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SUMMARY

Minimum weight design of laminated composite structures involving geometric nonlineari-
ties is considered. A constrained multi-criteria optimization problem is formulated for max-
imizing failure margin and critical buckling load factor of a composite structure with the
minimum number of layers. The constrained optimization problem is tranferred into a se-
quence of unconstrained problems and solved iteratively using deterministic search with the
achievement scalarizing function approach of Wierzbicki. Reissner-Mindlin-Von Kármán
type plate model has been implemented to determine the actual nonlinear mechanical re-
sponse of the structure. Load-displacement behaviour of the optimized structure as well as
the failure prediction and the identification of the critical areas of the FE-model are illustrated
with a numerical example.

INTRODUCTION

Two types of geometric nonlinearities may arise in the analysis of shell structures, namely
large deformation and large rotation nonlinearities. Large deformation nonlinearity is in-
duced by the membrane stress developed due to the midplane stretching when the shell ex-
perience large displacements as compared to its dimensions. Large rotation nonlinearity is
produced by large change of the shell midsurface slope during the analysis.

Composite materials are desirable in lightweight structures due to their high specific stiffness
and strength, and due to their dimensional stability under hygrothermal loads. In laminated
composites, layer orientations can be varied to tailor the laminate properties to obtain the
optimal response of the structure for the maximum efficiency in weight. Frequently, however,
high modulus and strength characteristics of composite materials result in structures with
very thin sections that are prone to buckling. For thin laminate structures the buckling load is
fairly low and there is a long postbuckling behavior, which illustrates well the importance of
being able to design plates in the postbuckling region to take advantage of the load carrying
capability [18].
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For many practical design problems of laminated composite structures, ply thicknesses are
fixed and layer orientations are limited to a small set of angles such as 0, 90, and±θ
deg. However, designing with composites leads to high dimesional, multimodal, and non-
differentiable optimization problems which are difficult to solve. Furthermore, usually there
exists no unique laminate lay-up configuration which would give an optimum for all the
structural design criteria simultaneously. Hence the traditional single objective structural op-
timality concept has to be replaced by a another one, particularly adapted to a multi-criteria
problem.

The multi-criteria optimization method of Wierzbicki is based on the reference objectives
defining the aspiration levels for the criteria. The reference point is a feasible or infeasible
point in the objective space which is reasonable or desirable to the designer. The reference
points can be used to derive achievement function having minimal solutions at Pareto optimal
points. The method works for nonconvex problems and is hence applicable in structural
optimization, particularly applied in discrete optimization of laminated composite structures.

The objective of our project is to develop an optimization system for laminated composite
structures involving geometric nonlinearities. Solving a nonlinear problem is always a com-
putationally expensive task. To reduce computational costs, we have considered in this paper
the use of linear buckling load factor and failure margin of a critical area of the FE-model
as criteria in the vector objective function to be maximized. Instead of only solving the lin-
ear eigenvalue problem for obtaining the critical loads, we consider determining the actual
load response of selected structures, which requires solving nonlinear, large deflection plate
bending equations. We have included as a constraint the failure prediction of the laminate.
Critical areas of the structure are identified and illustrated in the postbuckling and prefailure
region. Initial results of our technique were introduced in the studies [11, 13]. In this paper,
we give an introduction to the design method and summarize the employed model for the
structural analysis.

STRUCTURAL LAYUP DESIGN OPTIMIZATION PROBLEM

For thin laminates the buckling load is fairly low and there is a long postbuckling and pre-
failure region to take into account in the structural design of the plate [3]. Therefore, it is not
meaningful to consider the linear buckling load factor as a constraint but rather a criterion
to be maximized in the design optimization problem. The actual load response and failure
prediction is to be done by nonlinear analysis with load scaling to determine the mechanical
behavior of the structure in the postbuckling region.

A structural weight minimization problem is formulated in discrete form

S = {~y | ~y = arg min
~x∈S̃

n(~x )} (1)

where~x = (x1, x2, . . . , xn) is the layer orientation index design variable vector defining the
laminate lay-up configuration withn layers and̃S the feasible set of lay-up configurations
defined as

S̃ = {~x | g̃(~x ) = 1− R̃F (~x ) ≤ 0} (2)

Reserve factorR̃F > 0 [10, 14, 19] denotes failure margin of the structure measuring the
criticality of the effective load with respect to the failure load in the postbuckling region.

48



The design variablexl represents an alternative layer orientation, where1, 2, 3, 4 stands for
the four possible layer orientations0, 90, +θ,−θ deg, respectively. A set of allowable layer
orientations is defined byX = (1, 2, 3, 4) corresponding toΘ = (0, 90, +θ,−θ). For in-
stance, the symmetric even (SE) laminate structure[0/ ± θ/90]SE with n = 8 layers is
encoded as~x = (1, 3, 4, 2).

  1       x1   z0
  2       x2
  3       xl y
  k      zk
  M
  n     x

 z

Figure 1. The laminatexyz-coordinate system and the layer numbering convention.

The solution for the structural optimization problem is not unique, i.e., there might be several
feasible lay-up configurations with the minimum number of layers. Since we want to find
the lay-up configurations that maximize the two design criteria with the minimum number
of layers, we introduce a multi-criteria optimization problem as follows.

The multi-criteria optimization problem is formulated as

max
~x∈S

[
RF (~x )
λ(~x )

]
= max

~x∈S
~z(~x ) (3)

whereRF and λ are the failure margin and the critical buckling load factor determined
according to the Reissner-Mindlin plate model.

Generally, the componentszi : S → R, i = 1, 2, . . . ,m of the vector objective function
are called criteria and they represent the design objectives by which the performance of the
design point is measured. The image of the feasible set in the criterion space isΛ = {~z ∈
Rm | ~z = ~z(~x ), ~x ∈ S}.
Definition for Pareto optimal solutions of the problem (3) can be found in various references.
Thoroughful definitions and illustrations can be found for instance in [17].

Definition 1. A solution~x ∗ is Pareto optimal for the problem (3) if and only if there exists no
~x ∈ S such thatzi(~x ) ≥ zi(~x

∗) for all i = 1, 2, . . . ,m andzi(~x ) > zi(~x
∗) for at least one

i = 1, 2, . . . ,m. The points~z ∗ = ~z(~x ∗) ∈ Λ in the criterion space are called the maximal
points.

Definition 2. A solution~x ∗ is weakly Pareto optimal for the problem (3) if there does not
exist another~x ∈ S such thatzi(~x ) > zi(~x

∗) for all i = 1, 2, . . . ,m. The corresponding
points~z ∗ = ~z(~x ∗) ∈ Λ in the criterion space are called the weakly maximal points.
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ACHIEVEMENT FUNCTION APPROACH USING REFERENCE OBJECTIVES

Let z̄i ∈ R, i = 1, 2, ...,m be arbitrary reference objectives characterizing aspiration levels
for the given criterion vector (~̄z ∈ Rm denotes the reference objective vector) and letsz̄ :
Λ → R be a continuous achievement function. The achievement problem to be solved is

min
~z∈Λ

sz̄(~z ) (4)

The design points are generated iteratively, each point being computed on the basis of the
preceding point. At each iteration cycle, the selection of the design point is based on the
achievement function value. It has been shown by Wierzbicki [22] that Pareto optimal so-
lutions can be characterized by achievement scalarizing functions if the functions satisfy
certain requirements. In this work, we consider an order-representing achievement function
[17] as follows.

Definition 3. A function sz̄ is strictly decreasing if for~z (j), ~z (j+1) ∈ Rm, z
(j)
i < z

(j+1)
i for

all i = 1, 2, . . . ,m imply sz̄(~z
(j)) > sz̄(~z

(j+1)).

Definition 4. A continuous achievement functionsz̄ : Λ → R is order-representing if it is
strictly decreasing as a function ofz ∈ Λ for any z̄ ∈ Rm and if {~z ∈ Rm | sz̄(~z ) < 0} =
z̄ + int Rm

+ . For a continuous order-representing achievement functionsz̄ : Λ → R we have
sz̄(~z ) = 0.

Based on the results represented by Wierzbicki, Miettinen [17] has given the following con-
ditions concerning the the solutions of an order-approximating achievement function to be
Pareto optimal.

Sufficient condition for a solution of an achievement function to be Pareto optimal. If
the achievement functionsz̄ : Λ → R is order-representing, then, for any~̄z ∈ Rm, the
solution of the problem (4) is weakly Pareto optimal.

Necessary condition for a solution of an achievement function to be Pareto optimal. If
the achievement functionsz̄ : Λ → R is order-representing and~z ∗ ∈ Λ is weakly Pareto
optimal or Pareto optimal, then it is a solution of the problem (4) with~̄z = ~z ∗ and the value
of the achievement function is zero.

We employ an optimization procedure where the problem (4) is solved iteratively by trans-
ferring the constrained problem into a sequence of unconstrained problems. Let an order-
representing achievement function be defined as

sz̄(~z ) = max
i=1,2

{ρi(z̄i − zi)} (5)

where at thejth cycle z̄i = max z
(j)
i andzi = z

(j)
i and the criterion values are scaled as

ρi = w
(j)
i /(max z

(j)
i −min z

(j)
i ) with some fixed weighting vector~w > 0.

Termination condition for the algorithm is defined as

min{sz̄(~z ), g̃(~x)} ≤ δ (6)

whereδ > 0 is a small predefined termination scalar.
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REISSNER-MINDLIN-VON K ÁRM ÁN MODEL FOR PLATE BENDING

The plate bending problem will be formulated for a thin or moderately thick laminated com-
posite plate which in its undeformed configuration occupies the regionΩ × (−t/2, t/2),
whereΩ ⊂ R2 is the midsurface andt > 0 is the laminate thickness. The kinematical
unknowns in the model are transverse deflectionw, in-plane displacementu = (u1, u2), ro-
tation of the middle surfaceβ = (β1, β2), and drilling rotationω. The plate is subjected to
the in-plane loadf = (f1, f2) and the transverse pressureg.

We will use standard dyadic notation of tensor calculus. The functionsu, w, β, andω are
determined from the condition that they minimize the potential energy of the plate. The
energy is defined as

Π(u, w, β, ω) =
1

2

∫
Ω

ε(u) : A : ε(u) dΩ +

∫
Ω

ε(u) : B : ε(β) dΩ

+
1

2

∫
Ω

ε(β) : D : ε(β) dΩ +
1

2

∫
Ω

γ(w, β) · A? · γ(w, β) dΩ (7)

+C

∫
Ω

[ω − rot(u)]2 dΩ +
1

2

∫
Ω

ϕ(u, w) : A : ϕ(u, w) dΩ

+

∫
Ω

ε(u) : A : ϕ(u, w) dΩ +

∫
Ω

ε(β) : B : ϕ(u, w) dΩ−
∫

Ω

f · u dΩ−
∫

Ω

gw dΩ

whereε is the linear strain tensor

ε(u) =
1

2
(∇u +∇uT ) (8)

ϕ is the nonlinear membrane strain tensor

ϕ(u, w) =
1

2
(∇u1 ⊗∇u1 +∇u2 ⊗∇u2 +∇w ⊗∇w) (9)

γ the transverse shear strain vector

γ(w, β) = ∇w − β (10)

andC > 0 is a penalty parameter for imposing the conditionω = rot(u) (see [8]), and

rot(u) =
∂u1

∂x2

− ∂u2

∂x1

(11)

The tensorsA, B, D, andA?, are defined according to the Classical Lamination Theory
(CLT) as

A =
∑

k

∫ zk

zk−1

Q̄ dz =
∑

k

(zk − zk−1)Q̄
(k) (12)

B =
∑

k

∫ zk

zk−1

Q̄z dz =
1

2

∑
k

(z2
k − z2

k−1)Q̄
(k) (13)
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D =
∑

k

∫ zk

zk−1

Q̄z2 dz =
1

3

∑
k

(z3
k − z3

k−1)Q̄
(k) (14)

A?
ij =

∑
k

∫ zk

zk−1

Q̄3i3j dz =
∑

k

(zk − zk−1)Q̄
(k)
3i3j (15)

whereQ̄(k) defines the constitutive relation for linear orthotropic materials in plane stress
state for layerk in the laminate coordinate system. Detailed expression for computingQ̄(k)

as well as deriving the model is considered more thoroughfully in [11, 13].

The differential equilibrium equations of the minimization problem are obtained using stan-
dard variational calculus and integration by parts. In the computations we solve these non-
linear equations iteratively by Riks’ method with Crisfields’s elliptical constraint for arc
length [15]. The linearized equations are then discretized by the finite element method. In
the postbuckling region the algorithm follows the principal equilibrium path with the mini-
mal stifness.

We will also consider linear stability analysis in the optimization process. In stability analysis
we first solve (7) withϕ(u, w) = 0, and compute the normal forceN = A : ε(u) + B :
ε(β). The critical buckling load factor with respect toN is denoted byλ and determined by
minimining the Rayleigh quotient [6]

R(u, w, β, ω) =

{
1

2

∫
Ω

ε(u) : A : ε(u) dΩ +

∫
Ω

ε(u) : B : ε(β) dΩ

+
1

2

∫
Ω

ε(β) : D : ε(β) dΩ +
1

2

∫
Ω

γ(w, β) · A? · γ(w, β) dΩ (16)

+C

∫
Ω

[ω − rot(u)]2 dΩ

}
/

∫
Ω

N : ϕ(u, w) dΩ

The minimizer(u, w, β, ω) of R is then the buckling mode related to the critical load factor
λ = R(u, w, β, ω).

Let us finally remark that our plate model contains the following established plate models
[1, 21]:

• for ϕ(u, w) = 0, the model reduces to the plate model of Reissner and Mindlin

• for β = ∇w, the model reduces to the classical Von Kármán plate model

• for ϕ(u, w) = 0 and β = ∇w, the model reduces to the classical plate model of
Kirchhoff.

In the FE-implementation we partition the plate into straight sided triangles and use the
linear stabilized MITC plate elements [2, 16]. In the computation, the in-plane forces and
the bending moments are obtained consistently from the constitutive relations of the laminate
while the shear forces are computed using the reduced shear strains [2, 16].
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LAMINATE FAILURE PREDICTION

Exact solutions for reserve factors can be found for various failure criteria of composite ma-
terials. However, the failure criteria may consist of different expressions for the assessment
of different types of failure. Finding exact solutions for this type of criteria is difficult or even
impossible. Therefore, a numerical method independent of the failure criterion formulation
to obtain the reserve factors [12, 14] has been employed.

For determining the layer margin to failure, we formulate an unconstrained minimization
problem using the load criticality factorµ as

min
µ∈[a,b]

v(µ) = |1−F(µ)| (17)

whereF denotes the generalized failure criterion. One of the common failure criteria for
polymer matrix fiber-reinforced composites, i.e., maximum strain, maximum stress, Tsai-
Wu, Hoffman, Tsai-Hill, simple Puck, modified Puck or Hashin failure criterion [7, 9, 20]
can be used. In stress space, the failure criterion value is obtained from

F(µ) = F [σ(µ)] (18)

whereσ denotes the layer actual stress state. If only external mechanical loads are involved,
then σ(µ) = µσ. The objective function is minimized over the closed bounded interval
by iteratively reducing the interval of uncertainty[a, b ]. In the golden section line search
method employed in this work, the interval of uncertainty is reduced each time by a factor
of the golden section ratio until the final length of the uncertaintybF − aF ≤ δF for some
δF > 0 is reached. Hence, the pointF(µ) = 1 where failure occurs is achieved with

µF = (aF + bF)/2 (19)

The final length of uncertaintyδF reflects the desired degree of accuracy of the results.

Finally, the minimum of the layer reserve factors determined typically on the top and bottom
surfaces of each layer of the laminate defines the margin to laminate First Ply Failure (FPF)
at the elementK as

RFK = (min µF)|K (20)

The critical region in the structure is defined as the minimum of the element reserve factors

RF = min
K∈Ch

RFK (21)

whereCh denotes partitioning of the plate. In this paper we useRF to denote the reserve
factor computed withϕ(u, w) = 0 in Eq. (7) andR̃F to denote the reserve factor determined
using the stress-strain state achieved with the Reissner-Mindlin-Von Kármán plate model.
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NUMERICAL EXAMPLE

 z
y

x

zF

yF

Figure 2. Z-profile beam.

To illustrate the design optimization technique, we
consider the design optimization problem (3) of a
clamped Z-profile elastic beam shown in Figure 2.
For solving the design optimization problem, we em-
ploy the Elmer software package [4] recently ex-
tended to cover analysis and design of laminated
composite structures as well.

The beam is composed of layers having the mechan-
ical properties of in plane 23 transversely isotropic
AS4 carbon/epoxy ply listed in Table 1. The length
of the beam is 1.0 m, the height of the web and the width of the flanges are 0.1 m. The beam
is subjected to its own weight and to the design loadsFy = 1290 N at the midlength of the
beam andFz = −860 N at the free end of the beam as shown in Figure 2. The web and
the flanges are assumed to have identical lay-up configuration. A finite element mesh with
6000 linear triangular elements is used in the computation. The material coordinate system
is given parallel to the globalx-axis. In the design optimization, Tsai-Hill failure criterion is
used to predict the failure withδ = δF = 0.5 · 10−3. In our numerical example we let the
stabilation parmetersα = 0.2 andC = t(A?

11 + A?
22).

AS4/3501-6 tply = 0.134 mm

E1 = 139.3 GPa E2 = 11.1 GPa

G12 = 6.0 GPa ν12 = 0.3

G23 = 3.964 GPa ν23 = 0.4

Xt = 1950 MPa Yt = 48 MPa

Xc = 1480 MPa Yc = 200 MPa

S12 = 79 MPa ρ = 1580 kg/m3

Table 1.Mechanical properties of the AS4/3501-6 carbon/epoxy ply.

The optimization algorithm begins with the generation of permutations of symmetric even
(SE) lay-upsΘ = (0, 90, +θ,−θ), θ ∈ {0, 5, 10, . . . , 90} deg with n = 8. The design
alternatives are mapped into the criterion space and the achievement function values are
computed for each alternative.

Choosing interactively the weighting factorsw1 ∈ {0.15, 0.19, 0.24, 0.3}, for instance, and
w2 = 1−w1 produces the lay-up configurations[90/∓θ/0]SE with θ ∈ {50, 45, 40, 35} deg,
respectively, as parents at the first iteration cycle. The initial and the following generations
as well as the selected parents are shown in Figure 3.

A new subset of design points is created at each cycle from each selected parent at that
cycle. Here~x (j) denotes half of the selected laminate structure at thejth iteration cycle, e.g.,
[0/90/ ± θ ]SE laminate is denoted by~x (j) = (1, 2, 3, 4). Accordingly,~x (j+1) = (~x (j), 1, 1)
in this case denotes[0/90/± θ/2(0)]SE lay-up.
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Figure 3.The four generations of design points in the criterion space. At each iteration cycle,
symbols denote the selected parents for the next generation. At the last cycle achieved subset
of Pareto optimal solutions are listed in Table 2.

The algorithm generates from one selected parent the following design alternatives.

~x (j+1) ∈ X(j+1) =


(~x (j), 3, 4), (~x (j), 4, 3), (3, 4, ~x (j)), (4, 3, ~x (j)),
(~x (j), 1, 1), (1, ~x (j), 1), (1, 1, ~x (j)), (~x (j), 1, 2),
(1, ~x (j), 2), (1, 2, ~x (j)), (~x (j), 2, 1), (2, ~x (j), 1),
(2, 1, ~x (j)), (~x (j), 2, 2), (2, ~x (j), 2), (2, 2, ~x (j))

 (22)

To avoid the generation of undesirable thickn(+θ) or n(−θ) sublaminates, permutations
(3, ~x (j), 4) and (4, ~x (j), 3) are neglected in the set. Furthermore, the set of allowable per-
mutations can be easily extended to cover also additional layer orientations and laminate
structures when necessary, e.g.(±θ1) and(±θ2) layer orientations.

Finally, a subset of Pareto optimal lay-up configurations withn = 20 has been found as
a solution of the design problem. The lay-up configurations as well as the corresponding
criterion and constraint function values are represented in Table 2.

In this example, we selected four parents from the initial generation to the next iteration
cycle. The initial phase requires some 460 stability or nonlinear analyses including failure
prediction of the laminate to be performed. At each iteration cycle 76 corresponding analyses
are performed resulting the total price of the search less than 700 analyses. The final laminate
structure is 2.68 mm thin for which there is a long postbuckling behavior to be taken into
account prior to failure. For thin laminated rectangular plates with various boundary condi-
tions analogous results have been shown in [18] when comparing computational results with
experimental data.
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Figure 4. Load-displacement behavior of the Z-beam with the Pareto optimal lay-up config-
urations listed in Table 2 and with the comparative lay-ups withθ = 0, 90. Load scale factor
1.0 corresponds to the design load.

Figure 5.The FPF reserve factor value as a function of the load scale factor with logarithmic
scales for the Z-beam with the Pareto optimal lay-up configurations listed in Table 2 and
with the comparative layups withθ = 0, 90. Load scale factor 1.0 corresponds to the design
load.
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Figure 6. An example of the deformed structure composed of the[90/∓ 50/7(0)]SE lay-up
subjected to the design load using the Reissner-Mindlin-Von Kármán model. Colors repre-
sent the value of inverse FPF reserve factor computed with the Tsai-Hill failure criterion.

RF  =  1.07055 2t 1.07055 2t 1(90°) -

Layer reserve factors, RF_FPF

0 2 4 6 8 10 12 14

 1   90°
 2  -50°
 3   50°
 4    0°
 5    0°
 6    0°
 7    0°
 8    0°
 9    0°
10    0°
11    0°
12    0°
13    0°
14    0°
15    0°
16    0°
17    0°
18   50°
19  -50°
20   90°

 

Figure 7. An example of postprocessing the results with the ESAComp software [5]. The
layer reserve factor value is shown for the Pareto optimal[90/∓ 50/7(0)]SE laminate at the
critical point of the Elmer FE-model using the Tsai-Hill failure criterion.
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Lay-up RF λ R̃F max |~u | [mm]

[90/∓ 50/7(0)]SE 2.66117 0.75764 1.07044 29.7481

[90/∓ 45/7(0)]SE 2.69606 0.72423 1.13430 28.8957

[90/∓ 40/7(0)]SE 2.74338 0.69313 1.20555 27.9818

[90/∓ 35/7(0)]SE 2.80165 0.66563 1.20866 28.4513

Table 2.A subset of Pareto optimal lay-up configurations withn = 20 for the problem (3).

In Figure 4, load-displacement behavior in terms ofmax |~u |, ~u = (u1, u2, w) is shown for
the Pareto optimal solutions listed in Table 2 and for the two comparative lay-up configu-
rations with analogous stacking sequence but withθ = 0, 90. In Figure 5, the FPF reserve
factor computed with the Tsai-Hill failure criterion as a function of the load scale factor is
shown for the corresponding lay-up configurations. For the Pareto optimal configurations,
the buckling load is clearly higher and the maximum displacement lower than for the com-
parative configurations in which also the first ply failure occurs prior to the design load.

Examples of postprocessing the results are shown in Figures 6 and 7. The critical values of
reserve factors are less than one whereas the non-critical values range from one up to infinity.
For that reason in color charts, for instance, margin to failure is more practical to view as
inverse reserve factors. In Figure 6, an example of the deformed structure subjected to the
design load is represented. Colors show the value of the inverse reserve factor computed with
Tsai-Hill failure criterion. In Figure 7, the ESAComp software [5] has been used to plot the
chart of the layer reserve factors at the critical point of the Elmer FE-model.

CONCLUSIONS

An efficient technique for solving analysis and design problems of laminated composite
structures involving geometric nonlinearities is considered. For solving the design problem,
a constrained multi-criteria optimization problem for maximizing failure margin of a critical
point in the FE-model and critical buckling load factor has been formulated. The constrained
problem has been transferred into a sequence of unconstrained problems and solved using
deterministic search and the achievement function approach of Wierzbicki. The actual me-
chanical response of the structure is determined solving large deflection plate bending equa-
tions within the Elmer PDE solver in which the Reissner-Mindlin-Von Kármán type plate
model has been implemented. Some of the advantages of the design method are that it is
easy to implement and the design space is facile to expand, and it is also employable at dis-
tributed computing environment. The method is also relatively fast, which could make it a
versatile tool in a preliminary design stage.
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