=
1

3

L

EI
k          (3) 

where E is Young's module, I is the second moment of inertia and L is the length of a beam. 

Optimization problem 

In the current optimization problem the mass of the space frame is minimized subject to the 
displacement, strength and buckling constraints. The profiles for the beams should be chosen from 
a given selection of standard RHS sections that are put in order of magnitude in some sense.  
There are total n beams in the frame and m possible profiles for each beam (Fig. 2). The design 
variable { }mxi ,,2,1 K∈  represents the ordinal number of profile which is chosen for beam i.  

1 2 m-2 m-1 m

F

x

y

z
20F

n= 8

a) b)  
Figure 2: a) A space frame. b) The selection of RHS profiles. 
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In the standard mathematical form the optimization problem is 
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.  (4) 

m(x) is the mass of the frame. The displacement constraints ( ) 0u ≤xig  limit the desired node 

displacements to be less than the maximum allowed values. The strength constraints ( ) 0s ≤xig  
take care that all the beams fulfil the strength requirements of Eurocode 3. The buckling 

constraints for individual beams ( ) 0bl ≤xig  prevent beams from loosing their stability according to 

Eurocode 3. The global buckling constraint ( ) 0bg ≤xg  prevent the whole frame loosing the 
stability in the sense of linear stability theory. nu is the number of displacement constraints and 

nmn =  is the number of possible candidate solutions. 

Example problem 

The numerical test problem concerns the space frame of 72 beams in Fig. 3 a). The mass of the 

frame should be minimized so that the displacements u1 and u2 are less than 50max =u  mm, 
Eurocode 3 strength and buckling requirements which are presented in [4] are fulfilled and the 
safety factor against global buckling is at least 3. All beams should be chosen from a catalogue [4] 
that contains 53 different kind of recommended RHS profiles which all belong to the cross section 
classes 1 or 2. All columns in the corners of tower should have the same cross section as well as 
all diagonals in each floor and all horizontal beams in each floor. This means that the amount of 
design variables is 13. Finally diagonal and horizontal beams can not be wider than the columns. 
There is one 12 degrees of freedom semi-rigid space beam element per each beam in the FEM-
model. Columns are continuous restrained beams which means that for all elements in columns 

1=α . Diagonals and horizontal beams are connected to columns flexible and for them the 
constant value 3,0=α  is used. At the moment all the strength requirements of the structural 
hollow section joints are ignored.  
In PSO the size of the swarm will be increased by one randomly chosen particle every time the 
best known feasible object function value has not improved during 5 previous iteration rounds. 
However, if the best known object function value stays the same 20 iteration rounds the increase 
of swarm stops. The inertia w is changed dynamically by multiplying previous value with factor 
0,8 during each iteration round. The initial swarm is selected randomly so that it includes 11 
feasible particles. As a result the average decrease of mass is presented in Fig. 3 d). The initial 
mass is 4541 kg, the mass of the lightest structure is 2972 kg and the median of mass is 3074 kg. 

Conclusion 

In the discussed discrete optimization problem of tubular structures the global optimum is difficult 
to find in an arbitrary case. Heuristic PSO can be used to find good solutions that are relatively 
close to the global optimum. Fortunately this kind of solutions are good enough in many 
applications and there is no need to find the best solution.  
The example problem shows that the number of FEM-analysis is rather big in structural 
optimization with PSO. This is typical for all heuristic methods. In addition, due to the stochastic 
nature of PSO, there should be several optimization runs in a single problem in order to get 
reliable results.  
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Figure 3: a) The frame of 72 beams.  b) Material data. c) Parameter values in PSO. d) The decrease of the 
mass (median) based on 10 PSO optimization runs. 
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a) 

Young's module E 210 GPa 
Poisson's ratio ν 0,3 
density ρ 7850 kg/m3 
yield limit Re 355 MPa 

 
b) 

Swarm size 40 
Iteration rounds 100 
Initial inertia w0 1,4 
Penalty 2 
Scaling parameters c1, c2 2 

 
c) 

 
d) 
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Summary Computational techniques for the simulation of stress–adaptive bone–remodelling have been
developed and applied for the analysis of the bio–mechanical compatibility of hip–joint endoprosthesis.
Numerical simulations are in good agreement with clinical observations and enable parameter studies for
the development of optimized prosthesis designs.

Introduction
Hip–joint endoprosthetics has been developed to standard surgery. However, there is a great
variety of implant designs and surgery techniques and the question for an optimal solution is still
not answered yet. Probably this question has to be answered individually from patient to patient.
Computational methods have been developed for the prediction of the mechanical bio–compatibility
of endoprostheses. Besides the stress–analysis of implant and the bone remodelling caused from
changing mechanical stimulation of bone tissue is simulated. This approach enables studies of the
bio–mechanical compatibility of different prosthesis designs under individual constitution and
mobility.

Methods and materials
Computational methods for the simulation of stress adaptive bone remodelling are under develop-
ment since more than 15 years [1, 6, 9]. In this publication we follow up the previous work done
by Nackenhorst and coworkers, for details it is referred to [4, 5, 8, 7]. By this approach the bone
is modelled in a continuum sense, that means that the network structure of cancellous bone in the
proximal region of the femur is smeared by an average mass density%.
Basic assumption of the theory is an equation of evolution

%̇

%0
= k̃

(
ψ

ψref
− 1

)
(1)

wherek̃ = k/%0 has the dimension of one over time. (1) is scaled by a reference mass–density
%0, ψ is the strain–energy density in the isotropic case andψref a physiological target value.
The computation of the strain–energy density distribution is performed by a linear–elastic finite
element analysis, which is an approximate solution of the mechanical equilibrium for arbitrary
geometries under consideration of the specific boundary conditions. A standard procedure leads
to a system of linear equations

Ku = f (2)

From the solution the strain energy–density is derived by a simple post–processing step, i.e.

ψ =
1
2%
εT Cε (3)

whereC is the elasticity–matrix andε the VOIGT–representation of the linear strain tensor, which
is easily derived from the displacement–field computed from equation (2).
It is essential to recognize that the elasticity–matrix depends on the spatial mass density distribu-
tion. A constitutive relation has to be stated between the YOUNGS–modulusE and mass–density
%. Within a thermodynamic consistent framework a relation

E

E0
=

(
%

%0

)2

(4)
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has been proven, [7]. A nonlinear problem consisting the time–discretized version of equation
(1), (2), (3) and (4) has to be solved.
The 3D bone is given by [12] and the muscle attachments can be found in [11]. To identify static
equivalent muscles and hip joint forces from ct data, the global error

∏
(F)

def
=

1
2

el∑
i=1

[
λi(F)− λiopt

]2

(5)

has to minimized with a genetic algorithm, programmed in theMATLABprogram code.F is the
unknown vector of the muscles and hip joint forces. A method for the automatic mapping of
computed tomography numbers onto finite element models is necessary to solve this equation,
[10]. The solution ofF is quite similar to the average of the measured dynamic forces during
walking and stairs climbing in [3].

Figure 1: Average measured muscles and hip joint forces during walking and stairs
climbing [3], (left) in comparison with calculated forces by minimizing (5), (right)

Finite Element Model and validation
The first step of the computation treats the optimization of the boundary conditions (statically
equivalent loads) in the sense that a bio–mechanical equilibrium state is found for a physiologi-
cally density distribution. The bone mass density distribution for an equilibrated femur model is
depicted in fig. 2. The comparison with CT–data matches well. The hollow bone as well as the
characteristic trabecular structure of the cancellous proximal femur is approximated well by the
finite element model. The medullary cavity, the trabecula and Ward’s triangle can be recognized
in the comparison. This equilibrated model is used for the studies on bone remodelling caused
from locally changed stress conditions due to hip–joint endoprosthesis.
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Figure 2: CT data set mapped on FEM mesh
[10], (left) in comparison with 3D computed
mass density distribution, (right)

Figure 3: Bone remodelling caused from the
Zweymueller–prosthesis.

Prosthesis and results
As an example the bone remodelling caused from a classical stem–prosthesis (Zweymueller) is
shown in fig. 3. In the left the immediately post–operative state is plotted whereas in the right
the long–term bio–mechanical equilibrium state is shown. These simulations clearly indicate loss
of bone density especially in the medial cortical region which is in good agreement with clinical
observations.
These investigations of prosthesis are in close cooperations with the Medical Hight School of
Hannover (MHH). A new innovative hip joint prosthesis is called Spiron-prosthesis. This pros-
thesis developed in the year 1999 tries to avoid the risk of a secondary varization and to increase
the stability [2]. At the development of this uncemented short-stemmed prosthesis attention was

Figure 4: radiograph in comparison with computed mass density distribution: Spiron
Prosthesis, postoperativ left site, long therm effect right site

paid on the receipt of the region of the femoral neck since this increases the stability in the primary
phase and gets a sufficient bone stock in the revision for a conventional intramedullary prosthe-
sis. Furthermore the use of the femoral neck should receive the mechanic of the natural joint by
the unchanged muscular strain. The prosthesis is applied uncemented as a screw with conical
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basic body and self-tapping thread and reached by it one considerable surface enlargement in the
relatively compact volume of the femoral neck. By the sharp-edged thread formation an osteoin-
duction is reached in addition to the titanium alloy and bonit coating. The results of the simulation
are shown in fig. 4 in comparison with radiographs. The stress-shielding in the area and the bone
response at the lateral corticalis in the area of the end of the screw can be proved in the calculation
and radiographs.

Conclusions
Computational techniques for qualitative analysis of bone–remodelling are available to assist the
surgeons in their choice for an individual prosthesis design. Future work will focus onto the
development of more challenging prosthesis designs. Thus, metaphyseal anchored devices seem
to be promising alternatives.
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10.00-10.15 Check-in 
10.15-10.30 Seminar opening (NSCM18/A)**
10.30-12.00 Keynote session I  (NSCM18/A)
10.30-11.15 Discrete Element Simulations in Ice Engineering J. Tuhkuri 
11.15-12.00 Numerical Simulation of Nano-, Meso, Macro- and J.H. Walther

Multiscale Fluid Dynamics 
12.00-13.00 Buffet lunch (Buffet Serenade)
13.00-14.30 Keynote session II (NSCM18/A)
13.00-13.45 Multiscale methods for flow in porous media K.A. Lie
13.45-14.30 Inverse Discontinuity Formulation of Fracture R. Larsson
14.30-15.00 Coffee break (Conference center)
15.00-15.45 Parallel session I : fracture (NSCM18/A) 
15.00-15.15 Inelastic conical shells with cracks J. Lellep
15.15-15.30 Simulation of quasi-static crack growth by using the ϑ method M. Lyly
15.30-15.45 Explicit FE-procedure for Numerical Modeling of Rock Fracture T. Saksala

under Dynamic Indentation
15.00-15.45 Parallel session I : applications (NSCM18/B) 
15.00-15.15 Residual Based Approximations of Fine Scales in Variational M. Larson

Multiscale Approximations of Navier-Stokes Equations
15.15-15.30 Adaptive Simulation of Multiphysics Problems F. Bengzon
15.30-15.45 Algorithms for fluid-structure interaction of flow around two or T. Kvamsdal

more cylinders with large relative motions
15.45-16.30 Keynote session III (NSCM18/A)

Lessons in wave theory from the Indian Ocean Tsunami  T. Soomere
of Millennium and from the Baltic Sea Storm Surge of Century

16.30-16.45 Break
17.00 DEPARTURE

16.45-18.00 Ordinary session I : modelling (NSCM18/A)
16.45-17.00 Finite Element analysis of jar connections: Modeling considerations A. Kristensen
17.00-17.15 Deformation of a Paper Roll Loaded Against a Nip Roller K. Ärölä
17.15-17.30 Comparison between Approaches to Explicit Filtering in Large T. Brandt

Eddy Simulation
17.30-17.45 Mathematica Modelling of Biosensors with Perforated and F. Ivanauskas

Selective Membranes
17.45-18.00 Modeling Aircraft Ground Behavior into a Flight Simulation J. Öström
18.00-19.00 Cocktail party (Conference center)
20.00-22.00 Seminar dinner (Maxim A La Carte)

http://www.hel.fi/port/english/


Saturday 29:th October
07.30-09.00 Breakfast  (Maxim A La Carte) 

09.30 ARRIVAL***
09.30-10.45 Parallel session II : numerics  (NSCM18/A)
09.30-09.45 Benchmark study: MITC4-S and boundary layer-type deformations A. Niemi
09.45-10.00 Computational results for the superconvergence and J. Niiranen

postprocessing of MITC plate elements
10.00-10.15 Locking-Free Plate Elements at Free Boundary J. Pitkäranta
10.15-10.30 Finding the most efficient rotation-free triangular shell element G. Tibert
10.30-10.45 A Posteriori Error Estimates in Linear Elastic Fracture Mechanics M. Rüter

based on Different FE-Solution Spaces for the Primal and the 
Dual Problem

09.30-10.45 Parallel session II : applications (NSCM18/B)
09.30-09.45 FPK-equation solutions for stochastic structural response P. Varpasuo
09.45-10.00 The Effect of Delamination on the Natural Frequencies of the H. Hein

Composite Beams on Two-Parameter Foundation
10.00-10.15 Fatigue life prediction of polymer covered roll R. Karjalainen
10.15-10.30 Extension of ASME regulatory for validation of dynamical calculation L. Strömberg

when deviations in as-buildt
10.30-10.45 Forces Between Joined Discrete Particles in Discrete Element Method J. Paavilainen
10.45-11.00 Break
11.00-11.45 Parallel session III : numerics (NSCM18/A)
11.00-11.15 A Finite Element Method for General Boundary Condition M. Juntunen
11.15-11.30 New Tecnologies for Control of Local Errors in Engineering S. Korotov

Computations by FEM
11.30-11.45 Solution of the Helmholtz equation with controllability and S. Mönkölä

spectral element methods
11.00-11.45 Parallel session III : education (NSCM18/B)
11.00-11.15 Vectors and tensors with matrix manipulations J. Freund
11.15-11.30 Virtual Work, Lagranges Equations and Finite Elements J. Paavola
11.30-11.45 Inertia and related topics of education in mechanics L. Strömberg
11.45-12.30 Lunch (Conference center)
12.30-13.45 Parallel session IV : materials (NSCM18/A)
12.30-12.45 Stress evaluation in sandwich structures near tri-material wedge A. Lyckegaard
12.45-13.00 Identification of Material Parameters of a Polymer T. Peräkylä
13.00-13.15 Nonlocal plasticity model for fibre reinforced concrete L. Strömberg
13.15-13.30 Time-Temperature Superposition Method for Polyester Resin A.-J. Vuotikka
13.30-13.45 Slope safety calculation with a non-linear Mohr criterion J. Clausen

using finite element method
12.00-13.15 Parallel session IV : applications (NSCM18/B)
12.30-12.45 Shape Optimisation of Core Interfaces in Sandwich Structures J. Jacobsen
12.45-13.00 On wave attenuation in sandwich plates loaded by a layer of S. Sorokin

viscous fluid
13.00-13.15 Flexibility Evaluation of Prestressed Kinematically Indeterminate G. Tibert

Frameworks
13.15-13.30 On shape sensitivity analysis with unstructured grids J. Toivanen
13.30-13.45 Space Frame Optimization Using PSO J. Jalkanen
13.45-14.05 Seminar closure  (NSCM18/A)
13.45-14.00 Simulation of Stress Adaptive Bone Remodelling B. Ebbecke
14.00-14.30 Check-out  (Helsinki)

17.00 DEPARTURE
17.00-19.00 Buffet dinner (Buffet Serenade)

Sunday 30:th October
07.00-09.30 Breakfast  (Maxim A La Carte) 

09.30 ARRIVAL
09.30- Check-out  (Stockholm)

*      You may need to prove your identity (official ID-card  with photograph or passport)
**    Conference center (deck 6)
***   Hki-Sto-Hki route participants checking-out this day should move luggages etc. to seminar room
       NSCM18/A after the breakfast. Cabin keys will be inoperable after 10.30 on the arrival day
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