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SUMMARY 
 
A non linear finite deformation model for unilateral materials in the field of finite 
deformations and its implementation in a standard isoparametric finite elements code 
has been developed. These materials are not able to sustain any tension (resp. 
compression) stress and represent a special case of generalized elastic materials, such 
that the anelastic evolution is ruled by a potential. In part one the constitutive model and 
its numerical integration is described. The model has been developed on the basis of a 
multiplicative split of the gradient of deformation tensor and assuming that no 
dissipations occurs in the anelastic process. The prediction of the model for some 
homogeneous deformation states is reported in the paper. 
 

INTRODUCTION 

In this work it is presented an extension to finite deformations of the No Tension 
Material (NTM) model, characteristic of materials like masonry, unreinforced concrete, 
mortar, sand, soft rock, that have very low tensile resistance. Commonly their tension 
resistance is completely neglected and it is assumed that anelastic deformations are 
possible in the direction of the maximum stress. The model is characterized by absence 
of dissipation; as a matter of fact in the small deformation range the NTM model falls 
within the class of conewise elastic materials [1] and the constitutive equations can be 
derived from a potential of the total deformations. Since in the model a continuous 
anelastic deformation field accounts for the localized anelastic phenomena like fractures 
or rupture lines (like in sand) it is likely that large strains develop in concentrated areas. 
Moreover, many types of NTM structures, like long span shallow arches, large vaults, 
slender panels, exhibit large rigid motions caused by fractures. In either case, linear 
kinematics appears insufficient, as was also observed long time ago by Heyman.  
The model presented in this paper extends to the finite deformation field the equivalent 
one formulated in small deformations [2,3,4,5], that is widely used in the analysis of 
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masonry structures. It has the great advantage of being based on few constitutive 
parameters, i.e. only the elastic coefficients, and of approximating in a satisfactory way 
the structural response, provided no dissipation due to reversed cycles of loading occurs. 
The model is, therefore, reversible, so that it is not able to model damage processes. An 
useful discussion on the limitations and on the advantages of the model can be found in 
[2,6,7]. 
The constitutive relations are developed  starting from energy principles so that they 
turn out to be thermodynamically well defined. The deformation process is decomposed 
in its elastic and its anelastic part introducing an intermediate (eventually fictitious) 
stress free configuration, so that the deformation gradient is multiplicatively split in an 
elastic and an anelastic part, while the velocity of deformation tensor is additively 
decomposed [8]. The velocity of deformation measures used in the model satisfy the 
requirements of objectivity and are defined to be dual in power to the stress tensors 
introduced in each configuration. 
The anelastic constitutive relation is directly obtained by the assumption that the process 
occurs without dissipation while an hyperelastic potential is used for the elastic 
deformation. From this assumption it follows that the rate of anelastic deformations is 
orthogonal to the stress tensor. The model so formulated presents the same 
characteristic of reversibility of the equivalent model formulated in the field of small 
deformations because of the hypothesis of absence of dissipations. Differently from the 
small deformation case, it as not been possible to obtain an explicit expression of the 
deformation potential, and only its rate form has been specified. The question whether a 
generalised hyperelastic potential exists for this class of materials is still an open matter. 
The model has been locally integrated (in the Gauss points of a finite element model) 
performing a step linearisation of the rate of deformation (material derivative of the 
right Cauchy-Green deformation tensor) and of the Lie derivative of the Kirchhoff stress 
tensor. The resultant system of non-linear equations is numerically solved using a 
classical Newton-Raphson scheme. 
Although the paper deals only with no-tension materials, the same procedure would 
apply to no-compression unilateral materials, that have recently became an important 
issue in studying the finite deformation of soft membranes, as in the case of living 
tissue. Most of the results obtained in this paper would hold also for this case just 
changing the sign of the admissible stresses. However this case will not be explicitly 
considered in this work. 
 

THE MATERIAL MODEL 

Kinematics 

No Tension Materials are not able to sustain any tension stress, so, in a general 

deformation process, fractures occur. Here a continuum approach is used, that is, no 
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discontinuity is allowed, and the effects of fractures are modelled through an additional 

anelastic deformation field. 

Anelastic effects are accounted for decomposing the deformation process in its elastic 
and anelastic parts introducing an intermediate (eventually fictitious) stress free 
configuration. Calling BB0 the reference, BaB  the intermediate and BBt the final 
configurations, each one is associated with a reference framework , 
with metric G, , g respectively (see Figure ).  
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Figure 1. Process Schematization 

Of course in the case of Cartesian framework the metric is the identity matrix. By virtue 
of this schematisation, the gradient of deformation is multiplicatively split in 

 F=FeFa (1) 

Consequently also the volume deformation, given by the determinant of the Jacobian of 
the deformation process, is given by the product 

 J = JeJa (2) 

The gradients of deformation Fe, Fa and their inverses operate the ”Pull-Back” and 
”Push-Forward” transformations of the kinematic and equilibrium tensors between the 
configurations defined in figure 1, according to standard rules [9]. We will denote by *φ  
and  the Pull-Back and Push-Forward operations. *φ
On the intermediate configuration we define the elastic right Cauchy-Green deformation 
tensor as follows 

  (3) βααβ
j

e
i

eijee
T
ee FFgC =→= FFC

The component notation shows that Ce can be interpreted as the pull back on the 
intermediate configuration of the spatial metric g, i.e. it has the meaning of convective 
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metric in the intermediate configuration. In a similar manner we can show that the total 
Cauchy-Green deformation tensor  is the pull back on the reference 
configuration of the current metric g [

FFC T=
10,11]. 

The tensor , defined in eC (3), is a measure of elastic deformations. As another measure 
of elastic deformations we define, in the current configuration, the left elastic Cauchy-
Green deformation tensor as follows 

  (4) T
eee FFb =

while the total inelastic deformations are ruled by the anelastic right Cauchy-Green 
deformation tensor defined as 

  (5) a
T
aa FFC =

It is easy to prove that the following relation occurs for the elastic and anelastic 
deformation measures defined in (4) and (5)

  (6) T
ae FFCb 1−=

Using Equation (1), the velocity gradient tensor in the final configuration can be 
additively decomposed in its elastic and anelastic parts as 

  (7) aeeaaeee llFFFFFFFFl +=+== −−−− :1111 &&&

The symmetric part of  is the velocity of deformation tensor, that can be decomposed 
as follows 

l

 ( ) ( ) ( ) aeae symsymsym ddllld +=+== :  (8) 

It is useful to define gradient of velocity in the intermediate configuration. To this end 
we introduce the mixed variant elastic pull back of the velocity tensors defined in (7) 
and (8)

  (9) aeaaeeee llFFFFlFFl ˆˆ:ˆ 111 +=+== −−− &&

The tensor  has an important meaning, in that it gives the evolution of the 
intermediate configuration. In fact it represents the material derivative of the 

instantaneous increment of the anelastic gradient of deformation 

al̂

( )
t

a
a

=∂
∂

=
ττ

τF
l̂ . 

However, the tensor  cannot be used as a measure of velocity of deformation as does 
the spatial velocity gradient tensor 

l̂
(8) since the symmetric part of l̂  is not the pull-back 

of the velocity of deformation tensor, but bears also information of the spatial spin. 
( ( ) eesym dFFl 1ˆ −≠ )Consequently, the tensor (9) is not dual in power to the second Piola-
Kirchhoff stress tensor that will be introduced later (see eq. (20)). 
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A sound measure for the velocity of deformation of the intermediate configuration is 
obtained performing a total covariant elastic pull back of the spatial gradient of velocity 
tensor 

  (10) ( ) aeaae
T
ee

T
eee

T
ee llFFFFFFlClFFll ˆ̂ˆ̂:ˆˆ̂ 1* +=+==== −&&φ

  (11) ( ) aeea
T
eee

T
ee sym ddFdFFdFldd ˆ̂ˆ̂:ˆ̂ˆ̂ * +=+=⎟

⎠
⎞⎜

⎝
⎛== φ

The tensors defined in (10) are the covariant form of the corresponding tensors defined 

in (9) in the convected metric Ce (es. ). Throughout the paper double hat 
indicates covariant kinematic objects defined in the intermediate configuration. As 

indicated in 

γ
βαγαβ eee lCl ˆˆ̂ =

(11) and as can be checked by a direct calculation, the symmetric part of l̂̂  
is indeed the covariant elastic pull-back of the velocity of deformation tensor, and can 
be similarly decomposed in the elastic and anelastic parts. It is worth noting that the 
covariant velocity of deformation directly translates into the intermediate configuration 
the properties of the spatial velocity of deformation, particularly it bears the following 
property: 

 if νeFn =  it is  (12) νν ⋅=⋅ dnnd ˆ̂

that is the velocity of stretch can be directly computed in the intermediate configuration 
on the pull-back of the direction of the stretch. The tensor  preserves, on the contrary, 
the equality [

l̂
11] 

  (13) μν ⋅=⋅ lmnl ˆ

with   μν T
ee
−== FmFn ,

so that mn ⊥↔⊥ μν  

Moreover the convected velocity of deformation tensor d  coincides with half of the Lie 
derivative of the elastic right Cauchy-Green deformation tensor. In fact, in virtue of the 
following relations 

ˆ̂

 ( ) ( )
22

1
2
1ˆˆ̂ e

e
T
ee

T
ee

T
eeee sym

C
FFFFFFlCd

&
&& ==+==

•

 (14) 

  (15) ( aea sym lCd ˆˆ̂ = )
one has 

 ( ) ( ) dlC
C

FFCFFC ˆ̂ˆ
22

1 1 =+=
∂
∂

= −−
ae

e
aae

T
a

T
ae

p
v sym

t
L

&
 (16) 

In (16) the symbol  denotes the plastic Lie derivative of an object defined in the 
intermediate configuration, i.e., for a kinematic tensor 

p
vL
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 ( ) ( ) 1

2
1 −− •

∂
∂

=• aa
T
a

T
a

p
v t

L FFFF  (17) 

By virtue of the Virtual Power identity, we can introduce in each configuration a stress 
measure dual in power to the velocity of deformation tensors defined in (8), (11). It is 
easy in fact to see that the following relations hold 

 ∫∫∫∫∫ ⋅=⋅=⋅=⋅=⋅=
0000

2
ˆ̂

B

T

BB
e

BB
vi dVdVdVdVdvP

t

FPCSdSdd &
&

τσ  (18) 

where σ  is the Cauchy stress tensor and the others stress tensors are defined as follows 

 στ J=  Kirchhoff stress tensor (19) 
 ( ) T

eeae
−−== FFS ττφ 1*  Elastic second Piola-Kirchhoff stress tensor (20) 

  Second Piola-Kirchhoff stress tensor (21) ( ) ( ) T
aeaee
−−=== FSFSS 1** φτφ

  First Piola-Kirchhoff stress tensor (22) FSP =

Note that S  and τ  are respectively the pull-back and the push-forward of the elastic 
stress tensor defined in the intermediate configuration. 

Constitutive Model 

In the paper it will be analysed a material whose constitutive behaviour is defined by 
the following assumptions: 

1. A general hyperelastic potential exists that satisfies the requirements of locality 
and objectivity. Locality means that the potential depends only on the local 
value of its arguments, and objectivity means that its value must be constant 
under rigid motion over imposed on the deformation process. This implies that 
the potential must depend on the elastic process only throughout the elastic 
Cauchy-Green deformation tensor defined in eq. (3), so that 

 ( )ξ,eW C  (23) 

The elastic potential is defined on the intermediate configuration that is assumed 
to be the natural state of the material. 

2. Motivated by the idea that in a No Tension Material inelastic deformation occurs 
at zero stress, it is assumed that the anelastic deformation occurs with zero 
dissipation, that is 

 0=⇒= DPP tote  (24) 

Since the dissipation of mechanical power is given by the difference between the 
total mechanical power minus the time derivative of the elastic potential, in 
virtue of (18) its explicit expression in the intermediate configuration is 

  (25) WD e
&−⋅= dS ˆ̂
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For an elastic increment of a general deformation process , so that, using 0=aF& (10), 
(14) and (23) the elastic constitutive relations are recovered as 

 

e
e

e
e

eee

W

WD

C
S

d
C

dSdd

∂
∂

=→

=⋅
∂
∂

−⋅=→=

2

0ˆ̂2ˆ̂ˆ̂ˆ̂

 (26) 

For a general process, using the previous results, (11) and the symmetry of τ , the 
mechanical dissipation in the intermediate and in the current configuration has the form 

   (27) 0ˆ̂ =⋅=⋅=⋅= aaaeD lτdτdS

so that the anelastic gradient of velocity and the Kirchhoff stress tensor are orthogonal. 
The evolution law of the anelastic deformations is defined by the condition that the 

stress state is admissible if the maximum (true) Cauchy stress is not positive 

 0max ≤nσ   (28) 

Since στ J=  and J ≥ 0 always (28) is equivalent to  

 0max ≤nτ   (29) 

which means that the Kirchhoff stress tensor must belong to the subspace Kσ of the 
negative semidefinite symmetric tensors.  
As in the small deformation case [2], anelastic strains develop only if the stress tensor 
belongs to the boundary of Κσ. 

In order to determine the anelastic evolution equations, let’s consider a purely 
anelastic process for which the stresses evolve on the limit surface. The maximum 
dissipation principle and the admissibility condition (29) are equivalent to a constrained 
minimization problem which can be solved using the Lagrange multipliers method 
imposing the stationarity of the functional 

  (30) maxτβ&+−= DL

Stationarity of functional (30) is enforced by the following relations 

 ( ) ( )
( ) 00

00
max

max
=→=∇

=∇+−→=∇
τ

τβ
β

ττ
L
L a

&

&l  (31) 

leading to the evolution relations 

 ( ) ( )
( ) ( ) 00

max

=≤
=∂=

ττ
τττ

ff
ff na

β
τβ

&

&l   (32) 

 9



The first of (32) implies that anelastic deformations grow in the direction of the 
maximum stress. Note that in (32) the Lagrange multiplier is not sign constrained. 
Being maxnτ an isotropic function and in virtue of the symmetry of τ , the anelastic 
gradient of velocity  defined in the previous equation is symmetric, i.e. the anelastic 
spin tensor is null: 

al

 ( ) 0max ==∇== aanaa skew lwdl τβ τ
&   (33) 

Furthermore, using the relations (32), one has 0τl =a  

proof. 
- if  → obvious; 0l =a

- if 0max =→≠ τ0l a  so the stress state is plane. Calling b  the normal unit 
vector to the plane of stress and using (32), for general vectors one has 

( ) ( ) ( ) ( ) 0lτnmmlτnmlnτnm
bnτ

bvvml
=→∀=⋅=⋅→∀

=⋅
==

aaa
a ,0,

0
 

having indicated with v  the modulus of the vector v  ■ 

The entities in Equation (27) are all defined in the current configuration, but, using the 

identity  and Equation aeaD dSd ˆ̂⋅=⋅= τ (20), the constitutive relations (32) can be 
formulated in the intermediate configuration as: 

 ( )
a

e

e
aea

f
d

S
S

lCl ˆ̂ˆ
ˆˆ̂ =

∂
∂

== β&   (34) 

since  ( ) ( )( ) ( ) 11 ˆ̂ˆˆ
−−−− =

∂
∂

=
∂

∂
= ea

T
ee

e

eT
e

e
a

ff
sym FdFF

S
S

F
S

d β
τ

τ
β &&   (35) 

In (35)  is the functional expression of f̂ maxτ  in terms of the elastic second Piola 
Kirchhoff stress tensor . eS
The anelastic evolution relation (34) for the anelastic rate of deformation will not be 
used in the numerical implementation. 
 

TIME STEP INTEGRATION OF THE CONSTITUTIVE MODEL 

The model will be integrated by time step linearisation, so that rate form of the 
constitutive equations are required. From (26), the time derivative of Se is given by 

 
2

:
2

:4
2

ee CC
CC

S
&&

& C=
∂∂

∂
=

ee
e

W  (36) 
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where C represents the elastic fourth order tensor. Since  is not an objective stress 
measure, the objective rate form of the constitutive equations is obtained introducing the 
Lie derivative of the stress tensor. It is defined as the push-forward into the 
configuration where the tensor is defined of the time derivative of the pull-back of the 
stress tensor into the undeformed configuration. For the stress tensor S

eS&

e defined on the 
intermediate configuration one has the anelastic Lie rate 

 [ ]
T
aeeae

T
a

T
aeaaeaae

p
v tt

L

lSSlS

FFSFFSS

ˆˆ

)(1*
*

−−=

=
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= −−

&

φφ   (37) 

The anelastic pull-back of  gives the material derivative of the II Piola - Kirchhoff 
stress tensor defined in the undeformed configuration,  

e
p
vL S

 T
a

T
aeeaea

−−
⎥⎦
⎤

⎢⎣
⎡ −−⋅= FlSSlCFS ˆˆ

2
11 && C   (38) 

and its elastic push forward gives the Lie derivative of the Kirchhoff stress tensor 
defined in the current configuration 

   (39) T
aae

TT
e

T
a

T
eeae

T
eee

T
ee

p
vev LL

lld
llFlFFlFFSFFSF

ττ
ττττ ττ

−−=
=−−=−−== −−

:

1 ˆˆ

ec
&&

where the result ( ) T
e

T
eeee

−− −−= FllFS τττ&& 1  (see [12]) and Equation (7) have been used. 
The tensors C, ce are the 4th order material and spatial elastic tensors, related through 
the transformation 

   (40) αβγδ
αβγδ Cc a

e
b

e
c

e
d

e
abcd FFFF=e

In (39) the derivative of the Kirchhoff stress tensor is the material one 

 ( ) ( ) ( )( ) ( ) ( ) vxXxx x  τ τ ττ ∇+
∂
∂

=ϕ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ

∂
∂

= −

t
ttt

t
t ,,,, 1oo&   (41) 

Since , using Equation 0τl =a (39) the Lie derivative of the Kirchhoff stress tensor is 
given by 

 evL d⋅= ecτ   (42) 

By virtue of the additive decomposition of the gradient of velocity (therefore also of its 
symmetric part) expressed in (7), the total velocity of deformation tensor is the sum of 
its elastic and its anelastic components. The first term can be calculated inverting the 
constitutive relation (42), while the second is given from Equation (33) as follows 

   (43) max
1 τβτ τ∇+⋅=+= − &

veae Lcddd
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Equation (43) is perfectly analogous to the model defined in the field of small 
deformations where it is assumed the existence of a complementary energy potential 
defined as 

 ( ) ( ) ( ) ( ) ( )σσφσφσφσφ Kindc
e

c
a

c
e

c +=+=   (44) 

being { }0: max ≤= nK σσσ  the domain of the admissible stress tensors and  the 
indicator function. From Equation 

( )⋅ind
(44) the deformation field is then given by 

 
( )

maxσβε
σσ

φ
σ
φε σ

σ ∇+=
∂

∂
+

∂
∂

=
∂
∂

= e

c
e

c Kind
  (45) 

In the paper the following expression of the elastic potential has been adopted 

 ( ) ( ) ( )3
2
1lg

2
1

4 1
2 −+⎟

⎠
⎞

⎜
⎝
⎛ +−−= IJJW ee μμλλ    (46) 

where μ, λ are material constants, I1 is the first invariant of Ce and Je is the elastic 
jacobian, that coincides with the volumetric invariant of the elastic deformation. The 
expression of the material elastic tensor corresponding to the potential (46) is 

 ( bcadbdacecdab
e

abcd gggg
J

ggJ +⎥
⎦

⎤
⎢
⎣

⎡
+

−
+= μλλ

2
1 2

2
ec )  (47) 

The model adopted presents, therefore, some characteristics that are not present in 
the usual elasto-plastic models: 

a. the elastic potential depends on the elastic Jacobian Je; 
b. anelastic deformations are not isochoric, in fact, according to the evolution law 

(34), for a general process we have 

 
( )

( ) ( ) ( ) ( ) 0ˆ1 ≠==
∂

∂
= −

aaAa
A

aaAa
Aa

a
a trJFFJF

F
J

J lα

α

α

α
&&&  (48) 

so that  has to be determined iteratively at each step increment; eJ
c. in (32) it must be noted the multiplier β  is not sign constrained. 

Properties a.-c. do not make possible to extend to the present model one of the standard 
algorithms developed for finite elasto-plasticity like the exponential integration 
algorithm [13, 14]. 
In the following paragraph an original integration procedure is introduced. The general 
form and a detailed proof of the algorithm are presented in [15] and will be briefly 
reviewed in part II in connection with the case of no tension material. 
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COMBINED COMPRESSION-SHEAR DEFORMATION PROCESS 

In order to investigate the main properties of the model so far developed, in this section 
it is applied to a simple homogeneous deformation process. The hyper-elastic potential 
(46) is used, with the values μ = 0.6, λ = 0.5 MPa. 
A prismatic bar is first compressed in the X2 direction up to a stretch of 0.50, 
constraining the lateral deformation to zero. Then a pure shear is applied in the X1 
direction, assigning a linear displacement along the X2 axis (Figure 2) 

X1

X2

 

Figure 2. Combined compression-shear deformation process 

The compression process is purely elastic. Applying the shear deformation, the process 
grows elastically until the condition τmax=0 is reached (see Figures 3, 4 and 5). In this 
part of the deformation process the τ12 component grows linearly, τ22 remains constant, 
while 11τ decreases according to the hyperelastic constitutive law. When the 
admissibility stress condition is reached the process became inelastic. The results are 
shown in Figures 3, 4 and 5, where two values of the pre-compression where used, 10% 
and 50%. The plots present the evolution of the stress state after the initiation of the 
fracturing strains. The process is then reversed and during unloading the same stress 
state of the loading process is recovered. Comparison with the infinitesimal theory is 
also included in the graphs. 
The evolution of the angle of fracture (that is, the direction of the principal value of 

) is presented in Figure gτ∇ 6.a. In this figure, Btθ  is the angle between the normal to 
the fracture and the x2 direction in the current configuration, and 0Bθ  is the angle 
between the pull back on the reference configuration of the normal to the fracture, and 
the X2 direction.  
The differences with the predictions of the infinitesimal theory, apparent from the plots 
of Figures 3-6.a, are underlined by the results of Figure 6.b, where the limit elastic shear 
F12 is plotted against the axial pre-compression. In any case, the infinitesimal theory 
predicts a larger value of the limit shear. The limit shear F12 for the model examined in 
the finite deformations theory is given by 

 
( ) ( ) ( ) ( )[ ]

( )[ ]μλμ

μλμλλ

412

21241
2

22

2
2222

2
22

12
−−−

+−−+−−
=

F

FFF
F  (93) 
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Figure 3. Vertical stress vs. shear deformation 
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Figure 4. Lateral stress vs. shear deformation 
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Figure 5. Shear stress vs. shear deformation. (a) F22 = 0.90; (b) F22 = 0.50 
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Figure 6.  (a) Evolution of fracturing angle vs. shear deformation 
 (b) Limit shear deformation vs. factor of precompression  
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Figure 7. Pure shear deformation process evolution of stress state 
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Figure 8. Combined and proportional process 
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The limit case of a pure shear process without axial compression is presented in Figure 
7. Of course, in this case, fracture strains evolve since the beginning of the process. The 
deformation is isochoric, but e

e IJ 3=  (for Cartesian framework) is not constant. 
A final numerical simulation concerns the numerical verification of the path-
independency of the stress state (see Figure 8). The same final configuration, 
characterized by F11=1, F12=1, F21=0, F22=0.5 is reached following two alternative 
strain-histories. In one case first compression up to its final value is applied as in the 
simulation reported in Figures 3-6. In the second case compression and shear are made 
to grow proportionally. The results of Figure 8 show that the stress state in the final 
stage are the same. 
 

CONCLUSIONS 

In this paper a constitutive model for unilateral (no tension) materials has been 
proposed. The model has been developed assuming that the deformation process can be 
decomposed in its elastic and anelastic part using the multiplicative decomposition of 
the gradient of deformation tensor. This decomposition implies an additive split of the 
velocity of deformation. An hyperelastic potential and an evolution law for the anelastic 
velocity of deformation have been presented. The hyperelastic potential rules the elastic 
part of the deformation process and depends only on the elastic deformations and on the 
Jacobian of the elastic gradient of deformation, in order to take into account non 
isochoric deformations. The evolution of the anelastic velocity of deformation derives 
from the assumption of absence of dissipation in the deformation process, so that the 
anelastic velocity of deformation grows in the direction of the maximum stress. A full 
set of evolution relations has been proposed with reference either to the final 
configuration and to the intermediate configuration. To this end covariant velocity of 
deformation tensors, dual in power to the stress tensors, have been introduced in the 
final and in the intermediate configuration. It is possible to show that the model so 
defined is reversible and path independent. [16] 
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