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ABSTRACT 
 
The nonlinear thin beam bending model presented in the article uses a relatively simple 
numerical method for solving highly nonlinear planar beam problems. In this model, the 
curvature of the beam is not approximated by the second derivative of the deflection as 
in conventional small deflection models. The amount of the rotation of the beam is not 
limited. The deformation caused by normal and shear forces is neglected. 
 
INTRODUCTION 
 
When the curvature of an initially straight beam gets high, the conventional straight 
beam formulas can not be used anymore. When the problem gets very nonlinear, the 
final geometry may depend of the loading history.  If the loading history is unknown, 
we obtain multiple solutions. Nonlinear beam problems do not usually have analytical 
solutions. The elastic curve of the beam has to be solved numerically, and the solution 
has to be iterated in most cases, as the forces acting on the beam may depend on the 
shape of the beam. An example of a nonlinear problem is illustrated in figure 1. While 
rotating the beam around the point A at angle α, the beam slides over the support B. At 
the supporting point we have a reaction force with normal component F and the friction 
force μF. The beam is also loaded by the weight of the beam mg and a pure bending 
moment M. 
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Figure 1.  Bending of a beam with nonlinear geometry 
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FORMULATION OF THE MODEL 
 
A nonlinear beam model can be formulated by dividing the beam in short sections and 
assuming that the bending moment M is constant inside a section. If the beam is thin, 
we can ignore the deformation caused by normal and shear forces. 
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Figure 2. Bending moment at a node caused by a force.   

 

To determine the shape of the beam we have to calculate the bending moments at the 
nodes (endpoints of the sections). The total moment at a node is the sum of the moments 
of the forces acting on the right-hand side of the node: 
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 Inspecting the geometry in figure 2 we can find out the expression of the distance i
jl  : 
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If an initially straight beam (or a short section of the beam) with length s  is loaded by a 
constant bending moment M  and the beam has bending stiffness B , the elastic curve 
of the beam or the beam section is a circular arc with radius of curvature MBR /= . 
We take the average of the values at the end nodes as the bending moment of the beam 
section e between the nodes i and i+1 :  

 ( ) 2/1++= iie MMM  (3) 

If the coordinates and the inclination angle at the left end are xi, yi and θi we obtain from 
figure 3 the equations (4a)…(4c). These equations can be simplified to shorter form, but 
the form presented here behaves well in numerical calculations when the curvature of 
the beam section is very low (radius Re is very high). 
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Figure 3. Geometry of a circular arc with radius R 

 
 ( ) ( ) ( ) ( ) ( )( )iieeieeeii RsRsRxx θ−θ+θ+=+ sinsin/coscos/sin1  (4 a) 
 ( ) ( ) ( ) ( ) ( )( )iieeieeeii RsRsRyy θ+θ−θ+=+ coscos/cossin/sin1  (4 b) 
 eeii Rs /1 +θ=θ +  (4 c) 

where 

 eee MBR /=  (4 d) 
 

The subscript e refers to the element number between nodes. Equations (4) are valid if 
the beam section has curvature. If there is no bending moment and the beam section is 
straight 

 ( )ieii sxx θ+=+ cos1  (5 a) 
 ( )ieii syy θ+=+ sin1  (5 b) 
  ii θ=θ +1  (5 c) 

After calculating the bending moments we can join the arcs of the short sections to form 
the elastic curve of the beam. 

 

ITERATION PROCEDURE 

If only pure bending moments are acting on the beam, the shape of the beam has no 
effect to the bending moments of the beam sections. In all other cases, we have to iterate 
the calculation until the solution is acceptable. We can take the average displacement of 
nodes between iteration steps as the measure  
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of the acceptability of the solution. Here e is the error norm, n is the number of nodes 
and t denotes the current iteration step. When the shape of the beam does not change 
anymore the system is in equilibrium. In numerical calculations, we have to allow some 
small number, which is greater than zero, as an error tolerance etol. 

The main problem in the solution is the convergence of the iteration process. Usually, 
we have to increase the loads gradually so that the system does not go too far from the 
equilibrium state. When our problem is highly nonlinear, we have to use some damping 
between iteration steps to achieve stability. In the beginning of the iteration step t, we 
have the nodal coordinates of the beam and the bending moments at the nodes 1−t

iM  
from the previous iteration step. In the current iteration step, we calculate an estimate of 
the new bending moments t

iM̂  at the nodes, using the geometry of the previous step by 
equations (1) and (2). In very nonlinear problems we have to interpolate between the old 
and new bending moments using the damping factor α:  

 1)1( −α+α−= t
i

t
i

t
i MMM

)
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If the damping factor is zero, we do not use bending moment information from the 
previous step. If the damping factor is 1, the solution does not change between 
iterations. In very nonlinear problems the damping factor has to be quite high to achieve 
stability. In example 2 of this paper, damping factor α=0.95 has been used.  
An example of an iteration procedure for problems where forces are known in advance, 
and the shape of the beam is calculated, can be described roughly as follows: 

  
 Set initial values of forces applied to the beam (usually zero) 
 Calculate initial geometry (usually straight beam)  
 LOOP 1 : ( Iteration of the external forces)   
  Increase forces applied to the beam 
  LOOP 2: (Iteration of the beam geometry)  
   Calculate bending moments of the nodes. Equations (1),(2),(7) 
   Calculate new geometry of the beam. Equations (3), (4) and (5) 
   Calculate difference between new and old geometry. Eq. (6) 
  END: If the difference is greater than tolerance, go to LOOP 2 
 END: If the forces do not have the final values, go to LOOP 1 
 Print and plot the results 
 
 
EXAMPLE 1: BEAM LOADED BY OWN WEIGHT 

We calculate the end deflection of a straight cantilever beam loaded by its own weight 
starting from the classic small deflection Euler-Bernoulli beam solution. Solving it for 
the bending stiffness1 B, and multiplying by a nonlinearity correction factor k, we get 
equation 

                                                 
1  For a homogenous beam, made of isotropic material, the bending stiffness is B=EI, where E is the 
elastic modulus of the material and I is the moment of inertia of the cross section. 
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where m is the mass off the beam per unit length, g is the acceleration of gravity and 

other dimensions are according to figure 4 a. If the elastic curve of the deflected beam is 

normalized by beam length, the geometric nonlinearity depends only of  the normalized 

deflection d/l. Then k=k(d/l). 
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Figure 4.  Beam loaded by own weight (a). Correction factor for equation (8) 

Using the nonlinear thin beam model we calculate the numerical values of k for 
different values of normalized deflection. Fifty elements have been used in this 
calculation. The numerical values can be fitted quite accurately to the polynomial  
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The numerical solution and the graph of the polynomial are shown in figure 4 b. The 
maximum difference in k between curves is 0.005, when the deflection is less than 80% 
of the beam length. However, this polynomial is not the analytical solution of the 
problem. Equation (8) with this correction factor (9) can be used as a simple method for 
measuring the bending stiffness of a thin flexible beam. Those equations have also one 
real solution for deflection d. This solution is quite complicated and it is not presented 
here. 

 

EXAMPLE 2: PROBLEM WITH MULTIPLE SOLUTIONS 
An initially straight beam according to figure 5 a is loaded by a bending moment M and 
a force F at the right end. B is the bending stiffness of the beam. What is the elastic 
curve of the beam when the x- and y-direction components of the force are  100 and  
-100, and the bending moment  M = 4π ?  
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Figure 5. The initial configuration (a) , and the solutions (b …f) of the spring problem. 

To solve this problem, 100 elements have been used. The solution depends on the path 
of loading. If we apply the moment and the force at the same time, we end up to the 
simple solution (b). If we first load the spring by the moment  M=4π, the spring makes 
two full circles. If we then add the force, we obtain the solution (e).  The solutions (c) 
and (d) have been found by applying first half of the moment, then double the final 
moment. The problem might also have labile solutions. If we first make a loop by using 
a bending moment at the opposite direction (M=-2π) , and then apply the final force and 
moment, we find a solution (f), which is very close to be in equilibrium. It is hard to 
find the stationary point using numerical iteration. However, this might be a true 
solution in real life, if the material is not perfectly elastic. 

 

COMPARISON WITH ANALYTICAL RESULTS 

Some elementary cases of nonlinear beam problems have been solved by analytical 
methods using elliptic functions and integrals. Frisch-Fay (1962) gives the solution for 
"Vertical strut under vertical load" according to figure 6. This example has been used as 
a benchmark for the numerical method in this article. 
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Figure 6. Vertical strut under vertical load. 

An initially vertical bar having length L and bending stiffness B , fixed at the bottom, is 
subject to a vertical load F at the top. If the bar is sufficiently flexible it will buckle and 
take the shape in figure 6. First we have to solve the modulus p governing the shape of 
the bar from equation 

 ( )pKL F
B=  (10) 

where ( )pK  is the complete elliptic integral of the first kind. This equation can not be 
solved for p but the value can be calculated by numerical iteration. After solving the 
modulus p, the coordinates ( )sx  and ( )sy of the elastic curve can be calculated from 

 ( )( )B
F

F
B spcnpx ,12 −=  (11) 

 ( )( ) sspampEy B
F

F
B −= ,,2  (12) 

where s is the distance along the bar, ),( φpE  is the elliptic integral of the second kind 2, 
( )upam ,  is the amplitude of u and cn denotes the Jacobi's elliptic function 
( ) ( )( )upamupcn ,cos, = .  

 

Figure 7 shows the elastic curves  calculated using analytical formulas (10…12), and 
exploiting the numerical method presented in this article. The parameter values for this 
benchmark have been: L = 1, B = 1 and F=10. The critical buckling load of this beam is 
Fcr = 2.4674. In numerical calculations we have used a lateral excitation force in the 
first loading step to make the beam buckle. Different number of elements between 1 and 
1000 have been tested. At least in this case, the error compared to analytical results 
decreases, when the number of elements increases. The average position error of nodes 
2…NE+1 is shown in figure 8.  

                                                 
2  This article uses the notation of Frisch-Fay for the elliptic functions. Mathematica ® program, for 
instance, uses different convention:  K(p)=EllipticK[p2] ,  E(p,φ)=EllipticE[φ, p2], 
cn(p,u)= JacobiCN[u,p2]  and   am(p,u)= JacobiAmplitude[u,p2] 
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Figure 7. Analytical and numerical solution for vertical strut under vertical load. 
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Figure 8. Average position error of nodes compared to analytical results 

 

CONCLUSIONS 
This paper, for simplicity, has concentrated on relatively simple statically determinate 
cases of beam problems where the initial shape of the beam has been straight. Arbitrary 
initial curvature of the beam can be easily added to the method. The procedure can also 
be expanded to statically indeterminate cases, where the forces acting to the beam 
depend on the shape of the beam. In those cases we need an extra loop for iterating the 
forces wrapped around the procedure explained in the chapter: "iteration procedure". 
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The accuracy of this method can be increased by adding the number of elements in the 
model. Adding the number of elements increases the computing time linearly, whereas 
in some other methods the computing time and memory requirements grow 
exponentially. 

Author has used this procedure also as an embedded subroutine in a simulation program 
simulating complicated mechanisms including flexible beams.   
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